JP2009264906A - Flow meter - Google Patents

Flow meter Download PDF

Info

Publication number
JP2009264906A
JP2009264906A JP2008114311A JP2008114311A JP2009264906A JP 2009264906 A JP2009264906 A JP 2009264906A JP 2008114311 A JP2008114311 A JP 2008114311A JP 2008114311 A JP2008114311 A JP 2008114311A JP 2009264906 A JP2009264906 A JP 2009264906A
Authority
JP
Japan
Prior art keywords
flow
flow path
height
channel
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114311A
Other languages
Japanese (ja)
Inventor
Seiichi Furusawa
誠一 古澤
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2008114311A priority Critical patent/JP2009264906A/en
Publication of JP2009264906A publication Critical patent/JP2009264906A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow meter capable of easily equalizing and symmetrizing flow velocity distribution by devising a sectional shape of a flow passage without arranging a flow straightening means and capable of precisely measuring the flow rate over a wide range from a laminar flow region to a turbulent flow region. <P>SOLUTION: A diversion part 211 is shaped in a curved form at outer and inner circumferential sides continuous to an exit side terminal part of an inlet side connection flow passage 21b directed substantially downward so that the flow of a gas is diverted by 90°. The diversion part 211 includes a reduction part 211a in which an opening height of the flow passage decreases toward a downstream side in the flow direction. An adjustment part 212 is formed so as to be connected to and continuous to the exit side terminal part of the diversion part 211, and arranges the gas flow direction substantially in the horizontal direction. A flow passage height enlargement part 213 includes an increasing part 213a in which the opening height of the flow passage changes and increases in a step shape in the height direction at the outer and inner circumferential sides, continuous to the adjustment part 212, and is connected to a straight intermediate flow passage 21a (ultrasonic measurement section 21a1). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LPガス、都市ガス、空気、水などの流体の流量を計測する流量計に関する。   The present invention relates to a flow meter that measures the flow rate of fluid such as LP gas, city gas, air, and water.

従来、LPガス、都市ガス、空気、水などの流体の流量を計測する流量計測装置として、超音波を利用して流速を測定する超音波流量計が知られている。このような超音波流量計では、例えば、流体を通過させるための計測流路の壁部(取付壁面)に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する一対の送受信振動子(超音波センサ)が取り付けられている。そして、計測流路の入口側に、流速分布を非対称化して流速の最大値の発生位置を計測流路の中心から一方に偏らせるために、屈曲部、段差部、異形状部等からなる非対称流れ促進手段を設けることが開示されている(特許文献1参照)。   2. Description of the Related Art Conventionally, an ultrasonic flowmeter that measures a flow velocity using ultrasonic waves is known as a flow measurement device that measures the flow rate of a fluid such as LP gas, city gas, air, and water. In such an ultrasonic flowmeter, for example, an ultrasonic wave is oscillated toward the upper side or the lower side of the fluid flow direction on the wall portion (mounting wall surface) of the measurement channel for allowing the fluid to pass, and then the flow direction. A pair of transmission / reception transducers (ultrasonic sensors) that receive ultrasonic waves coming from the upper side or the lower side are attached. In order to asymmetric the flow velocity distribution on the inlet side of the measurement flow path and bias the position where the maximum value of the flow velocity is generated to one side from the center of the measurement flow path, an asymmetry consisting of a bent portion, a stepped portion, an irregularly shaped portion, etc. It is disclosed that a flow promoting means is provided (see Patent Document 1).

特許第3436247号公報Japanese Patent No. 3436247

特許文献1によれば、非対称流れ促進手段を設けることによって、層流域と乱流域との補正係数の差を少なくし、流体の種別により粘性係数が変化しても補正係数の変化を小さくすることが可能となる。しかし、超音波流量計を始め多くの流量計では、配置スペース等の関係から、送受信振動子(計測部)は通常、計測用の測線が計測流路(計測用直線流路)における流量計測区間の上下方向高さ(高さ方向)の中央に位置するように配置されている。したがって、特許文献1のように非対称流れ促進手段を設けることによって、高さ方向の流速分布が非対称(不均等)になりやすい。そこで、計測部の前方側(流れ方向上手側)に、整流素子のように高さ方向の流速分布を対称化(均等化)するための整流手段を配置する等の対策を要する場合がある。   According to Patent Document 1, by providing an asymmetric flow promoting means, the difference in the correction coefficient between the laminar flow area and the turbulent flow area is reduced, and even if the viscosity coefficient changes depending on the type of fluid, the change in the correction coefficient is reduced. Is possible. However, in many flowmeters including ultrasonic flowmeters, the transmitter / receiver transducer (measurement unit) usually has a measurement line in the measurement flow path (straight flow path for measurement) because of the arrangement space. It arrange | positions so that it may be located in the center of the up-down direction height (height direction). Therefore, by providing the asymmetric flow promoting means as in Patent Document 1, the flow velocity distribution in the height direction tends to be asymmetric (uneven). Therefore, measures such as arranging a rectifying means for symmetrizing (equalizing) the flow velocity distribution in the height direction, such as a rectifying element, may be required on the front side (the upper side in the flow direction) of the measurement unit.

本発明の課題は、導入側流路から計測用直線流路に至る流路の断面形状を工夫することによって、整流手段を配置しなくても流体の流れ方向に直交する方向での流速分布を容易に均等化したり対称化したりすることができ、また流体の種別や温度変化に伴って粘性が変化しても、層流域から乱流域にわたって広範囲に高精度で流量を計測できる流量計を提供することにある。   The object of the present invention is to devise the cross-sectional shape of the flow path from the introduction-side flow path to the measurement linear flow path, thereby obtaining the flow velocity distribution in the direction perpendicular to the fluid flow direction without arranging a rectifying means. Provides a flow meter that can be easily equalized and symmetrized, and can measure the flow rate over a wide range from laminar flow to turbulent flow even if the viscosity changes with the type of fluid or temperature. There is.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明に係る流量計は、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有する計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央での流れ方向に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする。
In order to solve the above problems, the flow meter according to the present invention is:
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate A flow meter including a measurement linear flow channel having a long side and a rectangular shape having a short side in the height direction and having a flow channel cross-sectional area smaller than the introduction side flow channel,
Following the outlet side end portion of the introduction-side channel, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow and parallel to the flow direction at the center in the width direction. In a simple cross-section, the direction changing portion having a decreasing portion that decreases as the opening height of the flow path goes toward the lower side in the flow direction,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment section, there is an increasing portion in which the opening height of the flow path increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side, and can be connected to the measurement linear flow path. Including a channel height expanding portion,
The direction changing part and the adjustment part constitute a flow path height reducing part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow rate distribution in the direction perpendicular to the fluid flow direction in the linear flow channel for measurement is reduced by the reduction portion and the adjustment portion in the flow passage height reduction portion and the increase portion in the flow passage height enlargement portion. It is characterized by equalization and / or symmetrization.

例えば、上記課題を解決するために、本発明に係る流量計に超音波流量計を用いる場合、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波を発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波を受信する送受信振動子が取り付けられた計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央で前記取付壁面に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする。
For example, in order to solve the above-mentioned problem, when using an ultrasonic flow meter for the flow meter according to the present invention,
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion A flowmeter including a measurement linear flow path to which a transmission / reception transducer is attached, which oscillates ultrasonic waves toward the side and / or receives ultrasonic waves coming from the upper side or lower side in the flow direction,
Following the outlet-side end of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow, and parallel to the mounting wall surface at the center in the width direction. In a simple cross-section, the direction changing portion having a decreasing portion that decreases as the opening height of the flow path goes toward the lower side in the flow direction,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment section, there is an increasing portion in which the opening height of the flow path increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side, and can be connected to the measurement linear flow path. Including a channel height expanding portion,
The direction changing part and the adjustment part constitute a flow path height reducing part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow rate distribution in the direction perpendicular to the fluid flow direction in the linear flow channel for measurement is reduced by the reduction portion and the adjustment portion in the flow passage height reduction portion and the increase portion in the flow passage height enlargement portion. It is characterized by equalization and / or symmetrization.

具体的には、これらの流量計において、
前記流路高さ縮小部では、前記方向転換部の外周側に沿って流体が流れる際の遠心力によって前記減少部の外周側と内周側とで流体の流れ方向及び最大流速が偏るのを、前記調整部により流れ方向を揃えるとともに、
前記流路高さ拡大部では、前記増大部での整流作用によって(整流素子等の整流部材を配置せずにすむので)圧力損失の上昇を抑制しつつ、流体の流れ方向に平行な断面での高さ方向の流速分布を平滑化し、
前記計測用直線流路(特に流量計測区間)において、流体の流れ方向に直交する断面での高さ方向の流速分布(流体の流れ方向に直交する方向での流速分布)が均等化及び/又は対称化される。
Specifically, in these flow meters,
In the flow path height reduction part, the flow direction and the maximum flow velocity of the fluid are biased between the outer peripheral side and the inner peripheral side of the reduction part due to the centrifugal force when the fluid flows along the outer peripheral side of the direction changing part. , And aligning the flow direction by the adjustment unit,
In the flow path height enlarged portion, the cross section parallel to the fluid flow direction is suppressed while suppressing an increase in pressure loss (since it is not necessary to arrange a rectifying member such as a rectifying element) by the rectifying action in the increasing portion. Smooth the flow velocity distribution in the height direction of
In the measurement straight flow path (particularly, the flow rate measurement section), the flow velocity distribution in the height direction (flow velocity distribution in the direction orthogonal to the fluid flow direction) in the cross section orthogonal to the fluid flow direction is equalized and / or Symmetrized.

このような流量計においては、被測定流体(例えばLPガスや都市ガス)は計測用直線流路の流れ方向上手側に位置する方向転換部(減少部)を流れる間に、流れ方向が偏り、内周側に比して外周側で流速が相対的に速くなる傾向がある。しかし、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部(流路高さ拡大部)を通る間に、流体の流れ方向に直交する方向での流速分布の偏りの影響が緩和され、均等化及び/又は対称化される。すなわち、方向転換部(減少部)で発生する偏流(最大流速の向きと位置が外周側に偏った流れ)が、調整部を経由し、流路高さ拡大部(増大部)で開放されることによって、高さ方向の中央位置付近に流速分布のピーク(最大流速)を持つ流れに矯正される(高さ方向の流速分布が均等化及び/又は対称化される)。したがって、計測部(例えば一対の送受信振動子)の測線を高さ方向の流速分布の中間位置(例えば中央位置)に配置して、計測用直線流路(流量計測区間)を流れる被測定流体の最大流速を安定して計測することができるので、流体の種別や温度変化に伴って粘性(動粘性係数)が変化しても、層流域(小流量)から乱流域(大流量)にわたって常に流体の対称性が確保され、広範囲に高精度で流量を計測できる。   In such a flow meter, the flow direction is biased while the fluid to be measured (for example, LP gas or city gas) flows through the direction changing portion (decreasing portion) located on the upper side in the flow direction of the measurement linear flow path, There is a tendency that the flow velocity is relatively faster on the outer peripheral side than on the inner peripheral side. However, the flow channel opening height is orthogonal to the fluid flow direction while passing through the increasing portion (flow channel height expanding portion) where the opening height of the flow channel increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side. The influence of the deviation of the flow velocity distribution in the direction is mitigated, equalized and / or symmetrized. In other words, a drift (a flow in which the direction and position of the maximum flow velocity is biased toward the outer periphery) generated in the direction changing section (decreasing section) is released by the flow path height expanding section (increasing section) via the adjusting section. Accordingly, the flow is corrected to a flow having a peak (maximum flow velocity) of the flow velocity distribution near the center position in the height direction (the flow velocity distribution in the height direction is equalized and / or symmetrized). Therefore, the measurement line (for example, a pair of transmission / reception transducers) is arranged at the middle position (for example, the center position) of the flow velocity distribution in the height direction, and the fluid to be measured flowing through the measurement straight flow path (flow measurement section) Since the maximum flow velocity can be measured stably, even if the viscosity (kinematic viscosity coefficient) changes with the type of fluid or temperature, fluid always flows from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate). The flow rate can be measured with high accuracy over a wide range.

そして、減少部(方向変換部)では流れ方向下手側ほど流路の開口高さが減少し、かつ整流素子のような整流手段を調整部等の流れ方向下手側の流路中に配置する必要がないため、圧力損失が抑制され、流量測定部での測定範囲の拡大を図ることも可能になる。また、整流手段を設けないため流量計のコスト低減を図ることもできる。   And in the decreasing part (direction changing part), the opening height of the flow path decreases toward the lower side in the flow direction, and a rectifying means such as a rectifying element needs to be arranged in the flow path on the lower side in the flow direction such as the adjusting part. Therefore, the pressure loss is suppressed, and the measurement range at the flow rate measurement unit can be expanded. Moreover, since the rectifying means is not provided, the cost of the flow meter can be reduced.

このように、超音波流量計では、送受信振動子の測線が計測用直線流路(流量計測区間)の流速分布の中間位置(例えば中央位置)に配置される。同様に、計測部の測線が計測用直線流路の流速分布の中間位置(例えば中央位置)に配置されるタイプの流量計にも適用することができる。このようなタイプの流量計として、電磁流量計(計測部:測定管)、ピトー管式流量計(計測部:ピトー管)等を例示することができる。また、超音波検出方式の渦式流量計(計測部:渦発生体の下流側に設けた超音波振動子)に用いてもよい。   As described above, in the ultrasonic flowmeter, the measurement line of the transmission / reception vibrator is arranged at an intermediate position (for example, the central position) of the flow velocity distribution of the measurement linear flow path (flow rate measurement section). Similarly, the present invention can also be applied to a type of flow meter in which the measurement line of the measurement unit is arranged at an intermediate position (for example, the central position) of the flow velocity distribution of the measurement linear flow path. Examples of such a type of flow meter include an electromagnetic flow meter (measurement unit: measurement tube), a Pitot tube type flow meter (measurement unit: Pitot tube), and the like. Moreover, you may use for the vortex-type flow meter (measurement part: the ultrasonic transducer | vibrator provided in the downstream of a vortex generator) of an ultrasonic detection system.

