JP2006337059A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2006337059A
JP2006337059A JP2005159056A JP2005159056A JP2006337059A JP 2006337059 A JP2006337059 A JP 2006337059A JP 2005159056 A JP2005159056 A JP 2005159056A JP 2005159056 A JP2005159056 A JP 2005159056A JP 2006337059 A JP2006337059 A JP 2006337059A
Authority
JP
Japan
Prior art keywords
tube
measurement tube
ultrasonic
measurement
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159056A
Other languages
Japanese (ja)
Other versions
JP4737669B2 (en
Inventor
Yutaka Tanaka
豊 田中
Daisuke Mori
大介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2005159056A priority Critical patent/JP4737669B2/en
Publication of JP2006337059A publication Critical patent/JP2006337059A/en
Application granted granted Critical
Publication of JP4737669B2 publication Critical patent/JP4737669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter which can reduce product-to-product variations in performance. <P>SOLUTION: A pair of ultrasonic sensors 32, 32 are held by a sensor-holding piece 37 integrally-molded with a measuring tube 31 (a plurality of measuring tube structures 40, 40), thereby reducing the variations in the distance between the ultrasonic sensors 32, 32 and the measuring tube 31 and the distance between the ultrasonic sensors 32, 32 as compared to conventional types, and hence reducing the product-to-product variations in performance (more specifically, measurement precision) in the ultrasonic flowmeter 10 as compared to conventional ones. Since the measuring tube 31 is configured by the two measuring tube structures 40, 40 which are vertically divided parallel to its axial direction, flexibility in the shape of an internal area (a flow channel 31a) of the measuring tube 31 are enhanced, by allowing, for example, a constriction part 35 to be formed at the opening edge of the measuring tube 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、メーターケースと、メーターケース内に収容され、内側に流体が流される計測管と、その計測管の両端部の開口に対して離して配置され、計測管の内側領域を挟んで互いに対向した1対の超音波送受波器とを備え、これら1対の超音波送受波器の間で送受波される超音波の伝搬時間に基づいて流量を計測する超音波流量計に関する。   The present invention includes a meter case, a measurement tube that is accommodated in the meter case and in which a fluid flows, and is spaced apart from the openings at both ends of the measurement tube, and each other across the inner region of the measurement tube The present invention relates to an ultrasonic flowmeter that includes a pair of opposed ultrasonic transducers and measures a flow rate based on a propagation time of ultrasonic waves transmitted and received between the pair of ultrasonic transducers.

従来の超音波流量計は、メーターケースの内部に備えられたホルダーに計測管と1対の超音波送受波器とを別々に組み付ける構造であった。   The conventional ultrasonic flowmeter has a structure in which a measuring tube and a pair of ultrasonic transducers are separately assembled to a holder provided inside a meter case.

ところが、上述した従来の超音波流量計では、ホルダーに対する計測管の組み付け誤差と、ホルダーに対する超音波送受波器の組み付け誤差とが生じ得るため、計測管と超音波送受波器との距離や超音波送受波器同士の距離がばらつき、個々の製品間の性能にばらつきが生じるという問題があった。   However, in the conventional ultrasonic flowmeter described above, the assembly error of the measurement tube to the holder and the assembly error of the ultrasonic transducer to the holder can occur. There was a problem in that the distance between the acoustic transducers varied and the performance between individual products varied.

なお、本発明に関係する先行技術文献は、見つけることができなかった。   In addition, prior art documents related to the present invention could not be found.

本発明は、上記事情に鑑みてなされたもので、製品間の性能のばらつきを抑えることが可能な超音波流量計の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the ultrasonic flowmeter which can suppress the dispersion | variation in the performance between products.

上記目的を達成するためになされた請求項1の発明に係る超音波流量計は、メーターケースと、メーターケース内に収容され、内側に流体が流される計測管と、その計測管の両端部の開口に対して離して配置され、計測管の内側領域を挟んで互いに対向した1対の超音波送受波器とを備え、これら1対の超音波送受波器の間で送受波される超音波の伝搬時間に基づいて流量を計測する超音波流量計において、計測管を縦に分割してなる複数の計測管構成体を組み付けて計測管を構成し、それら計測管構成体の少なくとも何れかに、超音波送受波器を計測管の開口に対して離した位置に保持するための送受波器保持部を一体に設けたところに特徴を有する。   In order to achieve the above object, an ultrasonic flowmeter according to the invention of claim 1 includes a meter case, a measurement tube that is accommodated in the meter case and in which a fluid flows, and ends of both ends of the measurement tube. And a pair of ultrasonic transducers arranged apart from the opening and facing each other across the inner region of the measurement tube, and ultrasonic waves transmitted and received between the pair of ultrasonic transducers In an ultrasonic flowmeter that measures the flow rate based on the propagation time, a measurement tube is configured by assembling a plurality of measurement tube components obtained by vertically dividing the measurement tube, and at least one of these measurement tube components The ultrasonic transmitter / receiver is characterized in that a transmitter / receiver holding part for holding the ultrasonic transmitter / receiver at a position separated from the opening of the measuring tube is provided integrally.

請求項2の発明は、請求項1に記載の超音波流量計において、送受波器保持部は、複数の計測管構成体にそれぞれ設けられて、互いに超音波送受波器を協働して保持するように構成したところに特徴を有する。   According to a second aspect of the present invention, in the ultrasonic flowmeter according to the first aspect, the transmitter / receiver holding unit is provided in each of the plurality of measurement tube components, and holds the ultrasonic transmitter / receiver in cooperation with each other. It has the characteristic in the place comprised.

請求項3の発明は、請求項2に記載の超音波流量計において、計測管構成体の総数を2つとし、送受波器保持部を計測管構成体に一体成形し、かつ、2つの計測管構成体を同一形状の成形品としたところに特徴を有する。   According to a third aspect of the present invention, in the ultrasonic flowmeter according to the second aspect, the total number of measuring tube constituents is two, the transducer holding part is integrally formed in the measuring tube constituents, and two measurements are made. It is characterized in that the tube structure is a molded product having the same shape.

請求項4の発明は、請求項3に記載の超音波流量計において、送受波器保持部を含む計測管構成体同士の接合面に、互いに対応した凹部と凸部とを対称的に配置し、一方の計測管構成体の凸部が他方の計測管構成体の凹部に凹凸係合すると共に、一方の計測管構成体の凹部が他方の計測管構成体の凸部に凹凸係合するように構成したところに特徴を有する。   According to a fourth aspect of the present invention, in the ultrasonic flowmeter according to the third aspect, the concave and convex portions corresponding to each other are arranged symmetrically on the joint surface between the measuring tube constituents including the transducer holding portion. The convex portion of one measuring tube constituent is engaged with the concave portion of the other measuring tube constituent, and the concave portion of one measuring tube constituent is engaged with the convex portion of the other measuring tube constituent. It has the characteristic in having comprised.

請求項5の発明は、請求項3又は4に記載の超音波流量計において、送受波器保持部を含む計測管構成体には、計測管構成体同士の接合面に開放しかつ超音波送受波器から延びた電線を収容する溝部が形成され、溝部の開放口が計測管構成体同士の接合によって閉じられたところに特徴を有する。   According to a fifth aspect of the present invention, in the ultrasonic flowmeter according to the third or fourth aspect of the present invention, the measurement tube structure including the transmitter / receiver holding portion is open to the joint surface between the measurement tube structures and transmits and receives the ultrasonic wave. A groove portion for accommodating an electric wire extending from the waver is formed, and the feature is that the opening of the groove portion is closed by joining the measuring tube constituent members.

請求項6の発明は、請求項1乃至5の何れかに記載の超音波流量計において、計測管の開口縁を内側に膨出させて、くびれ部を形成したところに特徴を有する。   The invention of claim 6 is characterized in that, in the ultrasonic flowmeter according to any one of claims 1 to 5, the opening edge of the measuring tube is bulged inward to form a constricted portion.

請求項7の発明は、請求項6に記載の超音波流量計において、計測管の内面からのくびれ部の突出量を0.05〜0.5[mm]にしたところに特徴を有する。   The invention of claim 7 is characterized in that, in the ultrasonic flowmeter of claim 6, the amount of projection of the constricted portion from the inner surface of the measuring tube is set to 0.05 to 0.5 [mm].

請求項8の発明は、請求項6又は7に記載の超音波流量計において、計測管の開口縁が丸みを帯びるように面取りを施し、くびれ部に面取りによる曲面を連続させたところに特徴を有する。   The invention according to claim 8 is characterized in that in the ultrasonic flowmeter according to claim 6 or 7, chamfering is performed so that the opening edge of the measuring tube is rounded, and a curved surface by chamfering is continued in the constricted portion. Have.

請求項9の発明は、請求項1乃至8の何れかに記載の超音波流量計において、記計測管の内側領域のうち、流体の流れ方向に直交した断面を偏平形状とし、計測管の内面における幅方向の両端部に溝部を形成したところに特徴を有する。   A ninth aspect of the invention is the ultrasonic flowmeter according to any one of the first to eighth aspects, wherein a cross section perpendicular to the fluid flow direction is flattened in an inner region of the measurement tube, and the inner surface of the measurement tube This is characterized in that groove portions are formed at both ends in the width direction.

請求項10の発明は、請求項1乃至9の何れかに記載の超音波流量計において、メーターケースには、計測管を収容した計測管収容部屋と、計測管収容部屋の一端側に連絡された流体流入路と、計測管収容部屋の他端側に連絡された流体流出路とが備えられ、計測管には、計測管収容部屋の内面に嵌合して、計測管の外面と計測管収容部屋の内面との間の領域を流体流入路と流体流出路との間で隔絶するための中間壁が一体形成されたところに特徴を有する。   According to a tenth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to ninth aspects, the meter case is connected to a measurement tube housing room containing the measurement tube and one end of the measurement tube housing room. A fluid inflow passage and a fluid outflow passage communicated with the other end of the measuring tube housing chamber. The measuring tube is fitted to the inner surface of the measuring tube housing chamber, and the outer surface of the measuring tube is connected to the measuring tube. It is characterized in that an intermediate wall for isolating a region between the inner surface of the storage room and the fluid inflow path and the fluid outflow path is integrally formed.

