JP4936856B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP4936856B2
JP4936856B2 JP2006294375A JP2006294375A JP4936856B2 JP 4936856 B2 JP4936856 B2 JP 4936856B2 JP 2006294375 A JP2006294375 A JP 2006294375A JP 2006294375 A JP2006294375 A JP 2006294375A JP 4936856 B2 JP4936856 B2 JP 4936856B2
Authority
JP
Japan
Prior art keywords
flow
flow path
cross
curved
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006294375A
Other languages
Japanese (ja)
Other versions
JP2008111714A (en
Inventor
誠一 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2006294375A priority Critical patent/JP4936856B2/en
Publication of JP2008111714A publication Critical patent/JP2008111714A/en
Application granted granted Critical
Publication of JP4936856B2 publication Critical patent/JP4936856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、LPガス、都市ガス、水などの流体の流量を計測する流量計に関する。   The present invention relates to a flow meter that measures the flow rate of a fluid such as LP gas, city gas, and water.

従来、LPガス、都市ガス、水などの流体の流量を計測する流量計測装置として、超音波を利用して流速を測定する超音波流量計が知られている。このような超音波流量計では、例えば、流体を通過させるための計測流路の壁部(取付壁面)に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する一対の送受信振動子(超音波センサ)が取り付けられている。そして、計測流路の入口側に、流速分布を非対称化して流速の最大値の発生位置を計測流路の中心から一方に偏らせるために、屈曲部、段差部、異形状部等からなる非対称流れ促進手段を設けることが開示されている(特許文献1参照)。   2. Description of the Related Art Conventionally, an ultrasonic flowmeter that measures flow velocity using ultrasonic waves is known as a flow measurement device that measures the flow rate of a fluid such as LP gas, city gas, and water. In such an ultrasonic flowmeter, for example, an ultrasonic wave is oscillated toward the upper side or the lower side of the fluid flow direction on the wall portion (mounting wall surface) of the measurement channel for allowing the fluid to pass, and then the flow direction. A pair of transmission / reception transducers (ultrasonic sensors) that receive ultrasonic waves coming from the upper side or the lower side are attached. In order to asymmetric the flow velocity distribution on the inlet side of the measurement flow path and bias the position where the maximum value of the flow velocity is generated to one side from the center of the measurement flow path, an asymmetry consisting of a bent portion, a stepped portion, an irregularly shaped portion, etc. It is disclosed that a flow promoting means is provided (see Patent Document 1).

特許第3436247号公報Japanese Patent No. 3436247

特許文献1によれば、非対称流れ促進手段を設けることによって、層流域と乱流域との補正係数の差を少なくし、流体の種別により粘性係数が変化しても補正係数の変化を小さくすることが可能となる。しかし、超音波流量計を始め多くの流量計では、配置スペース等の関係から、送受信振動子(計測部)は通常、計測用の測線が計測流路(計測用直線流路)の上下方向高さの中央に位置するように配置されている。したがって、特許文献1のように非対称流れ促進手段を設けることによって、高さ方向の流速分布が非対称(不均等)になりやすい。そこで、計測部の前方側(流れ方向上手側)に、整流素子のように流速分布を対称化(均等化)するための整流手段を配置する必要がある。   According to Patent Document 1, by providing an asymmetric flow promoting means, the difference in the correction coefficient between the laminar flow area and the turbulent flow area is reduced, and even if the viscosity coefficient changes depending on the type of fluid, the change in the correction coefficient is reduced. Is possible. However, in many flowmeters including ultrasonic flowmeters, the transmitter / receiver transducer (measurement unit) usually has a measurement line that is higher than the measurement channel (straight channel for measurement) in the vertical direction because of the arrangement space. It is arranged so that it is located in the center. Therefore, by providing the asymmetric flow promoting means as in Patent Document 1, the flow velocity distribution in the height direction tends to be asymmetric (uneven). Therefore, it is necessary to arrange a rectifying means for symmetrizing (equalizing) the flow velocity distribution like a rectifying element on the front side (the upper side in the flow direction) of the measuring unit.

本発明の課題は、導入側流路から計測用直線流路に至る流路の断面形状を工夫することによって、整流手段を配置しなくても流れ方向と直交する方向での流体の流速分布を容易に均等化したり対称化したりすることのできる流量計を提供することにある。   The problem of the present invention is to devise the cross-sectional shape of the flow path from the introduction-side flow path to the measurement linear flow path, thereby to obtain the flow velocity distribution of the fluid in the direction perpendicular to the flow direction without arranging a rectifying means. It is an object of the present invention to provide a flow meter that can be easily equalized and symmetrized.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明に係る流量計は、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために前記導入側流路よりも小さい流路断面積を有する計測用直線流路と、を含む流量計であって、
前記導入側流路及び計測用直線流路を流れる流体の流れ方向に沿うとともにそれら両流路の中央を通る共通断面において、
前記導入側流路の出口側末端部に続く形で流体の流れを方向転換させる湾曲形態の方向転換部と、
その方向転換部の出口側末端部を含む形で接続形成され、前記方向転換部の湾曲外周側及び/又は湾曲内周側で流れ方向下手側ほど流路断面積が縮小する流路断面縮小部と、
その流路断面縮小部に続く形で接続形成され、前記湾曲外周側の流路断面が流れ方向下手側ほど連続的に徐々に拡大変化又は階段状に急激に拡大変化して前記計測用直線流路に接続可能な外周拡大部とを含み、
前記方向転換部及び流路断面縮小部を流れる間に前記湾曲内周側に比して湾曲外周側で相対的に速くなる流体の流速分布が、前記外周拡大部を通る間に前記流れ方向と直交する方向に均等化及び/又は対称化されることを特徴とする。
In order to solve the above problems, the flow meter according to the present invention is:
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass therethrough, and is formed in a straight line so as to intersect the introductory side channel and from the introductory side channel to measure the flow rate of the fluid A flow meter including a measurement linear channel having a small channel cross-sectional area,
In the common cross section passing along the flow direction of the fluid flowing through the introduction side flow path and the measurement straight flow path and passing through the center of both flow paths,
A curved direction changing portion that changes the flow of the fluid in a form following the outlet side end portion of the introduction side flow path;
A flow path cross-sectional reduction part that is connected and formed so as to include the outlet side end part of the direction change part, and whose flow cross-sectional area decreases toward the lower side in the flow direction on the curved outer peripheral side and / or curved inner peripheral side of the direction change part. When,
The flow passage cross-section is connected and formed so as to follow the flow passage cross-sectional reduced portion, and the flow passage cross section on the curved outer peripheral side continuously expands gradually toward the lower side in the flow direction or rapidly expands and changes in a staircase fashion. Including an outer peripheral enlarged portion connectable to a road,
The flow velocity distribution of the fluid that is relatively faster on the curved outer circumferential side than the curved inner circumferential side while flowing through the direction changing portion and the flow path cross-sectional reduced portion is the flow direction while passing through the outer circumferential enlarged portion. It is characterized by being equalized and / or symmetrized in an orthogonal direction.