また、上記課題を解決するために、本発明に係る流量計は、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有する計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成され、流体の流れを方向転換させる方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、少なくとも前記外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
幅方向中央での流体の流れ方向に平行な断面において、前記方向転換部の流路の開口高さが流れ方向下手側に向かうにつれて減少する第一の減少部を有するとともに、流れ方向に直交する断面において、前記方向転換部と調整部とのうちの少なくとも一方の流路の開口高さが幅方向端部側に向かうにつれて減少する第二の減少部を有することによって、前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記第一の減少部、第二の減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする。
In addition, in order to solve the above problems, a flow meter according to the present invention includes:
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate A flow meter including a measurement linear flow channel having a long side and a rectangular shape having a short side in the height direction and having a flow channel cross-sectional area smaller than the introduction side flow channel,
Following the outlet side end portion of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape, and the direction changing unit that changes the flow of the fluid,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment portion, at least the outer peripheral side has an increasing portion in which the opening height of the channel increases stepwise in the height direction and can be connected to the measurement linear channel. Including an enlarged portion,
In a cross section parallel to the fluid flow direction at the center in the width direction, the flow path of the direction changing portion has a first decreasing portion that decreases as it goes toward the lower side in the flow direction, and is orthogonal to the flow direction. In the cross section, the direction changing portion and the adjusting portion are adjusted by having a second decreasing portion in which the opening height of at least one flow path of the direction changing portion and the adjusting portion decreases toward the end in the width direction. The part constitutes a flow path height reduction part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow direction of the fluid in the linear flow channel for measurement by the first decrease portion, the second decrease portion and the adjustment portion in the flow channel height reduction portion, and the increase portion in the flow channel height enlargement portion The flow velocity distribution in the direction orthogonal to the above is equalized and / or symmetrized.

例えば、上記課題を解決するために、本発明に係る流量計に超音波流量計を用いる場合、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波を発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波を受信する送受信振動子が取り付けられた計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成され、流体の流れを方向転換させる方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、少なくとも前記外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
幅方向中央で前記取付壁面に平行な断面において、前記方向転換部の流路の開口高さが流体の流れ方向下手側に向かうにつれて減少する第一の減少部を有するとともに、流れ方向に直交する断面において、前記方向転換部と調整部とのうちの少なくとも一方の流路の開口高さが幅方向端部側に向かうにつれて減少する第二の減少部を有することによって、前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記第一の減少部、第二の減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする。
For example, in order to solve the above-mentioned problem, when using an ultrasonic flow meter for the flow meter according to the present invention,
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion A flowmeter including a measurement linear flow path to which a transmission / reception transducer is attached, which oscillates ultrasonic waves toward the side and / or receives ultrasonic waves coming from the upper side or lower side in the flow direction,
Following the outlet side end portion of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape, and the direction changing unit that changes the flow of the fluid,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment portion, at least the outer peripheral side has an increasing portion in which the opening height of the channel increases stepwise in the height direction and can be connected to the measurement linear channel. Including an enlarged portion,
In a cross section parallel to the mounting wall surface in the center in the width direction, the flow path of the direction changing portion has a first decreasing portion that decreases as it goes toward the lower side in the fluid flow direction, and is orthogonal to the flow direction. In the cross section, the direction changing portion and the adjusting portion are adjusted by having a second decreasing portion in which the opening height of at least one flow path of the direction changing portion and the adjusting portion decreases toward the end in the width direction. The part constitutes a flow path height reduction part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow direction of the fluid in the linear flow channel for measurement by the first decrease portion, the second decrease portion and the adjustment portion in the flow channel height reduction portion, and the increase portion in the flow channel height enlargement portion The flow velocity distribution in the direction orthogonal to the above is equalized and / or symmetrized.

具体的には、これらの流量計において、
前記流路高さ縮小部では、前記方向転換部の外周側に沿って流体が流れる際の遠心力によって前記第一の減少部の外周側と内周側とで流体の流れ方向及び最大流速が偏るのを、前記調整部により流れ方向を揃え、かつ前記第一の減少部にて流体が幅方向端部側へ拡散移動しようとするのを、前記第二の減少部により阻止又は抑制するとともに、
前記流路高さ拡大部では、前記増大部での整流作用によって(整流素子等の整流部材を配置せずにすむので)圧力損失の上昇を抑制しつつ、流体の流れ方向に平行な断面での高さ方向の流速分布を平滑化し、
前記計測用直線流路(特に流量計測区間)において、流体の流れ方向に直交する断面での幅方向及び高さ方向の流速分布(流体の流れ方向に直交する方向での流速分布)が均等化及び/又は対称化される。
Specifically, in these flow meters,
In the flow path height reducing portion, the flow direction and the maximum flow velocity of the fluid are changed between the outer peripheral side and the inner peripheral side of the first reducing portion by centrifugal force when the fluid flows along the outer peripheral side of the direction changing portion. The second adjusting unit prevents or suppresses the deviation by aligning the flow direction by the adjusting unit and preventing the fluid from diffusing and moving toward the end in the width direction at the first decreasing unit. ,
In the flow path height enlarged portion, the cross section parallel to the fluid flow direction is suppressed while suppressing an increase in pressure loss (since it is not necessary to arrange a rectifying member such as a rectifying element) by the rectifying action in the increasing portion. Smooth the flow velocity distribution in the height direction of
In the measurement straight flow path (especially the flow rate measurement section), the flow velocity distribution in the width direction and the height direction (flow velocity distribution in the direction orthogonal to the fluid flow direction) in the cross section orthogonal to the fluid flow direction is equalized. And / or symmetrized.

このような流量計においても、被測定流体(例えばLPガスや都市ガス)は計測用直線流路の流れ方向上手側に位置する方向転換部(減少部)を流れる間に、流れ方向が偏り、内周側に比して外周側で流速が相対的に速くなる傾向がある。しかし、外周側及び内周側のうち少なくとも外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部(流路高さ拡大部)を通る間に、流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化される。すなわち、方向転換部(第一の減少部)で発生する偏流(最大流速の向きと位置が外周側に偏った流れ)が、調整部と第二の減少部と流路高さ拡大部(増大部)とで矯正される(幅方向及び高さ方向の流速分布が均等化及び/又は対称化される)。したがって、計測部(例えば一対の送受信振動子)の測線を高さ方向の流速分布の中間位置(例えば中央位置)に配置して、計測用直線流路(流量計測区間)を流れる被測定流体の最大流速を安定して計測することができるので、流体の種別や温度変化に伴って粘性(動粘性係数)が変化しても、層流域(小流量)から乱流域(大流量)にわたって広範囲に高精度で流量を計測できる。   Even in such a flow meter, the flow direction is biased while the fluid to be measured (for example, LP gas or city gas) flows through the direction changing portion (decreasing portion) located on the upper side in the flow direction of the measurement linear flow path, There is a tendency that the flow velocity is relatively faster on the outer peripheral side than on the inner peripheral side. However, the flow of fluid while passing through an increasing portion (channel height expanding portion) in which the opening height of the flow path increases stepwise in the height direction on at least the outer peripheral side of the outer peripheral side and the inner peripheral side. The flow velocity distribution in the direction perpendicular to the direction is equalized and / or symmetrized. That is, the drift (the flow in which the direction and the position of the maximum flow velocity are biased toward the outer periphery) generated in the direction change section (first decrease section) is adjusted to the adjustment section, the second decrease section, and the flow path height expansion section (increase). (The flow velocity distribution in the width direction and the height direction is equalized and / or symmetrized). Therefore, the measurement line (for example, a pair of transmission / reception transducers) is arranged at the middle position (for example, the center position) of the flow velocity distribution in the height direction, and the fluid to be measured flowing through the measurement straight flow path (flow measurement section) Since the maximum flow velocity can be measured stably, even if the viscosity (kinematic viscosity coefficient) changes with the type of fluid or temperature, it can be measured over a wide range from laminar flow (small flow) to turbulent flow (large flow). The flow rate can be measured with high accuracy.

そして、上記流量計における流路高さ縮小部の第二の減少部は、流路の高さ方向の中間位置(例えば中央位置)から内周側又は外周側に向かうにつれて、その流路の開口幅が連続的に減少するように形成されていてもよい。   And the 2nd reduction part of the channel height reduction part in the above-mentioned flow meter is the opening of the channel as it goes to the inner circumference side or the outer circumference side from the middle position (for example, center position) of the height direction of the channel. The width may be formed so as to continuously decrease.

第一の減少部にて流路の開口高さが減少することに応じて、方向変換部内の流体は幅方向端部側へ拡散移動しようとするが、その移動は内周側又は外周側ほど開口幅が減少する第二の減少部によって阻止又は抑制されている。このように、第二の減少部によって幅方向の流速分布を円滑に均等化(対称化)することができる。なお、第二の減少部における流路壁面を平面状又は曲面状に形成することができる。例えば、第二の減少部における流路壁面は、流れ方向に直交する断面にて、二等辺三角形状等の三角形状、台形状等の四角形状、円弧状、楕円状等に形成できる。   As the opening height of the flow path decreases in the first decreasing portion, the fluid in the direction changing portion tries to diffuse and move toward the end in the width direction. It is blocked or suppressed by the second decreasing portion in which the opening width decreases. Thus, the flow velocity distribution in the width direction can be smoothly equalized (symmetrized) by the second decreasing portion. In addition, the channel wall surface in the 2nd reduction | decrease part can be formed in planar shape or curved surface shape. For example, the channel wall surface in the second decreasing portion can be formed in a cross section orthogonal to the flow direction, such as a triangular shape such as an isosceles triangular shape, a quadrangular shape such as a trapezoidal shape, an arc shape, an elliptical shape, or the like.

その際さらに、第二の減少部において、流路の高さ方向の中間位置(例えば中央位置)から内周側に向かうにつれて、その流路の開口幅が連続的に減少するように形成することが望ましい。これによって、幅方向の流速分布の均等化(対称化)に要する第二の減少部ひいては流路高さ縮小部の区間長(流れ方向の長さ)を短縮することができる。   At that time, in the second decreasing portion, the opening width of the flow path is continuously reduced from the intermediate position in the height direction of the flow path (for example, the center position) toward the inner peripheral side. Is desirable. As a result, it is possible to shorten the length of the second reduction portion required for equalization (symmetrization) of the flow velocity distribution in the width direction, and hence the section length (length in the flow direction) of the flow path height reduction portion.

あるいは、上記流量計における流路高さ縮小部の第二の減少部は、流路の高さ方向の中間位置(例えば中央位置)から内周側及び外周側に向かうにつれて、その流路の開口幅がそれぞれ連続的に減少するように形成されていてもよい。   Alternatively, the second decreasing portion of the flow path height reducing portion in the flow meter is configured such that the opening of the flow path increases from the intermediate position (for example, the center position) in the height direction of the flow path toward the inner peripheral side and the outer peripheral side. The width may be formed so as to continuously decrease.

第一の減少部にて流路の開口高さが減少することに応じて、方向変換部内の流体は幅方向端部側へ拡散移動しようとするが、その移動は内周側でも外周側でも開口幅が減少する第二の減少部によって阻止又は抑制され(抑え込まれ)、流路の高さ方向の中間部分(中央部分)に集められている。このように、開口幅が内周側でも外周側でも減少する第二の減少部によって、幅方向の流速分布を短い区間長(流れ方向の長さ)で円滑に均等化(対称化)することができる。なお、この場合にも第二の減少部における流路壁面を平面状又は曲面状に形成することができる。例えば、第二の減少部における流路壁面は、流れ方向に直交する半断面にて、二等辺三角形状等の三角形状、台形状等の四角形状、円弧状、楕円状等に形成できる。   In response to the opening height of the flow path decreasing at the first decreasing portion, the fluid in the direction changing portion tries to diffuse and move toward the end in the width direction. It is blocked or suppressed (suppressed) by the second decreasing portion where the opening width decreases, and is collected in the middle portion (central portion) in the height direction of the flow path. As described above, the second decreasing portion in which the opening width decreases on the inner peripheral side and the outer peripheral side smoothly equalizes (symmetrizes) the flow velocity distribution in the width direction with a short section length (length in the flow direction). Can do. In this case as well, the channel wall surface in the second reduction portion can be formed in a flat shape or a curved shape. For example, the channel wall surface in the second reduction portion can be formed in a half cross section perpendicular to the flow direction, in a triangular shape such as an isosceles triangular shape, a quadrangular shape such as a trapezoidal shape, an arc shape, an elliptical shape, or the like.

その際さらに、内周側及び外周側で開口幅が減少する第二の減少部においては、流路の高さ方向の中間位置(例えば中央位置)から内周側に向かう開口幅の減少率が、外周側に向かう開口幅の減少率よりも大であることが望ましい。   At that time, in the second decreasing portion where the opening width decreases on the inner peripheral side and the outer peripheral side, the decreasing rate of the opening width from the intermediate position (for example, the central position) in the height direction of the flow path toward the inner peripheral side is It is desirable that it is larger than the decreasing rate of the opening width toward the outer peripheral side.