請求項11の発明は、請求項12に記載の超音波流量計において、中間壁には、超音波送受波器から延びた電線を通すための電線孔が貫通形成されたところに特徴を有する。   The invention according to claim 11 is characterized in that, in the ultrasonic flowmeter according to claim 12, an electric wire hole for passing an electric wire extending from the ultrasonic transducer is formed through the intermediate wall.

請求項12の発明は、請求項1乃至11の何れかに記載の超音波流量計において、メーターケースは、計測管収容部屋の一端部でケース本体とケース蓋体とに分割されると共に、その分割面に開放した計測管収容部屋の開口から内側に計測管が挿入組み付けされたところに特徴を有する。   The invention according to claim 12 is the ultrasonic flowmeter according to any one of claims 1 to 11, wherein the meter case is divided into a case main body and a case lid at one end of the measurement tube housing chamber, It is characterized in that the measuring tube is inserted and assembled inward from the opening of the measuring tube housing room opened to the dividing surface.

請求項13の発明は、請求項1乃至12の何れかに記載の超音波流量計において、流体流入路と流体流出路は、ケース本体に形成されて計測管収容部屋と直交しかつ、計測管収容部屋内で計測管の側面に向かって開放したところに特徴を有する。   A thirteenth aspect of the present invention is the ultrasonic flowmeter according to any one of the first to twelfth aspects, wherein the fluid inflow passage and the fluid outflow passage are formed in the case main body and are orthogonal to the measurement tube housing chamber. It is characterized by being open toward the side of the measuring tube in the accommodation room.

請求項14の発明は、請求項1乃至13の何れかに記載の超音波流量計において、計測管収容部屋は断面円形をなし、送受波器保持部は、計測管収容部屋の内面に周方向の3つ以上の位置で接するところに特徴を有する。   According to a fourteenth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to thirteenth aspects, the measurement tube housing chamber has a circular cross section, and the transducer holder is circumferentially provided on the inner surface of the measurement tube housing chamber. It has the feature in the place which touches in three or more positions.

請求項15の発明は、請求項1乃至14の何れかに記載の超音波流量計において、計測管の内側に嵌合され、計測管内の流体の流れ方向に直交した断面積を変更するためのインナー計測管を備えたところに特徴を有する。   A fifteenth aspect of the invention is the ultrasonic flowmeter according to any one of the first to fourteenth aspects, wherein the ultrasonic flowmeter is fitted inside the measurement pipe and changes a cross-sectional area perpendicular to the fluid flow direction in the measurement pipe. It is characterized by having an inner measuring tube.

請求項16の発明に係る超音波流量計は、メーターケースと、メーターケース内に収容され、内側に流体が流される計測管と、その計測管の両端部の開口に対して離して配置され、計測管の内側領域を挟んで互いに対向した1対の超音波送受波器とを備え、これら1対の超音波送受波器の間で送受波される超音波の伝搬時間に基づいて流量を計測する超音波流量計において、超音波送受波器を計測管の開口に対して離した位置に保持するための送受波器保持部を計測管に一体に設けたところに特徴を有する。   The ultrasonic flowmeter according to the invention of claim 16 is arranged to be separated from the meter case, the measurement pipe accommodated in the meter case, and the fluid flowing inside, the openings at both ends of the measurement pipe, A pair of ultrasonic transducers facing each other across the inner region of the measurement tube, and measuring the flow rate based on the propagation time of the ultrasonic waves transmitted and received between the pair of ultrasonic transducers The ultrasonic flowmeter is characterized in that a transmitter / receiver holding part for holding the ultrasonic transmitter / receiver at a position separated from the opening of the measuring tube is provided integrally with the measuring tube.

[請求項1の発明]
上記のように構成した請求項1に係る発明によれば、計測管を構成する複数の計測管構成体の少なくとも何れかに超音波送受波器が保持されたので、超音波送受波器と計測管との距離及び、超音波送受波器同士の距離のばらつきが従来よりも抑えられる。これにより、超音波流量計の製品間の性能のばらつきを従来よりも抑えることができる。また、計測管と1対の超音波送受波器とで1つのアッシを構成することができる。さらに、計測管を複数の計測管構成体で構成することにより、計測管の内部形状の自由度が高まる。
[Invention of Claim 1]
According to the invention according to claim 1 configured as described above, since the ultrasonic transducer is held in at least one of the plurality of measurement tube components constituting the measurement tube, the ultrasonic transducer and the measurement Variation in the distance to the tube and the distance between the ultrasonic transducers can be suppressed as compared with the conventional case. Thereby, the dispersion | variation in the performance between the products of an ultrasonic flowmeter can be suppressed compared with the past. Moreover, one assembly can be comprised with a measuring tube and a pair of ultrasonic transducer. Furthermore, the freedom degree of the internal shape of a measurement tube increases by comprising a measurement tube with a some measurement tube structure.

[請求項2の発明]
請求項2の発明によれば、複数の計測管構成体を組み付けることで、それら計測管構成体に備えた複数の送受波器保持部が協働して超音波送受波器を保持することができる。
[Invention of claim 2]
According to the invention of claim 2, by assembling a plurality of measurement tube components, a plurality of transducer holders provided in the measurement tube components cooperate to hold the ultrasonic transducer. it can.

[請求項3の発明]
請求項3の発明によれば、送受波器保持部を計測管構成体に一体成形したので、これらを別部品として組み付けた場合に比較して、部品点数が削減され組み付けの手間が省ける。また、2つの計測管構成体を同一形状の成形品としたので、成形金型の共通化が図られ、製造コストや部品管理上も好ましい。
[Invention of claim 3]
According to the invention of claim 3, since the transducer holding part is integrally formed with the measuring tube constituting body, the number of parts is reduced and the labor of assembling can be saved as compared with the case where these are assembled as separate parts. In addition, since the two measuring tube components are molded products having the same shape, the molding dies can be shared, which is preferable in terms of manufacturing cost and component management.

[請求項4の発明]
請求項4の発明によれば、複数の計測管構成体の相互の位置ずれが防止できる。
[Invention of claim 4]
According to the fourth aspect of the present invention, it is possible to prevent misalignment of the plurality of measuring tube constituting bodies.

[請求項5の発明]
請求項5の発明によれば、超音波送受波器から延びた電線は、計測管構成体の接合面に開放した開放口から溝部に挿入される。そして、計測管構成体同士の接合により溝部の開放口が閉じられるので、溝部に収容された電線を保護することができる。
[Invention of claim 5]
According to invention of Claim 5, the electric wire extended from the ultrasonic transducer is inserted in a groove part from the open port open | released to the joint surface of the measurement pipe structure. And since the opening part of a groove part is closed by joining of measuring-tube structure bodies, the electric wire accommodated in the groove part can be protected.

[請求項6及び7の発明]
請求項6の発明によれば、測定精度を向上することができる。ここで、計測管の内面からのくびれ部の突出量を0.05〜0.5[mm]にすることが好ましい(請求項7の発明)。
[Inventions of Claims 6 and 7]
According to the invention of claim 6, the measurement accuracy can be improved. Here, it is preferable that the amount of protrusion of the constricted portion from the inner surface of the measuring tube is 0.05 to 0.5 [mm] (invention of claim 7).

[請求項8の発明]
請求項8の発明によれば、計測管に流入する際の流体の流れが安定する。
[Invention of Claim 8]
According to invention of Claim 8, the flow of the fluid at the time of flowing in into a measurement pipe is stabilized.

[請求項9の発明]
請求項9の発明によれば、計測管の内側領域における流体の流れが安定する。
[Invention of claim 9]
According to the ninth aspect of the invention, the fluid flow in the inner region of the measuring tube is stabilized.

[請求項10の発明]
請求項10の発明によれば、流体は、流体流入路から計測管収容部屋に流入し、計測管の内側を通過する。そして、計測管の内側を通過した流体は、再び計測管収容部屋を通って流体流出路からメーターケースの外部に排出される。ここで、計測管に一体形成された中間壁が計測管収容部屋の内面に嵌合することで、流体が計測管の外側を通過することを規制すると共に、メーターケース内における計測管のがたつきを防止することができる。
[Invention of Claim 10]
According to the invention of claim 10, the fluid flows from the fluid inflow path into the measurement tube housing chamber and passes through the inside of the measurement tube. Then, the fluid that has passed through the inside of the measuring tube passes through the measuring tube housing chamber and is discharged from the fluid outflow path to the outside of the meter case. Here, the intermediate wall integrally formed with the measurement tube is fitted to the inner surface of the measurement tube housing chamber, thereby restricting the passage of fluid outside the measurement tube and the backlash of the measurement tube in the meter case. Can prevent sticking.

[請求項11の発明]
請求項11の発明によれば、1対の超音波送受波器は、計測管収容部屋において、流体流入路が連通した領域と流体流出路が連通した領域とに分かれて配置されるが、一方の領域に配置された超音波送受波器の電線を、電線孔に通して他方の領域に引き込むことができる。これにより、電線の取り回しの自由度が向上する。
[Invention of Claim 11]
According to the eleventh aspect of the present invention, the pair of ultrasonic transducers are arranged separately in the measurement tube housing chamber into a region where the fluid inflow path communicates and a region where the fluid outflow path communicates. The wire of the ultrasonic transducer arranged in the region can be drawn into the other region through the wire hole. Thereby, the freedom degree of handling of an electric wire improves.

[請求項12の発明]
請求項12の発明によれば、計測管は、ケース本体の分割面に開放した計測管収容部屋の開口から挿入組み付けすることができる。
[Invention of Claim 12]
According to the twelfth aspect of the present invention, the measuring tube can be inserted and assembled from the opening of the measuring tube housing room opened to the dividing surface of the case body.

