JP5131815B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5131815B2
JP5131815B2 JP2007106483A JP2007106483A JP5131815B2 JP 5131815 B2 JP5131815 B2 JP 5131815B2 JP 2007106483 A JP2007106483 A JP 2007106483A JP 2007106483 A JP2007106483 A JP 2007106483A JP 5131815 B2 JP5131815 B2 JP 5131815B2
Authority
JP
Japan
Prior art keywords
sensor
ultrasonic
plug
measuring tube
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007106483A
Other languages
Japanese (ja)
Other versions
JP2008261817A (en
Inventor
善久 佐藤
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2007106483A priority Critical patent/JP5131815B2/en
Publication of JP2008261817A publication Critical patent/JP2008261817A/en
Application granted granted Critical
Publication of JP5131815B2 publication Critical patent/JP5131815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体が流れる計測管の上流側と下流側とに取り付けられた1対の超音波センサ間で、計測管の軸方向と斜めに交差する方向で超音波を送受波して流体の流量を計測する超音波流量計に関する。   The present invention transmits and receives ultrasonic waves in a direction obliquely intersecting the axial direction of the measurement pipe between a pair of ultrasonic sensors attached to the upstream side and the downstream side of the measurement pipe through which the fluid flows. The present invention relates to an ultrasonic flowmeter for measuring a flow rate.

図13に示す従来の超音波流量計1は、計測管2の外側面に超音波センサ3,3を収容するための有底孔4,4が陥没形成されており、その底部には計測管2の軸線に対して傾斜しかつ超音波センサ3,3が密着したセンサ当接面5,5が設けられている。また、有底孔4,4は超音波センサ3,3の後方に嵌合固定された栓部材6,6によって封止されている(例えば、特許文献1参照)。
特開平7−91997号公報([0008]、第1図)
In the conventional ultrasonic flowmeter 1 shown in FIG. 13, bottomed holes 4 and 4 for accommodating the ultrasonic sensors 3 and 3 are formed in the outer surface of the measurement tube 2 so as to be recessed, and the measurement tube is formed at the bottom thereof. Sensor contact surfaces 5 and 5 are provided which are inclined with respect to the axis 2 and to which the ultrasonic sensors 3 and 3 are in close contact. The bottomed holes 4 and 4 are sealed by plug members 6 and 6 fitted and fixed behind the ultrasonic sensors 3 and 3 (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 7-91997 ([0008], FIG. 1)

しかしながら、上述した従来の超音波流量計1では、有底孔4,4のうち栓部材6,6が嵌合した栓嵌合部4a,4aが、センサ当接面5,5と直交する方向を向いていた。換言すれば、栓嵌合部4a,4aが計測管2の軸方向に対して傾斜した方向に延びていた為、計測管2の全長が無駄に長くなるという問題があった。   However, in the conventional ultrasonic flowmeter 1 described above, the plug fitting portions 4a and 4a into which the plug members 6 and 6 of the bottomed holes 4 and 4 are fitted are perpendicular to the sensor contact surfaces 5 and 5, respectively. I was facing. In other words, since the plug fitting portions 4a, 4a extend in a direction inclined with respect to the axial direction of the measuring tube 2, there is a problem that the entire length of the measuring tube 2 becomes unnecessarily long.

本発明は、上記事情に鑑みてなされたもので、計測管の全長を従来より短くすることが可能な超音波流量計の提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the ultrasonic flowmeter which can make the full length of a measuring tube shorter than before.

上記目的を達成するためになされた請求項1の発明に係る超音波流量計は、流体が流れる計測管の上流側と下流側とに取り付けられた1対の超音波センサ間で、計測管の軸方向と斜めに交差する方向で超音波を送受波して流体の流量を計測する超音波流量計であって、計測管の外側面に陥没形成されて1対の超音波センサを収容した1対のセンサ収容凹部と、各センサ収容凹部の底部に設けられて計測管の軸方向に対して傾斜し、各超音波センサの送受波面が密着したセンサ当接面と、前記各センサ収容凹部のうち栓嵌合部に嵌合固定されてセンサ収容凹部を封止した栓部材とを備えたものにおいて、栓部材を、計測管の軸方向と直交した方向から栓嵌合部に嵌合可能とし、栓部材には、栓嵌合部の内側面に当接した状態で嵌合した栓本体と、栓本体の先端に形成されてセンサ当接面と略平行なセンサ押さえ面と、栓本体の後端から側方に張り出してセンサ収容凹部の開口縁にねじ止めされた鍔部とが備えられ、センサ押さえ面と超音波センサとの間には、圧縮されてその弾発力により超音波センサをセンサ当接面に押し付ける弾性部材が設けられ、弾性部材から栓部材に付与される弾発力のうち栓部材の嵌合方向と直交した力の成分を、栓嵌合部の内側面と栓部材との当接によって受けたところに特徴を有する。なお、本発明には超音波センサを1対以上備えているものが含まれる。 In order to achieve the above object, an ultrasonic flowmeter according to the first aspect of the present invention provides a measuring tube between a pair of ultrasonic sensors attached to an upstream side and a downstream side of a measuring tube through which a fluid flows. An ultrasonic flowmeter that measures the flow rate of a fluid by transmitting and receiving ultrasonic waves in a direction that obliquely intersects the axial direction, and is a depression formed on the outer surface of a measurement tube and accommodates a pair of ultrasonic sensors a sensor housing recess pair, provided at the bottom of each sensor housing recess inclined with respect to the axial direction of the measuring tube, and the sensor contact surface transmitting and receiving surface of the ultrasonic sensor are in close contact, said each sensor housing recess Of these , the plug member that is fitted and fixed to the plug fitting part and sealed with the sensor housing recess can be fitted to the plug fitting part from the direction perpendicular to the axial direction of the measuring tube. The plug member is fitted with a plug body fitted in contact with the inner surface of the plug fitting portion. A sensor pressing surface formed at the tip of the plug body and substantially parallel to the sensor contact surface, and a collar portion protruding laterally from the rear end of the plug body and screwed to the opening edge of the sensor housing recess, An elastic member is provided between the sensor pressing surface and the ultrasonic sensor to compress and press the ultrasonic sensor against the sensor contact surface by the elastic force, and the elastic force applied from the elastic member to the plug member is provided. Of these, a component of force perpendicular to the fitting direction of the plug member is received by the contact between the inner surface of the plug fitting portion and the plug member . Note that the present invention includes one having at least one pair of ultrasonic sensors.

請求項の発明は、請求項1に記載の超音波流量計において、超音波センサの出力信号に基づいて流量を演算して表示する流量演算表示器と、計測管の外側面から突出して先端部に流量演算表示器を固定するための固定用囲壁と、固定用囲壁の内側に形成されて流量演表示器によって閉塞される配線処理凹部と、計測管のうち配線処理凹部とセンサ収容凹部との間の壁部を貫通し、超音波センサと流量演算表示器との間の接続線が通された内部電線通路を備えたところに特徴を有する。 Tip of the invention of claim 2, in the ultrasonic flowmeter according to claim 1, a flow rate computation display for displaying by calculating the flow rate based on the output signal of the ultrasonic sensor, and protrudes from the outer surface of the measuring tube A fixing wall for fixing the flow rate calculation display to the section, a wiring processing recess formed inside the fixing wall and closed by the flow rate display, a wiring processing recess and a sensor receiving recess in the measurement tube, It has a feature in that it has an internal electric wire passage through which a connecting line between the ultrasonic sensor and the flow rate calculation indicator is passed.

請求項の発明は、請求項1又は2に記載の超音波流量計において、センサ当接面に凹部と凸部とを設け、凸部のみを超音波センサの送受波面に部分的に密着させたところに特徴を有する。 The invention according to claim 3 is the ultrasonic flowmeter according to claim 1 or 2, wherein the sensor contact surface is provided with a concave portion and a convex portion, and only the convex portion is brought into close contact with the wave transmitting / receiving surface of the ultrasonic sensor. It has features.

請求項の発明は、請求項1乃至の何れかに記載の超音波流量計において、1対の超音波センサの送受波面は、計測管を軸方向から見た状態で非平行になるように配置され、一方の超音波センサの送受波面で反射した超音波の伝播経路を他方の超音波センサからずらしたところに特徴を有する。 According to a fourth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to third aspects, the transmission / reception surfaces of the pair of ultrasonic sensors are not parallel when the measurement tube is viewed from the axial direction. And is characterized in that the propagation path of the ultrasonic wave reflected by the transmission / reception surface of one ultrasonic sensor is shifted from the other ultrasonic sensor.

請求項の発明は、請求項1乃至の何れかに記載の超音波流量計において、流体は、気体であり、一方の超音波センサは、他方の超音波センサ側から一定の指向角で放射状に伝播した超音波の受信可能領域のうちその超音波の受信強度が最も高くなる領域中心部に対して他方の超音波センサから離れる側に配置されたところに特徴を有する。 According to a fifth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to fourth aspects, the fluid is a gas, and one ultrasonic sensor has a fixed directivity angle from the other ultrasonic sensor side. It is characterized in that it is arranged on the side away from the other ultrasonic sensor with respect to the central portion of the region where the ultrasonic wave reception intensity is highest among the receivable ultrasonic wave propagation regions.