また、上記課題を解決するために、本発明に係る流量計に超音波流量計を用いる場合、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために前記導入側流路よりも小さい流路断面積を有し、その壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波を発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波を受信する送受信振動子が取り付けられた計測用直線流路と、を含む流量計であって、
前記導入側流路及び計測用直線流路を流れる流体の流れ方向に沿うとともにそれら両流路の中央を通り、前記送受信振動子が取り付けられた取付壁面に平行となる共通断面において、
前記導入側流路の出口側末端部に続く形で流体の流れを方向転換させる湾曲形態の方向転換部と、
その方向転換部の出口側末端部を含む形で接続形成され、前記方向転換部の湾曲外周側及び/又は湾曲内周側で流れ方向下手側ほど流路断面積が縮小する流路断面縮小部と、
その流路断面縮小部に続く形で接続形成され、前記湾曲外周側の流路断面が流れ方向下手側ほど連続的に徐々に拡大変化又は階段状に急激に拡大変化して前記計測用直線流路に接続可能な外周拡大部とを含み、
前記方向転換部及び流路断面縮小部を流れる間に前記湾曲内周側に比して湾曲外周側で相対的に速くなる流体の流速分布が、前記外周拡大部を通る間に前記流れ方向と直交する方向に均等化及び/又は対称化されることを特徴とする。
Further, in order to solve the above problems, when an ultrasonic flowmeter is used for the flowmeter according to the present invention,
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass therethrough, and is formed in a straight line so as to intersect the introductory side channel and from the introductory side channel to measure the flow rate of the fluid Has a small channel cross-sectional area and oscillates ultrasonic waves toward the upper or lower side of the fluid flow direction on the mounting wall of the wall, and / or ultrasonic waves coming from the upper or lower side of the flow direction A flowmeter including a measurement linear flow channel to which a transmission / reception transducer for receiving
In the common cross-section along the flow direction of the fluid flowing through the introduction-side flow path and the measurement linear flow path and through the center of both flow paths and parallel to the mounting wall surface to which the transmission / reception vibrator is mounted,
A curved direction changing portion that changes the flow of the fluid in a form following the outlet side end portion of the introduction side flow path;
A flow path cross-sectional reduction part that is connected and formed so as to include the outlet side end part of the direction change part, and whose flow cross-sectional area decreases toward the lower side in the flow direction on the curved outer peripheral side and / or curved inner peripheral side of the direction change part. When,
The flow passage cross-section is connected and formed so as to follow the flow passage cross-sectional reduced portion, and the flow passage cross section on the curved outer peripheral side continuously expands gradually toward the lower side in the flow direction or rapidly expands and changes in a staircase fashion. Including an outer peripheral enlarged portion connectable to a road,
The flow velocity distribution of the fluid that is relatively faster on the curved outer circumferential side than the curved inner circumferential side while flowing through the direction changing portion and the flow path cross-sectional reduced portion is the flow direction while passing through the outer circumferential enlarged portion. It is characterized by being equalized and / or symmetrized in an orthogonal direction.

これらの流量計によれば、被測定流体(例えばLPガス)は計測用直線流路の流れ方向上手側に位置する方向転換部及び流路断面縮小部を流れる間に、流速分布が湾曲内周側に比して湾曲外周側で相対的に速くなる傾向がある。しかし、湾曲外周側の流路断面が流れ方向下手側ほど連続的に徐々に拡大変化又は階段状に急激に拡大変化する外周拡大部を通る間に、流速分布が流れ方向と直交する方向に均等化及び/又は対称化される。すなわち、方向転換部や流路断面縮小部で発生する偏流(流れの中心が湾曲外周側に偏った流れ)が外周拡大部で矯正される(流れの中心が計測用直線流路の中央部になるように流速分布を対称に整える)。したがって、計測部(例えば一対の送受信振動子)の測線を流速分布の中央位置に配置して、計測用直線流路を流れる被測定流体の中心的な(平均的な)流速を安定して計測することができるので、層流域から乱流域にわたって広範囲に高精度で流量を計測できる。なお、外周拡大部は、流れ方向下手側ほど曲線状又は直線状の勾配(傾斜)を有して連続的又は段階的に徐々に拡大変化する形状に形成したり、階段状に急激に拡大変化する形状に形成したりすることができる。   According to these flow meters, while the fluid to be measured (for example, LP gas) flows through the direction changing portion and the flow path cross-sectional reduction portion located on the upper side in the flow direction of the measurement linear flow channel, the flow velocity distribution is curved on the inner circumference. It tends to be relatively faster on the curved outer peripheral side than on the side. However, the flow velocity distribution is even in the direction orthogonal to the flow direction while the flow path cross section on the curved outer peripheral side passes through the outer peripheral enlarged part where the lower side in the flow direction continuously expands gradually or changes stepwise. And / or symmetrized. In other words, the drift (flow where the center of the flow is biased toward the curved outer periphery) generated in the direction change section or the flow path cross-section reduction section is corrected at the outer peripheral expansion section (the center of the flow is at the center of the measurement linear flow path). The flow velocity distribution is adjusted symmetrically so that Therefore, the measurement line (for example, a pair of transmission / reception transducers) is placed at the center of the flow velocity distribution to stably measure the central (average) flow velocity of the fluid to be measured flowing through the measurement straight flow path. Therefore, the flow rate can be measured with high accuracy over a wide range from the laminar flow region to the turbulent flow region. The outer periphery enlargement part has a curved or linear gradient (inclination) toward the lower side in the flow direction, and is formed in a shape that gradually and gradually expands in a stepwise manner, or abruptly expands and changes in a staircase shape. Or can be formed into a shape to be formed.

そして、流路断面縮小部では流れ方向下手側ほど流路断面積が縮小し、かつ整流素子のような整流手段を流路中に配置する必要がないので、圧力損失が抑制されるに応じて計測用直線流路を流れる流体の流量を増大させることができ、流量測定部での測定範囲の拡大を図ることも可能になる。また、整流手段を設けないため流量計のコスト低減を図ることもできる。なお、方向転換部(又はそれに続く流路断面縮小部)の湾曲外周側の曲率半径を湾曲内周側の曲率半径よりも大に設定する場合には、流路断面縮小部における流路断面積の縮小率を大きくすることができるので、圧力損失を一層抑制し、測定範囲の拡大を図ることができる。   And in the flow path cross-section reduction part, the flow path cross-sectional area is reduced toward the lower side in the flow direction, and there is no need to arrange a rectifying means such as a rectifying element in the flow path. The flow rate of the fluid flowing through the measurement linear flow path can be increased, and the measurement range in the flow rate measurement unit can be expanded. Moreover, since the rectifying means is not provided, the cost of the flow meter can be reduced. When the radius of curvature on the curved outer peripheral side of the direction changing portion (or the subsequent flow path cross-sectional reduced portion) is set to be larger than the radius of curvature on the curved inner peripheral side, Therefore, the pressure loss can be further suppressed and the measurement range can be expanded.

このように、超音波流量計では、送受信振動子の測線が計測用直線流路の流速分布の中央位置に配置される。同様に、計測部の測線が計測用直線流路の流速分布の中央位置に配置されるタイプの流量計にも適用することができる。このようなタイプの流量計として、ピトー管式流量計(計測部:ピトー管)や、渦式流量計(計測部:渦発生体)を例示することができる。   As described above, in the ultrasonic flowmeter, the measurement line of the transmission / reception vibrator is arranged at the center position of the flow velocity distribution of the measurement linear flow path. Similarly, the present invention can also be applied to a type of flow meter in which the measurement line of the measurement unit is arranged at the center position of the flow velocity distribution of the measurement linear flow path. Examples of such a type of flow meter include a Pitot tube flow meter (measurement unit: Pitot tube) and a vortex flow meter (measurement unit: vortex generator).

流路断面縮小部は、湾曲外周側において方向転換部の末端位置からその接線方向に滑らかに繋がり、流れ方向を揃えて安定化させるための外周直線部を含んで外周拡大部に接続される一方、湾曲内周側において方向転換部の末端位置から湾曲状に滑らかに繋がる内周湾曲部を含んで構成されていることが望ましい。   The flow path cross-sectional reduction part is smoothly connected in the tangential direction from the end position of the direction changing part on the curved outer peripheral side, and is connected to the outer peripheral enlarged part including the outer peripheral straight part for stabilizing the flow direction. It is desirable that the curved inner peripheral side includes an inner peripheral curved portion that is smoothly connected in a curved shape from the terminal position of the direction changing portion.

方向転換部へ流入した流体は、導入側流路(例えば下向き)から計測用直線流路(例えば横向き)へ方向転換する途上にあるため、それらの中間方向(例えば斜め下向き)の速度成分が大きい。このような速度成分を有する流体は、方向転換部の湾曲外周側に沿って流れ方向下流側へ移動していくため、その流れ方向は方向転換部の末端位置に達しても依然として不揃いで不安定な状態にある。また、方向転換部の末端位置において流れ方向と直交する方向の流速分布は、湾曲外周側ほど流速が大きくなり、不均等(非対称)な状態にある。このように、方向転換部(及び流路断面縮小部の入口側)では流れ方向が不安定で流速が不均等(非対称)な流れ(上記した偏流に相当)が発生する。   Since the fluid that has flowed into the direction changing section is in the process of changing the direction from the introduction-side flow path (for example, downward) to the measurement linear flow path (for example, horizontal direction), the velocity component in the intermediate direction (for example, diagonally downward) is large. . Since the fluid having such a velocity component moves to the downstream side in the flow direction along the curved outer peripheral side of the direction changing portion, the flow direction is still uneven and unstable even when reaching the end position of the direction changing portion. It is in a state. In addition, the flow velocity distribution in the direction orthogonal to the flow direction at the end position of the direction changing portion has a non-uniform (asymmetric) state in which the flow velocity increases toward the curved outer peripheral side. As described above, a flow (corresponding to the above-described drift) is generated in the direction changing portion (and the inlet side of the flow path cross-sectional reduction portion) in which the flow direction is unstable and the flow velocity is uneven (asymmetric).