[請求項13の発明]
請求項13の発明によれば、計測管収容部屋に流れ込んだ流体は、計測管に流れ込む前に計測管の側面にぶつかるので、計測管における流体の流れの状態が、計測管収容部屋に流入したときの流れの状態に影響され難くなる。これにより、計測管内における流体の流れを安定化することができる。
[Invention of Claim 13]
According to the invention of claim 13, since the fluid that has flowed into the measurement tube storage chamber collides with the side surface of the measurement tube before flowing into the measurement tube, the fluid flow state in the measurement tube has flowed into the measurement tube storage chamber. It becomes hard to be influenced by the state of the flow of time. Thereby, the flow of the fluid in a measuring tube can be stabilized.

[請求項14の発明]
請求項14の発明によれば、計測管の計測管収容部屋内でのがたつきが防止される。
[Invention of Claim 14]
According to the fourteenth aspect of the present invention, rattling of the measurement tube in the measurement tube accommodation room is prevented.

[請求項15の発明]
請求項15の発明によれば、計測管の内側にインナー計測管を嵌合するか否かを選択することで、比較的小さい流速及び/又は流量を計測するための仕様と、比較的大きい流速及び/又は流量を計測するための仕様とに容易に変更することができる。
[Invention of Claim 15]
According to the invention of claim 15, by selecting whether or not the inner measurement tube is fitted inside the measurement tube, a specification for measuring a relatively small flow rate and / or flow rate and a relatively large flow rate are provided. And / or can be easily changed to specifications for measuring the flow rate.

[請求項16の発明]
請求項16の発明によれば、1対の超音波送受波器が、計測管に一体に設けられた送受波器保持部に保持されるので、超音波送受波器と計測管との距離や超音波送受波器同士の距離のばらつきが従来よりも抑えられる。これにより、超音波流量計の製品間の性能のばらつきを従来よりも抑えることができる。
[Invention of Claim 16]
According to the sixteenth aspect of the present invention, the pair of ultrasonic transducers is held by the transducer holding unit provided integrally with the measurement tube, so the distance between the ultrasonic transducer and the measurement tube, Variation in the distance between the ultrasonic transducers can be suppressed compared to the conventional case. Thereby, the dispersion | variation in the performance between the products of an ultrasonic flowmeter can be suppressed compared with the past.

以下、本発明の一実施形態を図1〜図6に基づいて説明する。
図1における符号10は、本発明の「超音波流量計」であって、例えば、流体としてのガスが流れるガス管の途中に取り付けられている。超音波流量計10は、図2に示すメーターケース20の内部に図3に示す計量アッシ30を備えてなる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
Reference numeral 10 in FIG. 1 is an “ultrasonic flow meter” of the present invention, and is attached in the middle of a gas pipe through which a gas as a fluid flows, for example. The ultrasonic flowmeter 10 includes a metering assembly 30 shown in FIG. 3 inside a meter case 20 shown in FIG.

まず、メーターケース20について説明すると、メーターケース20は両端有底の筒形構造をなし、その内部領域は円柱形状をなした計量アッシ収容室23(本発明の「計測管収容部屋」に相当する)となっている。メーターケース20は、その長手方向(図1の左右方向)の一端寄り部分でケース本体21とケース蓋体22とに分割可能となっている。ケース本体21は、長手方向の一端側に開口しており、その開口部23aがケース本体21の一端側に取り付けられたケース蓋体22にて閉塞されている。ここで、ケース蓋体22は、ケース本体21の開口部23a側に開口した一端有底の円筒構造をなし、その開口部22b寄りの外周面から側方に向かってフランジ22dが張り出すと共に、フランジ22dと開口部22bとの間の外周面には、ケース本体21の開口部23aの内周面に押し潰されて密着するOリング22cが装着されている。   First, the meter case 20 will be described. The meter case 20 has a cylindrical structure with bottoms at both ends, and the inner region thereof corresponds to a measuring assembly housing chamber 23 having a cylindrical shape (the “measuring tube housing chamber” of the present invention). ). The meter case 20 can be divided into a case main body 21 and a case lid 22 at a portion near one end in the longitudinal direction (the left-right direction in FIG. 1). The case body 21 is open at one end in the longitudinal direction, and the opening 23 a is closed by a case lid 22 attached to one end of the case body 21. Here, the case lid 22 has a cylindrical structure with one end and opened to the opening 23a side of the case main body 21, and a flange 22d projects from the outer peripheral surface near the opening 22b to the side, On the outer peripheral surface between the flange 22d and the opening 22b, an O-ring 22c that is crushed and adhered to the inner peripheral surface of the opening 23a of the case body 21 is mounted.

また、ケース本体21の上面からは、2つの円筒部24,24が長手方向に並んで起立しており、これら円筒部24,24の内部領域が計量アッシ収容室23に連通している。円筒部24,24のうち、一方の円筒部24の内部領域は、ガスを計量アッシ収容室23に導入するためのガス流入路24a(本発明の「流体流入路」に相当する)をなし、他方の円筒部24の内部領域は計量アッシ収容室23からガスを排出するためのガス流出路24b(本発明の「流体流出路」に相当する)をなしている。そして、両円筒部24,24に図示しないガス管が接続されると、図1の矢印に示すように、メーターケース20内(計量アッシ収容室23)にガスが流れて、計量アッシ収容室23に収容された計量アッシ30の計測管31内を長手方向(図1の左右方向)の一端側から他端側に向かってガスが流れる。   Further, two cylindrical portions 24, 24 stand up in the longitudinal direction from the upper surface of the case main body 21, and an inner region of these cylindrical portions 24, 24 communicates with the weighing assembly storage chamber 23. Of the cylindrical portions 24, 24, the inner region of one cylindrical portion 24 forms a gas inflow path 24 a (corresponding to the “fluid inflow path” of the present invention) for introducing gas into the measurement assembly housing chamber 23. The inner region of the other cylindrical portion 24 forms a gas outflow path 24b (corresponding to the “fluid outflow path” of the present invention) for discharging gas from the measuring assembly housing chamber 23. When a gas pipe (not shown) is connected to both the cylindrical portions 24, 24, the gas flows into the meter case 20 (measurement assembly storage chamber 23) as shown by the arrow in FIG. 1 flows from one end side to the other end side in the longitudinal direction (left-right direction in FIG. 1) in the measuring tube 31 of the measuring assembly 30 accommodated in the housing.

ここで、図1に示すように、ガス流入路24a及びガス流出路24bは、計量アッシ収容室23と直交し、かつ計量アッシ収容室23内で計測管31の側面に向かって開放している。これにより、計量アッシ収容室23に流れ込んだガスは、計測管31の側面にぶつかるので、計測管31におけるガスの流れの状態が、計量アッシ収容室23に流入したときの流れの状態に影響され難くなる。また、計測管31の側面にぶつかってから計測管31に流入するまでに、ガスは計測管31の側面に沿って一定距離流れるので、ガスの流れがより安定化する。従って、計測管31内の流れを安定化することができる。なお、メーターケース20の外側の一側面には、図示しない回路基板が取り付けられている。   Here, as shown in FIG. 1, the gas inflow passage 24 a and the gas outflow passage 24 b are orthogonal to the measuring assembly housing chamber 23 and open toward the side surface of the measuring tube 31 in the measuring assembly housing chamber 23. . As a result, the gas flowing into the measuring assembly housing chamber 23 collides with the side surface of the measuring tube 31, so the state of the gas flow in the measuring tube 31 is affected by the flow state when flowing into the measuring assembly housing chamber 23. It becomes difficult. In addition, since the gas flows for a certain distance along the side surface of the measurement tube 31 from the time when it hits the side surface of the measurement tube 31, the gas flow becomes more stable. Therefore, the flow in the measurement tube 31 can be stabilized. A circuit board (not shown) is attached to one side surface outside the meter case 20.

計量アッシ30は、両端開放の円筒構造をなした計測管31の両端部に、1対の超音波センサ32,32(本発明の「超音波送受波器」に相当する)を備えてなる。計測管31は、メーターケース20内において長手方向(図1の左右方向)の一端寄り位置から他端寄り位置まで延びており、その内側領域がガスが流れる断面円形の流路31aとなっている(図6の(B)を参照)。また、計測管31の軸方向(図3の左右方向)における中央部からは、円盤形状をなした中間壁36が側方に張り出しており、この中間壁36が計量アッシ収容室23の内面に嵌合している。図1に示すように、中間壁36は、計量アッシ収容室23のガス流入路24aとガス流出路24bとの間部分の内面に嵌合しており、これにより、計量アッシ収容室23の内面と計測管31の外面との間の領域が、計測管31の一方の開口部31bが開放してガス流入路24aと連通した流入部屋25と、計測管31の他方の開口部31bが開放してガス流出路24bと連通した流出部屋26とに隔絶されている。この中間壁36により、計量アッシ収容室23に流入したガスが計測管31の外側を通過して計量アッシ収容室23から排出されることが禁止される。つまり、計量アッシ収容室23の流入部屋25に流入したガスは、全て計測管31の内側を通過して流出部屋26に流れ込む。ここで、中間壁36の外周面と計量アッシ収容室23の内面との間にシール部材(例えば、Oリング)を設けることで、中間壁36と計量アッシ収容室23の内面とのシール性を高めることができる。   The measuring assembly 30 includes a pair of ultrasonic sensors 32 and 32 (corresponding to the “ultrasonic transducer” of the present invention) at both ends of a measurement tube 31 having a cylindrical structure with both ends open. The measuring tube 31 extends from a position near one end in the longitudinal direction (left-right direction in FIG. 1) to a position near the other end in the meter case 20, and an inner region of the measuring tube 31 is a circular flow path 31a through which gas flows. (See FIG. 6B). In addition, a disc-shaped intermediate wall 36 protrudes laterally from the central portion in the axial direction of the measuring tube 31 (left-right direction in FIG. 3), and this intermediate wall 36 is formed on the inner surface of the measuring assembly housing chamber 23. It is mated. As shown in FIG. 1, the intermediate wall 36 is fitted to the inner surface of the portion between the gas inflow passage 24 a and the gas outflow passage 24 b of the measuring assembly housing chamber 23, and thereby the inner surface of the measuring assembly housing chamber 23. And the outer surface of the measurement tube 31 are opened in one opening 31b of the measurement tube 31 so that the inflow chamber 25 communicated with the gas inflow passage 24a and the other opening 31b of the measurement tube 31 is opened. Thus, it is isolated from the outflow chamber 26 communicating with the gas outflow passage 24b. The intermediate wall 36 prohibits the gas flowing into the measuring assembly housing chamber 23 from passing through the outside of the measuring tube 31 and being discharged from the measuring assembly housing chamber 23. That is, all the gas that has flowed into the inflow chamber 25 of the measuring assembly housing chamber 23 passes through the inside of the measuring tube 31 and flows into the outflow chamber 26. Here, by providing a seal member (for example, an O-ring) between the outer peripheral surface of the intermediate wall 36 and the inner surface of the measuring assembly housing chamber 23, the sealing property between the intermediate wall 36 and the inner surface of the measuring assembly housing chamber 23 can be improved. Can be increased.