このように、第二の減少部における開口幅の減少率を内周側よりも外周側で小さくし、内外で非対称にすることにより、遠心力によって流体の偏りを生じやすい外周側において、流体の幅方向端部側への拡散移動容量を相対的に大きく確保することができる。これによって、流路高さ縮小部で発生する幅方向の流速分布の乱れ(不均等及び/又は非対称)を相対的に小さくすることができるので、幅方向の流速分布の均等化(対称化)に要する第二の減少部ひいては流路高さ縮小部の区間長(流れ方向の長さ)をさらに短縮することができる。なお、流路壁面が平面状であれば開口幅の減少率の大小は勾配の逆数の大小、曲面状であれば開口幅の減少率の大小は曲率の逆数(曲率半径)の大小に相当する。   As described above, the reduction rate of the opening width in the second reduction portion is smaller on the outer circumferential side than on the inner circumferential side, and is asymmetrical on the inner and outer sides, so that the fluid on the outer circumferential side where fluid bias is likely to occur due to centrifugal force. A relatively large diffusion movement capacity toward the end in the width direction can be ensured. As a result, the disturbance (unevenness and / or asymmetry) of the flow velocity distribution in the width direction that occurs in the flow path height reduction portion can be relatively reduced, so that the flow velocity distribution in the width direction is equalized (symmetrized). Therefore, the section length (length in the flow direction) of the second reduction portion and the flow path height reduction portion required for the above can be further shortened. If the flow path wall surface is flat, the magnitude of the reduction rate of the opening width corresponds to the reciprocal of the gradient, and if it is curved, the magnitude of the reduction ratio of the opening width corresponds to the magnitude of the reciprocal of the curvature (curvature radius). .

以上で述べた流量計においては、調整部の内周側及び外周側の流路壁面を計測用直線流路(流量計測区間)の長辺壁部の壁面とそれぞれ平行状に配置するとともに、流路高さ拡大部の流路の高さ方向の中央を、調整部の流路の高さ方向の中央よりも外周側又は内周側に偏って(オフセットして;齟齬して)配置することができる。   In the flowmeter described above, the inner and outer flow path wall surfaces of the adjustment unit are arranged in parallel with the wall surface of the long side wall part of the measurement linear flow channel (flow measurement section), and The center in the height direction of the flow path of the passage height expanding portion is arranged so as to be offset (offset; staggered) toward the outer peripheral side or the inner peripheral side with respect to the center of the adjustment portion in the height direction of the flow path. Can do.

流路高さ拡大部の高さ方向中央位置を調整部の高さ方向中央位置よりも外周側又は内周側に偏って配置することにより、流路高さ拡大部での高さ方向の流速分布の平滑化後に計測用直線流路(流量計測区間)にて計測すべき最大流速が、調整部の高さ方向中央位置の延長線上に出現しやすくなる。よって、高さ方向の流速分布の均等化(対称化)に要する流路高さ拡大部の区間長(流れ方向の長さ)を短縮することができる。なお、流路高さ拡大部の高さ方向中央位置を調整部の高さ方向中央位置に対して外周側又は内周側のいずれにオフセットさせるかは、調整部や流路高さ拡大部の形状(高さ等)に応じて定めればよい。その際、計測用直線流路(流量計測区間)における計測部(例えば一対の送受信振動子)の測線位置を調整部の高さ方向中央位置の延長線上に(一致させて)配置すれば、計測用直線流路(流量計測区間)を流れる被測定流体の最大流速を安定して計測できる。   By arranging the central position in the height direction of the flow path height enlargement part on the outer peripheral side or the inner peripheral side rather than the central position in the height direction of the adjustment part, the flow velocity in the height direction at the flow path height enlarged part The maximum flow velocity to be measured in the measurement straight flow path (flow rate measurement section) after smoothing the distribution is likely to appear on an extension line at the center position in the height direction of the adjustment unit. Therefore, the section length (length in the flow direction) of the flow path height enlarged portion required for equalization (symmetrization) of the flow velocity distribution in the height direction can be shortened. Whether the center position in the height direction of the flow path height expanding portion is offset to the outer peripheral side or the inner peripheral side with respect to the center position in the height direction of the adjusting section depends on whether the adjustment section or the flow path height expanding section is What is necessary is just to determine according to shape (height etc.). At that time, if the measurement line position of the measurement unit (for example, a pair of transmission / reception transducers) in the measurement straight flow path (flow rate measurement section) is arranged (matched) on the extension line of the center position in the height direction of the adjustment unit, measurement is performed. It is possible to stably measure the maximum flow velocity of the fluid to be measured flowing through the straight flow path (flow measurement section).

また、流路高さ拡大部の増大部は、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化し、
調整部は、少なくとも流路の高さ方向の内周側の後端部が、増大部において流れ方向下手側へ延出して延出部を形成することができる。
In addition, the increased portion of the flow channel height enlarged portion has the opening height of the flow channel increased and changed stepwise in the height direction on the outer peripheral side and the inner peripheral side,
In the adjusting portion, at least the rear end portion on the inner peripheral side in the height direction of the flow path can extend to the lower side in the flow direction at the increasing portion to form an extending portion.

このように、調整部の内周側の後端部が延出部を形成することによって、流体の流れ方向に平行な断面での高さ方向の流速分布の平滑化が、流路高さ拡大部にて短い区間長さ(流れ方向の長さ)で迅速に行われる。なお、その際同時に、増大部における流路の高さ方向の外周側の前端部が、調整部において流れ方向上手側へ突入して突入部を形成している場合には、上記した遠心力によって流体の偏りを生じやすい外周側において、調整部に形成される突入部に流体を部分的(かつ一時的)に滞留させて流速を遅らせることができ、上記した高さ方向の流速分布の平滑化を一層迅速に行うことができる。   As described above, the rear end portion on the inner peripheral side of the adjustment portion forms an extension portion, thereby smoothing the flow velocity distribution in the height direction in a cross section parallel to the fluid flow direction. It is performed quickly with a short section length (length in the flow direction) at the section. At the same time, when the front end portion on the outer peripheral side in the height direction of the flow path in the increasing portion rushes to the upper side in the flow direction in the adjusting portion to form a rush portion, the above centrifugal force causes On the outer peripheral side where fluid bias is likely to occur, fluid can be partially (and temporarily) retained in the intrusion part formed in the adjusting part to delay the flow velocity, and smoothing the above-mentioned flow velocity distribution in the height direction Can be performed more quickly.

例えば、延出部の流路壁面を、流れ方向下手側に向かうにつれて増大部における内周側及び/又は外周側の壁面に徐々に接近した後接触する曲面状に形成することができる。   For example, the flow path wall surface of the extending portion can be formed into a curved surface shape that gradually contacts the inner peripheral side and / or the outer peripheral side wall of the increasing portion as it goes toward the lower side in the flow direction.

これにより、増大部における内周側の壁部や外周側の壁部と延出部とが滑らかに接続され、調整部から流路高さ拡大部(増大部)への流体の流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   Thereby, the wall part of the inner peripheral side in the increase part, the wall part of the outer peripheral side, and the extension part are smoothly connected, and the flow of the fluid from the adjustment part to the flow path height enlargement part (increase part) is not obstructed. Therefore, the above-described flow velocity distribution in the height direction can be smoothly smoothed.

あるいは、延出部の流路壁面を、流れ方向下手側に向かうにつれて増大部における短辺側の壁面(短辺壁部)に徐々に接近した後接触する曲面状に形成することができる。   Alternatively, the flow path wall surface of the extending portion can be formed in a curved surface shape that gradually contacts the short side wall surface (short side wall portion) of the increasing portion as it goes toward the lower side in the flow direction.

これにより、増大部における短辺側の壁部(短辺壁部)と延出部とが滑らかに接続され、調整部から流路高さ拡大部(増大部)への流体の流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   Thereby, the short side wall part (short side wall part) and the extension part in the increasing part are smoothly connected, and the flow of fluid from the adjusting part to the flow path height expanding part (increasing part) is not obstructed. Therefore, the above-described flow velocity distribution in the height direction can be smoothly smoothed.

さらに、流路高さ縮小部には、流路の開口高さを高さ方向に分割する1又は複数の仕切部が流れ方向に沿って配置されていてもよい。   Furthermore, in the flow path height reducing part, one or a plurality of partition parts that divide the opening height of the flow path in the height direction may be arranged along the flow direction.

流路高さ縮小部の流路の開口高さを高さ方向に分割することによって、高さ方向の流速分布の乱れ(不均等及び/又は非対称)を相対的に小さくすることができるので、層流域(小流量)から乱流域(大流量)にわたって広範囲に高精度で流量を計測できる。   By dividing the opening height of the flow path of the flow path height reduction portion in the height direction, disturbance in the flow velocity distribution in the height direction (uneven and / or asymmetric) can be made relatively small. The flow rate can be measured with high accuracy over a wide range from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate).

そして、その仕切部は、表面が平滑な単一の板材により方向変換部と調整部とに跨って配置されるとともに、少なくとも調整部の高さ方向において外周側に偏って(オフセットして;齟齬して)位置することができる。   The partition portion is arranged across the direction changing portion and the adjustment portion by a single plate material having a smooth surface, and is at least offset (offset) on the outer peripheral side in the height direction of the adjustment portion. Can be located).

仕切部が調整部で外周側に偏って位置することにより、上記した遠心力によって流体の偏りを生じやすい外周側において、高さ方向の流速分布の乱れ(不均等及び/又は非対称)をさらに小さくすることができる。例えば、仕切部は、方向変換部では高さ方向の中央近傍に位置する一方、調整部では外周側に偏って位置することができる。   Since the partition part is biased toward the outer peripheral side by the adjusting part, the disturbance (unevenness and / or asymmetry) of the flow velocity distribution in the height direction is further reduced on the outer peripheral side where the fluid is likely to be biased by the centrifugal force. can do. For example, the partition portion can be located near the center in the height direction in the direction conversion portion, and can be located biased toward the outer peripheral side in the adjustment portion.

導入側流路と計測用直線流路(流量計測区間)とが直交状に配置され、計測用直線流路(流量計測区間)の開口高さ及び開口幅が流れ方向に対して一定に形成されていれば、流量計をコンパクトな箱型形状に形成できる。また、流路高さ拡大部で均等化(対称化)された流速分布が計測用直線流路(流量計測区間)でも安定して維持されるので、流量測定の精度が向上する。   The introduction-side flow path and the measurement straight flow path (flow rate measurement section) are arranged orthogonally, and the opening height and the opening width of the measurement straight flow path (flow measurement section) are formed constant with respect to the flow direction. If so, the flow meter can be formed in a compact box shape. In addition, since the flow velocity distribution equalized (symmetrized) at the flow path height enlarged portion is stably maintained even in the measurement straight flow path (flow rate measurement section), the accuracy of flow rate measurement is improved.

(全体構成)
次に、本発明の実施の形態を図面を用いて説明する。図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の全体斜視図を示す。この超音波流量計100(流量計)は、本体ユニット10と中間流路形成ユニット20と遮断弁30とから構成され、本体ユニット10は本体部11と蓋部17とからなる。
(overall structure)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall perspective view of an embodiment of an ultrasonic flow meter used as a general residential gas meter or the like. The ultrasonic flow meter 100 (flow meter) includes a main body unit 10, an intermediate flow path forming unit 20, and a shut-off valve 30, and the main body unit 10 includes a main body portion 11 and a lid portion 17.

図2は超音波流量計100の正面断面図を示し、図2のA−A断面図が図3に表わされている。図2に示すように、本体部11は全体として直方体形状を有し、その上面には、上流側のガス配管に接続される流入口12及び下流側のガス配管に接続される流出口13がそれぞれ開口している。また、その内部には、流入口12と流出口13との間にガス(流体)を通過させるための本体流路14が形成されている。本体部11の下部には、図2の背面側から手前側(嵌合方向)に向けて本体流路切除部15が形成され、この本体流路切除部15は、パッキン17a(シール材)を介し蓋部17によって外部から覆われている(図3参照)。本体部11の嵌合方向前方側(図2の手前側)の外面には、本体流路切除部15と連通する一対の窓孔16,16(図1参照)が開口している。   FIG. 2 is a front sectional view of the ultrasonic flowmeter 100, and the AA sectional view of FIG. 2 is shown in FIG. As shown in FIG. 2, the main body 11 has a rectangular parallelepiped shape as a whole, and an inlet 12 connected to the upstream gas pipe and an outlet 13 connected to the downstream gas pipe are formed on the upper surface thereof. Each is open. In addition, a main body flow path 14 for allowing a gas (fluid) to pass between the inflow port 12 and the outflow port 13 is formed therein. A main body flow path cutting portion 15 is formed in the lower part of the main body portion 11 from the back side in FIG. 2 toward the front side (fitting direction). The main body flow path cutting portion 15 is provided with a packing 17a (seal material). It is covered from the outside by the cover part 17 (refer FIG. 3). A pair of window holes 16, 16 (see FIG. 1) communicating with the main body flow path cutting portion 15 are opened on the outer surface of the main body portion 11 on the front side in the fitting direction (front side in FIG. 2).