そこでまず、流路断面縮小部には、湾曲外周側において方向転換部の末端位置から接線方向に滑らかに繋がる外周直線部を形成することによって、流れ方向の不揃い・不安定さが解消される。つまり、外周直線部は流れ方向の安定化区間として機能する。次に、外周直線部は外周拡大部に接続されることによって、湾曲外周側の流路が広がり流速の偏りが緩和(上記した矯正に相当)される。つまり、外周拡大部は流速緩和区間(流速分布の均等化・対称化区間)として機能する。すなわち、方向転換部や流路断面縮小部の入口側で発生する偏流は、流路断面縮小部の湾曲外周側に形成される外周直線部で流れ方向が安定化され、さらにその先に接続される外周拡大部で流速分布が均等化・対称化される。   Therefore, first, the flow path cross-sectional reduced portion is formed with an outer peripheral straight line portion smoothly connected in a tangential direction from the end position of the direction changing portion on the curved outer peripheral side, thereby eliminating irregularities and instabilities in the flow direction. That is, the outer peripheral straight portion functions as a stabilizing section in the flow direction. Next, the outer peripheral straight line portion is connected to the outer peripheral enlarged portion, so that the flow path on the curved outer peripheral side widens and the uneven flow velocity is reduced (corresponding to the correction described above). That is, the outer peripheral enlarged portion functions as a flow velocity relaxation section (flow velocity distribution equalization / symmetrization section). In other words, the drift that occurs on the inlet side of the direction changing section and the flow path cross-section reduction section is stabilized in the flow direction at the outer peripheral straight section formed on the curved outer circumference side of the flow path cross-section reduction section, and further connected to the tip. The flow velocity distribution is equalized and symmetrized at the outer peripheral enlarged portion.

第一の具体例として、流路断面縮小部は、内周湾曲部の末端位置からその接線方向に滑らかに繋がる内周直線部を含んで構成され、その内周直線部は外周直線部の流れ方向下手側の端部と流れ方向において平行状に配置される場合がある。このように、内周直線部と外周直線部との平行状配置によって、流れ方向を一層安定化させることができる。 As a first specific example, the flow path cross-sectional reduction portion is configured to include an inner peripheral straight portion smoothly connected in the tangential direction from the end position of the inner peripheral curved portion, and the inner peripheral straight portion is a flow of the outer peripheral straight portion. which may be arranged in Oite parallel shape to the end portion and the flow direction of the direction downstream side. In this way, the flow direction can be further stabilized by the parallel arrangement of the inner peripheral linear portion and the outer peripheral linear portion.

そしてこのとき、流路断面縮小部の外周直線部及び内周直線部を計測用直線流路とそれぞれ平行状に配置することができる。これによって、整流手段(例えば整流素子)を用いなくても、流れ方向を容易に安定化させることができる。   At this time, the outer peripheral straight line portion and the inner peripheral straight line portion of the flow path cross-sectional reduction portion can be arranged in parallel with the measurement straight flow path. Accordingly, the flow direction can be easily stabilized without using a rectifying means (for example, a rectifying element).

他方、第二の具体例として、流路断面縮小部は、内周湾曲部の末端位置からその接線方向に滑らかに繋がる内周直線部を含んで構成される一方、外周直線部は流れ方向上手側に位置する第一直線部とそれより下手側に位置して流路断面積を縮小させる第二直線部とを含んで構成され、第一直線部は内周湾曲部と、第二直線部は内周直線部と、それぞれ対向配置される場合がある。外周直線部が二段階に断面縮小することによって流れ方向の安定化区間が比較的長く形成されるので、層流域・乱流域を問わず広範囲に流れ方向を安定させることができる。   On the other hand, as a second specific example, the flow path cross-sectional reduction part is configured to include an inner peripheral straight part smoothly connected in the tangential direction from the end position of the inner peripheral curved part, while the outer peripheral straight part is superior in the flow direction. A first straight portion located on the side and a second straight portion located on the lower side and reducing the cross-sectional area of the flow path. The first straight portion is an inner circumferential curved portion, and the second straight portion is an inner portion. There may be cases where they are arranged opposite to the circumferential straight portion. By reducing the cross section of the outer peripheral straight section in two stages, the flow direction stabilization section is formed relatively long, so that the flow direction can be stabilized over a wide range regardless of the laminar flow region or the turbulent flow region.

そしてこのとき、流路断面縮小部の第一直線部、第二直線部及び内周直線部を、計測用直線流路とそれぞれ平行状に配置することができる。これによって、整流手段(例えば整流素子)を用いなくても、流れ方向を容易に安定化させることができる。   At this time, the first straight line portion, the second straight line portion, and the inner peripheral straight line portion of the flow path cross-sectional reduction portion can be arranged in parallel with the measurement straight flow path. Accordingly, the flow direction can be easily stabilized without using a rectifying means (for example, a rectifying element).

導入側流路と計測用直線流路とが直交状に配置され、計測用直線流路の流路断面積が流れ方向に対して一定に形成されていれば、流量計をコンパクトな箱型形状に形成できる。また、外周拡大部で均等化(対称化)された流速分布が計測用直線流路でも安定して維持されるので、流量測定の精度が向上する。   If the inlet flow channel and the measurement straight flow channel are arranged orthogonally and the cross-sectional area of the measurement straight flow channel is constant with respect to the flow direction, the flow meter can have a compact box shape. Can be formed. Moreover, since the flow velocity distribution equalized (symmetrized) at the outer peripheral enlarged portion is stably maintained even in the measurement straight flow path, the accuracy of flow rate measurement is improved.

(実施例1)
次に、本発明の実施の形態を図面を用いて説明する。図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の全体斜視図を示す。この超音波流量計100(流量計)は、本体ユニット10と中間流路形成ユニット20と遮断弁30とから構成され、本体ユニット10は本体部11と蓋部17とからなる。
Example 1
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall perspective view of an embodiment of an ultrasonic flow meter used as a general residential gas meter or the like. The ultrasonic flow meter 100 (flow meter) includes a main body unit 10, an intermediate flow path forming unit 20, and a shut-off valve 30, and the main body unit 10 includes a main body portion 11 and a lid portion 17.

図2は超音波流量計100の正面断面図を示し、図2のA−A断面図が図3に表わされている。図2に示すように、本体部11は全体として直方体形状を有し、その上面には、上流側のガス配管に接続される流入口12及び下流側のガス配管に接続される流出口13がそれぞれ開口している。また、その内部には、流入口12と流出口13との間にガス(流体)を通過させるための本体流路14が形成されている。本体部11の下部には、図2の背面側から手前側(嵌合方向)に向けて本体流路切除部15が形成され、この本体流路切除部15は、パッキン17a(シール材)を介し蓋部17によって外部から覆われている(図3参照)。本体部11の嵌合方向前方側(図2の手前側)の外面には、本体流路切除部15と連通する一対の窓孔16,16(図1参照)が開口している。   FIG. 2 is a front sectional view of the ultrasonic flowmeter 100, and the AA sectional view of FIG. 2 is shown in FIG. As shown in FIG. 2, the main body 11 has a rectangular parallelepiped shape as a whole, and an inlet 12 connected to the upstream gas pipe and an outlet 13 connected to the downstream gas pipe are formed on the upper surface thereof. Each is open. In addition, a main body flow path 14 for allowing a gas (fluid) to pass between the inflow port 12 and the outflow port 13 is formed therein. A main body flow path cutting portion 15 is formed in the lower part of the main body portion 11 from the back side in FIG. 2 toward the front side (fitting direction). The main body flow path cutting portion 15 is provided with a packing 17a (seal material). It is covered from the outside by the cover part 17 (refer FIG. 3). A pair of window holes 16, 16 (see FIG. 1) communicating with the main body flow path cutting portion 15 are opened on the outer surface of the main body portion 11 on the front side in the fitting direction (front side in FIG. 2).