さらに、図5に示すように、計測管31の両開口部31b,31bの開口縁には、全周に亘って内側に膨出したくびれ部35が形成されている。即ち、計測管31の流路31aの内径が開口部31b,31bにおいて僅かに縮径している。このように、開口部31b,31bにくびれ部35を設けることで、ガスの流速及び/又は流量の計測精度を向上させることができる。本実施形態では、計測管31の内径は、5.8mmであって、くびれ部35の計測管31の内面からの突出量は、0.1mmである。   Furthermore, as shown in FIG. 5, a constricted portion 35 bulging inward over the entire circumference is formed at the opening edge of both openings 31b, 31b of the measuring tube 31. That is, the inner diameter of the flow path 31a of the measurement tube 31 is slightly reduced in diameter at the openings 31b and 31b. Thus, by providing the constricted part 35 in the openings 31b and 31b, the measurement accuracy of the gas flow velocity and / or flow rate can be improved. In the present embodiment, the inner diameter of the measuring tube 31 is 5.8 mm, and the amount of protrusion of the constricted portion 35 from the inner surface of the measuring tube 31 is 0.1 mm.

さらに、図6の(A)に示すように、計測管31の開口縁は丸みを帯びるように面取りされており、この面取りによる曲面がくびれ部35に連続している。これにより、開口部31bから計測管31に流入する際のガスの流れが安定する。   Furthermore, as shown in FIG. 6A, the opening edge of the measuring tube 31 is chamfered to be rounded, and the curved surface resulting from this chamfering is continuous with the constricted portion 35. Thereby, the flow of gas when flowing into the measuring tube 31 from the opening 31b is stabilized.

図1に示すように、1対の超音波センサ32,32は、計測管31の両側の開口部31b,31bに対して所定の距離だけ離して対面しかつ、計測管31の軸方向(流体の流れ方向、図3の左右方向)に平行な方向に並べて設けられている。超音波センサ32,32は、扁平円柱状のセンサ本体33に、その周面及び後面を覆う金属製のキャップ34を嵌合固着した構造をなしており、キャップ34の後端部が側方に張り出してフランジ34aを形成すると共に、キャップ34から露出したセンサ本体33の前端面が、送受信面33aとなっている。また、これら超音波センサ32から延びた電線が回路基板(図示せず)に接続されている。そして、一方の超音波センサ32から発信した超音波を他方の超音波センサ32で受信する迄の時間(伝搬時間)と、他方の超音波センサ32から発信した超音波を一方の超音波センサ32で受信する迄の時間(伝搬時間)との差を求め、その差に基づいて計測管31内を流れるガスの流速・流量が検出される。ここで、中間壁36には、流入部屋25と流出部屋26とを連通した電線孔36aが貫通形成されており、図示しないが、例えば、流出部屋26に配置された超音波センサ32の電線が、この電線孔36aを通して流入部屋25側に引き込まれている。なお、電線孔36aは電線を通すことで塞がれる。ここで、電線孔36aは、シール剤(例えば、液状のシール剤)又はシール部材を併用することでシール性を高めることができる。   As shown in FIG. 1, the pair of ultrasonic sensors 32, 32 face each other with a predetermined distance from the openings 31 b, 31 b on both sides of the measurement tube 31, and face the axial direction of the measurement tube 31 (fluid Are arranged side by side in a direction parallel to the horizontal direction of FIG. The ultrasonic sensors 32 and 32 have a structure in which a metal cap 34 that covers a peripheral surface and a rear surface thereof is fitted and fixed to a flat cylindrical sensor main body 33, and a rear end portion of the cap 34 is laterally arranged. The flange 34a is formed by overhanging, and the front end surface of the sensor body 33 exposed from the cap 34 is a transmission / reception surface 33a. Further, electric wires extending from the ultrasonic sensors 32 are connected to a circuit board (not shown). Then, the time until the ultrasonic wave transmitted from one ultrasonic sensor 32 is received by the other ultrasonic sensor 32 (propagation time), and the ultrasonic wave transmitted from the other ultrasonic sensor 32 is converted to the one ultrasonic sensor 32. The difference from the time until reception (propagation time) is obtained, and the flow velocity / flow rate of the gas flowing in the measuring tube 31 is detected based on the difference. Here, the intermediate wall 36 is formed with a wire hole 36a passing through the inflow chamber 25 and the outflow chamber 26, and although not shown, for example, the wire of the ultrasonic sensor 32 arranged in the outflow chamber 26 is connected to the intermediate wall 36. The lead-in chamber 25 is drawn through the wire hole 36a. The electric wire hole 36a is closed by passing the electric wire. Here, the wire hole 36a can improve sealing performance by using a sealant (for example, a liquid sealant) or a seal member in combination.

さて、超音波センサ32,32は、計測管31の両端部から延設された複数のセンサ保持片37(本発明の「送受波器保持部」に相当する)によって保持されている。センサ保持片37は、計測管31に一体成形され、計測管31の両端部において、周方向に例えば、互いに90度の間隔を開けて4つ設けられている。そして、これら4つのセンサ保持片37が協働して1つの超音波センサ32を保持している。   The ultrasonic sensors 32 and 32 are held by a plurality of sensor holding pieces 37 (corresponding to the “transmitter / receiver holding portion” of the present invention) extending from both ends of the measurement tube 31. The sensor holding pieces 37 are formed integrally with the measuring tube 31 and are provided at both ends of the measuring tube 31 at intervals of, for example, 90 degrees in the circumferential direction. These four sensor holding pieces 37 cooperate to hold one ultrasonic sensor 32.

センサ保持片37は、計測管31の周面から起立した壁体37aの外寄り部分を、計測管31の開口部31b,31bから離れるように計測管31の軸方向(図3の左右方向)に延ばした構造をなし、計測管31の端部から突出した突出部分37bの先端に、係止爪37cが形成されている。係止爪37cは、突出部分37bの内向き面を溝状に陥没させてなり、この陥没溝37dに超音波センサ32のフランジ34aが係止されている。   The sensor holding piece 37 has an axial direction of the measuring tube 31 (the left-right direction in FIG. 3) so that the outer portion of the wall body 37 a rising from the peripheral surface of the measuring tube 31 is separated from the openings 31 b and 31 b of the measuring tube 31. A locking claw 37 c is formed at the tip of the protruding portion 37 b protruding from the end of the measuring tube 31. The locking claw 37c is formed by recessing the inward surface of the protruding portion 37b into a groove shape, and the flange 34a of the ultrasonic sensor 32 is locked in the recessed groove 37d.

ところで、複数のセンサ保持片37が一体成形された計測管31は、その軸方向(図3の左右方向)に平行に縦に分割してなる2つの計測管構成体40,40から構成されている。詳細には、計測管構成体40,40は、180度離れて配置された2つのセンサ保持片37,37を板厚方向で2等分する平面で計測管30を二分割した構造をなし、同一形状をなしている。この計測管構成体40,40は、溶かした金属或いは合成樹脂を成形金型に流し込んで成形される。ここで、計測管構成体40,40は同一形状なので、成形金型の共通化が図られ、製造コストや部品管理上も好ましい。   By the way, the measuring tube 31 in which a plurality of sensor holding pieces 37 are integrally formed is composed of two measuring tube constructs 40 and 40 that are vertically divided in parallel to the axial direction (left and right direction in FIG. 3). Yes. Specifically, the measurement tube constituting bodies 40, 40 have a structure in which the measurement tube 30 is divided into two parts by a plane that bisects the two sensor holding pieces 37, 37 arranged 180 degrees apart in the plate thickness direction, It has the same shape. The measuring tube components 40, 40 are molded by pouring molten metal or synthetic resin into a molding die. Here, since the measuring tube constituents 40 and 40 have the same shape, the molding dies can be shared, which is preferable in terms of manufacturing cost and component management.

図4及び図5に示すように、計測管構成体40のうち、センサ保持片37を板厚方向で二分割してなる保持片分割体41,41には、それぞれ複数のピン孔42が貫通形成されている。二つの計測管構成体40,40の互いの接合面を重ねると、保持片分割体41,41の互いのピン孔42,42が整合し、そのピン孔42,42に、例えば、図示しない固定ピンを挿通することで2つの計測管構成体40,40が一体に固定される。これにより、複数のセンサ保持片37が一体成形された計測管31が完成する。   As shown in FIGS. 4 and 5, a plurality of pin holes 42 penetrate through the holding piece divided bodies 41 and 41 obtained by dividing the sensor holding piece 37 in the plate thickness direction in the measuring tube constituting body 40. Is formed. When the joint surfaces of the two measuring tube constituting bodies 40, 40 are overlapped, the pin holes 42, 42 of the holding piece split bodies 41, 41 are aligned with each other, and fixed to the pin holes 42, 42, for example, not shown. By inserting the pin, the two measuring tube components 40, 40 are fixed together. Thereby, the measuring tube 31 in which the plurality of sensor holding pieces 37 are integrally formed is completed.