請求項の発明は、請求項1乃至の何れかに記載の超音波流量計において、計測管の外面から突出した1対のセンサ取付凸部を備え、それらセンサ取付凸部の芯部を陥没させてセンサ収容凹部を形成したところに特徴を有する。 A sixth aspect of the invention is the ultrasonic flowmeter according to any one of the first to fifth aspects, further comprising a pair of sensor mounting convex portions protruding from the outer surface of the measuring tube, and the core portions of the sensor mounting convex portions are provided. It is characterized in that it is depressed to form a sensor receiving recess.

[請求項1の発明]
請求項1の発明によれば、計測管の外側面に陥没形成されたセンサ収容凹部に超音波センサが挿入されてセンサ当接面に密着し、その超音波センサに重ねてセンサ収容凹部に挿入嵌合された栓部材によって、センサ収容凹部が封止される。センサ当接面は、予め計測管の軸線に対して傾斜して設けられており、1対の超音波センサをそれぞれセンサ当接面に密着させることで、それら1対の超音波センサが超音波を送受波可能な位置に位置決めされる。1対の超音波センサ間では、計測管の軸線と斜めに交差する方向で超音波が送受波され、その伝播時間に基づいて流体の流量が計測される。そして、請求項1の発明によれば、栓部材を計測管の軸方向と直交した方向から栓嵌合部に嵌合することができるので、栓嵌合部が計測管の軸方向に対して傾斜して延びた従来のものに比べて、計測管の全長を短くすることが可能となる。
[Invention of Claim 1]
According to the first aspect of the present invention, the ultrasonic sensor is inserted into the sensor receiving recess formed in the outer surface of the measuring tube so as to be in close contact with the sensor contact surface, and is inserted into the sensor receiving recess so as to overlap the ultrasonic sensor. The sensor housing recess is sealed by the fitted plug member. The sensor contact surfaces are provided in advance with an inclination with respect to the axis of the measuring tube, and the pair of ultrasonic sensors are brought into close contact with the sensor contact surface, so that the pair of ultrasonic sensors are ultrasonic waves. Is positioned at a position where wave can be transmitted and received. Between a pair of ultrasonic sensors, ultrasonic waves are transmitted and received in a direction obliquely intersecting the axis of the measurement tube, and the flow rate of the fluid is measured based on the propagation time. And according to invention of Claim 1, since a plug member can be fitted to a plug fitting part from the direction orthogonal to the axial direction of a measurement pipe, a plug fitting part is with respect to the axial direction of a measurement pipe. The total length of the measuring tube can be shortened as compared with the conventional one extending in an inclined manner.

また、請求項の発明によれば、栓部材は、栓嵌合部に嵌合した栓本体の先端に設けられたセンサ押さえ面と超音波センサとの間で弾性部材を圧縮した状態で、栓本体の後端から側方に張り出した鍔部をセンサ収容凹部の開口縁にねじ止めすることで固定される。これにより、超音波センサは弾性部材の弾発力によりセンサ当接面に押し付けられる。 Further, according to the invention of claim 1, the plug member, while compressing the elastic member to and from the sensor pressing surface and the ultrasonic sensor provided at the distal end of the plug body fitted to the stopper engaging portion, It is fixed by screwing a flange projecting laterally from the rear end of the plug body to the opening edge of the sensor housing recess. Thereby, the ultrasonic sensor is pressed against the sensor contact surface by the elastic force of the elastic member.

ここで、栓部材の栓本体は、センサ収容凹部の内側面に当接した状態で嵌合しているから、弾性部材から栓部材に付与される弾発力のうち栓部材の嵌合方向と直交した力の成分を、栓嵌合部の内側面と栓部材との当接によって受けることができる。よって、鍔部とセンサ収容凹部の開口縁とのねじ止め部分に必要な強度を抑えることができる。 Here, since the plug body of the plug member is fitted in contact with the inner surface of the sensor receiving recess, the fitting direction of the plug member among the elastic force applied from the elastic member to the plug member The orthogonal force component can be received by the contact between the inner surface of the plug fitting portion and the plug member. Therefore, it is possible to suppress the strength required for the screwed portion between the flange portion and the opening edge of the sensor housing recess.

[請求項の発明]
請求項の発明によれば、超音波センサと流量演算表示器との間の接続線が、計測管のうち配線処理凹部とセンサ収容凹部との間の壁部を貫通した内部電線通路に通されているから、接続線の断線を防止することができる。
[Invention of claim 2 ]
According to the second aspect of the present invention, the connection line between the ultrasonic sensor and the flow rate calculation indicator passes through the internal wire passage that penetrates the wall portion between the wiring processing recess and the sensor receiving recess in the measurement tube. Therefore, disconnection of the connection line can be prevented.

[請求項の発明]
請求項の発明によれば、超音波センサの送受波面の全面をセンサ当接面に密着させた場合に比較して、測定誤差を低減することが可能となる。その理由は、以下の通りである。
[Invention of claim 3 ]
According to the invention of claim 3 , it is possible to reduce the measurement error as compared with the case where the entire transmission / reception surface of the ultrasonic sensor is brought into close contact with the sensor contact surface. The reason is as follows.

一般に、超音波センサの送受波面と計測管のセンサ当接面との境界面では、音響インピーダンスの相違により、送信側の超音波センサから発射された超音波の一部が反射し、この反射波が1対の超音波センサ間を往復するように繰り返し反射する。この反射波はノイズ成分となって測定誤差の原因となり得る。   In general, at the boundary surface between the transmission / reception surface of the ultrasonic sensor and the sensor contact surface of the measuring tube, a part of the ultrasonic wave emitted from the ultrasonic sensor on the transmission side is reflected due to the difference in acoustic impedance, and this reflected wave is reflected. Are repeatedly reflected so as to reciprocate between a pair of ultrasonic sensors. This reflected wave becomes a noise component and may cause a measurement error.

これに対し、請求項の発明によれば、センサ当接面に凹部と凸部とを設け、凸部のみを超音波センサの送受波面に部分的に密着させたから、送信側の超音波センサから発射された超音波を受信側の超音波センサで直接受信したときの波高値と、その受信側の境界面で反射され、さらに送信側の境界面で反射されて再び受信側の超音波センサに戻ってきた反射波を受信したときの波高値との比を大きくすることができる。即ち、受信波のS/N比を大きくすることができ、計測誤差を低減することが可能となる。 On the other hand, according to the invention of claim 3 , since the concave portion and the convex portion are provided on the sensor contact surface, and only the convex portion is brought into close contact with the transmission / reception surface of the ultrasonic sensor, the ultrasonic sensor on the transmission side The wave height when the ultrasonic wave emitted from the receiver is directly received by the ultrasonic sensor on the reception side, and reflected at the boundary surface on the reception side, and further reflected on the boundary surface on the transmission side, and again on the ultrasonic sensor on the reception side It is possible to increase the ratio with the peak value when the reflected wave that has returned to is received. That is, the S / N ratio of the received wave can be increased, and measurement errors can be reduced.

[請求項の発明]
請求項の発明によれば、1対の超音波センサの送受波面を、計測管を軸方向から見た状態で非平行になるように配置して、一方の超音波センサの送受波面で反射した超音波の伝播経路を他方の超音波センサからずらしたから、反射波に起因した測定誤差を防止することができる。なお、両送受波面がなす角度は2〜10度にすることが好ましい。
[Invention of claim 4 ]
According to the invention of claim 4 , the transmission / reception surfaces of the pair of ultrasonic sensors are arranged so as to be non-parallel when the measurement tube is viewed from the axial direction, and reflected by the transmission / reception surfaces of one ultrasonic sensor. Since the ultrasonic wave propagation path is shifted from the other ultrasonic sensor, measurement errors caused by the reflected wave can be prevented. In addition, it is preferable that the angle which both transmission / reception surfaces make is 2-10 degrees.

[請求項の発明]
一般に、計測管の内側を流れる気体中に、計測管の壁部を介して超音波を発射した場合、計測管の壁部と気体との境界面における超音波の屈折角は、スネルの法則により非常に小さくなる。従って、1対の超音波センサを、互いに受信強度が最も強くなる位置に配置した場合には、計測管の軸方向において1対の超音波センサ同士が接近し過ぎてしまうため、気体の流量計測を精度よく行うことは困難であった。
[Invention of claim 5 ]
In general, when ultrasonic waves are emitted into the gas flowing inside the measurement tube through the wall of the measurement tube, the refraction angle of the ultrasonic wave at the interface between the wall of the measurement tube and the gas depends on Snell's law. Very small. Therefore, when a pair of ultrasonic sensors is arranged at a position where the reception intensity is the strongest, the pair of ultrasonic sensors are too close to each other in the axial direction of the measurement tube, so that the gas flow rate is measured. It was difficult to perform accurately.

これに対し、請求項の発明によれば、一方の超音波センサは、他方の超音波センサ側から一定の指向角で放射状に伝播した超音波の受信可能領域のうちその超音波の受信強度が最も高くなる領域中心部に対して他方の超音波センサから離れる側に配置されている。これにより、受信強度は弱くなるものの、計測管の軸方向において1対の超音波センサ間の距離を長くすることができるから、気体の流量計測を精度よく行うことが可能となる。 On the other hand, according to the invention of claim 5 , one ultrasonic sensor receives the ultrasonic wave reception intensity of the ultrasonic wave receivable region that propagates radially from the other ultrasonic sensor side at a certain directivity angle. Is disposed on the side away from the other ultrasonic sensor with respect to the central portion of the region where the height is the highest. Thereby, although the reception intensity becomes weak, the distance between the pair of ultrasonic sensors can be increased in the axial direction of the measurement tube, so that the gas flow rate can be accurately measured.