図3に示すように、中間流路形成ユニット20の内部には、本体部11の本体流路切除部15にガスの流れ方向と直交する方向(嵌合方向)から嵌合したときに本体流路14と接続される中間流路21が貫通形成されている。この中間流路21は、本体流路14と滑らかに連続する上下方向の入口側連結流路21b(導入側流路),出口側連結流路21c(導出側流路)と、両端で両連結流路21b,21cと連なるとともに、本体流路14とほぼ直交する形態で本体部11の下面に沿って配設される水平方向の直線状中間流路21a(計測用直線流路)とから構成されている(図2参照)。また、中間流路形成ユニット20には、本体部11に開口する一対の窓孔16,16に対応して嵌合方向の前方側に一対の突出部22,22がそれぞれ一体形成されている。さらに、中間流路形成ユニット20の一対の突出部22,22には、直線状中間流路21aを通過するガスの流量を測定するために、超音波センサ23の一対の送受信振動子23a,23bがそれぞれ着脱可能に取り付けられている。直線状中間流路21aの軸直交断面積(流路断面積)を本体流路14や入口側連結流路21bの軸直交断面積(流路断面積)よりも小とし(絞り)、流れ方向に対して一定の大きさに形成する。これによって、直線状中間流路21aを流れるガスの流速を速くして一定に保持し、超音波センサ23による流量(流速)の測定精度が高くなるようにしている。なお、流入口12と中間流路21との間の本体流路14には、本体流路14のガスの流れを遮断する遮断弁30が設けられている(図2参照)。   As shown in FIG. 3, when the intermediate flow path forming unit 20 is fitted into the main body flow path cutting section 15 of the main body section 11 from a direction (fitting direction) perpendicular to the gas flow direction, An intermediate flow path 21 connected to the path 14 is formed through. The intermediate flow path 21 is connected to the main body flow path 14 in a vertically continuous inlet-side connection flow path 21b (introduction-side flow path) and outlet-side connection flow path 21c (outflow-side flow path). Consists of a horizontal linear intermediate flow channel 21a (measurement linear flow channel) that is continuous with the flow channels 21b and 21c and is disposed along the lower surface of the main body 11 in a form substantially orthogonal to the main body flow channel 14. (See FIG. 2). Further, the intermediate flow path forming unit 20 is integrally formed with a pair of projecting portions 22 and 22 on the front side in the fitting direction corresponding to the pair of window holes 16 and 16 opened in the main body portion 11. Further, the pair of projecting portions 22 and 22 of the intermediate flow path forming unit 20 has a pair of transmission / reception vibrators 23a and 23b of the ultrasonic sensor 23 in order to measure the flow rate of the gas passing through the linear intermediate flow path 21a. Are detachably attached. The axial orthogonal cross-sectional area (flow-path cross-sectional area) of the straight intermediate flow path 21a is made smaller (throttle) than the axial-perpendicular cross-sectional area (flow-path cross-sectional area) of the main body flow path 14 and the inlet-side connecting flow path 21b. Are formed in a certain size. As a result, the flow rate of the gas flowing through the linear intermediate flow path 21a is increased and kept constant, and the measurement accuracy of the flow rate (flow rate) by the ultrasonic sensor 23 is increased. The main body flow path 14 between the inlet 12 and the intermediate flow path 21 is provided with a shut-off valve 30 that blocks the gas flow in the main body flow path 14 (see FIG. 2).

したがって、図3において、中間流路21が本体流路14と連通するように中間流路形成ユニット20を本体部11の本体流路切除部15に嵌合すると、各突出部22,22が本体部11の各窓孔16,16からそれぞれ外部に突出する。そして、各突出部22,22はパッキン16a(シール材)を介し各窓孔16,16をそれぞれ密閉する。さらに、超音波センサ23の各送受信振動子23a,23bは、各突出部22,22の収容孔22a,22bにそれぞれ外部から挿入され、取付ねじ(取付部材;図示せず)や押圧板(押圧部材;図示せず)によって着脱可能に固定されている。   Therefore, in FIG. 3, when the intermediate flow path forming unit 20 is fitted to the main body flow path cutting portion 15 of the main body portion 11 so that the intermediate flow path 21 communicates with the main body flow path 14, the protrusions 22, 22 become the main body. Projecting from the window holes 16 and 16 of the portion 11 to the outside. And each protrusion part 22 and 22 seals each window hole 16 and 16 via packing 16a (sealing material), respectively. Further, the transmission / reception transducers 23a and 23b of the ultrasonic sensor 23 are inserted from the outside into the receiving holes 22a and 22b of the protrusions 22 and 22, respectively, and are attached to a mounting screw (a mounting member; not shown) or a pressing plate (pressing). It is detachably fixed by a member (not shown).

図3に示すように、直線状中間流路21a(中間流路21)は、本体流路切除部15への嵌合方向を長辺L、上下方向を短辺S(図2参照)とする矩形状に形成されている。そして、超音波センサ23は次のような反射型V字配列に構成されている。すなわち、直線状中間流路21aの流れ方向直交断面のうち嵌合方向前方側の短辺を形成する取付壁面21d(壁部)の送受信振動子23a,23bが流れ方向に所定距離Wを隔てて取り付けられ、嵌合方向後方側の短辺を形成する壁面(壁部)を反射面21eとする。   As shown in FIG. 3, the linear intermediate flow path 21a (intermediate flow path 21) has a long side L in the fitting direction to the main body flow path cutting portion 15 and a short side S in the vertical direction (see FIG. 2). It is formed in a rectangular shape. The ultrasonic sensor 23 is configured in the following reflective V-shaped arrangement. That is, the transmitting / receiving vibrators 23a and 23b on the mounting wall surface 21d (wall portion) forming the short side on the front side in the fitting direction in the cross section orthogonal to the flow direction of the straight intermediate flow path 21a are separated by a predetermined distance W in the flow direction. A wall surface (wall portion) that is attached and forms a short side on the rear side in the fitting direction is defined as a reflecting surface 21e.

図1に戻り、超音波センサ23の送受信振動子23a,23b(センサ素子)で得られた出力信号は、リード線25,25を介して流量演算処理回路24に送信されてガス流量が算出され、流量表示部(図示せず)等を用いて報知される。これらの送受信振動子23a,23b、流量演算処理回路24、リード線25,25、流量表示部等は流量測定部Mを構成している。リード線25,25は、窓孔16,16から外部に突出して設けられる超音波センサ23(送受信振動子23a,23b)から引き出されるので、その芯線部を通じて測定ガスが外部に漏れ出して、気密性が不十分となったり、測定精度が低下したりすることがない。このように、本体部11・蓋部17・中間流路形成ユニット20の三者の気密性が確保され、リード線25,25が流路外に位置するので、漏れ出したガスに電気部品の火花が引火して火災が発生することもない。なお、入口側連結流路21bと直線状中間流路21aとの間には、流路内での測定ガス流の乱れを抑え速度分布を均一化するための整流素子(整流部材)は設けられていない(図2,図3参照)。   Returning to FIG. 1, the output signals obtained by the transmission / reception transducers 23 a and 23 b (sensor elements) of the ultrasonic sensor 23 are transmitted to the flow rate calculation processing circuit 24 via the lead wires 25 and 25 to calculate the gas flow rate. The notification is made using a flow rate display unit (not shown) or the like. The transmission / reception vibrators 23a and 23b, the flow rate calculation processing circuit 24, the lead wires 25 and 25, the flow rate display unit, and the like constitute a flow rate measurement unit M. Since the lead wires 25 and 25 are drawn out from the ultrasonic sensor 23 (transmission / reception transducers 23a and 23b) provided to project outside from the window holes 16 and 16, the measurement gas leaks to the outside through the core wire portion and is airtight. Therefore, there is no insufficiency and measurement accuracy is not lowered. Thus, the airtightness of the three parts of the main body part 11, the lid part 17, and the intermediate flow path forming unit 20 is ensured, and the lead wires 25 and 25 are located outside the flow path. There will be no fire caused by sparks. Note that a rectifying element (rectifying member) is provided between the inlet-side connecting flow path 21b and the straight intermediate flow path 21a to suppress the disturbance of the measurement gas flow in the flow path and make the speed distribution uniform. (See FIGS. 2 and 3).