図3に示すように、中間流路形成ユニット20の内部には、本体部11の本体流路切除部15にガスの流れ方向と直交する方向(嵌合方向)から嵌合したときに本体流路14と接続される中間流路21が貫通形成されている。この中間流路21は、本体流路14と滑らかに連続する上下方向の入口側連結流路21b(導入側流路),出口側連結流路21c(導出側流路)と、両端で両連結流路21b,21cと連なるとともに、本体流路14とほぼ直交する形態で本体部11の下面に沿って配設される水平方向の直線状中間流路21a(計測用直線流路)とから構成されている(図2参照)。また、中間流路形成ユニット20には、本体部11に開口する一対の窓孔16,16に対応して嵌合方向の前方側に一対の突出部22,22がそれぞれ一体形成されている。   As shown in FIG. 3, when the intermediate flow path forming unit 20 is fitted into the main body flow path cutting section 15 of the main body section 11 from a direction (fitting direction) perpendicular to the gas flow direction, An intermediate flow path 21 connected to the path 14 is formed through. The intermediate flow path 21 is connected to the main body flow path 14 in a vertically continuous inlet-side connection flow path 21b (introduction-side flow path) and outlet-side connection flow path 21c (outflow-side flow path). Consists of a horizontal linear intermediate flow channel 21a (measurement linear flow channel) that is continuous with the flow channels 21b and 21c and is disposed along the lower surface of the main body 11 in a form substantially orthogonal to the main body flow channel 14. (See FIG. 2). Further, the intermediate flow path forming unit 20 is integrally formed with a pair of projecting portions 22 and 22 on the front side in the fitting direction corresponding to the pair of window holes 16 and 16 opened in the main body portion 11.

さらに、中間流路形成ユニット20の一対の突出部22,22には、直線状中間流路21aにおける超音波計測区間21a1(流量計測区間)を通過するガスの流量を測定するために、超音波センサ23の一対の送受信振動子23a,23bがそれぞれ着脱可能に取り付けられている。直線状中間流路21aの軸直交断面積(流路断面積)を本体流路14や入口側連結流路21bの軸直交断面積(流路断面積)よりも小とし(絞り)、流れ方向に対して一定の大きさに形成する。これによって、直線状中間流路21aを流れるガスの流速を速くして一定に保持し、超音波センサ23による流量(流速)の測定精度が高くなるようにしている。なお、流入口12と中間流路21との間の本体流路14には、本体流路14のガスの流れを遮断する遮断弁30が設けられている(図2参照)。   Further, the pair of projecting portions 22 and 22 of the intermediate flow path forming unit 20 includes ultrasonic waves for measuring the flow rate of the gas passing through the ultrasonic measurement section 21a1 (flow measurement section) in the linear intermediate flow path 21a. A pair of transmission / reception vibrators 23a and 23b of the sensor 23 are detachably attached. The axial orthogonal cross-sectional area (flow-path cross-sectional area) of the straight intermediate flow path 21a is made smaller (throttle) than the axial-perpendicular cross-sectional area (flow-path cross-sectional area) of the main body flow path 14 and the inlet-side connecting flow path 21b. Are formed in a certain size. As a result, the flow rate of the gas flowing through the linear intermediate flow path 21a is increased and kept constant, and the measurement accuracy of the flow rate (flow rate) by the ultrasonic sensor 23 is increased. The main body flow path 14 between the inlet 12 and the intermediate flow path 21 is provided with a shut-off valve 30 that blocks the gas flow in the main body flow path 14 (see FIG. 2).

したがって、図3において、中間流路21が本体流路14と連通するように中間流路形成ユニット20を本体部11の本体流路切除部15に嵌合すると、各突出部22,22が本体部11の各窓孔16,16からそれぞれ外部に突出する。そして、各突出部22,22はパッキン16a(シール材)を介し各窓孔16,16をそれぞれ密閉する。さらに、超音波センサ23の各送受信振動子23a,23bは、各突出部22,22の収容孔22a,22bにそれぞれ外部から挿入され、取付ねじ(取付部材;図示せず)や押圧板(押圧部材;図示せず)によって着脱可能に固定されている。   Therefore, in FIG. 3, when the intermediate flow path forming unit 20 is fitted to the main body flow path cutting portion 15 of the main body portion 11 so that the intermediate flow path 21 communicates with the main body flow path 14, the protrusions 22, 22 become the main body. Projecting from the window holes 16 and 16 of the portion 11 to the outside. And each protrusion part 22 and 22 seals each window hole 16 and 16 via packing 16a (sealing material), respectively. Further, the transmission / reception transducers 23a and 23b of the ultrasonic sensor 23 are inserted from the outside into the receiving holes 22a and 22b of the protrusions 22 and 22, respectively, and are attached to a mounting screw (a mounting member; not shown) or a pressing plate (pressing). It is detachably fixed by a member (not shown).

図3に示すように、直線状中間流路21a(超音波計測区間21a1)は、流路の幅方向(本体流路切除部15への嵌合方向;奥行方向)を長辺L、流路の高さ方向(上下方向)を短辺S(図2参照)とする矩形状に形成されている。そして、超音波センサ23は次のような反射型V字配列に構成されている。すなわち、超音波計測区間21a1(直線状中間流路21a)の流れ方向直交断面において、嵌合方向前方側の短辺Sを形成する短辺壁部21dの取付壁面に、送受信振動子23a,23bが流れ方向に所定距離Wを隔てて取り付けられ、嵌合方向後方側の短辺Sを形成する短辺壁部の壁面を反射面21eとする。   As shown in FIG. 3, the linear intermediate flow path 21a (ultrasonic measurement section 21a1) has a long side L in the width direction of the flow path (the fitting direction to the main body flow cut section 15; the depth direction). Are formed in a rectangular shape having a short side S (see FIG. 2) in the height direction (vertical direction). The ultrasonic sensor 23 is configured in the following reflective V-shaped arrangement. That is, in the orthogonal cross section in the flow direction of the ultrasonic measurement section 21a1 (linear intermediate flow path 21a), the transmitting / receiving vibrators 23a and 23b are attached to the mounting wall surface of the short side wall portion 21d that forms the short side S on the front side in the fitting direction. Are attached at a predetermined distance W in the flow direction, and the wall surface of the short side wall portion that forms the short side S on the rear side in the fitting direction is defined as a reflection surface 21e.

図1に戻り、超音波センサ23の送受信振動子23a,23b(センサ素子)で得られた出力信号は、リード線25,25を介して流量演算処理回路24に送信されてガス流量が算出され、流量表示部(図示せず)等を用いて報知される。これらの送受信振動子23a,23b、流量演算処理回路24、リード線25,25、流量表示部等は流量測定部Mを構成している。リード線25,25は、窓孔16,16から外部に突出して設けられる超音波センサ23(送受信振動子23a,23b)から引き出されるので、その芯線部を通じて測定ガスが外部に漏れ出して、気密性が不十分となったり、測定精度が低下したりすることがない。このように、本体部11・蓋部17・中間流路形成ユニット20の三者の気密性が確保され、リード線25,25が流路外に位置するので、漏れ出したガスに電気部品の火花が引火して火災が発生することもない。なお、入口側連結流路21bと直線状中間流路21aとの間には、流路内での測定ガス流の乱れを抑え速度分布を均一化するための整流素子(整流部材)は設けられていない(図2,図3参照)。   Returning to FIG. 1, the output signals obtained by the transmission / reception transducers 23 a and 23 b (sensor elements) of the ultrasonic sensor 23 are transmitted to the flow rate calculation processing circuit 24 via the lead wires 25 and 25 to calculate the gas flow rate. The notification is made using a flow rate display unit (not shown) or the like. The transmission / reception vibrators 23a and 23b, the flow rate calculation processing circuit 24, the lead wires 25 and 25, the flow rate display unit, and the like constitute a flow rate measurement unit M. Since the lead wires 25 and 25 are drawn out from the ultrasonic sensor 23 (transmission / reception transducers 23a and 23b) provided to project outside from the window holes 16 and 16, the measurement gas leaks to the outside through the core wire portion and is airtight. Therefore, there is no insufficiency and measurement accuracy is not lowered. Thus, the airtightness of the three parts of the main body part 11, the lid part 17, and the intermediate flow path forming unit 20 is ensured, and the lead wires 25 and 25 are located outside the flow path. There will be no fire caused by sparks. Note that a rectifying element (rectifying member) is provided between the inlet-side connecting flow path 21b and the straight intermediate flow path 21a to suppress the disturbance of the measurement gas flow in the flow path and make the speed distribution uniform. (See FIGS. 2 and 3).

(超音波センサの配置変形例)
以上の全体構成においては、超音波センサ(送受信部)の配置と超音波ビームの通る径路(測線という)として反射型V字配列を採用した場合について説明した。反射型V字配列では、一対の送受信部を流れ方向に沿って同じ側に集中配置できるので、送受信部の着脱を同じ方向から行える利点がある。超音波流量計における超音波センサ(送受信部)の測線方式には、反射型V字配列の他にも多くの種類が知られている。他の測線方式に対する本発明の適用例について以下に説明する。
(Arrangement modification of ultrasonic sensor)
In the overall configuration described above, a case has been described in which a reflective V-shaped array is employed as an arrangement of ultrasonic sensors (transmission / reception units) and a path (referred to as a survey line) through which an ultrasonic beam passes. In the reflective V-shaped arrangement, the pair of transmission / reception units can be concentrated on the same side along the flow direction, so that there is an advantage that the transmission / reception units can be attached and detached from the same direction. In addition to the reflective V-shaped array, many types are known for the line measuring method of the ultrasonic sensor (transmission / reception unit) in the ultrasonic flowmeter. Examples of application of the present invention to other line survey methods will be described below.

(1)透過型Z配列(図4(a))
一方の送受信部123aから発せられた超音波を流れ方向に沿って所定距離離間して配置された他方の送受信部123bで受信する方式である。この方式では、一方の送受信部123aと他方の送受信部123bとは流れ方向の両側に分離して配置される。
(1) Transmission type Z arrangement (FIG. 4A)
In this method, ultrasonic waves emitted from one transmission / reception unit 123a are received by the other transmission / reception unit 123b arranged at a predetermined distance in the flow direction. In this method, one transmission / reception unit 123a and the other transmission / reception unit 123b are arranged separately on both sides in the flow direction.

(2)透過型V字配列(図4(b))
1個の送信部223aから発せられた超音波を流れ方向に沿って所定距離離間して配置された一対の受信部223b,223bで受信する方式である。この方式では、送信部223aと受信部223b,223bとは流れ方向の両側に分離して配置される。
(2) Transmission type V-shaped array (FIG. 4B)
In this method, ultrasonic waves emitted from one transmitter 223a are received by a pair of receivers 223b and 223b arranged at a predetermined distance in the flow direction. In this method, the transmission unit 223a and the reception units 223b and 223b are arranged separately on both sides in the flow direction.

(3)交差型X配列(図4(c))
流れ方向に沿って所定距離離間して配置された一対の送信部323a,323aから発せられた超音波を流れ方向に沿って所定距離離間して配置された一対の受信部323b,323bで受信する方式である。この方式は上記した図4(b)の方式において、送信部を1個から一対に増設したものに相当する。
(3) Crossed X array (FIG. 4 (c))
The ultrasonic waves emitted from the pair of transmitters 323a and 323a arranged at a predetermined distance along the flow direction are received by the pair of receivers 323b and 323b arranged at a predetermined distance along the flow direction. It is a method. This method corresponds to the method of FIG. 4 (b) described above in which one transmission unit is added as a pair.

本発明の流量計では、いずれの超音波センサの配置方式(測線方式)を採用しても等価であるから、以下の実施例においては、透過型Z配列を用いて説明する。   Since the flowmeter of the present invention is equivalent to any ultrasonic sensor arrangement method (measurement line method), in the following embodiments, description will be made using a transmission Z array.

なお、以上の全体構成及び超音波センサの配置変形例においては、本体ユニット10が、本体流路14を内部に有する本体部11と、本体部11を外部から覆う蓋部17とから構成される場合についてのみ説明したが、本体ユニット10は次のような構成であってもよい。すなわち、本体ユニットは半割り状の本体流路を各々有する第一本体部と第二本体部とを合掌構成してもよい。ただし、この場合には窓孔は第一本体部と第二本体部とのうち少なくともいずれか一方に設けられ、蓋部は設けても設けなくてもよい。   In the overall configuration and the ultrasonic sensor arrangement modification described above, the main body unit 10 includes the main body portion 11 having the main body flow path 14 therein and the lid portion 17 that covers the main body portion 11 from the outside. Although only the case has been described, the main unit 10 may be configured as follows. In other words, the main body unit may be configured such that the first main body portion and the second main body portion each having a half-shaped main body flow path are combined. However, in this case, the window hole is provided in at least one of the first main body and the second main body, and the lid may or may not be provided.

(実施例1)
次に、図5は図2における中間流路の流路構成の第1実施例を示す斜視図及び正面図、図6は図5(b)の要部を拡大して小流量時及び大流量時の流速分布を示す説明図である。図5に示す中間流路21において、ほぼ直交状に配置される入口側連結流路21b(本体流路14)と直線状中間流路21aとの間には、流路高さ縮小部210及び流路高さ拡大部213が流れ方向上手側から下手側に向ってこの順に接続形成されている。流路高さ縮小部210は、流れ方向上手側から方向転換部211と調整部212とを含み、流路の開口高さが入口側連結流路21bよりも小さく接続形成されている。
Example 1
5 is a perspective view and a front view showing the first embodiment of the flow path configuration of the intermediate flow path in FIG. 2, and FIG. 6 is an enlarged view of the main part of FIG. It is explanatory drawing which shows the flow velocity distribution at the time. In the intermediate flow path 21 shown in FIG. 5, between the inlet-side connection flow path 21b (main flow path 14) and the straight intermediate flow path 21a arranged substantially orthogonally, the flow path height reducing portion 210 and The channel height enlarged portion 213 is connected and formed in this order from the upper side to the lower side in the flow direction. The flow path height reducing part 210 includes a direction changing part 211 and an adjusting part 212 from the upper side in the flow direction, and the opening height of the flow path is smaller than that of the inlet side connecting flow path 21b.