[請求項の発明]
計測管を構成する壁部が薄い場合には、請求項の発明のように、計測管の外面から1対のセンサ取付凸部を突出させ、その芯部を陥没させてセンサ収容凹部を形成すればよい。
[Invention of claim 6 ]
When the wall portion constituting the measuring tube is thin, as in the invention of claim 6, a pair of sensor mounting convex portions are projected from the outer surface of the measuring tube, and the core portion is depressed to form a sensor housing concave portion. do it.

[第1実施形態]
以下、本発明の第1実施形態を図1〜図7に基づいて説明する。図1に示すように超音波流量計10は、樹脂(具体的には硬質塩化ビニル)の成形品で構成された計測管20を備え、その両端部を流体(液体又は気体)が流れる送給パイプ(図示せず)の途中に接続可能となっている。計測管20の上流側と下流側とには、流体通過領域R1を挟んで1対の超音波センサ11,11が配設されており、それら超音波センサ11,11間で、計測管20の軸J1方向を斜めに横切る方向で超音波の送受波が行われる。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the ultrasonic flowmeter 10 includes a measuring tube 20 made of a resin (specifically, hard vinyl chloride) molded article, and a fluid (liquid or gas) flows through both ends thereof. Connection is possible in the middle of a pipe (not shown). A pair of ultrasonic sensors 11, 11 are disposed on the upstream side and the downstream side of the measurement tube 20 with the fluid passage region R <b> 1 interposed therebetween, and between the ultrasonic sensors 11, 11, Ultrasonic waves are transmitted and received in a direction that obliquely crosses the direction of the axis J1.

ここで超音波センサ11,11と流体通過領域R1との間には計測管20を構成する壁部が介在しているため、超音波センサ11,11間で送受波される超音波は、図1の点線で示すように壁部と流体通過領域R1との境界面でスネルの法則に従って屈折する。   Here, since the wall portion constituting the measuring tube 20 is interposed between the ultrasonic sensors 11 and 11 and the fluid passage region R1, the ultrasonic waves transmitted and received between the ultrasonic sensors 11 and 11 are illustrated in FIG. As indicated by the dotted line 1, the light is refracted according to Snell's law at the boundary surface between the wall portion and the fluid passage region R1.

そして、流体の流れに沿った順方向における超音波の伝播時間と、流れに逆らった逆方向における超音波の伝播時間との差或いは逆数差に基づいて、計測管20を通過する流体の流量が計測可能となっている。なお、伝播時間の差又は逆数差に基づき流量を演算する演算式は公知であるので説明を省略する。   Based on the difference or reciprocal difference between the propagation time of the ultrasonic wave in the forward direction along the flow of the fluid and the propagation time of the ultrasonic wave in the reverse direction against the flow, the flow rate of the fluid passing through the measurement tube 20 is Measurement is possible. In addition, since the calculation formula which calculates a flow volume based on the difference of propagation time or a reciprocal difference is well-known, description is abbreviate | omitted.

図4には、計測管20を軸J1方向に直交する平面で切断した断面(具体的には、図5におけるX−X断面)が示されている。同図に示すように、計測管20は円筒構造をなしている。また、図1に示すように、計測管20の内側を貫通した流体通過領域R1のうち、上流側の流入口20Aは下流に向かってテーパー状に縮径し、下流側の流出口20Bは下流に向かってテーパー状に拡径し、それら流入口20Aと流出口20Bとの間の内径は一定となっている。   4 shows a cross section (specifically, an XX cross section in FIG. 5) obtained by cutting the measurement tube 20 along a plane orthogonal to the direction of the axis J1. As shown in the figure, the measuring tube 20 has a cylindrical structure. Further, as shown in FIG. 1, in the fluid passage region R1 penetrating the inside of the measuring tube 20, the upstream inflow port 20A is tapered toward the downstream, and the downstream outflow port 20B is downstream. The inner diameter between the inlet 20A and the outlet 20B is constant.

計測管20の両端部にはフランジ壁21,21が設けられている。フランジ壁21,21は、計測管20の全周に亘って側方に張り出している。計測管20を送給パイプ(図示せず)に接続する際には、フランジ壁21,21が送給パイプの接続面に密着状態に宛がわれる。   Flange walls 21 and 21 are provided at both ends of the measuring tube 20. The flange walls 21 and 21 project laterally over the entire circumference of the measuring tube 20. When the measuring pipe 20 is connected to a feed pipe (not shown), the flange walls 21 and 21 are brought into close contact with the connection surface of the feed pipe.

図4〜図6に示すように、フランジ壁21,21の間には複数のリブ壁24,25が設けられている。即ち、計測管20の軸J1方向に延びてフランジ壁21,21間を繋いだ複数のリブ壁24,24と、計測管20の中間部から側方に張り出して周方向に延びたリブ壁25とが設けられている。リブ壁24,24により、比較的薄肉なフランジ壁21,21が補強されている。   As shown in FIGS. 4 to 6, a plurality of rib walls 24 and 25 are provided between the flange walls 21 and 21. That is, a plurality of rib walls 24 and 24 extending in the axis J1 direction of the measuring tube 20 and connecting the flange walls 21 and 21, and a rib wall 25 extending laterally from the intermediate portion of the measuring tube 20 and extending in the circumferential direction. And are provided. The rib walls 24, 24 reinforce the relatively thin flange walls 21, 21.

図6に示すように、フランジ壁21,21の間には、流量演算表示器18(図3参照)を固定するための固定用囲壁22が設けられている。固定用囲壁22は、計測管20の外側面から突出した菱形の枠形構造をなしており、その内側は計測管20の側方(図6の紙面手前側)に開放した配線処理凹部26となっている。配線処理凹部26には、計測管20の外面から起立した十字リブ23が備えられ、その十字リブ23が、固定用囲壁22の互いに平行な2辺間を繋いで固定用囲壁22を補強している。なお、固定用囲壁22のうち、計測管20の軸J1方向に平行な2辺はリブ壁24,24の一部を兼ねており、その2辺間を繋いだ十字リブ23の一辺はリブ壁25の延長線上に設けられている。   As shown in FIG. 6, a fixing wall 22 for fixing the flow rate calculation indicator 18 (see FIG. 3) is provided between the flange walls 21 and 21. The fixing wall 22 has a diamond-shaped frame structure protruding from the outer surface of the measuring tube 20, and the inner side thereof has a wiring processing recess 26 opened to the side of the measuring tube 20 (the front side in FIG. 6). It has become. The wiring processing recess 26 is provided with a cross rib 23 erected from the outer surface of the measuring tube 20, and the cross rib 23 reinforces the fixing wall 22 by connecting two parallel sides of the fixing wall 22. Yes. Note that two sides of the fixing wall 22 parallel to the axis J1 direction of the measuring tube 20 also serve as part of the rib walls 24, 24, and one side of the cross rib 23 connecting the two sides is a rib wall. 25 extension lines are provided.

固定用囲壁22の開口端には流量演算表示器18(図3参照)が着脱可能に固定され、これにより、配線処理凹部26が閉塞されている。そして、流量演算表示器18にて、超音波センサ11,11からの出力信号に基づいて流量が演算されかつ表示可能となっている。なお、固定用囲壁22の開口端にはシール溝22Aが形成されており、図示しないシール部材により流量演算表示器18と固定用囲壁22との結合部分がシールされている。   A flow rate calculation indicator 18 (see FIG. 3) is detachably fixed to the opening end of the fixing wall 22, thereby closing the wiring processing recess 26. The flow rate calculation display 18 calculates and displays the flow rate based on the output signals from the ultrasonic sensors 11 and 11. A sealing groove 22A is formed at the opening end of the fixing wall 22, and a connecting portion between the flow rate calculation display 18 and the fixing wall 22 is sealed by a sealing member (not shown).

図6に示すように、計測管20の両端寄り位置で、周方向に180度離れた2位置(詳細には、固定用囲壁22から周方向で相反する方向に90度ずつ離れた2位置)には、センサ取付凸部30,30が突出形成されている。これらセンサ取付凸部30,30は、計測管20の軸J1方向に直交した方向(計測管20の径方向)に突出している。なお、センサ取付凸部30,30の軸J1方向における距離は、計測管20の材質及び流体の種類等からスネルの法則に基づいて決定されている。   As shown in FIG. 6, two positions 180 degrees apart in the circumferential direction at positions near both ends of the measuring tube 20 (specifically, two positions 90 degrees apart from the fixing wall 22 in opposite directions in the circumferential direction). The sensor mounting convex portions 30 are formed so as to protrude. These sensor mounting convex portions 30, 30 protrude in a direction (radial direction of the measurement tube 20) orthogonal to the axis J <b> 1 direction of the measurement tube 20. The distance between the sensor mounting convex portions 30 and 30 in the direction of the axis J1 is determined based on Snell's law from the material of the measuring tube 20 and the type of fluid.