次に、図4は図2における中間流路の流路構成の一実施例を示す要部拡大説明図である。図4に示す中間流路21において、ほぼ直交状に配置される入口側連結流路21b(本体流路14)と直線状中間流路21aとの間には、方向転換部211、流路断面縮小部212及び外周拡大部213が流れ方向上手側から下手側に向ってこの順に接続形成されている。   Next, FIG. 4 is an enlarged explanatory view of main parts showing an embodiment of the flow path configuration of the intermediate flow path in FIG. In the intermediate flow path 21 shown in FIG. 4, there are a direction changing portion 211, a cross section of the flow path between the inlet-side connection flow path 21 b (main flow path 14) and the straight intermediate flow path 21 a that are arranged substantially orthogonally. The reduced portion 212 and the outer peripheral enlarged portion 213 are connected and formed in this order from the upper side toward the lower side in the flow direction.

方向転換部211は、ほぼ下向きに配置された入口側連結流路21bの出口側末端部に続いて、ガスの流れを約90°方向転換させる湾曲形態に形成されている。この方向転換部211の湾曲形状は内側、外側ともに円弧状に形成され、湾曲外周側の半径R1が湾曲内周側の半径R2よりも大きく(例えば、R1=2×R2)設定されている。これによって、後述する流路断面縮小部212における流れ方向の流路断面積の縮小率を大きくとることができるので、直線状中間流路21aでの流速を大きくして流量測定部M(図1参照)での測定精度を向上させるとともに、圧力損失を抑制できる。   The direction changing portion 211 is formed in a curved shape for changing the direction of gas flow by about 90 °, following the outlet side end portion of the inlet side connecting channel 21b arranged substantially downward. The curved shape of the direction changing portion 211 is formed in an arc shape on both the inner side and the outer side, and the radius R1 on the curved outer peripheral side is set to be larger than the radius R2 on the curved inner peripheral side (for example, R1 = 2 × R2). As a result, the reduction ratio of the flow passage cross-sectional area in the flow direction in the flow passage cross-section reduction section 212 described later can be increased, so that the flow rate measurement section M (FIG. 1) is increased by increasing the flow velocity in the linear intermediate flow path 21a. In addition, it is possible to improve the measurement accuracy in the reference) and to suppress pressure loss.

流路断面縮小部212は、方向転換部211の出口側末端部と一部重なり合うようにして接続形成されている。したがって、流路断面縮小部212と方向転換部211とは、湾曲外周側及び湾曲内周側で流れ方向下手側ほど流路断面積が縮小する形態を有する。一方、流路断面縮小部212に接続形成される外周拡大部213は、湾曲外周側の流路断面が流れ方向下手側ほど拡大形成され、直線状中間流路21aに接続されている。   The channel cross-section reducing portion 212 is connected and formed so as to partially overlap the outlet-side end portion of the direction changing portion 211. Therefore, the flow path cross-sectional reduction part 212 and the direction change part 211 have a form in which the flow path cross-sectional area is reduced toward the lower side in the flow direction on the curved outer peripheral side and the curved inner peripheral side. On the other hand, the outer peripheral enlarged portion 213 formed to be connected to the flow passage cross-section reducing portion 212 is formed such that the flow passage cross section on the curved outer peripheral side is enlarged toward the lower side in the flow direction and connected to the linear intermediate flow passage 21a.

具体的には、流路断面縮小部212の湾曲外周側では、方向転換部211の末端位置からその接線方向(水平方向)に外周直線部212aが滑らかに繋がって、流れ方向を斜め方向から水平方向に揃えて安定化させ、さらに外周拡大部213に接続されている。その外周拡大部213は、流れ方向下手側ほど曲線状又は直線状(図4では円弧状)の勾配(傾斜)を有して連続的又は段階的(図4では連続的)に徐々に拡大変化する形状に形成され、直線状中間流路21aに接続されている。なお、外周拡大部213は階段状に急激に拡大変化する形状に形成されていてもよい。   Specifically, on the curved outer peripheral side of the flow path cross-sectional reduction part 212, the outer straight line part 212a is smoothly connected in the tangential direction (horizontal direction) from the terminal position of the direction changing part 211, and the flow direction is horizontal from the oblique direction. Aligned in the direction and stabilized, and further connected to the outer peripheral enlarged portion 213. The outer peripheral enlarged portion 213 has a gradient (inclination) that is curved or linear (arc shape in FIG. 4) toward the lower side in the flow direction, and gradually expands and changes gradually or stepwise (continuously in FIG. 4). And is connected to the linear intermediate flow path 21a. In addition, the outer periphery enlarged part 213 may be formed in the shape which expands and changes rapidly in step shape.

一方、流路断面縮小部212の湾曲内周側では、方向転換部211の末端位置から内周湾曲部212bが湾曲状に滑らかに繋がって形成されている。さらに、内周湾曲部212bの末端位置からその接線方向(水平方向)に内周直線部212cが滑らかに繋がって形成され、直線状中間流路21aに接続されている。   On the other hand, on the curved inner peripheral side of the flow path cross-section reducing portion 212, the inner peripheral curved portion 212b is formed so as to be smoothly connected in a curved shape from the end position of the direction changing portion 211. Furthermore, the inner peripheral straight portion 212c is smoothly connected in the tangential direction (horizontal direction) from the end position of the inner peripheral curved portion 212b, and is connected to the linear intermediate flow path 21a.

そして、流路断面縮小部212の内周直線部212cは、外周直線部212aの流れ方向下手側の端部と流れ方向において平行状(水平状)に配置されている。その結果、流路断面縮小部212の外周直線部212a及び内周直線部212cは、直線状中間流路21aとそれぞれ平行状(水平状)に配置されている。 Then, the inner peripheral straight portion 212c of the channel cross-section shrinking section 212 is arranged in Oite parallel shape (horizontally) to the end and the flow direction of the flow direction downstream side of the outer peripheral straight portion 212a. As a result, the outer peripheral straight part 212a and the inner peripheral straight part 212c of the flow path cross-sectional reduction part 212 are arranged in parallel (horizontal) with the straight intermediate flow path 21a, respectively.

以上のように流路構成されているので、この流路内のガスの流れは次のようになる。   Since the flow path is configured as described above, the gas flow in the flow path is as follows.

方向転換部211へ流入したガスは、下向き(上下方向)の入口側連結流路21bから横向き(水平方向)の直線状中間流路21aへ方向転換する途上にあるため、斜め下向き(中間方向)の速度成分が大きい。このような速度成分を有するガスは、方向転換部211の湾曲外周側に沿って流れ方向下流側へ移動していくため、その流れ方向は方向転換部211の末端位置に達しても依然として不揃いで不安定な状態にある。また、方向転換部211の末端位置において流れ方向と直交する方向の流速分布は、湾曲外周側ほど流速が大きくなり、不均等(非対称)な状態にある。このように、方向転換部211(及び流路断面縮小部212の入口側)では流れ方向が不安定で流速が不均等(非対称)な流れ(偏流)が発生している。   Since the gas that has flowed into the direction changing section 211 is in the process of turning from the downward (vertical direction) inlet-side connecting flow path 21b to the horizontal (horizontal direction) linear intermediate flow path 21a, the gas is inclined downward (intermediate direction). The speed component of is large. Since the gas having such a velocity component moves to the downstream side in the flow direction along the curved outer peripheral side of the direction changing portion 211, the flow direction is still uneven even when reaching the end position of the direction changing portion 211. It is in an unstable state. Further, the flow velocity distribution in the direction orthogonal to the flow direction at the end position of the direction changing portion 211 is in a non-uniform (asymmetric) state with the flow velocity increasing toward the curved outer peripheral side. Thus, in the direction changing part 211 (and the inlet side of the flow path cross-section reducing part 212), a flow (uneven flow) in which the flow direction is unstable and the flow velocity is uneven (asymmetric) is generated.