図4及び図5に示すように、計測管構成体40のうち、中間壁36を二分割してなる中間壁分割体43,43の互いの接合面には、凹凸係合部が形成されている。具体的には、中間壁分割体43,43の接合面には、流路31aを挟みかつ流路31aに直交するように凸部44aと凹部44bとが並んで形成されている。そして2つの計測管構成体40,40の互いの接合面を重ねると、一方の計測管構成体40の凸部44aが他方の計測管構成体40の凹部44bに凹凸係合し、一方の計測管構成体40の凹部44bが他方の計測管構成体40の凸部44aに凹凸係合する。これにより、2つの計測管構成体40,40を固定ピンで固定する前に、固定位置を位置決めできかつ位置ずれが防止される。   As shown in FIGS. 4 and 5, in the measuring tube constituting body 40, an uneven engagement portion is formed on the joint surface of the intermediate wall divided bodies 43, 43 formed by dividing the intermediate wall 36 into two parts. Yes. Specifically, convex portions 44a and concave portions 44b are formed side by side on the joint surfaces of the intermediate wall divided bodies 43, 43 so as to sandwich the flow path 31a and to be orthogonal to the flow path 31a. Then, when the joint surfaces of the two measuring tube constituting bodies 40 and 40 are overlapped, the convex portion 44a of one measuring tube constituting body 40 engages with the concave portion 44b of the other measuring tube constituting body 40, and one measurement is performed. The concave portion 44b of the tube structure 40 engages with the convex portion 44a of the other measurement tube structure 40 in an uneven manner. Thereby, before fixing the two measuring tube components 40, 40 with the fixing pin, the fixing position can be positioned and the displacement is prevented.

また、中間壁分割体43,43の互いの接合面のうち、凹部44bよりも外側には、流路31aと平行に延びて接合面側に開放した溝部43a,43aが陥没形成されている。そして2つの計測管構成体40,40の互いの接合面を重ねると、これら溝部43a,43aの開放口が、互いに相手側の計測管構成体40,40の接合面によって閉じられ、前記した電線孔36aが形成される。   In addition, groove portions 43a and 43a that extend in parallel with the flow path 31a and open to the joint surface side are recessed in the joint surfaces of the intermediate wall divided bodies 43 and 43 outside the recess 44b. Then, when the joint surfaces of the two measuring tube constituting bodies 40, 40 are overlapped, the open ports of the groove portions 43a, 43a are closed by the joining surfaces of the mating measuring tube constituting bodies 40, 40, and the above-described electric wires A hole 36a is formed.

本実施形態の超音波流量計10の構成の説明は以上である。ところで、超音波流量計10は以下の手順により組み立てられる。   This is the end of the description of the configuration of the ultrasonic flowmeter 10 of the present embodiment. By the way, the ultrasonic flowmeter 10 is assembled by the following procedures.

まず、計量アッシ30を組み立てる。具体的には、一方の計測管構成体40に備えたセンサ保持片37及び保持片分割体41,41に、超音波センサ32,32を仮保持させる。また、一方の超音波センサ32に接続された電線を、予め溝部43aに挿入しておく。次いで、超音波センサ32,32を仮保持した一方の計測管構成体40と、もう一つの他方の計測管構成体40の互いの接合面を重ね合わせて、凸部44aと凹部44bを凹凸係合させる。このとき、他方の計測管構成体40に備えたセンサ保持片37及び保持片分割体41,41にも、超音波センサ32,32を保持させる。   First, the weighing assembly 30 is assembled. Specifically, the ultrasonic sensors 32 and 32 are temporarily held by the sensor holding piece 37 and the holding piece divided bodies 41 and 41 provided in one of the measurement tube constituting bodies 40. Moreover, the electric wire connected to one ultrasonic sensor 32 is previously inserted in the groove part 43a. Next, the joint surfaces of one measurement tube constituent body 40 temporarily holding the ultrasonic sensors 32 and 32 and the other other measurement pipe constituent body 40 are overlapped to form the convex portions 44a and the concave portions 44b. Combine. At this time, the ultrasonic sensors 32 and 32 are also held by the sensor holding piece 37 and the holding piece divided bodies 41 and 41 provided in the other measurement tube constituting body 40.

この状態で、重なり合った保持片分割体41,41のピン孔42に固定ピンを挿入して、2つの計測管構成体40,40を一体に固定する。これにより、計測管31、センサ保持片37、中間壁36が完成すると共に、計測管31の開口部31b,31bと離れて対面する位置に1対の超音波センサ32,32が固定配置され、計量アッシ30が完成する。つまり、2つの計測管構成体40,40を互いに組み付けて計測管31を組み立てる過程で、計測管構成体40,40に一体成形された複数のセンサ保持部37が協働して超音波センサ32,32を計測管31の両開口部31b,31bから離れた位置に保持する。   In this state, a fixing pin is inserted into the pin hole 42 of the holding piece split bodies 41 and 41 which are overlapped, and the two measuring tube constituting bodies 40 and 40 are fixed integrally. As a result, the measurement tube 31, the sensor holding piece 37, and the intermediate wall 36 are completed, and a pair of ultrasonic sensors 32, 32 are fixedly arranged at positions facing the openings 31b, 31b of the measurement tube 31, The weighing assembly 30 is completed. That is, in the process of assembling the measurement tube 31 by assembling the two measurement tube components 40, 40 to each other, the plurality of sensor holding portions 37 integrally formed with the measurement tube components 40, 40 cooperate to provide the ultrasonic sensor 32. , 32 are held at positions away from both openings 31b, 31b of the measuring tube 31.

次いで、完成した計量アッシ30をメーターケース20に装着する。具体的には、ケース本体21の開口部23aから計量アッシ収容室23内に計量アッシ30を挿入し、計量アッシ30の一端部(詳細には、センサ保持片37の先端部)が計量アッシ収容室23の奥側の端部壁23bに突き当たるまで押し込む。すると、計量アッシ30の中間壁36が、ケース本体21の2つの円筒部24,24の中間部分で計量アッシ収容室23の内面に嵌合し、計量アッシ収容室23が中間壁36を挟んで流入部屋25と流出部屋26とに隔絶される。   Next, the completed weighing assembly 30 is attached to the meter case 20. Specifically, the measuring assembly 30 is inserted into the measuring assembly housing chamber 23 from the opening 23a of the case body 21, and one end of the measuring assembly 30 (specifically, the tip of the sensor holding piece 37) is stored in the measuring assembly. It is pushed in until it hits the end wall 23b on the back side of the chamber 23. Then, the intermediate wall 36 of the measurement assembly 30 is fitted to the inner surface of the measurement assembly storage chamber 23 at the intermediate portion between the two cylindrical portions 24 and 24 of the case body 21, and the measurement assembly storage chamber 23 sandwiches the intermediate wall 36. The inflow room 25 and the outflow room 26 are isolated from each other.

次いで、ケース蓋体22の開口端をケース本体21の開口部23aの内側に嵌合させて、ケース本体21の開口部23aの周縁部にケース蓋体22のフランジ22dを当接させ、これらをボルトで固定する。このとき、ケース蓋体22の奥側の端部壁22aが計量アッシ30の他端部(詳細には、センサ保持片37の先端部)に突き当たる。つまり、計量アッシ30が長手方向でメーターケース20の両端部壁22a,23bによって挟持される。以上で、超音波流量計10の組み立て作業は完了である。   Next, the opening end of the case lid 22 is fitted inside the opening 23a of the case main body 21, and the flange 22d of the case lid 22 is brought into contact with the peripheral edge of the opening 23a of the case main body 21. fix it with bolts. At this time, the end wall 22a on the back side of the case lid 22 abuts against the other end of the measuring assembly 30 (specifically, the tip of the sensor holding piece 37). That is, the measuring assembly 30 is sandwiched between the both end walls 22a and 23b of the meter case 20 in the longitudinal direction. This completes the assembly work of the ultrasonic flowmeter 10.

一方、計量アッシ30を取り外す場合には、ケース蓋体22とケース本体21とを固定したボルトを外してケース蓋体22をケース本体21から取り外し、計量アッシ30の端部をつまんでケース本体21の開口部23aから引き抜けばよい。   On the other hand, when the weighing assembly 30 is removed, the bolt fixing the case lid 22 and the case main body 21 is removed, the case lid 22 is removed from the case main body 21, and the end of the weighing assembly 30 is pinched and the case main body 21 is removed. What is necessary is just to pull out from the opening part 23a.

このように、本実施形態によれば、計測管31(複数の計測管構成体40,40)に一体成形されたセンサ保持片37によって1対の超音波センサ32,32を保持するので、超音波センサ32,32と計測管31の開口部31b,31bとの距離、及び超音波センサ32,32同士の距離のばらつきが従来よりも抑えられ、超音波流量計10における製品間の性能(具体的には、測定精度)のばらつきを従来よりも抑えることができる。また、計測管31は、その軸方向に平行に縦に分割された2つの計測管構成体40,40から構成されたので、上述したように計測管31の開口縁にくびれ部35を形成する等、計測管31の内部領域(流路31a)の形状の自由度が高まる。   As described above, according to the present embodiment, the pair of ultrasonic sensors 32 and 32 are held by the sensor holding piece 37 integrally formed with the measurement tube 31 (the plurality of measurement tube components 40 and 40). Variations in the distance between the ultrasonic sensors 32, 32 and the openings 31b, 31b of the measurement tube 31 and the distance between the ultrasonic sensors 32, 32 are suppressed more than before, and the performance between products in the ultrasonic flowmeter 10 (specifically Specifically, variation in measurement accuracy) can be suppressed as compared with the conventional case. Further, since the measuring tube 31 is composed of two measuring tube constructs 40 and 40 that are vertically divided in parallel to the axial direction, the constricted portion 35 is formed at the opening edge of the measuring tube 31 as described above. For example, the degree of freedom of the shape of the internal region (flow path 31a) of the measurement tube 31 is increased.