図5には、計測管20をセンサ取付凸部30の軸方向(図6における上方)から見た状態が示されている。同図に示すように、センサ取付凸部30の外面は円柱面をなし、その円柱面から複数の螺合柱40が膨出している。螺合柱40はセンサ取付凸部30の外周面に均等配置されており、センサ取付凸部30と平行(図5における紙面直交方向)に延びている。螺合柱40の芯部には螺合孔41が形成され先端面に開放している。螺合柱40の先端面とセンサ取付凸部30の先端面とは面一であり、リブ壁24,24より低くなっている。   FIG. 5 shows a state in which the measurement tube 20 is viewed from the axial direction of the sensor mounting convex portion 30 (upward in FIG. 6). As shown in the figure, the outer surface of the sensor mounting convex portion 30 forms a cylindrical surface, and a plurality of screwing columns 40 bulge from the cylindrical surface. The screwing columns 40 are evenly arranged on the outer peripheral surface of the sensor mounting convex portion 30 and extend parallel to the sensor mounting convex portion 30 (in the direction orthogonal to the plane of FIG. 5). A screw hole 41 is formed in the core portion of the screw column 40 and is open to the front end surface. The front end surface of the screwing column 40 and the front end surface of the sensor mounting projection 30 are flush with each other and are lower than the rib walls 24 and 24.

各センサ取付凸部30,30の芯部には超音波センサ11を収容するためのセンサ収容凹部31が陥没形成されている。図2に示すように、センサ収容凹部31は流体通過領域R1側が閉塞されかつ計測管20の側方に向かって開放している。なお、センサ収容凹部31,31の内部形状は、計測管20の軸J1方向と直交する方向で、成形型を型開きすることが可能な(アンダーカットを有しない)形状となっている。   A sensor housing recess 31 for housing the ultrasonic sensor 11 is formed in the core of each sensor mounting projection 30, 30. As shown in FIG. 2, the sensor housing recess 31 is closed on the fluid passage region R <b> 1 side and opened toward the side of the measuring tube 20. In addition, the internal shape of the sensor accommodation recessed parts 31 and 31 is a shape which can open a shaping | molding die in a direction orthogonal to the axis | shaft J1 direction of the measurement pipe | tube 20 (it does not have an undercut).

図1に示すように、センサ収容凹部31の底側には超音波センサ11が計測管20の軸J1方向に対して傾斜姿勢にして収容され、開口側には超音波センサ11に重ねてキャップ50(本発明の「栓部材」に相当する)が挿入嵌合されている。また、超音波センサ11とキャップ50との間にはウェーブワッシャ59(本発明の「弾性部材」に相当する)が圧縮状態で挟まれている。そして、ウェーブワッシャ59の弾発力により、超音波センサ11の送受波面16はセンサ収容凹部31の底部に形成されたセンサ当接面35に押し付けられている。なお、超音波センサ11とセンサ当接面35は図示しないグリース又は接着剤を介して密着している。   As shown in FIG. 1, the ultrasonic sensor 11 is accommodated in an inclined posture with respect to the axis J <b> 1 direction of the measuring tube 20 on the bottom side of the sensor accommodating recess 31, and the ultrasonic sensor 11 is overlapped with the cap on the opening side. 50 (corresponding to the “plug member” of the present invention) is inserted and fitted. A wave washer 59 (corresponding to the “elastic member” of the present invention) is sandwiched between the ultrasonic sensor 11 and the cap 50 in a compressed state. The wave transmitting / receiving surface 16 of the ultrasonic sensor 11 is pressed against the sensor contact surface 35 formed at the bottom of the sensor housing recess 31 by the elastic force of the wave washer 59. The ultrasonic sensor 11 and the sensor contact surface 35 are in close contact with each other via a grease or an adhesive (not shown).

図2に示すようにセンサ収容凹部31は、センサ取付凸部30の軸方向に直交した境界段差面34により、開口側のキャップ嵌合部32(本発明の「栓嵌合部」に相当する)と、底側のセンサ収容部33とに分けることができる。これに対し、センサ収容凹部31に挿入嵌合されたキャップ50は、キャップ嵌合部32に嵌合した栓本体51と、栓本体51の後端から側方に張り出してセンサ収容凹部31の開口縁にねじ止めされた鍔部60とから構成されている(図7参照)。   As shown in FIG. 2, the sensor housing recess 31 corresponds to an opening-side cap fitting portion 32 (“plug fitting portion” of the present invention) by a boundary step surface 34 orthogonal to the axial direction of the sensor mounting projection 30. ) And the sensor housing portion 33 on the bottom side. On the other hand, the cap 50 inserted and fitted into the sensor housing recess 31 protrudes laterally from the rear end of the plug body 51 and the opening of the sensor housing recess 31. It is comprised from the collar part 60 screwed to the edge (refer FIG. 7).

鍔部60は円板状をなしかつ、センサ取付凸部30とリブ壁24,24との高低差とほぼ同じ厚みを有している。即ち、キャップ50をセンサ収容凹部31に挿入嵌合すると、鍔部60はリブ壁24,24と面一となる。また、鍔部60の周方向で互いに90度ずつ離れた位置には4つのねじ挿通孔61が貫通形成されている(図7(A)には3つのみが示されている)。これらねじ挿通孔61を貫通した4本の雄ねじ部材62(例えば、タッピンねじ)を、螺合柱40の螺合孔41に螺合することで、キャップ50が超音波センサ11を押さえかつセンサ収容凹部31を封止した状態に固定される(図1参照)。   The flange portion 60 has a disk shape and has substantially the same thickness as the height difference between the sensor mounting convex portion 30 and the rib walls 24 and 24. That is, when the cap 50 is inserted and fitted into the sensor housing recess 31, the flange 60 is flush with the rib walls 24 and 24. Further, four screw insertion holes 61 are formed through at positions separated from each other by 90 degrees in the circumferential direction of the collar portion 60 (only three are shown in FIG. 7A). By screwing four male screw members 62 (for example, tapping screws) penetrating through the screw insertion holes 61 into the screw holes 41 of the screw columns 40, the cap 50 holds the ultrasonic sensor 11 and accommodates the sensor. The recess 31 is fixed in a sealed state (see FIG. 1).

センサ収容凹部31のうちセンサ収容部33の底部には、計測管20の軸J1方向に対して所定角度(具体的には約45度)傾斜したセンサ当接面35が設けられており、センサ収容部33は、全体としてセンサ当接面35に向かって(センサ当接面35と直交する方向に)陥没している。センサ当接面35は超音波センサ11の外径とほぼ同径の円形(図5参照)をなしており、各センサ当接面35,35同士は、互いに平行な平面となっている(図1参照)。換言すれば、各センサ当接面35,35に密着した超音波センサ11,11の送受波面16,16同士が互いに平行になっている。なお、センサ当接面35の傾斜角度は、1対の超音波センサ11,11が適切な距離を保つよう計測管20の材質及び流体の種類等から、スネルの法則に基づいて決定されている。   A sensor contact surface 35 inclined at a predetermined angle (specifically, about 45 degrees) with respect to the axis J1 direction of the measuring tube 20 is provided at the bottom of the sensor housing portion 33 in the sensor housing recess 31. The housing portion 33 is depressed toward the sensor contact surface 35 as a whole (in a direction perpendicular to the sensor contact surface 35). The sensor contact surface 35 has a circular shape (see FIG. 5) having substantially the same diameter as the outer diameter of the ultrasonic sensor 11, and the sensor contact surfaces 35 and 35 are parallel to each other (see FIG. 5). 1). In other words, the transmission / reception surfaces 16 and 16 of the ultrasonic sensors 11 and 11 that are in close contact with the sensor contact surfaces 35 and 35 are parallel to each other. The inclination angle of the sensor contact surface 35 is determined based on Snell's law from the material of the measuring tube 20 and the type of fluid so that the pair of ultrasonic sensors 11 and 11 maintain an appropriate distance. .

センサ収容部33のうちセンサ当接面35の縁部からは、境界段差面34に向かって傾斜円弧面36が延びている。傾斜円弧面36はセンサ当接面35に対して直角であり、計測管20の軸J1方向に対して傾いて延びている。傾斜円弧面36のうち、センサ当接面35と境界段差面34との中間部には、センサ当接面35と平行な中間段差面37Aが形成されている。その中間段差面37Aよりセンサ当接面35側は、センサ当接面35と同径の小径円弧面36Bとなっている。この小径円弧面36Bとセンサ当接面35とで形成された凹部に超音波センサ11が受容されて位置決めされている(図1参照)。   An inclined arc surface 36 extends from the edge of the sensor contact surface 35 in the sensor housing portion 33 toward the boundary step surface 34. The inclined arc surface 36 is perpendicular to the sensor contact surface 35 and extends inclined with respect to the direction of the axis J1 of the measuring tube 20. An intermediate step surface 37 </ b> A parallel to the sensor contact surface 35 is formed at an intermediate portion between the sensor contact surface 35 and the boundary step surface 34 in the inclined arc surface 36. The sensor contact surface 35 side of the intermediate step surface 37A is a small-diameter circular surface 36B having the same diameter as the sensor contact surface 35. The ultrasonic sensor 11 is received and positioned in a recess formed by the small-diameter arc surface 36B and the sensor contact surface 35 (see FIG. 1).