そこでまず、流路断面縮小部212には、湾曲外周側において方向転換部211の末端位置から接線方向に滑らかに繋がる外周直線部212aを形成することによって、流れ方向の不揃い・不安定さが解消される。つまり、外周直線部212aは流れ方向の安定化区間として機能する。次に、外周直線部212aは外周拡大部213に接続されることによって、湾曲外周側の流路が広がり流速の偏りが緩和(矯正)される。つまり、外周拡大部213は流速緩和区間(流速分布の均等化・対称化区間)として機能する。すなわち、方向転換部211や流路断面縮小部212の入口側で発生する偏流は、流路断面縮小部212の湾曲外周側に形成される外周直線部212aで流れ方向が安定化され、さらにその先に接続される外周拡大部213で流速分布が均等化・対称化される。   Therefore, first, the flow path cross-sectional reduction part 212 is formed with an outer peripheral straight part 212a that smoothly connects in a tangential direction from the end position of the direction changing part 211 on the curved outer peripheral side, thereby eliminating irregularities and instabilities in the flow direction. Is done. That is, the outer peripheral straight portion 212a functions as a stabilizing section in the flow direction. Next, by connecting the outer peripheral straight part 212a to the outer peripheral enlarged part 213, the flow path on the curved outer peripheral side is expanded, and the deviation of the flow velocity is alleviated (corrected). That is, the outer periphery enlargement part 213 functions as a flow velocity relaxation section (equalization / symmetrization section of flow velocity distribution). That is, the flow direction of the drift generated on the inlet side of the direction changing portion 211 and the flow path cross-sectional reduction portion 212 is stabilized by the outer peripheral straight portion 212a formed on the curved outer peripheral side of the flow passage cross-section reduction portion 212. The flow velocity distribution is equalized and symmetrized by the outer peripheral enlarged portion 213 connected first.

しかも、流路断面縮小部212の内周直線部212cは外周直線部212aの流れ方向下手側の端部と流れ方向において平行状(水平状)に配置されているので、流れ方向は一層安定化する。さらに、流路断面縮小部212の外周直線部212a及び内周直線部212cは、直線状中間流路21aとそれぞれ平行状(水平状)に配置されているので、整流手段(例えば整流素子)を用いなくても、流れ方向を容易に安定化させることができる。 Moreover, since the inner peripheral straight portion 212c of the channel cross-section shrinking section 212 are arranged in Oite parallel shape (horizontally) to the end and the flow direction of the flow direction downstream side of the outer peripheral straight portion 212a, the flow direction is more Stabilize. Furthermore, since the outer peripheral straight line portion 212a and the inner peripheral straight line portion 212c of the flow path cross-sectional reduction section 212 are arranged in parallel (horizontal) with the straight intermediate flow path 21a, a rectifying means (for example, a rectifying element) is provided. Even if it is not used, the flow direction can be easily stabilized.

したがって、直線状中間流路21aにおいて、一対の送受信振動子23a,23bの測線を流速分布の中央位置に配置すれば、直線状中間流路21aを流れるガスの中心的な(平均的な)流速を安定して計測することができるので、層流域から乱流域にわたって広範囲に高精度で流量を計測できる。   Therefore, if the measurement lines of the pair of transmission / reception vibrators 23a and 23b are arranged at the center position of the flow velocity distribution in the straight intermediate flow path 21a, the central (average) flow velocity of the gas flowing through the straight intermediate flow path 21a. Therefore, the flow rate can be measured with high accuracy over a wide range from the laminar flow region to the turbulent flow region.

(実施例2)
図5は、図4に代わり図2における中間流路の流路構成の他の実施例を示す要部拡大説明図である。図5に示す中間流路21においても図4と同様に、ほぼ直交状に配置される入口側連結流路21b(導入側流路)と直線状中間流路21a(計測用直線流路)との間には、方向転換部211、流路断面縮小部212及び外周拡大部213が流れ方向上手側から下手側に向ってこの順に接続形成されている。
(Example 2)
FIG. 5 is an enlarged explanatory view of a main part showing another embodiment of the flow path configuration of the intermediate flow path in FIG. 2 instead of FIG. Also in the intermediate flow path 21 shown in FIG. 5, similarly to FIG. 4, the inlet-side connection flow path 21 b (introduction-side flow path) and the straight intermediate flow path 21 a (measurement straight flow path) are arranged almost orthogonally. Between them, the direction changing part 211, the flow path cross-section reducing part 212, and the outer peripheral enlarged part 213 are connected and formed in this order from the upper side toward the lower side in the flow direction.

この実施例では、流路断面縮小部212の外周直線部212aは、流れ方向上手側に位置する第一直線部212a1とそれより下手側に位置して流路断面積を縮小させる第二直線部212a2とを含んで構成され、さらにその流れ方向下手側で外周拡大部213に接続されている。また、第一直線部212a1と第二直線部212a2とは外周縮小部212dを介して接続されている。なお、外周縮小部212dは、流れ方向下手側ほど曲線状又は直線状(図5では円弧状)の勾配(傾斜)を有して連続的又は段階的(図5では連続的)に縮小する形状に形成されている。   In this embodiment, the outer straight portion 212a of the flow path cross-section reducing portion 212 is a first straight portion 212a1 located on the upper side in the flow direction and a second straight portion 212a2 located on the lower side and reducing the cross-sectional area of the flow passage. And is connected to the outer peripheral enlarged portion 213 on the lower side in the flow direction. In addition, the first straight line portion 212a1 and the second straight line portion 212a2 are connected via an outer peripheral reduction portion 212d. The outer periphery reducing portion 212d has a curved or linear (arc shape in FIG. 5) gradient (inclination) toward the lower side in the flow direction, and continuously or stepwise (continuously in FIG. 5). Is formed.

そして、流路断面縮小部212の第一直線部212a1は内周湾曲部212bと、第二直線部212a2は内周直線部212cと、それぞれ対向配置されている。その結果、流路断面縮小部212の第一直線部212a1、第二直線部212a2及び内周直線部212cは、直線状中間流路21aとそれぞれ平行状(水平状)に配置されている。   The first straight portion 212a1 and the second straight portion 212a2 of the flow path cross-sectional reduction portion 212 are opposed to the inner curved portion 212b and the inner straight portion 212c, respectively. As a result, the first straight portion 212a1, the second straight portion 212a2, and the inner peripheral straight portion 212c of the flow path cross-sectional reduction part 212 are arranged in parallel (horizontal) with the straight intermediate flow path 21a.

この実施例では、流路断面縮小部212の外周直線部212aが第一直線部212a1と第二直線部212a2との二段階に断面縮小することによって、流れ方向の安定化区間が比較的長く形成されるので、層流域・乱流域を問わず広範囲に流れ方向を安定させることができる。さらに、流路断面縮小部212の第一直線部212a1、第二直線部212a2及び内周直線部212cは、直線状中間流路21aとそれぞれ平行状(水平状)に配置されているので、整流手段(例えば整流素子)を用いなくても、流れ方向を容易に安定化させることができる。なお、実施例2(図5)において実施例1(図4)と共通する機能を有する部分には同一符号を付与して説明を省略する。   In this embodiment, the outer peripheral straight line portion 212a of the flow path cross section reducing portion 212 is reduced in cross section in two stages of the first straight portion 212a1 and the second straight portion 212a2, so that the flow direction stabilization section is formed relatively long. Therefore, the flow direction can be stabilized over a wide range regardless of the laminar flow region or the turbulent flow region. Further, the first straight portion 212a1, the second straight portion 212a2, and the inner peripheral straight portion 212c of the flow path cross-sectional reduction portion 212 are arranged in parallel (horizontal) with the straight intermediate flow path 21a, so that the rectifying means The flow direction can be easily stabilized without using (for example, a rectifying element). In addition, in Example 2 (FIG. 5), the part which has a function common to Example 1 (FIG. 4) is provided with the same code | symbol, and description is abbreviate | omitted.

(変形例)
以上の実施例においては、超音波センサ(送受信部)の配置と超音波の通る径路(測線という)として反射型V字配列を採用した場合について説明した。反射型V字配列では、一対の送受信部を流れ方向に沿って同じ側に集中配置できるので、送受信部の着脱を同じ方向から行える利点がある。超音波流量計における超音波センサ(送受信部)の測線方式には、反射型V字配列の他にも多くの種類が知られている。他の測線方式に対する本発明の適用例について以下に説明する。
(Modification)
In the above embodiment, the case where the reflection type V-shaped arrangement is adopted as the arrangement of the ultrasonic sensor (transmission / reception unit) and the path through which the ultrasonic wave passes (referred to as a survey line) has been described. In the reflective V-shaped arrangement, the pair of transmission / reception units can be concentrated on the same side along the flow direction, so that there is an advantage that the transmission / reception units can be attached and detached from the same direction. In addition to the reflective V-shaped array, many types are known for the line measuring method of the ultrasonic sensor (transmission / reception unit) in the ultrasonic flowmeter. Examples of application of the present invention to other line survey methods will be described below.