また、計測管31に一体形成された中間壁36が計量アッシ収容室23の内面に嵌合しかつ、計測管31に一体成形されたセンサ保持部37の先端部(計量アッシ30の両端部)が、メーターケース20の長手方向で対向した端部壁22a,23bに当接するので、計量アッシ収容室23内における計測管31(計量アッシ30)のがたつきが防止される。さらに、計測管31及び1対の超音波センサ32,32の3つの部品で1つのアッシを構成することができ、超音波流量計10の測定精度の試験等が行い易くなる。   Further, the intermediate wall 36 integrally formed with the measuring tube 31 is fitted to the inner surface of the measuring assembly housing chamber 23, and the front end portions of the sensor holding portion 37 integrally formed with the measuring tube 31 (both ends of the measuring assembly 30). However, since it contacts the end walls 22a and 23b opposed to each other in the longitudinal direction of the meter case 20, rattling of the measuring tube 31 (the measuring assembly 30) in the measuring assembly housing chamber 23 is prevented. Furthermore, one assembly can be constituted by the three parts of the measuring tube 31 and the pair of ultrasonic sensors 32, 32, and the measurement accuracy test of the ultrasonic flowmeter 10 can be easily performed.

ここで、従来の超音波流量計は、メーターケースの内部に備えたホルダに計測管及び超音波センサをそれぞれ固定する構成であるため、計測管及び超音波センサの取り付けは、メーターケースの内部という狭い空間でしか行えず、取り付け作業の効率が悪かった。これに対し本実施形態によれば、計測管31に超音波センサ32,32を組み付けて1つの計量アッシ30を構成し、その計量アッシ30をメーターケース20に挿入組み付けすればよいので、従来に比べて組み付け作業が容易となる。   Here, since the conventional ultrasonic flowmeter is configured to fix the measurement tube and the ultrasonic sensor to the holder provided inside the meter case, the attachment of the measurement tube and the ultrasonic sensor is referred to as the inside of the meter case. It could only be done in a small space, and the installation work was inefficient. On the other hand, according to the present embodiment, the ultrasonic sensor 32, 32 is assembled to the measuring tube 31 to form one measuring assembly 30, and the measuring assembly 30 is inserted into the meter case 20 and assembled. Compared with the assembly work becomes easier.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、超音波流量計10で計測する流体としてガスを例示していたが、液体でもよい。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) In the above embodiment, gas is exemplified as the fluid to be measured by the ultrasonic flowmeter 10, but a liquid may be used.

(2)上記実施形態では、1つの超音波センサ32を4つのセンサ保持片37で協働して保持していたが、1つのセンサ保持片で保持してもよいし、4つ以外の複数のセンサ保持片が協働して保持するようにしてもよい。 (2) In the above-described embodiment, one ultrasonic sensor 32 is cooperatively held by the four sensor holding pieces 37, but may be held by one sensor holding piece, or a plurality other than four These sensor holding pieces may be held together.

(3)上記実施形態では、計測管31を2つの計測管構成体40,40から構成していたが、3つ以上の複数の計測管構成体から構成してもよい。 (3) In the above embodiment, the measurement tube 31 is composed of the two measurement tube components 40, 40, but may be composed of three or more measurement tube components.

(4)上記実施形態では、計測管31を組み立てる過程で、超音波センサ32,32がセンサ保持片37に保持されるようにしていたが、2つの計測管構成体40,40を組み付けて計測管31を組み立てておいてから、超音波センサ32,32をセンサ保持片37に保持させるようにしてもよい。このときセンサ保持片37は、超音波センサ32,32のフランジ34aと摺接して外側に弾性変形し、超音波センサ32,32が正規の取り付け位置に達した時点で元の形状に復元して陥没溝37dにフランジ34aが係止するように構成すればよい。 (4) In the above embodiment, in the process of assembling the measurement tube 31, the ultrasonic sensors 32, 32 are held by the sensor holding piece 37, but the measurement is performed by assembling the two measurement tube components 40, 40. The ultrasonic sensors 32 and 32 may be held by the sensor holding piece 37 after the tube 31 is assembled. At this time, the sensor holding piece 37 is slidably contacted with the flange 34a of the ultrasonic sensors 32, 32 and elastically deformed outward, and is restored to the original shape when the ultrasonic sensors 32, 32 reach the proper attachment positions. What is necessary is just to comprise so that the flange 34a may latch to the depression groove 37d.

(5)上記実施形態では、計測管31の流路31aを断面円形としたが、例えば、図7に示す計測管50のように、流路51の流体の流れ方向に直交した断面が幅寸法に比べて高さ寸法が薄い扁平形状となるようにしかつ、図8の(B)に示すように、計測管50の内面の幅方向(図8の(B)の左右方向)における両端部に、溝部51a,51aが形成された構造としてもよい。 (5) In the above embodiment, the flow path 31a of the measurement tube 31 has a circular cross section. For example, a cross section perpendicular to the fluid flow direction of the flow path 51 is a width dimension as in the measurement tube 50 shown in FIG. As shown in FIG. 8 (B), both ends in the width direction of the inner surface of the measuring tube 50 (left and right direction in FIG. 8 (B)) The groove portions 51a and 51a may be formed.

詳細には、溝部51a,51aは、計測管50の内面の幅方向における両端部を外側に向かって円弧状に膨出させた形状をなし、その円弧の直径が、計測管50の幅方向の中央部における流路51の高さ(図8の(B)における上下方向の長さ)よりも大きくなっている。また、計測管50の開口部50b,50bにおいて、溝部51aの内面は内側に膨出しており、図8の(A)に示すように計測管50の開口部50b,50b近傍における流路51の断面形状は長円形をなしている。流路51を上記構造とすることで、流路51を通過する流体の流れを安定させることができる。   Specifically, the grooves 51 a and 51 a have a shape in which both end portions in the width direction of the inner surface of the measurement tube 50 are bulged outwardly in an arc shape, and the diameter of the arc is the width direction of the measurement tube 50. It is larger than the height of the flow path 51 in the center (the length in the vertical direction in FIG. 8B). Further, in the openings 50b and 50b of the measuring tube 50, the inner surface of the groove 51a bulges inward, and the flow path 51 in the vicinity of the openings 50b and 50b of the measuring tube 50 is shown in FIG. The cross-sectional shape is oval. By making the flow path 51 have the above structure, the flow of fluid passing through the flow path 51 can be stabilized.

なお、図7及び図8には図示しないが、計測管50の両端部からは、上記実施形態と同様に、超音波センサを保持するセンサ保持片が一体に延設され、計測管50の長手方向の中間部からは、計量アッシ収容室の内面に嵌合する中間壁が側方に張り出している。さらに、計測管50は、その扁平方向の中間部分で、例えば、二つの同一形状の計測管構成体52,52に分割可能としてもよい。   Although not shown in FIGS. 7 and 8, sensor holding pieces for holding the ultrasonic sensor are integrally extended from both ends of the measurement tube 50 in the same manner as in the above embodiment, and the length of the measurement tube 50 is extended. From the intermediate portion in the direction, an intermediate wall that fits into the inner surface of the measuring assembly housing chamber projects laterally. Furthermore, the measuring tube 50 may be divided into two measuring tube components 52, 52 having the same shape, for example, at an intermediate portion in the flat direction.

(6)図9に示すように、計測管31の流路31aよりも径の小さい流路60aを備えたインナー計測管60を計測管31の内部(流路31a)に着脱可能に嵌合して、計測管31を流れる全ての流体がインナー計測管60の流路60aを通過するようにしてもよい。このようにすれば、ガスが流れる流路の流れ方向に直交する断面積を、大小2つの異なる断面積に変更可能となる。つまり、インナー計測管60を計測管31に嵌合することで流路の断面積を比較的小さくし、超音波流量計10を比較的小さい流速及び/又は流量を計測するための仕様にする一方、インナー計測管60を計測管31に取り付けないことで流路の断面積を比較的大きくし、超音波流量計10を比較的大きい流速及び/又は流量を計測するための仕様に容易に変更することができる。これにより、超音波流量計10をより広い流速範囲及び/又は流量範囲に亘って精度よく計測することが可能となる。 (6) As shown in FIG. 9, an inner measurement tube 60 having a flow channel 60a having a smaller diameter than the flow channel 31a of the measurement tube 31 is detachably fitted into the measurement tube 31 (flow channel 31a). Thus, all the fluid flowing through the measurement tube 31 may pass through the flow path 60a of the inner measurement tube 60. If it does in this way, it will become possible to change the cross-sectional area orthogonal to the flow direction of the flow path through which gas flows into two different large and small cross-sectional areas. That is, by fitting the inner measurement tube 60 to the measurement tube 31, the cross-sectional area of the flow path is made relatively small, and the ultrasonic flowmeter 10 is set to a specification for measuring a relatively small flow velocity and / or flow rate. By not attaching the inner measurement tube 60 to the measurement tube 31, the cross-sectional area of the flow path is made relatively large, and the ultrasonic flowmeter 10 is easily changed to specifications for measuring a relatively large flow velocity and / or flow rate. be able to. Thereby, the ultrasonic flowmeter 10 can be accurately measured over a wider flow velocity range and / or flow rate range.

(7)上記実施形態では、計測管31の開口縁にくびれ部35を形成していたが、計測管31の長手方向における途中部分の内面を内側に膨出させて、流路31aの途中に断面積が小さくなった収縮部を形成してもよい。 (7) In the above embodiment, the constricted portion 35 is formed at the opening edge of the measuring tube 31, but the inner surface of the middle portion in the longitudinal direction of the measuring tube 31 is bulged inward and in the middle of the flow path 31 a. You may form the shrinkage | contraction part in which the cross-sectional area became small.

(8)上記実施形態では、中間壁36の周面とセンサ保持片37の両端部とを、計量アッシ収容室23の内面に当接させて計量アッシ30を計量アッシ収容室23内に固定していたが、計量アッシ30の両端部に備えたセンサ保持片37を、計量アッシ収容室23の内面に周方向の3つ以上の位置で接触させて固定するようにしてもよい。 (8) In the above embodiment, the peripheral surface of the intermediate wall 36 and both end portions of the sensor holding piece 37 are brought into contact with the inner surface of the measuring assembly housing chamber 23 to fix the measuring assembly 30 in the measuring assembly housing chamber 23. However, the sensor holding pieces 37 provided at both ends of the measuring assembly 30 may be fixed by contacting the inner surface of the measuring assembly housing chamber 23 at three or more positions in the circumferential direction.

(9)上記実施形態では、1対の超音波センサ32,32が、流体(ガス)の流れ方向(計測管31の軸方向)に平行な方向に並べて配置されていたが、流体の流れ方向に対して斜めに交差する方向に並べて配置してもよい。 (9) In the above-described embodiment, the pair of ultrasonic sensors 32 and 32 are arranged side by side in a direction parallel to the flow direction of the fluid (gas) (the axial direction of the measurement tube 31). May be arranged side by side in a direction that crosses diagonally.

本発明の一実施形態に係る超音波流量計の側断面図1 is a side sectional view of an ultrasonic flowmeter according to an embodiment of the present invention. メーターケースの分解斜視図Disassembled perspective view of meter case 計量アッシの側面図Side view of weighing assembly 計量アッシの分解斜視図Disassembled perspective view of weighing assembly 計測管構成体の平面図Plan view of measuring tube structure (A)計測管の開口部における側断面図(B)計測管の中央部における正断面図(A) Side sectional view at the opening of the measuring tube (B) Front sectional view at the center of the measuring tube 他の実施形態(5)に係る計測管の斜視図A perspective view of a measuring tube according to another embodiment (5) (A)計測管の正面図(B)計測管の中央部における正断面図(A) Front view of measuring tube (B) Front sectional view at the center of the measuring tube 他の実施形態(6)に係る計測管の正断面図Front sectional view of a measurement tube according to another embodiment (6)

符号の説明Explanation of symbols

10 超音波流量計
20 メーターケース
21 ケース本体
22 ケース蓋体
23 計量アッシ収容室(計測管収容部屋)
24a ガス流入路(流体流入路)
24b ガス流出路(流体流出路)
30 計量アッシ
31,50 計測管
32 超音波センサ(超音波送受波器)
36 中間壁
36a 電線孔
37 センサ保持片(送受波器保持部)
40,52 計測管構成体
43a 溝部
44a 凸部
44b 凹部
51a 溝部
60 インナー計測管

10 Ultrasonic flow meter 20 Meter case 21 Case body 22 Case lid 23 Measuring assembly storage chamber (measuring tube storage chamber)
24a Gas inflow path (fluid inflow path)
24b Gas outflow path (fluid outflow path)
30 Weighing assembly 31, 50 Measuring tube 32 Ultrasonic sensor (ultrasonic transducer)
36 Intermediate wall 36a Electric wire hole 37 Sensor holding piece (transmitter / receiver holding part)
40, 52 Measuring tube structure 43a Groove 44a Convex 44b Concave 51a Groove 60 Inner measuring tube

Claims (16)

メーターケースと、前記メーターケース内に収容され、内側に流体が流される計測管と、その計測管の両端部の開口に対して離して配置され、前記計測管の内側領域を挟んで互いに対向した1対の超音波送受波器とを備え、これら1対の超音波送受波器の間で送受波される超音波の伝搬時間に基づいて流量を計測する超音波流量計において、
前記計測管を縦に分割してなる複数の計測管構成体を組み付けて前記計測管を構成し、それら計測管構成体の少なくとも何れかに、前記超音波送受波器を前記計測管の前記開口に対して離した位置に保持するための送受波器保持部を一体に設けたことを特徴とする超音波流量計。
A meter case, a measurement tube that is accommodated in the meter case, and a fluid flows inside, and is arranged away from the openings at both ends of the measurement tube, facing each other across the inner region of the measurement tube An ultrasonic flowmeter comprising a pair of ultrasonic transducers and measuring a flow rate based on a propagation time of ultrasonic waves transmitted and received between the pair of ultrasonic transducers;
A plurality of measuring tube constituents formed by vertically dividing the measuring tube is assembled to constitute the measuring tube, and the ultrasonic transducer is connected to the opening of the measuring tube in at least one of the measuring tube constituents. An ultrasonic flowmeter characterized in that a transmitter / receiver holding portion for holding at a position separated from the head is integrally provided.
前記送受波器保持部は、前記複数の計測管構成体にそれぞれ設けられて、互いに前記超音波送受波器を協働して保持するように構成したことを特徴とする請求項1に記載の超音波流量計。   2. The transmitter / receiver holding unit is provided in each of the plurality of measurement tube components, and is configured to hold the ultrasonic transmitter / receiver in cooperation with each other. Ultrasonic flow meter. 前記計測管構成体の総数を2つとし、前記送受波器保持部を前記計測管構成体に一体成形し、かつ、2つの前記計測管構成体を同一形状の成形品としたことを特徴とする請求項2に記載の超音波流量計。   The total number of the measuring tube constituents is two, the transducer holding part is formed integrally with the measuring tube constituents, and the two measuring tube constituents are formed into the same shape. The ultrasonic flowmeter according to claim 2. 前記送受波器保持部を含む前記計測管構成体同士の接合面に、互いに対応した凹部と凸部とを対称的に配置し、一方の前記計測管構成体の前記凸部が他方の前記計測管構成体の前記凹部に凹凸係合すると共に、一方の前記計測管構成体の前記凹部が他方の前記計測管構成体の前記凸部に凹凸係合するように構成したことを特徴とする請求項3に記載の超音波流量計。   Corresponding concave portions and convex portions are symmetrically arranged on the joint surfaces of the measurement tube constituent bodies including the transducer holding portion, and the convex portion of one of the measurement pipe constituent bodies is the other measurement. The concave and convex engagement with the concave portion of the tube structure is configured such that the concave portion of one of the measurement tube structural members engages with the convex and concave portion of the other measurement tube structural body. Item 4. The ultrasonic flowmeter according to Item 3. 前記送受波器保持部を含む前記計測管構成体には、前記計測管構成体同士の接合面に開放しかつ前記超音波送受波器から延びた電線を収容する溝部が形成され、前記溝部の開放口が前記計測管構成体同士の接合によって閉じられたことを特徴とする請求項3又は4に記載の超音波流量計。   The measurement tube structure including the transducer holding part is formed with a groove portion that opens to a joint surface between the measurement tube structure members and accommodates an electric wire extending from the ultrasonic transducer, 5. The ultrasonic flowmeter according to claim 3, wherein the opening is closed by joining the measuring tube constituent members. 前記計測管の開口縁を内側に膨出させて、くびれ部を形成したことを特徴とする請求項1乃至5の何れかに記載の超音波流量計。   6. The ultrasonic flowmeter according to claim 1, wherein a constricted portion is formed by bulging an opening edge of the measurement tube inward. 前記計測管の内面からの前記くびれ部の突出量を0.05〜0.5[mm]にしたことを特徴とする請求項6に記載の超音波流量計。   The ultrasonic flowmeter according to claim 6, wherein an amount of protrusion of the constricted portion from the inner surface of the measuring tube is 0.05 to 0.5 [mm]. 前記計測管の開口縁が丸みを帯びるように面取りを施し、前記くびれ部に前記面取りによる曲面を連続させたことを特徴とする請求項6又は7に記載の超音波流量計。   The ultrasonic flowmeter according to claim 6 or 7, wherein chamfering is performed so that an opening edge of the measuring tube is rounded, and a curved surface by the chamfering is made continuous with the constricted portion. 前記計測管の内側領域のうち、流体の流れ方向に直交した断面を偏平形状とし、前記計測管の内面における幅方向の両端部に溝部を形成したことを特徴とする請求項1乃至8の何れかに記載の超音波流量計。   The cross section perpendicular to the fluid flow direction in the inner region of the measurement tube is flattened, and grooves are formed at both ends in the width direction on the inner surface of the measurement tube. The ultrasonic flowmeter according to Crab. 前記メーターケースには、前記計測管を収容した計測管収容部屋と、前記計測管収容部屋の一端側に連絡された流体流入路と、前記計測管収容部屋の他端側に連絡された流体流出路とが備えられ、
前記計測管には、前記計測管収容部屋の内面に嵌合して、前記計測管の外面と前記計測管収容部屋の内面との間の領域を前記流体流入路と前記流体流出路との間で隔絶するための中間壁が一体形成されたことを特徴とする請求項1乃至9の何れかに記載の超音波流量計。
The meter case includes a measuring tube housing chamber that houses the measuring tube, a fluid inflow passage that communicates with one end of the measuring tube housing chamber, and a fluid outflow that communicates with the other end of the measuring tube housing chamber. Road and
The measurement tube is fitted to the inner surface of the measurement tube storage chamber, and a region between the outer surface of the measurement tube and the inner surface of the measurement tube storage chamber is between the fluid inflow path and the fluid outflow path. The ultrasonic flowmeter according to claim 1, wherein an intermediate wall for isolating is formed integrally.
前記中間壁には、前記超音波送受波器から延びた電線を通すための電線孔が貫通形成されたことを特徴とする請求項12に記載の超音波流量計。   The ultrasonic flowmeter according to claim 12, wherein a wire hole for passing an electric wire extending from the ultrasonic transducer is formed through the intermediate wall. 前記メーターケースは、前記計測管収容部屋の一端部でケース本体とケース蓋体とに分割されると共に、その分割面に開放した前記計測管収容部屋の開口から内側に前記計測管が挿入組み付けされたことを特徴とする請求項1乃至11の何れかに記載の超音波流量計。   The meter case is divided into a case main body and a case lid at one end of the measurement tube storage chamber, and the measurement tube is inserted and assembled inside the opening of the measurement tube storage chamber opened to the divided surface. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is provided. 前記流体流入路と前記流体流出路は、前記ケース本体に形成されて前記計測管収容部屋と直交しかつ、前記計測管収容部屋内で前記計測管の側面に向かって開放したことを特徴とする請求項1乃至12の何れかに記載の超音波流量計。   The fluid inflow path and the fluid outflow path are formed in the case body, are orthogonal to the measurement tube accommodation chamber, and open toward the side surface of the measurement tube in the measurement tube accommodation chamber. The ultrasonic flowmeter according to claim 1. 前記計測管収容部屋は断面円形をなし、前記送受波器保持部は、前記計測管収容部屋の内面に周方向の3つ以上の位置で接することを特徴とする請求項1乃至13の何れかに記載の超音波流量計。   14. The measurement tube housing chamber has a circular cross section, and the transducer holding part is in contact with the inner surface of the measurement tube housing chamber at three or more positions in the circumferential direction. The ultrasonic flowmeter described in 1. 前記計測管の内側に嵌合され、前記計測管内の流体の流れ方向に直交した断面積を変更するためのインナー計測管を備えたことを特徴とする請求項1乃至14の何れかに記載の超音波流量計。   15. The inner measurement tube according to claim 1, further comprising an inner measurement tube that is fitted inside the measurement tube and changes a cross-sectional area perpendicular to a fluid flow direction in the measurement tube. Ultrasonic flow meter. メーターケースと、前記メーターケース内に収容され、内側に流体が流される計測管と、その計測管の両端部の開口に対して離して配置され、前記計測管の内側領域を挟んで互いに対向した1対の超音波送受波器とを備え、これら1対の超音波送受波器の間で送受波される超音波の伝搬時間に基づいて流量を計測する超音波流量計において、
前記超音波送受波器を前記計測管の前記開口に対して離した位置に保持するための送受波器保持部を前記計測管に一体に設けたことを特徴とする超音波流量計。

A meter case, a measurement tube that is accommodated in the meter case, and a fluid flows inside, and is arranged away from the openings at both ends of the measurement tube, facing each other across the inner region of the measurement tube An ultrasonic flowmeter comprising a pair of ultrasonic transducers and measuring a flow rate based on a propagation time of ultrasonic waves transmitted and received between the pair of ultrasonic transducers;
An ultrasonic flowmeter characterized in that a transducer holding part for holding the ultrasonic transducer at a position separated from the opening of the measurement tube is provided integrally with the measurement tube.

JP2005159056A 2005-05-31 2005-05-31 Ultrasonic flow meter Active JP4737669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159056A JP4737669B2 (en) 2005-05-31 2005-05-31 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159056A JP4737669B2 (en) 2005-05-31 2005-05-31 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2006337059A true JP2006337059A (en) 2006-12-14
JP4737669B2 JP4737669B2 (en) 2011-08-03

Family

ID=37557752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159056A Active JP4737669B2 (en) 2005-05-31 2005-05-31 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4737669B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008406A (en) * 2007-06-26 2009-01-15 Aichi Tokei Denki Co Ltd Ultrasonic flow meter and ultrasonic transducer unit
JP2009074932A (en) * 2007-09-20 2009-04-09 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
KR20140052866A (en) 2012-10-24 2014-05-07 아사히 유키자이 고교 가부시키가이샤 Method of producing ultrasonic flowmeter, ultrasonic flowmeter produced by the method and fluid controller having the ultrasonic flowmeter
JP2014089123A (en) * 2012-10-30 2014-05-15 Osaka Gas Co Ltd Ultrasonic gas meter
EP2824429A1 (en) * 2013-07-12 2015-01-14 Gill Corporate Limited An ultrasonic flowmeter
WO2020049893A1 (en) * 2018-09-03 2020-03-12 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter
CN111595397A (en) * 2020-04-24 2020-08-28 清华大学 Measuring pipe body structure for ultrasonic gas meter
WO2022032157A1 (en) * 2020-08-07 2022-02-10 Woodward, Inc. Ultrasonic flow meter flow control
US11307069B2 (en) 2020-03-06 2022-04-19 Woodward, Inc. Ultrasonic flow meter in a bypass channel coupled in parallel with a flow tube
US11668818B2 (en) 2020-08-07 2023-06-06 Woodward, Inc. Ultrasonic position sensor
US11835374B2 (en) 2021-03-17 2023-12-05 Woodward, Inc. Ultrasonic mass fuel flow meter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318411A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JPH10274551A (en) * 1997-03-31 1998-10-13 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JPH1151722A (en) * 1997-08-06 1999-02-26 Yazaki Corp Gas meter and its gas flow velocity measuring tube
US5905207A (en) * 1996-04-04 1999-05-18 Georg Fischer Rohrleitungssysteme Ag Process for measuring the flow rate of a fluid
US20040093957A1 (en) * 2001-07-17 2004-05-20 Christian Buess Apparatus for the measurement of the flow speed and/or the molar mass of gases or gas mixtures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905207A (en) * 1996-04-04 1999-05-18 Georg Fischer Rohrleitungssysteme Ag Process for measuring the flow rate of a fluid
JPH09318411A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JPH10274551A (en) * 1997-03-31 1998-10-13 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JPH1151722A (en) * 1997-08-06 1999-02-26 Yazaki Corp Gas meter and its gas flow velocity measuring tube
US20040093957A1 (en) * 2001-07-17 2004-05-20 Christian Buess Apparatus for the measurement of the flow speed and/or the molar mass of gases or gas mixtures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008406A (en) * 2007-06-26 2009-01-15 Aichi Tokei Denki Co Ltd Ultrasonic flow meter and ultrasonic transducer unit
JP2009074932A (en) * 2007-09-20 2009-04-09 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
KR20140052866A (en) 2012-10-24 2014-05-07 아사히 유키자이 고교 가부시키가이샤 Method of producing ultrasonic flowmeter, ultrasonic flowmeter produced by the method and fluid controller having the ultrasonic flowmeter
US9903744B2 (en) 2012-10-24 2018-02-27 Asahi Organic Chemicals Industry Co., Ltd. Method of producing ultrasonic flowmeter, ultrasonic flowmeter produced by the method and fluid controller having the ultrasonic flowmeter
JP2014089123A (en) * 2012-10-30 2014-05-15 Osaka Gas Co Ltd Ultrasonic gas meter
EP2824429A1 (en) * 2013-07-12 2015-01-14 Gill Corporate Limited An ultrasonic flowmeter
US9261389B2 (en) 2013-07-12 2016-02-16 Gill Corporate Limited Ultrasonic flowmeter
JP2020038065A (en) * 2018-09-03 2020-03-12 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter
WO2020049893A1 (en) * 2018-09-03 2020-03-12 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter
JP7029599B2 (en) 2018-09-03 2022-03-04 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
US11307069B2 (en) 2020-03-06 2022-04-19 Woodward, Inc. Ultrasonic flow meter in a bypass channel coupled in parallel with a flow tube
CN111595397A (en) * 2020-04-24 2020-08-28 清华大学 Measuring pipe body structure for ultrasonic gas meter
WO2022032157A1 (en) * 2020-08-07 2022-02-10 Woodward, Inc. Ultrasonic flow meter flow control
US11668818B2 (en) 2020-08-07 2023-06-06 Woodward, Inc. Ultrasonic position sensor
US11885655B2 (en) 2020-08-07 2024-01-30 Woodward, Inc. Ultrasonic flow meter having flow conditioning arrangements for flow controlling in a linear fluid conduit
US11835374B2 (en) 2021-03-17 2023-12-05 Woodward, Inc. Ultrasonic mass fuel flow meter

Also Published As

Publication number Publication date
JP4737669B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4737669B2 (en) Ultrasonic flow meter
JP6731538B2 (en) Flowmeter with measuring channel
JP5712358B2 (en) Ultrasonic fluid measuring structure and ultrasonic fluid measuring device
JP6263738B2 (en) Gas flow meter
WO2011064906A1 (en) Channel member and ultrasonic fluid-measuring apparatus
KR102373208B1 (en) Ultrasonic flow amount measuring device
JP2010107406A (en) Method for manufacturing meter case, and flowmeter and method for manufacturing the same
WO2010061558A1 (en) Fluid measuring flow path device
WO2023119380A1 (en) Straight type flowmeter sensor
JP5131815B2 (en) Ultrasonic flow meter
JP2011099692A (en) Ultrasonic flowmeter
JP2010164366A (en) Flow channel device for fluid measurement
JP4459734B2 (en) Gas meter
JP4588386B2 (en) Gas meter
CN109791063B (en) Flow meter
JP4107929B2 (en) Ultrasonic sensor mounting structure
JP5240763B2 (en) Ultrasonic flow meter
JP4943825B2 (en) Ultrasonic flow meter
KR101919498B1 (en) Housing structure of pressure sensor for vehicle
JP6033583B2 (en) Gas meter
JP7048178B2 (en) Ultrasonic flow meter
JP2019144002A (en) Ultrasonic flow meter
KR101889309B1 (en) All-in-one complex sensor measuring pressure and temperature
KR20240008421A (en) Straight type flow sensor
JP4443980B2 (en) Flow rate detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

R150 Certificate of patent or registration of utility model

Ref document number: 4737669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250