方向転換部211は、ほぼ下向きに配置された入口側連結流路21bの出口側末端部に続いて、ガスの流れを約90°方向転換させるように、外周側と内周側とが湾曲形態に形成されている。この方向転換部211は、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部211aを有し、流路の外周側及び内周側が直線状中間流路21a(超音波計測区間21a1)の長辺壁部21fに連なっている。また、調整部212は、方向転換部211の出口側末端部に続く形で接続形成され、ガスの流れ方向をほぼ水平方向に揃える。さらに、流路高さ拡大部213は、調整部212に続いて、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部213aを有するとともに、直線状中間流路21a(超音波計測区間21a1)に接続されている。なお、流路高さ拡大部213の流路の高さ方向の中央位置O1は、調整部212の流路の高さ方向の中央位置O2と一致している。また、流路高さ拡大部213の中央位置O1は、超音波センサ23の送受信振動子123a,123bの測線位置、及び超音波計測区間21a1(直線状中間流路21a)の高さ方向の中央位置とも一致している。さらに、調整部212の内周側及び外周側の流路壁面は、直線状中間流路21a(超音波計測区間21a1)の長辺壁部21fの壁面とそれぞれ平行状に配置されている。   The direction changing portion 211 is curved at the outer peripheral side and the inner peripheral side so as to change the direction of the gas flow by about 90 ° following the outlet side end portion of the inlet side connecting flow path 21b arranged substantially downward. Is formed. The direction changing portion 211 has a decreasing portion 211a in which the opening height of the flow path decreases toward the lower side in the flow direction, and the outer peripheral side and the inner peripheral side of the flow path are linear intermediate flow paths 21a (ultrasonic measurement section). 21a1) is connected to the long side wall portion 21f. Moreover, the adjustment part 212 is connected and formed in the form which follows the exit side terminal part of the direction change part 211, and aligns the flow direction of a gas in a substantially horizontal direction. Furthermore, the flow path height enlarging unit 213 has an increase unit 213a that, following the adjustment unit 212, has an opening 213a in which the flow channel opening height increases and changes stepwise in the height direction on the outer peripheral side and the inner peripheral side. The linear intermediate flow path 21a (ultrasonic measurement section 21a1) is connected. The central position O1 in the height direction of the flow path of the flow path height expanding portion 213 coincides with the central position O2 in the height direction of the flow path of the adjusting portion 212. The center position O1 of the flow path height expanding portion 213 is the center position in the height direction of the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) and the line measurement position of the transmission / reception transducers 123a and 123b of the ultrasonic sensor 23. It also matches the position. Furthermore, the inner and outer flow path wall surfaces of the adjustment unit 212 are arranged in parallel with the wall surface of the long side wall part 21f of the linear intermediate flow path 21a (ultrasonic measurement section 21a1).

そして、流路高さ縮小部210における減少部211a及び調整部212と、流路高さ拡大部213における増大部213aとによって、超音波計測区間21a1(直線状中間流路21a)において高さ方向での流速分布が均等化及び対称化される。   In the ultrasonic measurement section 21a1 (linear intermediate flow path 21a), the height direction in the ultrasonic measurement section 21a1 (the linear intermediate flow path 21a) is reduced by the decrease part 211a and the adjustment part 212 in the flow path height reduction part 210 and the increase part 213a in the flow path height enlargement part 213. The flow velocity distribution at is equalized and symmetrized.

具体的には、流路高さ縮小部210では、方向転換部211の外周側に沿ってガスが流れる際に作用する遠心力によって減少部211aの外周側と内周側とでガスの流れ方向及び最大流速が偏るのを、調整部212により流れ方向がほぼ水平方向に揃えられる。また、流路高さ拡大部213では、増大部213aでの整流作用によって(整流素子等の整流部材を配置せずにすむので)圧力損失の上昇を抑制しつつ高さ方向の流速分布が平滑化される。その結果、超音波計測区間21a1(直線状中間流路21a)において、高さ方向の流速分布が均等化及び対称化される。   Specifically, in the flow path height reducing unit 210, the gas flow direction between the outer peripheral side and the inner peripheral side of the reducing unit 211a due to the centrifugal force acting when the gas flows along the outer peripheral side of the direction changing unit 211. In addition, the adjustment unit 212 adjusts the flow direction to be substantially horizontal so that the maximum flow velocity is biased. Further, in the flow path height expanding portion 213, the flow velocity distribution in the height direction is smoothed while suppressing an increase in pressure loss by rectifying action in the increasing portion 213a (since it is not necessary to arrange a rectifying member such as a rectifying element). It becomes. As a result, the flow velocity distribution in the height direction is equalized and symmetrized in the ultrasonic measurement section 21a1 (linear intermediate flow path 21a).

以上のように流路構成されているので、この流路内のガスの流れは図6のようになる。   Since the flow path is configured as described above, the gas flow in the flow path is as shown in FIG.

方向転換部211へ流入したガスは、下向き(上下方向)の入口側連結流路21bから横向き(水平方向)の直線状中間流路21aへ方向転換する途上にあるため、斜め下向き(中間方向)の速度成分が大きい。このような速度成分を有するガスは、方向転換部211(減少部211a)の外周側に沿って流れ方向下流側へ移動していくため、その流れ方向は方向転換部211の末端位置に達しても依然として不揃いで不安定な状態にある。また、方向転換部211の末端位置において高さ方向の流速分布は、外周側ほど流速が大きくなり、不均等(非対称)な状態にある。このように、方向転換部211(減少部211a)では流れ方向が不安定で流速が不均等(非対称)な流れ(偏流)が発生している。   Since the gas that has flowed into the direction changing section 211 is in the process of turning from the downward (vertical direction) inlet-side connecting flow path 21b to the horizontal (horizontal direction) linear intermediate flow path 21a, the gas is inclined downward (intermediate direction). The speed component of is large. Since the gas having such a velocity component moves to the downstream side in the flow direction along the outer peripheral side of the direction changing portion 211 (decreasing portion 211a), the flow direction reaches the end position of the direction changing portion 211. Are still uneven and unstable. Further, the flow velocity distribution in the height direction at the end position of the direction changing portion 211 has a non-uniform (asymmetric) state in which the flow velocity increases toward the outer peripheral side. Thus, in the direction change part 211 (decrease part 211a), the flow direction is unstable and the flow rate is uneven (asymmetric) (uneven flow) is generated.

例えば、小流量時(低速時;層流域)には、方向転換部211の外周側に沿ってガスが流れる際の遠心力は比較的小さい。したがって、小流量時の流速分布は、図6(a)に示すように、調整部212においては高さ方向の中央位置O1付近で突出する擬似二等辺三角形状を呈するが、流路高さ拡大部213では比較的早くに高さ方向に均等化及び対称化した扇状(又は弧状あるいは放物線状)となる。一方、大流量時(高速時;乱流域)には、方向転換部211の外周側に沿ってガスが流れる際の遠心力は比較的大きい。したがって、大流量時の流速分布は、図6(b)に示すように、調整部212においては高さ方向の中央位置O1よりも下方で突出する擬似直角三角形状を呈するので、流路高さ拡大部213ではやや遅れて高さ方向に均等化及び対称化したバスタブ状(又はコの字状)となる。   For example, when the flow rate is small (low speed; laminar flow region), the centrifugal force when the gas flows along the outer peripheral side of the direction changing portion 211 is relatively small. Therefore, as shown in FIG. 6A, the flow velocity distribution at the small flow rate has a pseudo isosceles triangle shape protruding near the central position O1 in the height direction in the adjustment unit 212, but the flow path height is increased. The portion 213 becomes fan-shaped (or arc-shaped or parabolic) equalized and symmetric in the height direction relatively quickly. On the other hand, at the time of a large flow rate (at high speed; turbulent flow region), the centrifugal force when the gas flows along the outer peripheral side of the direction changing portion 211 is relatively large. Therefore, as shown in FIG. 6B, the flow velocity distribution at the time of a large flow rate exhibits a pseudo right triangle shape that protrudes below the center position O1 in the height direction in the adjustment unit 212. The enlarged portion 213 has a bathtub shape (or a U-shape) that is slightly delayed and equalized and symmetric in the height direction.

このように、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部213a(流路高さ拡大部213)を通る間に、高さ方向での流速分布の偏りの影響が緩和され、均等化及び対称化される。すなわち、方向転換部211(減少部211a)で発生する偏流が、調整部212を経由し、流路高さ拡大部213(増大部213a)で開放されることによって、高さ方向の中央位置付近に流速分布のピーク(最大流速)を持つ流れに矯正される。したがって、一対の送受信振動子123a,123bの測線を流路高さ拡大部213での高さ方向の流速分布の中央位置O1に配置し、超音波計測区間21a1(直線状中間流路21a)を流れるガスの最大流速を安定して計測することができる。よって、ガスの種別や温度変化に伴って粘性(動粘性係数)が変化しても、層流域(小流量)から乱流域(大流量)にわたって常にガスの対称性が確保され、広範囲に高精度で流量を計測できる。   In this way, while passing through the increasing portion 213a (the channel height expanding portion 213) in which the opening height of the channel increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side, the height direction The effect of the deviation in the flow velocity distribution at the center is alleviated and equalized and symmetrized. That is, the drift generated in the direction changing section 211 (decreasing section 211a) is opened by the flow path height expanding section 213 (increasing section 213a) via the adjusting section 212, so that the vicinity of the center position in the height direction The flow is corrected to a flow having a peak (maximum flow velocity). Therefore, the measurement lines of the pair of transmission / reception vibrators 123a and 123b are arranged at the center position O1 of the flow velocity distribution in the height direction in the flow path height expanding portion 213, and the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) is provided. The maximum flow velocity of the flowing gas can be measured stably. Therefore, even if the viscosity (kinematic viscosity coefficient) changes with the type of gas and temperature, the symmetry of the gas is always secured from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate), and high accuracy over a wide range. Can measure the flow rate.

そして、減少部211a(方向変換部211)では流れ方向下手側ほど流路の開口高さが減少し、かつ整流素子のような整流手段を調整部212等の流れ方向下手側の流路中に配置する必要がないため、圧力損失が抑制され、乱流域での測定範囲の一層の拡大を図ることができる。また、整流手段を設けないため超音波流量計100のコスト低減を図ることもできる。   In the reduction part 211a (direction changing part 211), the opening height of the flow path decreases toward the lower side in the flow direction, and a rectifying means such as a rectifying element is placed in the flow path on the lower side in the flow direction such as the adjustment part 212. Since it is not necessary to arrange, pressure loss is suppressed and the measurement range in the turbulent region can be further expanded. Further, since no rectifying means is provided, the cost of the ultrasonic flowmeter 100 can be reduced.

(実施例2)
図7は中間流路の流路構成の第2実施例を示す斜視図及び正面図である。図7に示す中間流路21において、方向転換部211は外周側が湾曲形態に形成され、流路の開口高さが流れ方向下手側に向かうにつれて減少する第一の減少部211aを有している。また、調整部212は、流路の開口高さHが幅方向端部側に向かうにつれて減少する第二の減少部212aを有している。
(Example 2)
FIG. 7 is a perspective view and a front view showing a second embodiment of the flow path configuration of the intermediate flow path. In the intermediate flow path 21 shown in FIG. 7, the direction changing portion 211 has a first decreasing portion 211 a that is formed in a curved shape on the outer peripheral side and decreases as the opening height of the flow path becomes lower in the flow direction. . Moreover, the adjustment part 212 has the 2nd reduction part 212a which decreases as the opening height H of a flow path goes to the width direction edge part side.

具体的には、第二の減少部212aは、調整部212の流路の高さ方向の中央位置O2(流路高さ拡大部213の流路の高さ方向の中央位置O1と一致する)から内周側に向かうにつれて、流路の開口幅Wが連続的に減少するように形成されている。そして、図7に示す第二の減少部212aでは、その流路壁面は流れ方向に直交する断面にて、調整部212の中央位置O2から内周側に向かうにつれて流路の開口幅Wが連続的に減少する台形状に形成されている。   Specifically, the second decreasing portion 212a is a central position O2 in the height direction of the flow path of the adjustment section 212 (matches a central position O1 in the height direction of the flow path of the flow path height expanding portion 213). The opening width W of the flow path is formed so as to continuously decrease from the center toward the inner peripheral side. And in the 2nd reduction | decrease part 212a shown in FIG. 7, the flow path wall surface is the cross section orthogonal to a flow direction, and the opening width W of a flow path is continuous as it goes to the inner peripheral side from the center position O2 of the adjustment part 212. The trapezoid shape is reduced.

そして、流路高さ縮小部210における第一の減少部211a、第二の減少部212a及び調整部212と、流路高さ拡大部213における増大部213aとによって、直線状中間流路21aにおいて流体の流れ方向に直交する方向での流速分布が均等化及び対称化される。   In the linear intermediate flow path 21a, the first reduction part 211a, the second reduction part 212a and the adjustment part 212 in the flow path height reduction part 210 and the increase part 213a in the flow path height enlargement part 213 are combined. The flow velocity distribution in the direction orthogonal to the fluid flow direction is equalized and symmetrized.

具体的には、流路高さ縮小部210では、方向転換部211の外周側に沿ってガスが流れる際の遠心力によって第一の減少部211aの外周側と内周側とでガスの流れ方向及び最大流速が偏るのを、調整部212により流れ方向がほぼ水平方向に揃えられる。そして、第一の減少部211aにてガスが幅方向端部側へ拡散移動し、流れ方向に直交する断面での幅方向及び高さ方向の流速分布が中央でくびれた楕円形(例えば繭型形状)になろうとするのを、第二の減少部212aにより阻止(抑制)してくびれのない楕円形が維持される(図7(a)の拡大断面図参照)。また、流路高さ拡大部213では、増大部213aにより圧力損失を抑制しつつ高さ方向の流速分布が平滑化される。その結果、超音波計測区間21a1(直線状中間流路21a)において、高さ方向の流速分布が均等化及び対称化される(図6参照)。   Specifically, in the flow path height reducing unit 210, the gas flows between the outer peripheral side and the inner peripheral side of the first reducing unit 211a by centrifugal force when the gas flows along the outer peripheral side of the direction changing unit 211. The direction of flow and the maximum flow velocity are biased so that the flow direction is aligned in a substantially horizontal direction by the adjustment unit 212. Then, the gas is diffused and moved toward the end in the width direction at the first reduction portion 211a, and the flow velocity distribution in the width direction and the height direction in the cross section orthogonal to the flow direction is constricted at the center (for example, a bowl shape). The second ellipse 212a is prevented (suppressed) from attempting to become a shape, and an elliptical shape without any constriction is maintained (see the enlarged sectional view of FIG. 7A). Further, in the flow path height expanding portion 213, the flow velocity distribution in the height direction is smoothed while the pressure loss is suppressed by the increasing portion 213a. As a result, the flow velocity distribution in the height direction is equalized and symmetrized in the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) (see FIG. 6).

このように、第一の減少部211aにて流路の開口高さが減少することに応じて、方向変換部211内のガスは幅方向端部側へ拡散移動しようとするが、その移動は第二の減少部212aによって阻止(抑制)されるので、幅方向の流速分布を円滑に均等化(対称化)することができる。また、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部213a(流路高さ拡大部213)を通る間に、高さ方向での流速分布の偏りの影響が緩和され、均等化及び対称化される。すなわち、方向転換部211(第一の減少部211a)で発生する偏流が、第二の減少部212a及び調整部212を経由し、流路高さ拡大部213(増大部213a)で開放されることによって、高さ方向の中央位置付近に流速分布のピーク(最大流速)を持つ流れに矯正される。したがって、一対の送受信振動子123a,123bの測線を流路高さ拡大部213での高さ方向の流速分布の中央位置O1に配置し、超音波計測区間21a1(直線状中間流路21a)を流れるガスの最大流速を安定して計測することができる。よって、ガスの種別や温度変化に伴って粘性(動粘性係数)が変化しても、層流域(小流量)から乱流域(大流量)にわたって常にガスの対称性が確保され、広範囲に高精度で流量を計測できる。   Thus, in response to the opening height of the flow path being reduced in the first reducing portion 211a, the gas in the direction changing portion 211 tends to diffuse and move toward the end in the width direction. Since it is blocked (suppressed) by the second reduction portion 212a, the flow velocity distribution in the width direction can be equalized (symmetrized) smoothly. In addition, while passing through the increasing portion 213a (the channel height expanding portion 213) in which the opening height of the channel increases and changes stepwise in the height direction on the outer peripheral side and the inner peripheral side, The effect of uneven flow velocity distribution is mitigated and equalized and symmetrized. That is, the drift generated in the direction changing portion 211 (first decreasing portion 211a) is released by the channel height expanding portion 213 (increasing portion 213a) via the second decreasing portion 212a and the adjusting portion 212. As a result, the flow is corrected to have a flow velocity distribution peak (maximum flow velocity) near the center in the height direction. Therefore, the measurement lines of the pair of transmission / reception vibrators 123a and 123b are arranged at the center position O1 of the flow velocity distribution in the height direction in the flow path height expanding portion 213, and the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) is provided. The maximum flow velocity of the flowing gas can be measured stably. Therefore, even if the viscosity (kinematic viscosity coefficient) changes with the type of gas and temperature, the symmetry of the gas is always secured from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate), and high accuracy over a wide range. Can measure the flow rate.

さらに、第二の減少部212aは、調整部212の流路の高さ方向の中央位置O2から内周側に向かうにつれて、流路の開口幅Wが連続的に減少するように形成されているので、幅方向の流速分布の均等化(対称化)に要する第二の減少部212aひいては流路高さ縮小部210の区間長さ(流れ方向の長さ)が短縮される。   Furthermore, the second reduction portion 212a is formed such that the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the flow path of the adjustment section 212 toward the inner peripheral side. Therefore, the second reduction part 212a required for equalization (symmetrization) of the flow velocity distribution in the width direction, and thus the section length (length in the flow direction) of the flow path height reduction part 210 is shortened.

(実施例3)
図8は中間流路の流路構成の第3実施例を示す斜視図及び正面図である。図8に示す第二の減少部212aでは、その流路壁面は流れ方向に直交する断面にて、調整部212の中央位置O2から内周側に向かうにつれて流路の開口幅W(図7参照)が連続的に減少する円弧状(又は楕円状)に形成されている。
(Example 3)
FIG. 8 is a perspective view and a front view showing a third embodiment of the flow path configuration of the intermediate flow path. In the second reduction portion 212a shown in FIG. 8, the flow path wall surface is a cross section orthogonal to the flow direction, and the flow path opening width W (see FIG. 7) from the central position O2 of the adjustment section 212 toward the inner peripheral side. ) Is formed in an arc shape (or an ellipse shape) that continuously decreases.

(実施例4)
図9は中間流路の流路構成の第4実施例を示す斜視図及び正面図である。図9に示す第二の減少部212aでは、その流路壁面は流れ方向に直交する断面にて、調整部212の中央位置O2から内周側に向かうにつれて流路の開口幅W(図7参照)が連続的に減少する二等辺三角形状に形成されている。
Example 4
FIG. 9 is a perspective view and a front view showing a fourth embodiment of the flow path configuration of the intermediate flow path. In the second decreasing portion 212a shown in FIG. 9, the flow passage wall surface is a cross section orthogonal to the flow direction, and the opening width W of the flow passage is increased from the central position O2 of the adjustment portion 212 toward the inner peripheral side (see FIG. 7). ) Is formed in an isosceles triangle shape that continuously decreases.

(実施例5)
図10は中間流路の流路構成の第5実施例を示す斜視図及び要部拡大図である。図10に示す第二の減少部212aは、調整部212の流路の高さ方向の中央位置O2(図5参照)から内周側及び外周側に向かうにつれて、流路の開口幅Wがそれぞれ連続的に減少するように形成されている。その際、第二の減少部212aは、上記中央位置O2から内周側に向かう開口幅の減少率が、外周側に向かう開口幅の減少率よりも大になるように非対称形状に形成されている。
(Example 5)
FIG. 10 is a perspective view and a main part enlarged view showing a fifth embodiment of the flow path configuration of the intermediate flow path. The second decreasing part 212a shown in FIG. 10 has an opening width W of the flow path from the central position O2 (see FIG. 5) in the height direction of the flow path of the adjustment part 212 toward the inner peripheral side and the outer peripheral side. It is formed so as to continuously decrease. At that time, the second decreasing portion 212a is formed in an asymmetric shape so that the decreasing rate of the opening width from the central position O2 toward the inner peripheral side is larger than the decreasing rate of the opening width toward the outer peripheral side. Yes.

具体的には、第二の減少部212aの内周側には、調整部212の中央位置O2から内周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)の内周側減少部212a1が形成されている。一方、第二の減少部212aの外周側にも、調整部212の中央位置O2から外周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)の外周側減少部212a2が形成されている。そして、内周側減少部212a1の開口幅Wの減少率(曲率の逆数すなわち曲率半径)は、外周側減少部212a2の開口幅Wの減少率よりも大である。   Specifically, on the inner peripheral side of the second reducing portion 212a, an arc shape (or an elliptical shape) in which the opening width W of the flow path continuously decreases from the central position O2 of the adjusting portion 212 toward the inner peripheral side. ) Of the inner peripheral side reduced portion 212a1. On the other hand, on the outer peripheral side of the second reducing portion 212a, the arc-shaped (or elliptical) outer peripheral side decrease in which the opening width W of the flow path continuously decreases from the central position O2 of the adjusting unit 212 toward the outer peripheral side. A portion 212a2 is formed. The reduction rate (the reciprocal of the curvature, that is, the radius of curvature) of the opening width W of the inner peripheral side reduction portion 212a1 is larger than the reduction rate of the opening width W of the outer peripheral side reduction portion 212a2.

このように、内周側減少部212a1の開口幅Wの減少率よりも外周側減少部212a2の開口幅Wの減少率を小さくし、内外で非対称にすることにより、遠心力によってガスの偏りを生じやすい外周側において、ガスの幅方向端部側への拡散移動容量を相対的に大きく確保することができる。これによって、流路高さ縮小部210で発生する幅方向の流速分布の乱れ(不均等及び非対称)を相対的に小さくすることができるので、幅方向の流速分布の均等化(対称化)に要する第二の減少部212aひいては流路高さ縮小部210の区間長さ(流れ方向の長さ)をさらに短縮することができる。   In this way, the reduction rate of the opening width W of the outer peripheral side reduction portion 212a2 is made smaller than the reduction rate of the opening width W of the inner peripheral reduction portion 212a1, and the gas is biased by centrifugal force by making it asymmetric inside and outside. On the outer peripheral side that is likely to occur, the diffusion movement capacity of the gas toward the end in the width direction can be secured relatively large. As a result, the disturbance (unevenness and asymmetrical) of the flow velocity distribution in the width direction that occurs in the flow path height reduction unit 210 can be relatively reduced, so that the flow velocity distribution in the width direction can be equalized (symmetrized). It is possible to further shorten the section length (the length in the flow direction) of the required second reduction portion 212a and thus the flow path height reduction portion 210.

(実施例6)
図11は中間流路の流路構成の第6実施例を示す斜視図及び要部拡大図である。図11に示す内周側減少部212a1は、調整部212の中央位置O2(図5参照)から内周側に向かうにつれて流路の開口幅Wが連続的に減少する台形状に形成されている。一方、外周側減少部212a2は、調整部212の中央位置O2から外周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)に形成されている。そして、内周側減少部212a1の開口幅Wの減少率(勾配の逆数)は、外周側減少部212a2の開口幅Wの減少率(曲率の逆数すなわち曲率半径)よりも大である。
(Example 6)
FIG. 11 is a perspective view and a main part enlarged view showing a sixth embodiment of the flow path configuration of the intermediate flow path. 11 is formed in a trapezoidal shape in which the opening width W of the flow path continuously decreases from the central position O2 (see FIG. 5) of the adjustment unit 212 toward the inner peripheral side. . On the other hand, the outer peripheral side decreasing portion 212a2 is formed in an arc shape (or an elliptical shape) in which the opening width W of the flow path decreases continuously from the central position O2 of the adjusting portion 212 toward the outer peripheral side. The reduction rate (reciprocal of the gradient) of the opening width W of the inner peripheral side reduction portion 212a1 is larger than the reduction rate (the reciprocal of the curvature, that is, the radius of curvature) of the opening width W of the outer peripheral side reduction portion 212a2.

(実施例7)
図12は中間流路の流路構成の第7実施例を示す斜視図及び要部拡大図である。図12に示す内周側減少部212a1は、調整部212の中央位置O2(図5参照)から内周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)に形成されている。一方、外周側減少部212a2は、調整部212の中央位置O2から外周側に向かうにつれて流路の開口幅Wが連続的に減少する台形状に形成されている。そして、内周側減少部212a1の開口幅Wの減少率(曲率の逆数すなわち曲率半径)は、外周側減少部212a2の開口幅Wの減少率(勾配の逆数)よりも大である。
(Example 7)
FIG. 12 is a perspective view and a main part enlarged view showing a seventh embodiment of the flow path configuration of the intermediate flow path. The inner circumferential side decreasing portion 212a1 shown in FIG. 12 has an arc shape (or an elliptical shape) in which the opening width W of the flow path continuously decreases from the central position O2 (see FIG. 5) of the adjusting portion 212 toward the inner peripheral side. Is formed. On the other hand, the outer peripheral side decreasing portion 212a2 is formed in a trapezoidal shape in which the opening width W of the flow path continuously decreases from the central position O2 of the adjusting portion 212 toward the outer peripheral side. The reduction rate (the reciprocal of the curvature, that is, the curvature radius) of the opening width W of the inner peripheral side reduction portion 212a1 is larger than the reduction rate (the reciprocal of the gradient) of the opening width W of the outer peripheral side reduction portion 212a2.

(実施例8)
図13は中間流路の流路構成の第8実施例を示す正面断面図である。図13に示す流路高さ拡大部213の流路の高さ方向の中央位置O1は、調整部212の流路の高さ方向の中央位置O2よりも外周側に偏って(オフセットして;齟齬して)配置されている。
(Example 8)
FIG. 13 is a front sectional view showing an eighth embodiment of the flow path configuration of the intermediate flow path. The center position O1 in the channel height direction of the channel height expanding portion 213 shown in FIG. 13 is biased toward the outer peripheral side (offset) than the center position O2 in the channel height direction of the adjustment unit 212; Arranged).

このように、流路高さ拡大部213の高さ方向中央位置O1を調整部212の高さ方向中央位置O2よりも外周側に偏って配置することにより、流路高さ拡大部213での高さ方向の流速分布の平滑化後に直線状中間流路21aにて計測すべき最大流速が、調整部212の高さ方向中央位置O2の延長線上に出現しやすくなる。よって、高さ方向の流速分布の均等化(対称化)に要する流路高さ拡大部213の区間長さ(流れ方向の長さ)を短縮することができる。しかも、超音波計測区間21a1(直線状中間流路21a)における一対の送受信振動子123a,123bの測線位置が、調整部212の高さ方向中央位置O2の延長線上に(一致させて)配置されているので、超音波計測区間21a1を流れるガスの最大流速を安定して計測できる。   In this way, by arranging the central position O1 in the height direction of the flow path height expanding portion 213 more biased toward the outer peripheral side than the central position O2 in the height direction of the adjusting section 212, the flow height at the flow path height expanding portion 213 is increased. The maximum flow velocity to be measured in the straight intermediate flow path 21a after smoothing the flow velocity distribution in the height direction is likely to appear on the extension line of the height direction central position O2 of the adjustment unit 212. Therefore, the section length (length in the flow direction) of the flow path height enlarged portion 213 required for equalization (symmetrization) of the flow velocity distribution in the height direction can be shortened. In addition, the measurement positions of the pair of transmission / reception transducers 123a and 123b in the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) are arranged (matched) on the extension line of the height direction central position O2 of the adjustment unit 212. Therefore, the maximum flow velocity of the gas flowing through the ultrasonic measurement section 21a1 can be stably measured.

(実施例9)
図14は中間流路の流路構成の第9実施例を示す正面断面図である。図14に示す調整部212は、流路の高さ方向の内周側の後端部が、増大部213aにおいて流れ方向下手側へ延出して延出部212bを形成している。一方、増大部213aは、流路の高さ方向の外周側の前端部が、調整部212において流れ方向上手側へ突入して突入部213bを形成している。
Example 9
FIG. 14 is a front sectional view showing a ninth embodiment of the flow path configuration of the intermediate flow path. In the adjusting part 212 shown in FIG. 14, the rear end part on the inner peripheral side in the height direction of the flow path extends to the lower side in the flow direction at the increasing part 213a to form an extending part 212b. On the other hand, the increase portion 213a has a front end portion on the outer peripheral side in the height direction of the flow path that protrudes toward the upper side in the flow direction at the adjustment portion 212 to form a protrusion portion 213b.

このように、調整部212の内周側の後端部が延出部212bを形成することによって、高さ方向の流速分布の平滑化を、流路高さ拡大部213にて短い区間長さ(流れ方向の長さ)で迅速に行える。なお、その際同時に、増大部213aの外周側の前端部が、調整部212において流れ方向上手側へ突入して突入部213bを形成しているので、上記した遠心力によってガスの偏りを生じやすい外周側において、調整部212に形成される突入部213bにガスを部分的(かつ一時的)に滞留させて流速を遅らせることができ、上記した高さ方向の流速分布の平滑化を一層迅速に行うことができる。   As described above, the rear end portion on the inner peripheral side of the adjustment portion 212 forms the extension portion 212b, thereby smoothing the flow velocity distribution in the height direction with a short section length at the flow path height expanding portion 213. (Length in the flow direction) At the same time, the front end portion on the outer peripheral side of the increasing portion 213a rushes toward the upper side in the flow direction in the adjusting portion 212 to form the plunging portion 213b, so that the above-described centrifugal force tends to cause a gas bias. On the outer peripheral side, the gas can be partially (and temporarily) retained in the intrusion portion 213b formed in the adjustment portion 212 to delay the flow velocity, and the above-described smoothing of the flow velocity distribution in the height direction can be performed more quickly. It can be carried out.

(実施例10)
図15は中間流路の流路構成の第10実施例を示す正面断面図である。図15に示す延出部212bは、調整部212の内周側及び外周側にそれぞれ形成され、各延出部212bの流路壁面は、流れ方向下手側に向かうにつれて増大部213aにおける内周側(又は外周側)の長辺壁部21fの壁面に徐々に接近した後接触する曲面状に形成されている。
(Example 10)
FIG. 15 is a front sectional view showing a tenth embodiment of the flow path configuration of the intermediate flow path. The extension portions 212b shown in FIG. 15 are respectively formed on the inner peripheral side and the outer peripheral side of the adjustment portion 212, and the flow path wall surface of each extension portion 212b is on the inner peripheral side of the increasing portion 213a as it goes to the lower side in the flow direction. It is formed in a curved surface shape that comes into contact with the wall surface of the long-side wall portion 21f on the (or outer peripheral side) after gradually approaching.

延出部212bは、増大部213aの長辺壁部21fと滑らかに接続され、調整部212から流路高さ拡大部213(増大部213a)へのガスの流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   The extension portion 212b is smoothly connected to the long side wall portion 21f of the increase portion 213a and does not hinder the gas flow from the adjustment portion 212 to the flow path height enlargement portion 213 (increase portion 213a). The flow velocity distribution in the vertical direction can be smoothly smoothed.

(実施例11)
図16は中間流路の流路構成の第11実施例を示す斜視図及び正面断面図である。図16に示す延出部212bは、調整部212の内周側及び外周側にそれぞれ形成され、各延出部212bの流路壁面は、流れ方向下手側に向かうにつれて増大部213aにおける内周側(又は外周側)の短辺壁部21dの壁面に徐々に接近した後接触する曲面状に形成されている。
Example 11
FIG. 16 is a perspective view and a front sectional view showing an eleventh embodiment of the flow path configuration of the intermediate flow path. The extension portions 212b shown in FIG. 16 are respectively formed on the inner peripheral side and the outer peripheral side of the adjustment portion 212, and the channel wall surface of each extension portion 212b is on the inner peripheral side in the increasing portion 213a as it goes to the lower side in the flow direction. It is formed in a curved surface shape that comes into contact after gradually approaching the wall surface of the short-side wall portion 21d on the (or outer peripheral side) side.

延出部212bは、増大部213aの短辺壁部21dと滑らかに接続され、調整部212から流路高さ拡大部213(増大部213a)へのガスの流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   The extension portion 212b is smoothly connected to the short side wall portion 21d of the increase portion 213a and does not hinder the gas flow from the adjustment portion 212 to the flow path height enlargement portion 213 (increase portion 213a). The flow velocity distribution in the vertical direction can be smoothly smoothed.

(実施例12)
図17は中間流路の流路構成の第12実施例を示す斜視断面図及び正面断面図である。図17に示す流路高さ縮小部210には、方向変換部211と調整部212とに跨って、流路の開口高さを高さ方向に2等分する仕切板214(仕切部)が流れ方向に沿って配置されている。
Example 12
FIG. 17 is a perspective sectional view and a front sectional view showing a twelfth embodiment of the flow path configuration of the intermediate flow path. In the flow path height reduction unit 210 shown in FIG. 17, a partition plate 214 (partition section) that divides the opening height of the flow path into two in the height direction across the direction conversion unit 211 and the adjustment unit 212. It is arranged along the flow direction.

流路高さ縮小部210の流路の開口高さを高さ方向に2等分することによって、高さ方向の流速分布の乱れ(不均等及び非対称)を相対的に小さくすることができるので、層流域(小流量)から乱流域(大流量)にわたって広範囲に高精度で流量を計測できる。   By dividing the opening height of the flow path of the flow path height reduction unit 210 into two equal parts in the height direction, disturbances in the flow velocity distribution in the height direction (uneven and asymmetric) can be relatively reduced. The flow rate can be measured with high accuracy over a wide range from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate).

(実施例13)
図18は中間流路の流路構成の第13実施例を示す斜視断面図及び正面断面図である。図18に示す仕切板214(仕切部)は、表面が平滑な単一の板材により方向変換部211と調整部212とに跨って、流路の開口高さを高さ方向に2分割する形態で配置されている。具体的には、方向変換部211では高さ方向の中央(2等分位置)近傍に位置する一方、調整部212では外周側に偏って(オフセットして;齟齬して)配置されている。
(Example 13)
FIG. 18 is a perspective sectional view and a front sectional view showing a thirteenth embodiment of the channel configuration of the intermediate channel. The partition plate 214 (partition portion) shown in FIG. 18 has a configuration in which the opening height of the flow path is divided into two in the height direction across the direction changing portion 211 and the adjustment portion 212 by a single plate material having a smooth surface. Is arranged in. Specifically, the direction conversion unit 211 is positioned near the center (bisected position) in the height direction, while the adjustment unit 212 is disposed (offset; staggered) toward the outer peripheral side.

仕切板214が調整部212で外周側に偏って位置することにより、上記した遠心力によってガスの偏りを生じやすい外周側において、高さ方向の流速分布の乱れ(不均等及び非対称)をさらに小さくすることができる。   Since the partition plate 214 is biased toward the outer peripheral side by the adjusting portion 212, the disturbance (unevenness and asymmetry) of the flow velocity distribution in the height direction is further reduced on the outer peripheral side where the gas bias is likely to occur due to the centrifugal force. can do.

実施例8(図13)〜実施例13(図18)に記載した各々の構成は、実施例2(図7)〜実施例7(図12)に記載した各々の構成とそれぞれ組み合わせて実施することができる。   Each configuration described in Example 8 (FIG. 13) to Example 13 (FIG. 18) is implemented in combination with each configuration described in Example 2 (FIG. 7) to Example 7 (FIG. 12). be able to.

本発明に係る超音波流量計の一実施例の全体斜視図。1 is an overall perspective view of an embodiment of an ultrasonic flowmeter according to the present invention. 図1の正面断面図。FIG. 2 is a front sectional view of FIG. 1. 図2のA−A断面図。AA sectional drawing of FIG. 超音波センサの配置変形例を示す説明図。Explanatory drawing which shows the arrangement | positioning modification of an ultrasonic sensor. 図2における中間流路の流路構成の第1実施例を示す斜視図及び正面図。The perspective view and front view which show the 1st Example of the flow path structure of the intermediate flow path in FIG. 図5(b)の要部を拡大して、小流量時及び大流量時の流速分布を示す説明図。Explanatory drawing which expands the principal part of FIG.5 (b) and shows the flow-velocity distribution at the time of the small flow volume and the large flow volume. 中間流路の流路構成の第2実施例を示す斜視図及び正面図。The perspective view and front view which show 2nd Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第3実施例を示す斜視図及び正面図。The perspective view and front view which show the 3rd Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第4実施例を示す斜視図及び正面図。The perspective view and front view which show the 4th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第5実施例を示す斜視図及び要部拡大図。The perspective view and principal part enlarged view which show 5th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第6実施例を示す斜視図及び要部拡大図。The perspective view and principal part enlarged view which show 6th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第7実施例を示す斜視図及び要部拡大図。The perspective view and principal part enlarged view which show 7th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第8実施例を示す正面断面図。Front sectional drawing which shows the 8th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第9実施例を示す正面断面図。Front sectional drawing which shows the 9th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第10実施例を示す正面断面図。Front sectional drawing which shows the 10th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第11実施例を示す斜視図及び正面断面図。The perspective view and front sectional drawing which show the 11th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第12実施例を示す斜視断面図及び正面断面図。The perspective sectional view and front sectional view showing the 12th example of the channel configuration of the intermediate channel. 中間流路の流路構成の第13実施例を示す斜視断面図及び正面断面図。The perspective sectional view and front sectional view showing the 13th example of the channel configuration of the intermediate channel.

符号の説明Explanation of symbols

21 中間流路
21a 直線状中間流路(計測用直線流路)
21a1 超音波計測区間(流量計測区間)
21b 入口側連結流路(導入側流路)
21c 出口側連結流路(導出側流路)
21d 短辺壁部
21f 長辺壁部
210 流路高さ縮小部
211 方向転換部
211a 第一の減少部(減少部)
212 調整部
212a 第二の減少部
212a1 内周側減少部
212a2 外周側減少部
212b 延出部
213 流路高さ拡大部
213a 増大部
213b 突入部
214 仕切板(仕切部)
23 超音波センサ
23a,23b 送受信振動子(センサ素子)
100 超音波流量計(流量計)
L 長辺
S 短辺
H 開口高さ
W 開口幅
O1 流路高さ拡大部での高さ方向の中央位置
O2 調整部での高さ方向の中央位置
21 Intermediate channel 21a Linear intermediate channel (Straight channel for measurement)
21a1 Ultrasonic measurement section (flow measurement section)
21b Inlet side connection flow path (introduction side flow path)
21c Outlet side connecting channel (outlet side channel)
21d Short side wall part 21f Long side wall part 210 Flow path height reduction part 211 Direction change part 211a First reduction part (reduction part)
212 Adjustment part 212a 2nd reduction part 212a1 Inner peripheral side reduction part 212a2 Outer peripheral side reduction part 212b Extension part 213 Channel height expansion part 213a Increase part 213b Entry part 214 Partition plate (partition part)
23 Ultrasonic sensor 23a, 23b Transceiver transducer (sensor element)
100 Ultrasonic flow meter (flow meter)
L Long side S Short side H Opening height W Opening width O1 Center position in the height direction at the channel height enlarged portion O2 Center position in the height direction at the adjusting portion

Claims (14)

流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有する計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央での流れ方向に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate A flow meter including a measurement linear flow channel having a long side and a rectangular shape having a short side in the height direction and having a flow channel cross-sectional area smaller than the introduction side flow channel,
Following the outlet side end portion of the introduction-side channel, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow and parallel to the flow direction at the center in the width direction. In a simple cross-section, the direction changing portion having a decreasing portion that decreases as the opening height of the flow path goes toward the lower side in the flow direction,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment section, there is an increasing portion in which the opening height of the flow path increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side, and can be connected to the measurement linear flow path. Including a channel height expanding portion,
The direction changing part and the adjustment part constitute a flow path height reducing part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow rate distribution in the direction perpendicular to the fluid flow direction in the linear flow channel for measurement is reduced by the reduction portion and the adjustment portion in the flow passage height reduction portion and the increase portion in the flow passage height enlargement portion. A flow meter characterized by being equalized and / or symmetrized.
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波を発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波を受信する送受信振動子が取り付けられた計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央で前記取付壁面に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion A flowmeter including a measurement linear flow path to which a transmission / reception transducer is attached, which oscillates ultrasonic waves toward the side and / or receives ultrasonic waves coming from the upper side or lower side in the flow direction,
Following the outlet-side end of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow, and parallel to the mounting wall surface at the center in the width direction. In a simple cross-section, the direction changing portion having a decreasing portion that decreases as the opening height of the flow path goes toward the lower side in the flow direction,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment section, there is an increasing portion in which the opening height of the flow path increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side, and can be connected to the measurement linear flow path. Including a channel height expanding portion,
The direction changing part and the adjustment part constitute a flow path height reducing part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow rate distribution in the direction perpendicular to the fluid flow direction in the linear flow channel for measurement is reduced by the reduction portion and the adjustment portion in the flow passage height reduction portion and the increase portion in the flow passage height enlargement portion. A flow meter characterized by being equalized and / or symmetrized.
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有する計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成され、流体の流れを方向転換させる方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、少なくとも前記外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
幅方向中央での流体の流れ方向に平行な断面において、前記方向転換部の流路の開口高さが流れ方向下手側に向かうにつれて減少する第一の減少部を有するとともに、流れ方向に直交する断面において、前記方向転換部と調整部とのうちの少なくとも一方の流路の開口高さが幅方向端部側に向かうにつれて減少する第二の減少部を有することによって、前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記第一の減少部、第二の減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate A flow meter including a measurement linear flow channel having a long side and a rectangular shape having a short side in the height direction and having a flow channel cross-sectional area smaller than the introduction side flow channel,
Following the outlet side end portion of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape, and the direction changing unit that changes the flow of the fluid,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment portion, at least the outer peripheral side has an increasing portion in which the opening height of the channel increases stepwise in the height direction and can be connected to the measurement linear channel. Including an enlarged portion,
In a cross section parallel to the fluid flow direction at the center in the width direction, the flow path of the direction changing portion has a first decreasing portion that decreases as it goes toward the lower side in the flow direction, and is orthogonal to the flow direction. In the cross section, the direction changing portion and the adjusting portion are adjusted by having a second decreasing portion in which the opening height of at least one flow path of the direction changing portion and the adjusting portion decreases toward the end in the width direction. The part constitutes a flow path height reduction part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow direction of the fluid in the linear flow channel for measurement by the first decrease portion, the second decrease portion and the adjustment portion in the flow channel height reduction portion, and the increase portion in the flow channel height enlargement portion The flow rate distribution in the direction orthogonal to the flowmeter is equalized and / or symmetrized.
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波を発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波を受信する送受信振動子が取り付けられた計測用直線流路と、を含む流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成され、流体の流れを方向転換させる方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、少なくとも前記外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部を有し、前記計測用直線流路に接続可能な流路高さ拡大部とを含み、
幅方向中央で前記取付壁面に平行な断面において、前記方向転換部の流路の開口高さが流体の流れ方向下手側に向かうにつれて減少する第一の減少部を有するとともに、流れ方向に直交する断面において、前記方向転換部と調整部とのうちの少なくとも一方の流路の開口高さが幅方向端部側に向かうにつれて減少する第二の減少部を有することによって、前記方向転換部と調整部とは流路の開口高さが前記導入側流路よりも小さい流路高さ縮小部を構成し、
前記流路高さ縮小部における前記第一の減少部、第二の減少部及び調整部と、前記流路高さ拡大部における前記増大部とによって、前記計測用直線流路において流体の流れ方向に直交する方向での流速分布が均等化及び/又は対称化されることを特徴とする流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion A flowmeter including a measurement linear flow path to which a transmission / reception transducer is attached, which oscillates ultrasonic waves toward the side and / or receives ultrasonic waves coming from the upper side or lower side in the flow direction,
Following the outlet side end portion of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape, and the direction changing unit that changes the flow of the fluid,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment portion, at least the outer peripheral side has an increasing portion in which the opening height of the channel increases stepwise in the height direction and can be connected to the measurement linear channel. Including an enlarged portion,
In a cross section parallel to the mounting wall surface in the center in the width direction, the flow path of the direction changing portion has a first decreasing portion that decreases as it goes toward the lower side in the fluid flow direction, and is orthogonal to the flow direction. In the cross section, the direction changing portion and the adjusting portion are adjusted by having a second decreasing portion in which the opening height of at least one flow path of the direction changing portion and the adjusting portion decreases toward the end in the width direction. The part constitutes a flow path height reduction part in which the opening height of the flow path is smaller than the introduction side flow path,
The flow direction of the fluid in the linear flow channel for measurement by the first decrease portion, the second decrease portion and the adjustment portion in the flow channel height reduction portion, and the increase portion in the flow channel height enlargement portion The flow rate distribution in the direction orthogonal to the flowmeter is equalized and / or symmetrized.
前記流路高さ縮小部の第二の減少部は、流路の高さ方向の中間位置から前記内周側又は外周側に向かうにつれて、その流路の開口幅が連続的に減少するように形成されている請求項3又は4に記載の流量計。   The second decreasing portion of the flow path height reducing portion is configured so that the opening width of the flow path continuously decreases from the intermediate position in the height direction of the flow path toward the inner peripheral side or the outer peripheral side. The flow meter according to claim 3 or 4, wherein the flow meter is formed. 前記流路高さ縮小部の第二の減少部は、流路の高さ方向の中間位置から前記内周側及び外周側に向かうにつれて、その流路の開口幅がそれぞれ連続的に減少するように形成されている請求項3又は4に記載の流量計。   The second decreasing portion of the flow path height reducing portion is configured so that the opening width of the flow path continuously decreases from the intermediate position in the height direction of the flow path toward the inner peripheral side and the outer peripheral side. The flow meter according to claim 3 or 4 formed in. 前記第二の減少部において、流路の高さ方向の中間位置から前記内周側に向かう開口幅の減少率が、前記外周側に向かう開口幅の減少率よりも大である請求項6に記載の流量計。   In the second decreasing portion, the decreasing rate of the opening width from the intermediate position in the height direction of the flow path toward the inner peripheral side is larger than the decreasing rate of the opening width toward the outer peripheral side. The flow meter described. 前記調整部の内周側及び外周側の流路壁面は前記計測用直線流路の長辺壁部の壁面とそれぞれ平行状に配置されるとともに、
前記流路高さ拡大部の流路の高さ方向の中央は、前記調整部の流路の高さ方向の中央よりも前記外周側又は内周側に偏って配置されている請求項1ないし7のいずれか1項に記載の流量計。
The flow path wall surfaces on the inner peripheral side and the outer peripheral side of the adjustment part are arranged in parallel with the wall surfaces of the long side wall part of the measurement linear flow path, respectively.
The center in the height direction of the flow path of the flow path height expanding portion is arranged to be biased toward the outer peripheral side or the inner peripheral side with respect to the center in the height direction of the flow path of the adjustment portion. 8. The flow meter according to any one of 7 above.
前記流路高さ拡大部の増大部は、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化し、
前記調整部は、少なくとも流路の高さ方向の前記内周側の後端部が、前記増大部において流れ方向下手側へ延出して延出部を形成している請求項1ないし8のいずれか1項に記載の流量計。
The increased portion of the flow path height expanding portion is configured such that the opening height of the flow path is increased and changed stepwise in the height direction on the outer peripheral side and the inner peripheral side,
9. The adjustment unit according to claim 1, wherein at least a rear end portion on the inner peripheral side in the height direction of the flow path extends to a lower side in the flow direction in the increase portion to form an extension portion. The flow meter according to claim 1.
前記延出部の流路壁面は、流れ方向下手側に向かうにつれて前記増大部における前記内周側及び/又は外周側の壁面に徐々に接近した後接触する曲面状に形成されている請求項9に記載の流量計。   The flow path wall surface of the extension part is formed in a curved surface shape that gradually contacts the wall surface on the inner peripheral side and / or outer peripheral side in the increasing part as it goes toward the lower side in the flow direction. The flow meter described in 1. 前記延出部の流路壁面は、流れ方向下手側に向かうにつれて前記増大部における前記短辺側の壁面に徐々に接近した後接触する曲面状に形成されている請求項9又は10に記載の流量計。   The flow path wall surface of the extension part is formed in a curved surface shape that gradually contacts the wall surface on the short side in the increase part as it goes toward the lower side in the flow direction. Flowmeter. 前記流路高さ縮小部には、流路の開口高さを高さ方向に分割する1又は複数の仕切部が流れ方向に沿って配置されている請求項1ないし11のいずれか1項に記載の流量計。   The one or more partition parts which divide | segment the opening height of a flow path into a height direction are arrange | positioned in the said flow path height reduction part along the flow direction. The flow meter described. 前記仕切部は、表面が平滑な単一の板材により前記方向変換部と調整部とに跨って配置されるとともに、少なくとも前記調整部の高さ方向において前記外周側に偏って位置している請求項12に記載の流量計。   The partition portion is disposed across the direction changing portion and the adjustment portion by a single plate material having a smooth surface, and is located at least on the outer peripheral side in the height direction of the adjustment portion. Item 13. The flow meter according to Item 12. 前記導入側流路と計測用直線流路とが直交状に配置され、
前記計測用直線流路の開口高さ及び開口幅が流れ方向に対して一定に形成されている請求項1ないし13のいずれか1項に記載の流量計。
The introduction side channel and the measurement linear channel are arranged orthogonally,
The flowmeter according to any one of claims 1 to 13, wherein an opening height and an opening width of the measurement linear flow path are formed constant with respect to a flow direction.
JP2008114311A 2008-04-24 2008-04-24 Flow meter Pending JP2009264906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114311A JP2009264906A (en) 2008-04-24 2008-04-24 Flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114311A JP2009264906A (en) 2008-04-24 2008-04-24 Flow meter

Publications (1)

Publication Number Publication Date
JP2009264906A true JP2009264906A (en) 2009-11-12

Family

ID=41390942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114311A Pending JP2009264906A (en) 2008-04-24 2008-04-24 Flow meter

Country Status (1)

Country Link
JP (1) JP2009264906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962073A4 (en) * 2013-02-27 2016-12-14 Daniel Measurement & Control Inc Ultrasonic flow metering with laminar to turbulent transition flow control
CN110426088A (en) * 2019-07-01 2019-11-08 中国水利水电科学研究院 A kind of flow monitoring method, device, equipment and readable storage medium storing program for executing
CN110487342A (en) * 2019-07-23 2019-11-22 广东美的白色家电技术创新中心有限公司 Flowmeter pipeline and flowermeter with it
WO2021229554A1 (en) * 2020-06-29 2021-11-18 Oil&Gas Metering Equipment S.R.O. Gas flow conditioner in the flow bend, especially for ultrasonic gas meter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962073A4 (en) * 2013-02-27 2016-12-14 Daniel Measurement & Control Inc Ultrasonic flow metering with laminar to turbulent transition flow control
US10012521B2 (en) 2013-02-27 2018-07-03 Daniel Measurement And Control, Inc. Ultrasonic flow metering with laminar to turbulent transition flow control
CN110426088A (en) * 2019-07-01 2019-11-08 中国水利水电科学研究院 A kind of flow monitoring method, device, equipment and readable storage medium storing program for executing
CN110487342A (en) * 2019-07-23 2019-11-22 广东美的白色家电技术创新中心有限公司 Flowmeter pipeline and flowermeter with it
WO2021229554A1 (en) * 2020-06-29 2021-11-18 Oil&Gas Metering Equipment S.R.O. Gas flow conditioner in the flow bend, especially for ultrasonic gas meter
JP2022551021A (en) * 2020-06-29 2022-12-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Gas flow regulator in the flow curve, especially for ultrasonic gas meters
JP7329882B2 (en) 2020-06-29 2023-08-21 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Gas flow regulator in the flow curve, especially for ultrasonic gas meters

Similar Documents

Publication Publication Date Title
WO2012063437A1 (en) Ultrasonic flow rate measurement device
JP2010164558A (en) Device for measuring flow of fluid
WO2000055581A1 (en) Ultrasonic flowmeter
JPWO2012137489A1 (en) Ultrasonic flow measuring device
JP4936856B2 (en) Flowmeter
JP2017173200A (en) Straight tube type gas meter
JP2009264906A (en) Flow meter
JP5816831B2 (en) Ultrasonic flow meter
US11885654B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP3824236B2 (en) Ultrasonic flow measuring device
JP3438713B2 (en) Ultrasonic flow meter
CN103630271A (en) Diameter-decreasing-structured ultrasonic heat meter
JP3436247B2 (en) Ultrasonic flow meter
JP4453341B2 (en) Ultrasonic flow meter
JP2004251700A (en) Fluid measuring device
JP3438734B1 (en) Ultrasonic flow meter
JP2003344129A (en) Ultrasonic flowmeter
RU118744U1 (en) ULTRASONIC FLOW METER
JP2010107444A (en) Ultrasonic flowmeter
JP2019196968A (en) Ultrasonic flowmeter
JP2009276132A (en) Ultrasonic flowmeter
JP3781424B2 (en) Ultrasonic flow measuring device
JP2010071812A (en) Ultrasonic flowmeter
JP4346458B2 (en) Ultrasonic flow meter
JP2021124358A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110324

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120723

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121016

A02 Decision of refusal

Effective date: 20121112

Free format text: JAPANESE INTERMEDIATE CODE: A02