(1)透過型Z配列(図6(a))
一方の送受信部123aから発せられた超音波を流れ方向に沿って所定距離離間して配置された他方の送受信部123bで受信する方式である。この方式では、一方の送受信部123aと他方の送受信部123bとは流れ方向の両側に分離して配置される。
(1) Transmission type Z arrangement (FIG. 6A)
In this method, ultrasonic waves emitted from one transmission / reception unit 123a are received by the other transmission / reception unit 123b arranged at a predetermined distance in the flow direction. In this method, one transmission / reception unit 123a and the other transmission / reception unit 123b are arranged separately on both sides in the flow direction.

(2)透過型V字配列(図6(b))
1個の送信部223aから発せられた超音波を流れ方向に沿って所定距離離間して配置された一対の受信部223b,223bで受信する方式である。この方式では、送信部223aと受信部223b,223bとは流れ方向の両側に分離して配置される。
(2) Transmission type V-shaped array (FIG. 6B)
In this method, ultrasonic waves emitted from one transmitter 223a are received by a pair of receivers 223b and 223b arranged at a predetermined distance in the flow direction. In this method, the transmission unit 223a and the reception units 223b and 223b are arranged separately on both sides in the flow direction.

(3)交差型X配列(図6(c))
流れ方向に沿って所定距離離間して配置された一対の送信部323a,323aから発せられた超音波を流れ方向に沿って所定距離離間して配置された一対の受信部323b,323bで受信する方式である。この方式は上記した図6(b)の方式において、送信部を1個から一対に増設したものに相当する。
(3) Crossed X array (FIG. 6 (c))
The ultrasonic waves emitted from the pair of transmitters 323a and 323a arranged at a predetermined distance along the flow direction are received by the pair of receivers 323b and 323b arranged at a predetermined distance along the flow direction. It is a method. This method corresponds to the method of FIG. 6 (b) described above in which one transmission unit is added as a pair.

以上の実施例及び変形例においては、本体ユニット10が、本体流路14を内部に有する本体部11と、本体部11を外部から覆う蓋部17とから構成される場合についてのみ説明したが、本体ユニット10は次のような構成であってもよい。すなわち、本体ユニットは半割り状の本体流路を各々有する第一本体部と第二本体部とを合掌構成してもよい。ただし、この場合には窓孔は第一本体部と第二本体部とのうち少なくともいずれか一方に設けられ、蓋部は設けても設けなくてもよい。   In the above examples and modifications, the main unit 10 has been described only in the case where the main unit 10 includes the main body 11 having the main body flow path 14 and the lid 17 that covers the main body 11 from the outside. The main unit 10 may have the following configuration. In other words, the main body unit may be configured such that the first main body portion and the second main body portion each having a half-shaped main body flow path are combined. However, in this case, the window hole is provided in at least one of the first main body and the second main body, and the lid may or may not be provided.

本発明に係る超音波流量計の一実施例の全体斜視図。1 is an overall perspective view of an embodiment of an ultrasonic flowmeter according to the present invention. 図1の正面断面図。FIG. 2 is a front sectional view of FIG. 1. 図2のA−A断面図。AA sectional drawing of FIG. 図2における中間流路の流路構成の一実施例を示す要部拡大説明図。The principal part expansion explanatory drawing which shows one Example of the flow-path structure of the intermediate flow path in FIG. 図2における中間流路の流路構成の他の実施例を示す要部拡大説明図。The principal part expansion explanatory drawing which shows the other Example of the flow-path structure of the intermediate flow path in FIG. 超音波センサの配置変形例を示す説明図。Explanatory drawing which shows the arrangement | positioning modification of an ultrasonic sensor.

符号の説明Explanation of symbols

21 中間流路
21a 直線状中間流路(計測用直線流路)
21b 入口側連結流路(導入側流路)
21c 出口側連結流路(導出側流路)
21d 取付壁面(壁部)
211 方向転換部
212 流路断面縮小部
212a 外周直線部
212a1 第一直線部
212a2 第二直線部
212b 内周湾曲部
212c 内周直線部
212d 外周縮小部
213 外周拡大部
23 超音波センサ
23a,23b 送受信振動子(センサ素子)
100 超音波流量計(流量計)
21 Intermediate channel 21a Linear intermediate channel (Straight channel for measurement)
21b Inlet side connection flow path (introduction side flow path)
21c Outlet side connecting channel (outlet side channel)
21d Mounting wall (wall)
211 Direction change part 212 Flow path cross-sectional reduction part 212a Outer periphery straight part 212a1 First straight part 212a2 Second straight part 212b Inner circumference curved part 212c Inner circumference straight part 212d Outer circumference reduction part 213 Outer circumference enlargement part 23 Ultrasonic sensor 23a, 23b Transmission / reception vibration Child (sensor element)
100 Ultrasonic flow meter (flow meter)

Claims (8)