ここで、センサ当接面35の径方向で小径円弧面36Bとは反対側部分は、センサ当接面35の縁部から計測管20の軸J1方向に直交した直立面37Bとなっている。これにより、図5に示すようにセンサ当接面35の全面が計測管20の軸J1方向に直交した方向でセンサ収容凹部31の開口に臨んで、センサ収容凹部31の真上からセンサ当接面31に向けて超音波センサ11を挿入することが可能となっている。   Here, the portion of the sensor contact surface 35 opposite to the small-diameter circular arc surface 36B in the radial direction is an upright surface 37B orthogonal to the axis J1 direction of the measuring tube 20 from the edge of the sensor contact surface 35. As a result, as shown in FIG. 5, the entire surface of the sensor contact surface 35 faces the opening of the sensor housing recess 31 in a direction orthogonal to the axis J1 direction of the measuring tube 20, and the sensor contact surface is directly above the sensor housing recess 31. The ultrasonic sensor 11 can be inserted toward the surface 31.

一方、傾斜円弧面36のうち、中間段差面37Aより境界段差面34側は、小径円弧面36Bより大径な大径円弧面36Cとなっている。大径円弧面36Cには取廻し凹所38が陥没形成されている。取廻し凹所38の奥部には、内部電線通路39(図4参照)の一方の開口が形成されている。内部電線通路39は、計測管20を構成する壁部を貫通して、配線処理凹部26(固定用囲壁22)の内側まで延びている。そして、超音波センサ11から延びたリード線17(本発明の「接続線」に相当する)は、取廻し凹所38から内部電線通路39に通され、配線処理凹部26の内側にて流量演算処理器18に接続されている(図3参照)。   On the other hand, in the inclined arc surface 36, the boundary step surface 34 side of the intermediate step surface 37A is a large-diameter arc surface 36C having a larger diameter than the small-diameter arc surface 36B. In the large-diameter circular arc surface 36 </ b> C, a concave recess 38 is formed. One opening of the internal electric wire passage 39 (see FIG. 4) is formed in the inner part of the routing recess 38. The internal electric wire passage 39 extends through the wall portion constituting the measuring tube 20 to the inside of the wiring processing concave portion 26 (fixing surrounding wall 22). The lead wire 17 (corresponding to the “connection wire” of the present invention) extending from the ultrasonic sensor 11 is passed from the routing recess 38 to the internal electric wire passage 39, and the flow rate is calculated inside the wiring processing recess 26. It is connected to the processor 18 (see FIG. 3).

上述したセンサ収容部33のうち、超音波センサ11の後面側の領域には、キャップ50の栓本体51に形成された先端膨出部55が受容されている。先端膨出部55には超音波センサ11の後面に対向したセンサ押さえ面56が形成されている。   The tip bulging portion 55 formed on the plug body 51 of the cap 50 is received in the rear surface side region of the ultrasonic sensor 11 in the sensor housing portion 33 described above. A sensor pressing surface 56 facing the rear surface of the ultrasonic sensor 11 is formed on the tip bulging portion 55.

センサ押さえ面56は、センサ当接面35と平行な面となっている。即ち、計測管20の軸J1方向に対して所定角度(具体的には約45度)傾斜した平面となっている。また、センサ押さえ面56は超音波センサ11の後面とほぼ同径の円形をなしている。このセンサ押さえ面56と超音波センサ11との間でウェーブワッシャ59が圧縮されている(図1及び図2参照)。   The sensor pressing surface 56 is a surface parallel to the sensor contact surface 35. That is, it is a plane inclined by a predetermined angle (specifically, about 45 degrees) with respect to the direction of the axis J1 of the measuring tube 20. The sensor pressing surface 56 has a circular shape with the same diameter as the rear surface of the ultrasonic sensor 11. A wave washer 59 is compressed between the sensor pressing surface 56 and the ultrasonic sensor 11 (see FIGS. 1 and 2).

センサ押さえ面56には、その中心部から径方向外側に向かって逃がし溝57が陥没形成されている(図7参照)。逃がし溝57は、超音波センサ11の後面との間に隙間を形成すると共に、超音波センサ11の後面と取廻し凹所38との間を連絡して、超音波センサ11から延びたリード線17を取廻し凹所38に導出可能としている。   An escape groove 57 is formed in the sensor pressing surface 56 so as to be recessed radially outward from the center (see FIG. 7). The escape groove 57 forms a gap with the rear surface of the ultrasonic sensor 11, communicates between the rear surface of the ultrasonic sensor 11 and the routing recess 38, and extends from the ultrasonic sensor 11. 17 can be led out to the recess 38.

図2に示すように、センサ収容凹部31のうちキャップ嵌合部32は、その中心軸J2が計測管20の軸J1方向と直交した方向に向けられている。詳細には、キャップ嵌合部23は、直径に対して深さ寸法が小さい扁平円筒状の嵌合内面32Aを有しており、その嵌合内面32Aが計測管20の軸J1方向に直交した方向に起立している。   As shown in FIG. 2, the cap fitting portion 32 of the sensor housing recess 31 has its central axis J2 oriented in a direction perpendicular to the direction of the axis J1 of the measuring tube 20. Specifically, the cap fitting portion 23 has a flat cylindrical fitting inner surface 32A whose depth dimension is small with respect to the diameter, and the fitting inner surface 32A is orthogonal to the axis J1 direction of the measuring tube 20. Standing up in the direction.

キャップ嵌合部32の嵌合内面32Aには、キャップ50の栓本体51に備えた基端嵌合部52が嵌合している。基端嵌合部52は、キャップ嵌合部32の内部空間に対応して扁平円柱状をなしている。基端嵌合部52の外周面は全周に亘ってキャップ嵌合部32の嵌合内面32Aに当接した状態で嵌合している。また、基端嵌合部52の外周面にはOリング溝53が形成され、Oリング54がキャップ嵌合部32の嵌合内面32Aとの間で押し潰されて密着している。これにより、センサ収容凹部31の開口が気密状態に封止されている。   A proximal end fitting portion 52 provided in the cap body 51 of the cap 50 is fitted to the fitting inner surface 32 </ b> A of the cap fitting portion 32. The base end fitting portion 52 has a flat cylindrical shape corresponding to the internal space of the cap fitting portion 32. The outer peripheral surface of the base end fitting portion 52 is fitted in a state in which it is in contact with the fitting inner surface 32A of the cap fitting portion 32 over the entire circumference. Further, an O-ring groove 53 is formed on the outer peripheral surface of the base end fitting portion 52, and the O-ring 54 is crushed and in close contact with the fitting inner surface 32 </ b> A of the cap fitting portion 32. Thereby, the opening of the sensor accommodating recess 31 is sealed in an airtight state.

なお、基端嵌合部52の先端面52Aのうちセンサ押さえ面56との交差部分52Bは、センサ押さえ面56の傾斜方向に向かって円弧状に陥没しており(図7(C)参照)、ここに超音波センサ11のうちキャップ嵌合部32に突出した部分が受容されている(図1参照)。   In addition, the intersection 52B of the distal end surface 52A of the proximal end fitting portion 52 with the sensor pressing surface 56 is depressed in an arc shape toward the inclination direction of the sensor pressing surface 56 (see FIG. 7C). The part which protruded to the cap fitting part 32 among the ultrasonic sensors 11 is received here (refer FIG. 1).

本実施形態の超音波流量計10の構成は以上であり、次に超音波流量計10の製造方法について説明する。まず、超音波センサ11の特性値(インピーダンス、静電容量など)に基づいて、最適な超音波センサ11,11をペアリングする。   The configuration of the ultrasonic flowmeter 10 of the present embodiment is as described above. Next, a method for manufacturing the ultrasonic flowmeter 10 will be described. First, the optimum ultrasonic sensors 11 and 11 are paired based on the characteristic values (impedance, capacitance, etc.) of the ultrasonic sensor 11.

次いで、ペアリングした超音波センサ11,11を、各センサ取付凸部30,30のセンサ収容凹部31,31に対して、計測管20の軸J1方向と直交する方向から挿入する。その際、超音波センサ11のリード線17を予めウェーブワッシャ59の内側に通しておくと共に、そのリード線17を取廻し凹所38から内部電線通路39内に挿通させ、配線処理凹部26の内側に導出しておく。その状態で、超音波センサ11をセンサ収容凹部31の底部に備えた小径円弧面36Bとセンサ当接面35とによって位置決めする。   Next, the paired ultrasonic sensors 11 and 11 are inserted into the sensor housing concave portions 31 and 31 of the sensor mounting convex portions 30 and 30 from the direction orthogonal to the axis J1 direction of the measuring tube 20. At that time, the lead wire 17 of the ultrasonic sensor 11 is passed through the wave washer 59 in advance, and the lead wire 17 is routed and inserted into the internal wire passage 39 from the recess 38, and the inside of the wiring processing recess 26. Derived in In this state, the ultrasonic sensor 11 is positioned by the small-diameter arc surface 36 </ b> B provided at the bottom of the sensor housing recess 31 and the sensor contact surface 35.

次いで、超音波センサ11の後面にウェーブワッシャ59を載せた状態で、キャップ50を計測管20の軸J1方向と直交する方向からセンサ収容凹部31に挿入する。すると、キャップ50のセンサ押さえ面56がウェーブワッシャ59を挟んで超音波センサ11の後面に対面する。   Next, with the wave washer 59 placed on the rear surface of the ultrasonic sensor 11, the cap 50 is inserted into the sensor housing recess 31 from a direction orthogonal to the axis J <b> 1 direction of the measuring tube 20. Then, the sensor pressing surface 56 of the cap 50 faces the rear surface of the ultrasonic sensor 11 with the wave washer 59 interposed therebetween.

次に、キャップ50をセンサ収容凹部31に押し込んでねじ止めする。即ち、鍔部60の各ねじ挿通孔61に雄ねじ部材62を貫通させて、螺合柱40の螺合孔41に螺合する。するとウェーブワッシャ59がキャップ50(詳細には、センサ押さえ面56)と超音波センサ11の後面との間で圧縮され、その弾発力により超音波センサ11の送受波面16がセンサ当接面35に対して押し付けられて密着した状態で固定される。   Next, the cap 50 is pushed into the sensor housing recess 31 and screwed. That is, the male screw member 62 is passed through each screw insertion hole 61 of the flange portion 60 and screwed into the screwing hole 41 of the screwing column 40. Then, the wave washer 59 is compressed between the cap 50 (specifically, the sensor pressing surface 56) and the rear surface of the ultrasonic sensor 11, and the wave receiving / transmitting surface 16 of the ultrasonic sensor 11 is sensor-contacted surface 35 due to its elastic force. It is fixed in a state of being pressed against and in close contact with.

以上のようにして1対の超音波センサ11,11及びキャップ50,50を取り付けたら、各センサ収容凹部31,31内から配線処理凹部26内に導出させたリード線17,17を流量演算表示器18に備えた図示しない電気回路に接続して、その流量演算表示器18を固定用囲壁22に固定する。これにより配線処理凹部26が閉塞され、超音波流量計10が完成する。   When the pair of ultrasonic sensors 11 and 11 and the caps 50 and 50 are attached as described above, the lead wires 17 and 17 led out from the respective sensor housing recesses 31 and 31 into the wiring processing recess 26 are displayed as a flow rate calculation. The flow rate calculation indicator 18 is fixed to the fixing wall 22 by connecting to an electric circuit (not shown) provided in the vessel 18. Thereby, the wiring process recessed part 26 is obstruct | occluded and the ultrasonic flowmeter 10 is completed.

このように、本実施形態によれば、センサ収容凹部31のうち、キャップ50との嵌合部分であるキャップ嵌合部32の中心軸J2を、計測管20の軸J1方向と直交した方向に向けたから、栓嵌合部が計測管の軸方向に対して傾斜した従来のものに比較して計測管20の全長を短くすることが可能となる。   Thus, according to the present embodiment, the center axis J2 of the cap fitting portion 32 that is a fitting portion with the cap 50 in the sensor receiving recess 31 is set in a direction perpendicular to the direction of the axis J1 of the measuring tube 20. Therefore, the total length of the measuring tube 20 can be shortened compared to the conventional one in which the plug fitting portion is inclined with respect to the axial direction of the measuring tube.

また、キャップ50のうち栓本体51(詳細には基端嵌合部52)は、キャップ嵌合部32の嵌合内面32Aに当接した状態で嵌合しているから、ウェーブワッシャ59からキャップ50に付与される弾発力のうち栓本体51の軸方向と直交した力の成分を、キャップ嵌合部32の嵌合内面32Aとキャップ50との当接によって受けることができる。よって、鍔部60とセンサ収容凹部31の開口縁とのねじ止め部分である鍔部60や雄ねじ部材62に必要な強度を抑えることができる。   Further, the cap main body 51 (specifically, the proximal end fitting portion 52) of the cap 50 is fitted in a state of being in contact with the fitting inner surface 32A of the cap fitting portion 32. The component of the force perpendicular to the axial direction of the plug main body 51 among the elastic force applied to the cap 50 can be received by the contact between the fitting inner surface 32 </ b> A of the cap fitting portion 32 and the cap 50. Therefore, the strength required for the flange 60 and the male screw member 62 that are screwed portions between the flange 60 and the opening edge of the sensor housing recess 31 can be suppressed.

さらに、超音波センサ11,11と流量演算表示器18とを接続したリード線17は、計測管20のうち、センサ収容凹部31と配線処理凹部26との間の壁部を貫通してセンサ収容凹部31の内側と配線処理凹部26の内側とを連通した内部電線通路39に通されているから、リード線17の断線を防止することができる。   Further, the lead wire 17 connecting the ultrasonic sensors 11, 11 and the flow rate calculation display 18 penetrates the wall portion of the measuring tube 20 between the sensor housing recess 31 and the wiring processing recess 26 to store the sensor. Since the inner wire passage 39 that connects the inside of the recess 31 and the inside of the wiring processing recess 26 is passed, the disconnection of the lead wire 17 can be prevented.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)1対の超音波センサ11,11は、上記実施形態のように、流体通過領域R1を挟んで配置しなくてもよく、例えば、図8に示すように、計測管20の上流側と下流側とに計測管20の軸J1方向と平行に並べて配置して、超音波を計測管20の内側面で1回または複数回反射させて送受波するように構成してもよい。   (1) The pair of ultrasonic sensors 11 and 11 may not be arranged with the fluid passage region R1 interposed therebetween as in the above-described embodiment. For example, as shown in FIG. Further, it may be arranged in parallel with the axis J1 direction of the measurement tube 20 on the downstream side so that the ultrasonic wave is reflected by the inner surface of the measurement tube 20 one or more times and transmitted and received.

(2)また、複数対の超音波センサ11,11を備えて、複数の測線(超音波の伝播経路)で超音波を送受波してもよい。例えば、同一平面内に2つの測線が交差するように配置したり、直角に交わる2平面内にそれぞれ測線を配置したり、複数の測線を互いに平行な平面内に配置してもよい。   (2) A plurality of pairs of ultrasonic sensors 11 and 11 may be provided to transmit and receive ultrasonic waves through a plurality of survey lines (ultrasonic propagation paths). For example, two survey lines may be arranged in the same plane so as to intersect, two survey lines may be arranged in two planes intersecting at right angles, or a plurality of survey lines may be arranged in parallel planes.

(3)超音波センサ11を、例えば、図9に示すように金属ケース12の内部に超音波振動子13を収容した状態でその超音波振動子13の周囲に充填剤14を充填した構造として、金属ケース12の底面を送受波面16とした場合には、以下の現象が起こり得る。即ち、送受波面16を構成する金属ケース12と、センサ当接面35を構成する樹脂との音響インピーダンスの相違により、送信側の超音波センサ11から発射された超音波の一部が、送受波面16とセンサ当接面35との境界面で反射し、この反射波が1対の超音波センサ11,11間を往復するように繰り返し反射する。そして、送受波面16の全面にセンサ当接面35を面当接させた場合には、1対の超音波センサ11,11間を往復する反射波が比較的減衰し難い。   (3) The ultrasonic sensor 11 has, for example, a structure in which a filler 14 is filled around the ultrasonic vibrator 13 in a state where the ultrasonic vibrator 13 is housed in a metal case 12 as shown in FIG. When the bottom surface of the metal case 12 is the wave transmitting / receiving surface 16, the following phenomenon may occur. That is, due to the difference in acoustic impedance between the metal case 12 constituting the wave transmitting / receiving surface 16 and the resin constituting the sensor contact surface 35, a part of the ultrasonic waves emitted from the ultrasonic sensor 11 on the transmission side is 16 and the sensor contact surface 35, and the reflected wave is repeatedly reflected so as to reciprocate between the pair of ultrasonic sensors 11 and 11. When the sensor contact surface 35 is in surface contact with the entire surface of the transmission / reception surface 16, the reflected wave reciprocating between the pair of ultrasonic sensors 11 and 11 is relatively difficult to attenuate.

これに対し、センサ当接面35に凹部と凸部35Aを設け、凸部35Aのみを送受波面16に部分的に密着させるようにすれば、超音波を反射する境界面が小さくなるので、超音波は境界面で反射する度に徐々に減衰する。具体的には、例えば、送信側の超音波センサ11から発射された超音波を受信側の超音波センサ11で直接受信したときの波高値と、その受信側の境界面で反射され、さらに送信側の境界面で反射されて再び受信側の超音波センサ11に戻ってきた反射波を受信したときの波高値との比を大きくすることができる。即ち、受信波のS/N比を高めることができ、計測誤差を低減することが可能となる。   On the other hand, if the sensor contact surface 35 is provided with a concave portion and a convex portion 35A and only the convex portion 35A is partially brought into close contact with the wave transmitting / receiving surface 16, the boundary surface for reflecting the ultrasonic wave becomes small. Sound waves are gradually attenuated each time they are reflected at the interface. Specifically, for example, the ultrasonic wave emitted from the ultrasonic sensor 11 on the transmission side is directly reflected by the ultrasonic sensor 11 on the reception side and reflected on the boundary surface on the reception side, and further transmitted. It is possible to increase the ratio with the peak value when the reflected wave that has been reflected at the boundary surface on the side and returned to the ultrasonic sensor 11 on the receiving side is received again. That is, the S / N ratio of the received wave can be increased, and the measurement error can be reduced.

ここで、上記効果を奏することが可能な凸部35Aの形状としては、送受波面16の中央部のみに密着する円形(図10(A)参照)や円環状(図10(D)参照)、さらに、送受波面16の径方向に延びた線状(図10(C)参照)或いは十字状(図10(C)参照)が挙げられる。   Here, as the shape of the convex portion 35A capable of producing the above-described effect, a circular shape (see FIG. 10 (A)) or an annular shape (see FIG. 10 (D)) that is in close contact with only the central portion of the transmission / reception surface 16; Further, a linear shape (see FIG. 10C) or a cross shape (see FIG. 10C) extending in the radial direction of the transmission / reception surface 16 may be mentioned.

(4)上記実施形態では、超音波センサ11,11の送受波面16,16を互いに平行な平面としていたが、図11に示すように、計測管20の軸J1方向に対して同一角度θ1で傾斜する一方、計測管20の軸J1方向から見た状態で互いに非平行になるようにし、一方の超音波センサ11の送受波面16で反射した超音波の伝播経路を他方の超音波センサ11からずらしてもよい。具体的には、両送受波面16,16がなす角度θ2を2〜10度にすればよい。本実施例によれば、反射波に起因する測定誤差を防止することができる。   (4) In the above embodiment, the transmission / reception surfaces 16 and 16 of the ultrasonic sensors 11 and 11 are planes parallel to each other. However, as shown in FIG. 11, at the same angle θ1 with respect to the axis J1 direction of the measurement tube 20. While being inclined, they are made to be non-parallel to each other when viewed from the axis J1 direction of the measuring tube 20, and the propagation path of the ultrasonic waves reflected by the wave transmitting / receiving surface 16 of one ultrasonic sensor 11 is from the other ultrasonic sensor 11. It may be shifted. Specifically, the angle θ2 formed by both the wave transmitting / receiving surfaces 16 and 16 may be set to 2 to 10 degrees. According to this embodiment, it is possible to prevent measurement errors caused by reflected waves.

(5)また、図示しないが、1対の超音波センサ11,11の送受波面16,16は、計測管20を軸J1方向と直交した方向から見た状態で非平行になるように配置して、一方の超音波センサ11の送受波面16で反射した超音波の伝播経路を他方の超音波センサ11からずらした構成としても、反射波に起因する測定誤差を防止することができる。
(5) Although not shown, the transmission / reception surfaces 16 and 16 of the pair of ultrasonic sensors 11 and 11 are arranged so as to be non-parallel when the measurement tube 20 is viewed from a direction orthogonal to the axis J1 direction. Thus, even if the propagation path of the ultrasonic wave reflected by the transmitting / receiving surface 16 of one ultrasonic sensor 11 is shifted from the other ultrasonic sensor 11, measurement errors due to the reflected wave can be prevented.

(5)一般に、計測する流体が気体である場合には、計測管20の壁部と流体通過領域R1との境界面における超音波の屈折角(計測管20の軸J1に直交する直線に対する角度)が、スネルの法則により非常に小さくなる。例えば、硬質塩化ビニル製(音速2270m/s)の計測管20から空気(音速340m/s)へ入射角45度で入射した場合の屈折角は、約6度となる。従って、1対の超音波センサ11,11を、互いに受信強度が最も強くなる位置に配置した場合には、計測管20の軸J1方向において超音波センサ11,11同士が接近し過ぎてしまうため、気体の流量計測を精度よく行うことは困難であった。   (5) Generally, when the fluid to be measured is a gas, the refraction angle of the ultrasonic wave at the boundary surface between the wall portion of the measurement tube 20 and the fluid passage region R1 (the angle with respect to a straight line orthogonal to the axis J1 of the measurement tube 20). ) Is very small due to Snell's law. For example, the refraction angle when entering from the measurement tube 20 made of hard vinyl chloride (sound speed 2270 m / s) into the air (sound speed 340 m / s) at an incident angle of 45 degrees is about 6 degrees. Therefore, when the pair of ultrasonic sensors 11 and 11 are arranged at positions where the reception intensity is the strongest, the ultrasonic sensors 11 and 11 are too close to each other in the axis J1 direction of the measurement tube 20. It was difficult to accurately measure the gas flow rate.

よって気体の流量計測を行う場合には、以下のように超音波センサ11,11を配置すればよい。即ち、図12に示すように、受波側の超音波センサ11は、送波側の超音波センサ11側から一定の指向角で放射状に伝播した超音波の受信可能領域Z1のうち、その超音波の受信強度が最も高くなる領域中心部Z2に対して送波側の超音波センサ11から離れる側に配置すればよい。このようにすれば、受信強度は弱くなるものの、計測管20の軸J1方向において1対の超音波センサ11,11間の距離を長くすることができるから、気体の流量計測を精度よく行うことが可能となる。   Therefore, when measuring the gas flow rate, the ultrasonic sensors 11, 11 may be arranged as follows. That is, as shown in FIG. 12, the ultrasonic sensor 11 on the receiving side has an ultrasonic wave reception area Z1 that propagates radially from the ultrasonic sensor 11 side on the transmitting side at a certain directivity angle. What is necessary is just to arrange | position on the side away from the ultrasonic sensor 11 by the side of a transmission with respect to the area | region center part Z2 where the receiving intensity of a sound wave becomes the highest. In this way, although the reception intensity is weakened, the distance between the pair of ultrasonic sensors 11, 11 can be increased in the direction of the axis J1 of the measurement tube 20, so that the gas flow rate can be accurately measured. Is possible.

(6)上記実施形態では、計測管20を構成する壁部が比較的薄いので、計測管20の外面から突出したセンサ取付凸部30,30の芯部にセンサ収容凹部31,31を陥没形成していたが、計測管20を構成する壁部が十分に厚い場合には、センサ取付凸部30,30を設けなくともよい。   (6) In the above embodiment, since the wall portion constituting the measuring tube 20 is relatively thin, the sensor housing recessed portions 31 are formed in the core portions of the sensor mounting protruding portions 30 that protrude from the outer surface of the measuring tube 20. However, when the wall part which comprises the measurement pipe | tube 20 is thick enough, it is not necessary to provide the sensor attachment convex parts 30 and 30. FIG.

(7)ウェーブワッシャ59の代わりに皿バネやゴムリングを用いてもよい。   (7) Instead of the wave washer 59, a disc spring or a rubber ring may be used.

(8)キャップ50の全体を弾性部材で構成し、センサ収容凹部31の内側に弾性変形した状態で嵌合することにより、センサ収容凹部31の嵌合内面32Aに密着するようにしてもよい。   (8) The entire cap 50 may be formed of an elastic member, and may be in close contact with the fitting inner surface 32 </ b> A of the sensor housing recess 31 by being fitted inside the sensor housing recess 31 while being elastically deformed.

本発明の一実施形態に係る超音波流量計の断面図Sectional drawing of the ultrasonic flowmeter which concerns on one Embodiment of this invention. センサ収容凹部の断面図Sectional view of sensor housing recess 計測管の正面図Front view of measuring tube 図5におけるX−X断面図XX sectional view in FIG. 計測管の側面図Side view of measuring tube 計測管の側面図Side view of measuring tube キャップの(A)斜視図、(B)側面図、(C)断面図(A) perspective view, (B) side view, (C) cross-sectional view of the cap 変形例に係る超音波センサの配置を示す概念図Conceptual diagram showing the arrangement of ultrasonic sensors according to a modified example 変形例に係る超音波センサの断面図Sectional drawing of the ultrasonic sensor which concerns on a modification 変形例に係るセンサ当接面と送受波面との当接状態を示す概念図The conceptual diagram which shows the contact state of the sensor contact surface and transmission / reception surface which concern on a modification 変形例に係る超音波センサの配置を示す概念図Conceptual diagram showing the arrangement of ultrasonic sensors according to a modified example 変形例に係る超音波流量計の断面図Sectional drawing of the ultrasonic flowmeter which concerns on a modification 従来の超音波流量計に備えた計測管の断面図Cross-sectional view of a measuring tube equipped with a conventional ultrasonic flowmeter

符号の説明Explanation of symbols

10 超音波流量計
11,11 超音波センサ
12 金属ケース
13 超音波振動子
16 送受波面
17 リード線(接続線)
18 表示器
20 計測管
22 固定用囲壁
26 配線処理凹部
30,30 センサ取付凸部
31,31 センサ収容凹部
32 キャップ嵌合部
32A 嵌合内面
35,35 センサ当接面
39 配線挿通路
50,50 キャップ(栓部材)
51 キャップ栓部(栓本体)
56 センサ押さえ面
59 ウェーブワッシャ(弾性部材)
60 キャップ鍔部(鍔部)
62 雄ねじ部材
J1 計測管の軸
DESCRIPTION OF SYMBOLS 10 Ultrasonic flowmeter 11, 11 Ultrasonic sensor 12 Metal case 13 Ultrasonic vibrator 16 Transmission / reception surface 17 Lead wire (connection line)
18 Display 20 Measuring tube 22 Fixing wall 26 Wiring processing recess 30, 30 Sensor mounting convex 31, 31 Sensor housing recess 32 Cap fitting 32A Fitting inner surface 35, 35 Sensor contact surface 39 Wiring insertion path 50, 50 Cap (plug member)
51 Cap plug (plug body)
56 Sensor holding surface 59 Wave washer (elastic member)
60 Cap collar (buttock)
62 Male thread member J1 Measuring tube axis

Claims (6)

流体が流れる計測管の上流側と下流側とに取り付けられた1対の超音波センサ間で、前記計測管の軸方向と斜めに交差する方向で超音波を送受波して前記流体の流量を計測する超音波流量計であって、
前記計測管の外側面に陥没形成されて前記1対の超音波センサを収容した1対のセンサ収容凹部と、前記各センサ収容凹部の底部に設けられて前記計測管の軸方向に対して傾斜し、前記各超音波センサの送受波面が密着したセンサ当接面と、前記各センサ収容凹部のうち栓嵌合部に嵌合固定されて前記センサ収容凹部を封止した栓部材とを備えたものにおいて、
前記栓部材を、前記計測管の軸方向と直交した方向から前記栓嵌合部に嵌合可能とし、
前記栓部材には、前記栓嵌合部の内側面に当接した状態で嵌合した栓本体と、前記栓本体の先端に形成されて前記センサ当接面と略平行なセンサ押さえ面と、前記栓本体の後端から側方に張り出して前記センサ収容凹部の開口縁にねじ止めされた鍔部とが備えられ、
前記センサ押さえ面と前記超音波センサとの間には、圧縮されてその弾発力により前記超音波センサを前記センサ当接面に押し付ける弾性部材が設けられ、
前記弾性部材から前記栓部材に付与される弾発力のうち前記栓部材の嵌合方向と直交した力の成分を、前記栓嵌合部の内側面と前記栓部材との当接によって受けたことを特徴とする超音波流量計。
Between a pair of ultrasonic sensors attached to the upstream side and the downstream side of the measurement pipe through which the fluid flows, ultrasonic waves are transmitted and received in a direction obliquely intersecting the axial direction of the measurement pipe to thereby control the flow rate of the fluid. An ultrasonic flow meter for measuring,
A pair of sensor receiving recesses that are recessed in the outer surface of the measuring tube to store the pair of ultrasonic sensors, and provided at the bottom of each sensor receiving recess and inclined with respect to the axial direction of the measuring tube And a sensor abutting surface to which the transmitting and receiving surfaces of the ultrasonic sensors are in close contact, and a plug member that is fitted and fixed to the plug fitting portion of the sensor receiving recesses to seal the sensor receiving recess. In things,
The plug member can be fitted into the plug fitting portion from a direction orthogonal to the axial direction of the measuring tube,
In the plug member, a plug main body fitted in a state of being in contact with the inner side surface of the plug fitting portion, a sensor pressing surface formed at the tip of the plug main body and substantially parallel to the sensor contact surface, A flange that protrudes laterally from the rear end of the plug body and is screwed to the opening edge of the sensor receiving recess;
Between the sensor pressing surface and the ultrasonic sensor, there is provided an elastic member that is compressed and presses the ultrasonic sensor against the sensor contact surface by its elastic force,
A component of the force perpendicular to the fitting direction of the plug member among the elastic force applied from the elastic member to the plug member is received by the contact between the inner surface of the plug fitting portion and the plug member. An ultrasonic flowmeter characterized by that.
前記超音波センサの出力信号に基づいて前記流量を演算して表示する流量演算表示器と、A flow rate calculation display for calculating and displaying the flow rate based on an output signal of the ultrasonic sensor;
前記計測管の外側面から突出して先端部に前記流量演算表示器を固定するための固定用囲壁と、A fixing wall for protruding from the outer surface of the measuring tube and fixing the flow rate calculation indicator at the tip,
前記固定用囲壁の内側に形成されて前記流量演表示器によって閉塞される配線処理凹部と、A wiring processing recess formed inside the fixed wall and closed by the flow rate display;
前記計測管のうち前記配線処理凹部と前記センサ収容凹部との間の壁部を貫通し、前記超音波センサと前記流量演算表示器との間の接続線が通された内部電線通路を備えたことを特徴とする請求項1に記載の超音波流量計。An internal electric wire passage that passes through a wall portion between the wiring processing recess and the sensor housing recess in the measurement tube and through which a connection line between the ultrasonic sensor and the flow rate calculation indicator is passed. The ultrasonic flowmeter according to claim 1.
前記センサ当接面に凹部と凸部とを設け、前記凸部のみを前記超音波センサの送受波面に部分的に密着させたことを特徴とする請求項1又は2に記載の超音波流量計。The ultrasonic flowmeter according to claim 1, wherein a concave portion and a convex portion are provided on the sensor contact surface, and only the convex portion is partially brought into close contact with a wave transmitting / receiving surface of the ultrasonic sensor. . 前記1対の超音波センサの送受波面は、前記計測管を軸方向から見た状態で非平行になるように配置され、一方の前記超音波センサの前記送受波面で反射した超音波の伝播経路を他方の前記超音波センサからずらしたことを特徴とする請求項1乃至3の何れかに記載の超音波流量計。The transmission / reception surfaces of the pair of ultrasonic sensors are arranged so as to be non-parallel when the measurement tube is viewed from the axial direction, and the propagation path of the ultrasonic waves reflected by the transmission / reception surfaces of one of the ultrasonic sensors The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is shifted from the other ultrasonic sensor. 前記流体は、気体であり、The fluid is a gas;
一方の前記超音波センサは、他方の前記超音波センサ側から一定の指向角で放射状に伝播した超音波の受信可能領域のうちその超音波の受信強度が最も高くなる領域中心部に対して前記他方の超音波センサから離れる側に配置されたことを特徴とする請求項1乃至4の何れかに記載の超音波流量計。One of the ultrasonic sensors is located in the center of the region where the ultrasonic wave reception intensity is highest among the ultrasonic wave receivable regions propagated radially from the other ultrasonic sensor side at a certain directivity angle. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is disposed on a side away from the other ultrasonic sensor.
前記計測管の外面から突出した1対のセンサ取付凸部を備え、それらセンサ取付凸部の芯部を陥没させて前記センサ収容凹部を形成したことを特徴とする請求項1乃至5の何れかに記載の超音波流量計。6. A sensor mounting convex portion that protrudes from an outer surface of the measuring tube is provided, and the sensor receiving concave portion is formed by recessing a core portion of the sensor mounting convex portion. The ultrasonic flowmeter described in 1.
JP2007106483A 2007-04-13 2007-04-13 Ultrasonic flow meter Active JP5131815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106483A JP5131815B2 (en) 2007-04-13 2007-04-13 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106483A JP5131815B2 (en) 2007-04-13 2007-04-13 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2008261817A JP2008261817A (en) 2008-10-30
JP5131815B2 true JP5131815B2 (en) 2013-01-30

Family

ID=39984390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106483A Active JP5131815B2 (en) 2007-04-13 2007-04-13 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5131815B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021782A (en) * 2010-07-12 2012-02-02 Panasonic Corp Ultrasonic flow rate measuring unit
CN105547387A (en) * 2016-01-20 2016-05-04 重庆市伟岸测器制造股份有限公司 Straight-through flow sensor
DE102022210971A1 (en) 2022-10-18 2024-04-18 Mib Gmbh Messtechnik Und Industrieberatung Ultrasonic measuring arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2101318A (en) * 1981-05-29 1983-01-12 Itt Ultrasonic flowmeter
JPH0769202B2 (en) * 1987-03-10 1995-07-26 テルモ株式会社 Ultrasonic fluid meter
DE4437588A1 (en) * 1994-10-20 1996-04-25 Siemens Ag Ultrasonic flow meter
JP3535612B2 (en) * 1995-06-27 2004-06-07 愛知時計電機株式会社 Ultrasound transceiver
JP2001133305A (en) * 1999-11-08 2001-05-18 Yazaki Corp Mounting structure of transceiver for ultrasonic flow/ current meter
JP2004157101A (en) * 2002-09-11 2004-06-03 Fuji Electric Retail Systems Co Ltd Ultrasonic flowmeter
DE102005041288A1 (en) * 2005-08-31 2007-03-01 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Flow meter for measuring flow rate of a fluid flowing through a conduit using ultrasound

Also Published As

Publication number Publication date
JP2008261817A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
CN104457870B (en) Ultrasonic flowmeter
CN100501342C (en) Flow rate measuring apparatus
JP4849557B2 (en) Ultrasonic flow meter
JP4737669B2 (en) Ultrasonic flow meter
WO2011064905A1 (en) Ultrasonic fluid-measuring structure and ultrasonic fluid-measuring apparatus
KR20080080556A (en) Ultrasound measuring section made from plastic and corresponding measuring method
JP4707088B2 (en) Ultrasonic flow meter
RU2013120101A (en) INDUSTRIAL TRANSMITTING MEASURING TRANSMITTER OF TECHNOLOGICAL PROCESSES PARAMETERS EQUIPPED WITH A CONNECTION WITH A SEPARATING DIAPHRAGM FOR MEASURING HIGH STATIC PRESSURE
JP6095096B2 (en) Ultrasonic flow meter
WO2020044887A1 (en) Ultrasonic flowmeter
JP5131815B2 (en) Ultrasonic flow meter
JP5728639B2 (en) Ultrasonic flow meter
US10627271B2 (en) Hydraulic system for ultrasonic flow measurement using reflective acoustic path approach
WO2011064906A1 (en) Channel member and ultrasonic fluid-measuring apparatus
JP5527756B2 (en) Ultrasonic flow meter
US20180149503A1 (en) Hydraulic system for ultrasonic flow measurement using direct acoustic path approach
WO2023119380A1 (en) Straight type flowmeter sensor
CN101858761B (en) A vortex flowmeter
JP6321231B2 (en) Ultrasonic flow meter
JP2008111690A (en) Ultrasound flowmeter
US20180299306A1 (en) Apparatus for ultrasonically measuring the flow rate of a fluid in a measuring channel, achieving an attenuation of the parasitic signals
JP5240763B2 (en) Ultrasonic flow meter
JP4873535B2 (en) Ultrasonic flow meter and manufacturing method thereof
KR101059928B1 (en) Flow measuring tube of flow measuring device
JP4943825B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250