流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために前記導入側流路よりも小さい流路断面積を有する計測用直線流路と、を含む流量計であって、
前記導入側流路及び計測用直線流路を流れる流体の流れ方向に沿うとともにそれら両流路の中央を通る共通断面において、
前記導入側流路の出口側末端部に続く形で流体の流れを方向転換させる湾曲形態の方向転換部と、
その方向転換部の出口側末端部を含む形で接続形成され、前記方向転換部の湾曲外周側及び/又は湾曲内周側で流れ方向下手側ほど流路断面積が縮小する流路断面縮小部と、
その流路断面縮小部に続く形で接続形成され、前記湾曲外周側の流路断面が流れ方向下手側ほど連続的に徐々に拡大変化又は階段状に急激に拡大変化して前記計測用直線流路に接続可能な外周拡大部とを含み、
前記方向転換部及び流路断面縮小部を流れる間に前記湾曲内周側に比して湾曲外周側で相対的に速くなる流体の流速分布が、前記外周拡大部を通る間に前記流れ方向と直交する方向に均等化及び/又は対称化されることを特徴とする流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass therethrough, and is formed in a straight line so as to intersect the introductory side channel and from the introductory side channel to measure the flow rate of the fluid A flow meter including a measurement linear channel having a small channel cross-sectional area,
In the common cross section passing along the flow direction of the fluid flowing through the introduction side flow path and the measurement straight flow path and passing through the center of both flow paths,
A curved direction changing portion that changes the flow of the fluid in a form following the outlet side end portion of the introduction side flow path;
A flow path cross-sectional reduction part that is connected and formed so as to include the outlet side end part of the direction change part, and whose flow cross-sectional area decreases toward the lower side in the flow direction on the curved outer peripheral side and / or curved inner peripheral side of the direction change part. When,
The flow passage cross-section is connected and formed so as to follow the flow passage cross-sectional reduced portion, and the flow passage cross section on the curved outer peripheral side continuously expands gradually toward the lower side in the flow direction or rapidly expands and changes in a staircase fashion. Including an outer peripheral enlarged portion connectable to a road,
The flow velocity distribution of the fluid that is relatively faster on the curved outer circumferential side than the curved inner circumferential side while flowing through the direction changing portion and the flow path cross-sectional reduced portion is the flow direction while passing through the outer circumferential enlarged portion. A flowmeter characterized by being equalized and / or symmetrized in an orthogonal direction.
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために前記導入側流路よりも小さい流路断面積を有し、その壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波を発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波を受信する送受信振動子が取り付けられた計測用直線流路と、を含む流量計であって、
前記導入側流路及び計測用直線流路を流れる流体の流れ方向に沿うとともにそれら両流路の中央を通り、前記送受信振動子が取り付けられた取付壁面に平行となる共通断面において、
前記導入側流路の出口側末端部に続く形で流体の流れを方向転換させる湾曲形態の方向転換部と、
その方向転換部の出口側末端部を含む形で接続形成され、前記方向転換部の湾曲外周側及び/又は湾曲内周側で流れ方向下手側ほど流路断面積が縮小する流路断面縮小部と、
その流路断面縮小部に続く形で接続形成され、前記湾曲外周側の流路断面が流れ方向下手側ほど連続的に徐々に拡大変化又は階段状に急激に拡大変化して前記計測用直線流路に接続可能な外周拡大部とを含み、
前記方向転換部及び流路断面縮小部を流れる間に前記湾曲内周側に比して湾曲外周側で相対的に速くなる流体の流速分布が、前記外周拡大部を通る間に前記流れ方向と直交する方向に均等化及び/又は対称化されることを特徴とする流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass therethrough, and is formed in a straight line so as to intersect the introductory side channel and from the introductory side channel to measure the flow rate of the fluid Has a small channel cross-sectional area and oscillates ultrasonic waves toward the upper or lower side of the fluid flow direction on the mounting wall of the wall, and / or ultrasonic waves coming from the upper or lower side of the flow direction A flowmeter including a measurement linear flow channel to which a transmission / reception transducer for receiving
In the common cross-section along the flow direction of the fluid flowing through the introduction-side flow path and the measurement linear flow path and through the center of both flow paths and parallel to the mounting wall surface to which the transmission / reception vibrator is mounted,
A curved direction changing portion that changes the flow of the fluid in a form following the outlet side end portion of the introduction side flow path;
A flow path cross-sectional reduction part that is connected and formed so as to include the outlet side end part of the direction change part, and whose flow cross-sectional area decreases toward the lower side in the flow direction on the curved outer peripheral side and / or curved inner peripheral side of the direction change part. When,
The flow passage cross-section is connected and formed so as to follow the flow passage cross-sectional reduced portion, and the flow passage cross section on the curved outer peripheral side continuously expands gradually toward the lower side in the flow direction or rapidly expands and changes in a staircase fashion. Including an outer peripheral enlarged portion connectable to a road,
The flow velocity distribution of the fluid that is relatively faster on the curved outer circumferential side than the curved inner circumferential side while flowing through the direction changing portion and the flow path cross-sectional reduced portion is the flow direction while passing through the outer circumferential enlarged portion. A flowmeter characterized by being equalized and / or symmetrized in an orthogonal direction.
前記流路断面縮小部は、前記湾曲外周側において前記方向転換部の末端位置からその接線方向に滑らかに繋がり、流れ方向を揃えて安定化させるための外周直線部を含んで前記外周拡大部に接続される一方、
前記湾曲内周側において前記方向転換部の末端位置から湾曲状に滑らかに繋がる内周湾曲部を含んで構成されている請求項1又は2に記載の流量計。
The flow path cross-sectional reduction portion includes an outer peripheral straight portion that is smoothly connected in a tangential direction from an end position of the direction changing portion on the curved outer peripheral side, and includes an outer peripheral straight portion for stabilizing the flow direction. While connected
The flowmeter according to claim 1 or 2, comprising an inner peripheral curved portion that is smoothly connected in a curved shape from an end position of the direction changing portion on the curved inner peripheral side.
前記流路断面縮小部は、前記内周湾曲部の末端位置からその接線方向に滑らかに繋がる内周直線部を含んで構成され、
その内周直線部は前記外周直線部の流れ方向下手側の端部と流れ方向において平行状に配置されている請求項3に記載の流量計。
The flow path cross-sectional reduction part is configured to include an inner peripheral linear part smoothly connected in a tangential direction from a terminal position of the inner peripheral curved part,
The inner peripheral straight portion flowmeter of claim 3 disposed Oite parallel shape to the end portion and the flow direction of the flow direction downstream side of the outer peripheral straight portion.
前記流路断面縮小部の外周直線部及び内周直線部は前記計測用直線流路とそれぞれ平行状に配置されている請求項4に記載の流量計。   The flowmeter according to claim 4, wherein an outer peripheral straight line portion and an inner peripheral straight line portion of the flow path cross-sectional reduction portion are arranged in parallel with the measurement straight flow path. 前記流路断面縮小部は、前記内周湾曲部の末端位置からその接線方向に滑らかに繋がる内周直線部を含んで構成される一方、
前記外周直線部は流れ方向上手側に位置する第一直線部とそれより下手側に位置して流路断面積を縮小させる第二直線部とを含んで構成され、
前記第一直線部が前記内周湾曲部と、前記第二直線部が前記内周直線部と、それぞれ対向配置されている請求項3に記載の流量計。
While the flow path cross-sectional reduction part is configured to include an inner peripheral linear part smoothly connected in a tangential direction from the terminal position of the inner peripheral curved part,
The outer peripheral straight part includes a first straight part located on the upper side in the flow direction and a second straight part located on the lower side and reducing the cross-sectional area of the flow path,
The flow meter according to claim 3, wherein the first straight portion is disposed opposite to the inner circumferential curved portion, and the second straight portion is disposed opposite to the inner circumferential straight portion.
前記流路断面縮小部の第一直線部、第二直線部及び内周直線部は、前記計測用直線流路とそれぞれ平行状に配置されている請求項6に記載の流量計。   The flowmeter according to claim 6, wherein the first straight line portion, the second straight line portion, and the inner peripheral straight line portion of the flow path cross-sectional reduction portion are arranged in parallel with the measurement straight flow path. 前記導入側流路と計測用直線流路とが直交状に配置され、
前記計測用直線流路の流路断面積が流れ方向に対して一定に形成されている請求項1ないし7のいずれか1項に記載の流量計。
The introduction side channel and the measurement linear channel are arranged orthogonally,
The flow meter according to any one of claims 1 to 7, wherein a channel cross-sectional area of the measurement linear channel is formed to be constant with respect to a flow direction.
JP2006294375A 2006-10-30 2006-10-30 Flowmeter Expired - Fee Related JP4936856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294375A JP4936856B2 (en) 2006-10-30 2006-10-30 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294375A JP4936856B2 (en) 2006-10-30 2006-10-30 Flowmeter

Publications (2)

Publication Number Publication Date
JP2008111714A JP2008111714A (en) 2008-05-15
JP4936856B2 true JP4936856B2 (en) 2012-05-23

Family

ID=39444303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294375A Expired - Fee Related JP4936856B2 (en) 2006-10-30 2006-10-30 Flowmeter

Country Status (1)

Country Link
JP (1) JP4936856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487342A (en) * 2019-07-23 2019-11-22 广东美的白色家电技术创新中心有限公司 Flowmeter pipeline and flowermeter with it

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145167A (en) * 2008-12-17 2010-07-01 Ricoh Elemex Corp Ultrasonic flow meter
KR101038971B1 (en) 2009-07-14 2011-06-03 자인테크놀로지(주) Asembly of flow meter and profiler
JP5799682B2 (en) * 2011-09-05 2015-10-28 株式会社デンソー Air flow measurement device
CN110793580B (en) * 2019-11-06 2021-01-19 宁波水表(集团)股份有限公司 Circular arc transition structure on two sides of measuring section of ultrasonic water meter
KR102246720B1 (en) * 2020-06-23 2021-04-30 (주)발맥스기술 Ultrasonic flowmeter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224322A (en) * 1985-07-23 1987-02-02 Nec Corp Floating point arithmetic unit
JP3246851B2 (en) * 1995-04-10 2002-01-15 東京計装株式会社 Ultrasonic flowmeter detector
JP2003090750A (en) * 2001-09-19 2003-03-28 Ngk Spark Plug Co Ltd Flow rate/flow velocity measuring apparatus
JP3922044B2 (en) * 2002-02-22 2007-05-30 松下電器産業株式会社 Ultrasonic flow measuring device
JP4084236B2 (en) * 2003-05-13 2008-04-30 松下電器産業株式会社 Ultrasonic flow meter
JP4368616B2 (en) * 2003-06-03 2009-11-18 リコーエレメックス株式会社 Flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487342A (en) * 2019-07-23 2019-11-22 广东美的白色家电技术创新中心有限公司 Flowmeter pipeline and flowermeter with it

Also Published As

Publication number Publication date
JP2008111714A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP2639560B1 (en) Ultrasonic flow rate measurement device
JP4936856B2 (en) Flowmeter
WO2010070891A1 (en) Ultrasonic flowmeter
WO2002031446A1 (en) Flow measuring device
JPH06249690A (en) Ultrasonic flowmeter
JP2009264906A (en) Flow meter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP5816831B2 (en) Ultrasonic flow meter
GB2218519A (en) A trapped-vortex flowmeter
US11885654B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP4984348B2 (en) Flow measuring device
JP3438713B2 (en) Ultrasonic flow meter
JP4453341B2 (en) Ultrasonic flow meter
JPH06300599A (en) Ultrasonic flowmeter unit
JP7373771B2 (en) Physical quantity measuring device
JP4561071B2 (en) Flow measuring device
JP4007853B2 (en) Ultrasonic flow meter
JP7373772B2 (en) Physical quantity measuring device
JP2004251700A (en) Fluid measuring device
JP4346458B2 (en) Ultrasonic flow meter
JP3436247B2 (en) Ultrasonic flow meter
JP2019196968A (en) Ultrasonic flowmeter
JP2006064626A (en) Flow rate measuring apparatus
JP4007861B2 (en) Ultrasonic flow meter
JP2021124358A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees