JP5816831B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5816831B2
JP5816831B2 JP2010206295A JP2010206295A JP5816831B2 JP 5816831 B2 JP5816831 B2 JP 5816831B2 JP 2010206295 A JP2010206295 A JP 2010206295A JP 2010206295 A JP2010206295 A JP 2010206295A JP 5816831 B2 JP5816831 B2 JP 5816831B2
Authority
JP
Japan
Prior art keywords
ultrasonic
layered
flow
measurement
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010206295A
Other languages
Japanese (ja)
Other versions
JP2012063187A (en
Inventor
宮田 肇
肇 宮田
慎 中野
慎 中野
藤井 裕史
裕史 藤井
尾崎 行則
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2010206295A priority Critical patent/JP5816831B2/en
Publication of JP2012063187A publication Critical patent/JP2012063187A/en
Application granted granted Critical
Publication of JP5816831B2 publication Critical patent/JP5816831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガスなどの流量を計測する超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter for measuring a flow rate of gas or the like.

従来のこの種の流量計測装置は、図7に示すように、上流側に流体供給路112を、下流側に流体流出路113をそれぞれ接続した計測流路114に一対の超音波センサなどからなる流速検知手段(図示せず)を配置していた。   As shown in FIG. 7, this type of conventional flow rate measuring device comprises a pair of ultrasonic sensors or the like in a measurement flow path 114 in which a fluid supply path 112 is connected upstream and a fluid outflow path 113 is connected downstream. A flow rate detection means (not shown) was arranged.

また、流体が2次元性の層流となるように計測流路114の内部は複数の仕切り板115で分割してあった。   Further, the inside of the measurement flow path 114 is divided by a plurality of partition plates 115 so that the fluid becomes a two-dimensional laminar flow.

そして、前記流速検知手段で計測流路114を流れる流体の流速を測定し、この測定した流速をもとに流量を演算するようにしていた(例えば、特許文献1参照)。   Then, the flow velocity of the fluid flowing through the measurement flow path 114 is measured by the flow velocity detection means, and the flow rate is calculated based on the measured flow velocity (see, for example, Patent Document 1).

特開平9−43015号公報Japanese Patent Laid-Open No. 9-43015

しかしながら、前記従来の構成では、仕切り板により分割された計測流路の端の層とそれ以外の層とで層間の流速比が流量で異なる場合がある。   However, in the conventional configuration, the flow rate ratio between the layers may be different between the layer at the end of the measurement channel divided by the partition plate and the other layers.

一方、流量計の生産時においては計測流量範囲において真の流量値(真値)と計測流量値が所定の誤差範囲に入るように実際に流量を測定し、真値との差を器差補正して正しく流量が計測できるように補正する必要があるが、この際、流量係数(=真値/計測値)が計測流量範囲でフラットであることが望ましい。すなわち、流量係数がフラットであれば任意の流量で1回補正するだけで器差補正を完了させることができる。さらに、流量係数が1でフラットであれば器差補正の必要がないことは言うまでもない。   On the other hand, during flow meter production, the actual flow rate is measured so that the true flow rate value (true value) and the measured flow rate value fall within the specified error range in the measured flow rate range, and the difference from the true value is corrected for instrumental error. Therefore, it is necessary to correct the flow rate so that it can be measured correctly. At this time, it is desirable that the flow coefficient (= true value / measured value) be flat in the measured flow range. That is, if the flow coefficient is flat, the instrumental error correction can be completed only by correcting once with an arbitrary flow rate. Furthermore, it goes without saying that if the flow coefficient is 1 and it is flat, no instrumental error correction is necessary.

そして、この流量係数をフラットにするためには、流量に関係なく各層の流速比が一定となるようにすることが必要となるが、従来は、この影響を小さくするため、計測流路入り口に整流部材を設けたり、流路を仕切る層数を増やし1層のピッチを狭くすることで、層状流路の通過圧損を高め層間の流速差を小さくすることなどで対応しているが、構造が複雑になり、コストが上がる、或いは、流路の通過圧損が増えてしまい計測流量範囲が限られるなどの問題が生じている。   In order to make this flow coefficient flat, it is necessary to make the flow rate ratio of each layer constant regardless of the flow rate, but conventionally, in order to reduce this effect, It is possible to increase the passage pressure loss of the laminar flow path and reduce the flow velocity difference between layers by providing a rectifying member or increasing the number of layers partitioning the flow path and reducing the pitch of one layer, but the structure is There are problems such as increased complexity and cost, or increased passage pressure loss in the flow path and limited measurement flow range.

本発明は、前記従来の課題を解決するもので、計測流路内での流れの安定化のため1層当たりの高さを小さくするための層状の流路を形成しつつ、流量による層間の流速差を小さくすることで、測定への影響を少なくし、かつ、流量係数がフラットである超音波流量計を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and forms a layered flow path for reducing the height per layer for stabilizing the flow in the measurement flow path, An object of the present invention is to provide an ultrasonic flowmeter that reduces the influence on measurement by reducing the flow velocity difference and has a flat flow coefficient.

前記従来の課題を解決するために、本発明の超音波流量計は、被計測流体が流れる流路
断面が矩形の計測流路と、前記計測流路の途中に配置され前記計測流路を3つ以上の層状流路に分割する複数の仕切り板と、前記層状流路上の上流と下流に配置され、超音波信号の送受信が可能な一対の超音波センサと、前記超音波センサの一方から送信された超音波信号が前記被計測流体を伝搬して他方の超音波センサが受信するまでの伝搬時間に基づいて前記被計測流体の流量を検出する流量計測手段と、を備え、前記層状流路間の流速差を小さくするように、両端の層状流路の層の高さを他の層状流路の層の高さより小さくしたものである。
In order to solve the above-described conventional problems, an ultrasonic flowmeter of the present invention includes a measurement channel having a rectangular channel cross section through which a fluid to be measured flows, and the measurement channel arranged in the middle of the measurement channel. A plurality of partition plates that are divided into two or more layered flow paths, a pair of ultrasonic sensors that are arranged upstream and downstream on the layered flow path and capable of transmitting and receiving ultrasonic signals, and transmitted from one of the ultrasonic sensors and a flow rate measuring means for detecting the flow rate of the fluid to be measured based on the propagation time until the ultrasonic signal is received propagation to other ultrasonic sensors the fluid to be measured, the layered channel In order to reduce the flow velocity difference between them, the layer height of the layered flow channel at both ends is made smaller than the layer height of the other layered flow channel.

これによって、流量に対する各層状流路間の流量が均一化され、流量係数のフラット化を図ることが可能となる。   As a result, the flow rate between the respective layered channels with respect to the flow rate is made uniform, and the flow coefficient can be flattened.

本発明の超音波流量計によると、広範囲の流量計測範囲において、各層状流路間の流量が均一化され、流量係数をフラットとなり、正確に流速を計測することができる。   According to the ultrasonic flowmeter of the present invention, in a wide range of flow rate measurement, the flow rate between the respective layered channels is made uniform, the flow rate coefficient becomes flat, and the flow velocity can be accurately measured.

本発明の実施の形態における超音波流量計の要部断面図Sectional drawing of the principal part of the ultrasonic flowmeter in embodiment of this invention 本発明の実施の形態における超音波流量計の流量計測ユニットの要部断面図Sectional drawing of the principal part of the flow measurement unit of the ultrasonic flowmeter in embodiment of this invention (a)図2におけるA−A要部断面図、(b)図2におけるB−B要部断面図(A) AA principal part sectional drawing in FIG. 2, (b) BB principal part sectional drawing in FIG. 本発明の実施の形態における超音波流量計の動作説明図Operational explanatory diagram of the ultrasonic flowmeter in the embodiment of the present invention 層状流路の層高さの違いよる計測流量と流量係数の関係を示すグラフA graph showing the relationship between the measured flow rate and the flow coefficient depending on the layer height of the layered channel 本発明の実施の形態における層状流路断面概念図FIG. 3 is a conceptual diagram of a cross section of a layered channel in the embodiment of the present invention 従来の超音波流量計の構成図Configuration diagram of conventional ultrasonic flowmeter

第1の発明は、被計測流体が流れる流路断面が矩形の計測流路と、前記計測流路の途中に配置され前記計測流路を3つ以上の層状流路に分割する複数の仕切り板と、前記層状流路上の上流と下流に配置され、超音波信号の送受信が可能な一対の超音波センサと、前記超音波センサの一方から送信された超音波信号が前記被計測流体を伝搬して他方の超音波センサが受信するまでの伝搬時間に基づいて前記被計測流体の流量を検出する流量計測手段と、を備え、前記層状流路の内、両端の層状流路の層の高さを他の層状流路の層の高さより小さくしたことにより、計測流量が変化しても、各層状流路間の流速差を小さくすることができ、流量係数のフラット化が図れる。   The first invention is a measurement channel having a rectangular channel cross section through which a fluid to be measured flows, and a plurality of partition plates arranged in the middle of the measurement channel and dividing the measurement channel into three or more layered channels A pair of ultrasonic sensors that are arranged upstream and downstream on the layered flow path and capable of transmitting and receiving ultrasonic signals, and an ultrasonic signal transmitted from one of the ultrasonic sensors propagates through the fluid to be measured. Flow rate measuring means for detecting the flow rate of the fluid to be measured based on the propagation time until the other ultrasonic sensor receives, and the height of the layers of the layered channels at both ends of the layered channel Is made smaller than the height of the layer of the other layered channels, the flow rate difference between the layered channels can be reduced even if the measured flow rate changes, and the flow coefficient can be flattened.

第2の発明は、特に第1の発明において、前記層状流路の内、両端の層状流路の層の高さを他の層状流路の層の高さに対して、2〜5%小さくしたことにより、流量係数を実用範囲内でフラット化にすることが可能となる。   In the second invention, particularly in the first invention, the height of the layered channel at both ends of the layered channel is 2 to 5% smaller than the height of the layers of the other layered channels. As a result, the flow coefficient can be flattened within the practical range.

第3の発明は、特に、第1または2の発明において、層状流路の一つの層の高さを2mm以下としたことで、計測流路の流れの安定化を図るとともに計測流量範囲で各層の流速比の変化を小さくすることが可能となり、より、安定で流量係数のフラット化が図れる。   In particular, in the first or second invention, the third aspect of the invention is to stabilize the flow of the measurement flow path by setting the height of one layer of the layered flow path to 2 mm or less. The change in the flow rate ratio can be reduced, and the flow coefficient can be made more stable and flat.

第4の発明は、第1〜3のいずれか1つの発明において、前記一対の超音波センサは、前記層状流路上の同一面側に配置され、一方の前記超音波センサから送信された超音波信号が前記超音波センサに対向する前記計測流路内壁に反射し、他方の前記超音波センサに受信される構成としたことを特徴とするもので、層間の流量差が小さく構成された計測流路を用いることで、反射を利用して超音波の伝播距離を長くして測定精度を向上することが可能となる。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the pair of ultrasonic sensors are arranged on the same surface side of the layered flow path, and are transmitted from one of the ultrasonic sensors. The signal is reflected on the inner wall of the measurement channel facing the ultrasonic sensor and received by the other ultrasonic sensor, and the measurement flow is configured so that the flow rate difference between the layers is small. By using the path, it is possible to increase the propagation distance of the ultrasonic wave using reflection and improve the measurement accuracy.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1において流体供給路3は、途中にステッピングモータなどの電磁装置による駆動部4と連係した弁体9で開閉される遮断弁5を有する。遮断弁5が開放状態においては流体供給路3より被計測流体がメータ筐体2内部に流出される。計測流路1の流路は、断面長方形をなす矩形としてあり、メータ筐体2内部に充満した被計測流体が計測流路入口1a側から計測流路1に流入し、さらにはその下流側の計測流路出口1bに接続された流体流出路6を経てメータ筐体2外部へ流出する。
(Embodiment 1)
In FIG. 1, the fluid supply path 3 has a shut-off valve 5 that is opened and closed by a valve body 9 that is linked to a drive unit 4 that is an electromagnetic device such as a stepping motor. When the shutoff valve 5 is open, the fluid to be measured flows out from the fluid supply path 3 into the meter housing 2. The flow channel of the measurement flow channel 1 is a rectangle having a rectangular cross section, and the fluid to be measured filled in the meter housing 2 flows into the measurement flow channel 1 from the measurement flow channel inlet 1a side, and further on the downstream side thereof. It flows out of the meter housing 2 through the fluid outlet 6 connected to the measurement channel outlet 1b.

なお、遮断弁5は流体流動に異常があった時とか、地震発生時などに閉じるようにしてある。   The shutoff valve 5 is closed when there is an abnormality in the fluid flow or when an earthquake occurs.

図2は、本実施の形態における流量計測ユニットの断面を示すもので、図に示すごとく、流速検知手段を構成する一対の超音波センサ7、8がセンサ取り付け部材12に互いに内向き斜め配置された状態で計測流路1の同一面に位置する様に組み付けされている。流量計測手段10は、この一対の超音波センサ7、8とリード線10a、10bで接続されると共に、計測流路1に固定されており、流量計測ユニットとして一体化されている。そして流量計測手段10は、一方の超音波センサから送信された超音波信号が計測流路1の対向壁1cで反射し他方の超音波センサで送受信するまでの伝搬時間を計測して、計測流路1を流れる被計測流体の流量を演算している。   FIG. 2 shows a cross section of the flow rate measurement unit according to the present embodiment. As shown in the figure, a pair of ultrasonic sensors 7 and 8 constituting the flow velocity detecting means are arranged obliquely inward with respect to the sensor mounting member 12. In such a state, they are assembled so as to be positioned on the same surface of the measurement channel 1. The flow rate measurement means 10 is connected to the pair of ultrasonic sensors 7 and 8 by lead wires 10a and 10b, and is fixed to the measurement flow path 1, and is integrated as a flow rate measurement unit. The flow rate measuring means 10 measures the propagation time until the ultrasonic signal transmitted from one ultrasonic sensor is reflected by the opposing wall 1c of the measurement flow path 1 and transmitted / received by the other ultrasonic sensor, The flow rate of the fluid to be measured flowing through the path 1 is calculated.

この構成において、被計測流体が一度メータ筐体2内部に充填されてから計測流路1に流入するため、メータ筐体2がチャンバーとなり、被計測流体の流入部から屈曲された配管で直接計測流路へ接続する方式に比較して計測流路へ流入する流れに偏流が起こり難くなり計測の信頼性が向上する。   In this configuration, since the fluid to be measured is once filled in the meter housing 2 and then flows into the measurement flow path 1, the meter housing 2 becomes a chamber and is directly measured by a pipe bent from the inflow portion of the fluid to be measured. Compared with the method of connecting to the flow path, the flow that flows into the measurement flow path is less likely to occur, and the measurement reliability is improved.

図3(a)は、図2のA−A要部断面、(b)は、図2のB−B要部断面を示すもので、計測流路1の流路は前記したように矩形断面となっており、図3(a)に示すように、流路の短編側が3枚の仕切り板11a、11b、11cにより分割されて4つの層状流路13a〜13dを形成している。   3A is a cross-sectional view of the main part AA in FIG. 2, and FIG. 3B is a cross-sectional view of the main part BB in FIG. 2. The flow path of the measurement flow path 1 is a rectangular cross section as described above. As shown in FIG. 3A, the short side of the flow path is divided by three partition plates 11a, 11b, and 11c to form four layered flow paths 13a to 13d.

つまり、流路を仕切り板11a〜11cで狭く仕切ることで被計測流体の流れが2次元性になるようにしてあり、流路の高さ方向の流れを層状流路で分散することで従来の単層の流路に比較し、流速分布を均一化し、超音波による計測の安定を図っている。   That is, the flow of the fluid to be measured becomes two-dimensional by partitioning the flow path narrowly with the partition plates 11a to 11c, and the flow in the height direction of the flow path is dispersed by the layered flow path. Compared to a single-layer flow path, the flow velocity distribution is made uniform, and measurement by ultrasonic waves is stabilized.

そして、一対の超音波センサ7,8は共に、この層状流路13a〜13dの流れ方向の範囲C内で超音波信号の送受信が行えるように配置しており、一方の超音波センサから送信された超音波信号は各層状流路13a〜13dそれぞれに分散して伝搬し、対向壁1cに反射して他方の超音波センサに受信される。   The pair of ultrasonic sensors 7 and 8 are both arranged so as to be able to transmit and receive ultrasonic signals within the range C in the flow direction of the layered flow paths 13a to 13d, and transmitted from one ultrasonic sensor. The ultrasonic signals dispersed and propagated in the respective layered flow paths 13a to 13d are reflected on the opposing wall 1c and received by the other ultrasonic sensor.

なお、本実施の形態では4層としているが、4層以外の構成も可能である。しかし、層数が多くなるとコスト増になるだけでなく流体の流路内の通過抵抗の増加による圧損の増加や超音波の仕切り板への反射による減衰が大きくなり計測流量範囲や計測流体の種類が限定しなくてはならないなどの課題が多くなる。   Note that although four layers are used in this embodiment, a configuration other than four layers is also possible. However, increasing the number of layers not only increases costs, but also increases pressure loss due to increased passage resistance in the fluid flow path, and attenuation due to reflection of ultrasonic waves on the partition plate. However, there are many issues that must be limited.

また、圧損の関係からある程度の流路の断面積が必要であるが3層の場合は、層間ピッチを大きくとる必要があり1層当たりの高さが大きくなるため層状流路としての計測流量範囲での流れの2次元化が難しいなど流路を多層化するメリットが少なく本発明の実施の形態の構成としては効果が期待できない。   In addition, a certain cross-sectional area of the flow path is required due to pressure loss, but in the case of three layers, it is necessary to increase the interlayer pitch and the height per layer increases, so the measured flow rate range as a layered flow path There are few merits of multi-layered flow paths, such as difficulty in two-dimensional flow, and the effect of the configuration of the embodiment of the present invention cannot be expected.

次に、超音波による流量計測動作を図4を用い説明する。図1〜3に示すように本実施の形態においては、一対の超音波センサ7、8と計測流路をユニット化しており、計測流
路の矩形断面の同一面上に超音波センサ7、8を配置する構成とするため、超音波信号の送受信の伝播経路は超音波センサの対向壁で反射させたV字型の伝播路となり、上流に配置した超音波センサ7と下流に配置した超音波センサ8間で超音波信号の送受が行われる。
Next, the flow measurement operation using ultrasonic waves will be described with reference to FIG. As shown in FIGS. 1-3, in this Embodiment, a pair of ultrasonic sensor 7 and 8 and a measurement flow path are unitized, and the ultrasonic sensors 7 and 8 are on the same surface of the rectangular cross section of a measurement flow path. Therefore, the propagation path for transmitting and receiving the ultrasonic signal is a V-shaped propagation path reflected by the opposing wall of the ultrasonic sensor, and the ultrasonic sensor 7 disposed upstream and the ultrasonic wave disposed downstream. An ultrasonic signal is transmitted and received between the sensors 8.

この構成において、上流側の超音波センサ7から発せられた超音波信号が下流側の超音波センサ8で受信されるまでの伝搬時間T1を計測する。また一方、下流側の超音波センサ8から発せられた超音波信号が上流側の超音波センサ7で受信されるまでの伝搬時間T2を計測する。   In this configuration, the propagation time T <b> 1 until the ultrasonic signal emitted from the upstream ultrasonic sensor 7 is received by the downstream ultrasonic sensor 8 is measured. On the other hand, the propagation time T <b> 2 until the ultrasonic signal emitted from the downstream ultrasonic sensor 8 is received by the upstream ultrasonic sensor 7 is measured.

このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により演算手段で流量が算出される。   Based on the propagation times T1 and T2 measured in this way, the flow rate is calculated by the calculation means by the following calculation formula.

いま、計測流路1の被計測流体の流れ方向の流速Vと超音波信号の伝搬路Dとのなす角度をθとし、超音波センサ7、8間の距離を2×L、被計測流体の音速をCとすると、流速Vは以下の式にて算出される。   Now, the angle between the flow velocity V in the flow direction of the fluid to be measured in the measurement channel 1 and the propagation path D of the ultrasonic signal is θ, the distance between the ultrasonic sensors 7 and 8 is 2 × L, and the fluid to be measured When the speed of sound is C, the flow velocity V is calculated by the following equation.

式(1) T1=2×L/(C+Vcosθ)
式(2) T2=2×L/(C−Vcosθ)
式(1)、(2)より、T1の逆数からT2の逆数を引き算で音速Cを消去して
式(3) V=(2×L/2cosθ)((1/T1)−(1/T2))
となる。
Formula (1) T1 = 2 × L / (C + V cos θ)
Formula (2) T2 = 2 × L / (C−V cos θ)
From equations (1) and (2), the sound speed C is eliminated by subtracting the reciprocal of T1 from the reciprocal of T1, and equation (3) V = (2 × L / 2 cos θ) ((1 / T1) − (1 / T2 ))
It becomes.

そして、θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。いま、空気の流量を計ることを考え、角度θ=45度、距離L=35mm、音速C=340m/s、流速V=8m/sを想定すると、T1=2.0×10−4秒、T2=2.1×10−4秒となる。このようにして、超音波センサ間の超音波信号の伝搬時間を計測することで、被計測流体の流速Vの瞬時計測ができる。   Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2. Assuming that the air flow rate is measured, assuming that the angle θ = 45 degrees, the distance L = 35 mm, the sound velocity C = 340 m / s, and the flow velocity V = 8 m / s, T1 = 2.0 × 10−4 seconds, T2 = 2.1 × 10 −4 seconds. Thus, by measuring the propagation time of the ultrasonic signal between the ultrasonic sensors, the flow velocity V of the fluid to be measured can be instantaneously measured.

なお、図5に、4層の層状流路を有する計測流路における、各層の高さを変化させた時の流量と流量係数Kを実測した実験データを基にしたグラフを示す。   FIG. 5 shows a graph based on experimental data obtained by actually measuring the flow rate and the flow rate coefficient K when the height of each layer is changed in a measurement flow channel having a four-layered flow channel.

図5において(a)で示されているのが4層とも層の高さが等しい流路の場合で、層の高さを等間隔として層状流路を構成すると流量係数Kは右肩下がりの傾いた形状になる。   In FIG. 5, (a) shows a case in which all four layers have the same layer height, and the flow rate coefficient K decreases to the right when the layered channels are formed with the layer heights being equally spaced. Inclined shape.

このことはすなわち計測流量により、各層での流量分配比が変化していることを意味している。   This means that the flow rate distribution ratio in each layer changes depending on the measured flow rate.

なお、h1〜h4は図6に示すように各層状流路の層高さを意味する。   In addition, h1 to h4 mean the layer height of each layered channel as shown in FIG.

また、(b)、(c)は4層の内の両端に位置する層状流路の層高さを、他の層状流路の層高さに比べて小さく構成した場合を示すもので、層の高さに関係なく高流量側では流量係数が1に収束していく。各層の高さが等しい場合は、低流量側で流量係数が大きく、大流量側では層の高さに関係なく同じ値に収束していく。   Also, (b) and (c) show the case where the layer height of the layered channel located at both ends of the four layers is made smaller than the layer height of the other layered channels. Regardless of the height, the flow coefficient converges to 1 on the high flow rate side. When the heights of the layers are equal, the flow coefficient is large on the low flow rate side, and converges to the same value on the large flow rate side regardless of the layer height.

従って、本実施の形態では図6に示すように、一方の流路壁が計測流路1の壁となっている層状流路13a、13dの層高さを内側の層状流路13b、13dに対して小さくしている。具体的には、両端の層状流路の層高さであるh1、h4を1.95mm、それ以外の層高さh2、h3を2.00mmとしており、この構成により、図5の(a)に示す特性を得ている。   Therefore, in the present embodiment, as shown in FIG. 6, the layer height of the layered channels 13a and 13d in which one channel wall is the wall of the measurement channel 1 is set to the inner layered channels 13b and 13d. On the other hand, it is small. Specifically, the layer heights h1 and h4 of the layered flow channels at both ends are set to 1.95 mm, and the other layer heights h2 and h3 are set to 2.00 mm. With this configuration, FIG. The following characteristics are obtained.

また、計測流路1の計測流路入口1aにおいて、仕切り板11a〜11cの各先端は、計測流路1の先端から距離mだけ下流側に離間した位置としている。   Further, at the measurement channel inlet 1 a of the measurement channel 1, the tips of the partition plates 11 a to 11 c are located at positions separated from the tip of the measurement channel 1 by a distance m on the downstream side.

そして、この構成により、測定流速範囲に渡り、流量係数をほぼ1とすることを実現している。   And by this structure, it has implement | achieved making a flow coefficient substantially 1 over the measurement flow velocity range.

なお、本実施の形態では壁面1d近接の層状流路13a、13dを層状流路13b、13cの層高さ2.00mmに対して0.05mm小さくして、1.95mmとしているが、小さくする範囲は基準の層(両端の層状流路を除いた層)の高さの2〜5%が適正である。   In the present embodiment, the layered channels 13a and 13d in the vicinity of the wall surface 1d are reduced by 0.05 mm to 1.95 mm with respect to the layer height of 2.00 mm of the layered channels 13b and 13c. The appropriate range is 2 to 5% of the height of the reference layer (the layer excluding the layered channels at both ends).

以上のように、本発明にかかる超音波流量計は、複数の層状流路で構成される計測流路において、計測流量が変化しても各層状流路の流速比を一定にすることができ、流量係数をフラットにすることができるので、生産時の器差補正が容易となり、さらに小型、低コスト化が可能なためガスメータをはじめとして種々の流量計として応用展開が可能である。   As described above, the ultrasonic flowmeter according to the present invention can make the flow rate ratio of each layered flow path constant even if the measured flow rate changes in the measurement flow path composed of a plurality of layered flow paths. Since the flow coefficient can be flattened, the instrumental error correction at the time of production can be facilitated, and the size and cost can be reduced, so that it can be applied to various flow meters including gas meters.

1 計測流路
2 メータ筐体
5 遮断弁
7、8 超音波センサ
10 流量計測手段
11a〜11c 仕切り板
13a〜13d 層状流路
DESCRIPTION OF SYMBOLS 1 Measurement flow path 2 Meter housing 5 Shut-off valve 7, 8 Ultrasonic sensor 10 Flow measurement means 11a-11c Partition plates 13a-13d Layered flow path

Claims (4)

被計測流体が流れる流路断面が矩形の計測流路と、
前記計測流路の途中に配置され前記計測流路を3つ以上の層状流路に分割する複数の仕切り板と、
前記層状流路上の上流と下流に配置され、超音波信号の送受信が可能な一対の超音波センサと、
前記超音波センサの一方から送信された超音波信号が前記被計測流体を伝搬して他方の超音波センサが受信するまでの伝搬時間に基づいて前記被計測流体の流量を検出する流量計測手段と、を備え、
前記層状流路間の流速差を小さくするように、両端の層状流路の層の高さを他の層状流路の層の高さより小さくした超音波流量計。
A measurement channel having a rectangular channel cross-section through which the fluid to be measured flows, and
A plurality of partition plates arranged in the middle of the measurement channel and dividing the measurement channel into three or more layered channels;
A pair of ultrasonic sensors arranged upstream and downstream on the laminar flow path and capable of transmitting and receiving ultrasonic signals;
Flow rate measuring means for detecting a flow rate of the fluid to be measured based on a propagation time until an ultrasonic signal transmitted from one of the ultrasonic sensors propagates through the fluid to be measured and is received by the other ultrasonic sensor; With
The ultrasonic flowmeter which made the height of the layer of the layered flow path of both ends smaller than the height of the layer of other layered flow paths so that the flow velocity difference between the layered flow paths might be small.
前記層状流路の内、両端の層状流路の層の高さを他の層状流路の層の高さに対して、2〜5%小さくした請求項1に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the height of the layered channel at both ends of the layered channel is 2 to 5% smaller than the height of the layers of the other layered channels. 層状流路の一つの層の高さを2mm以下とした請求項1又は2記載の超音波流量計。   The ultrasonic flowmeter according to claim 1 or 2, wherein the height of one layer of the layered flow path is 2 mm or less. 前記一対の超音波センサは、前記層状流路上の同一面側に配置され、一方の前記超音波センサから送信された超音波信号が前記超音波センサに対向する前記計測流路内壁に反射し、他方の前記超音波センサに受信される構成としたことを特徴とする請求項1〜3のいずれか1項に記載の超音波流量計。
The pair of ultrasonic sensors are arranged on the same surface side of the layered flow path, and an ultrasonic signal transmitted from one of the ultrasonic sensors is reflected on the inner wall of the measurement flow path facing the ultrasonic sensor, The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is configured to be received by the other ultrasonic sensor.
JP2010206295A 2010-09-15 2010-09-15 Ultrasonic flow meter Active JP5816831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206295A JP5816831B2 (en) 2010-09-15 2010-09-15 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206295A JP5816831B2 (en) 2010-09-15 2010-09-15 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2012063187A JP2012063187A (en) 2012-03-29
JP5816831B2 true JP5816831B2 (en) 2015-11-18

Family

ID=46059059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206295A Active JP5816831B2 (en) 2010-09-15 2010-09-15 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5816831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471670B (en) * 2013-09-28 2016-08-10 重庆前卫科技集团有限公司 The V-type correlation single-pass single channel of gas flow gauge table
JP7246634B2 (en) * 2019-03-26 2023-03-28 東京電力ホールディングス株式会社 Flowing style discrimination device, Flowing style discrimination system and Flowing style discrimination method
CN115265684B (en) * 2022-07-27 2024-03-15 杭州思筑智能设备有限公司 Reflection type flat flow channel with gradual change strip-shaped grating and flowmeter system
CN117213571A (en) * 2023-09-18 2023-12-12 青岛乾程科技股份有限公司 Structure and method for improving linearity of metering error of ultrasonic gas flowmeter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528347B2 (en) * 1995-08-03 2004-05-17 松下電器産業株式会社 Ultrasonic flow measurement device
JP2006118864A (en) * 2004-10-19 2006-05-11 Yazaki Corp Gas meter
US8701501B2 (en) * 2008-12-18 2014-04-22 Panasonic Corporation Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods

Also Published As

Publication number Publication date
JP2012063187A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2012086156A1 (en) Ultrasonic flowmeter
WO2010070891A1 (en) Ultrasonic flowmeter
US9372105B2 (en) Ultrasonic flow rate measurement device
US7823463B1 (en) Ultrasonic flow sensor using two streamlined probes
WO2012063437A1 (en) Ultrasonic flow rate measurement device
JP5816831B2 (en) Ultrasonic flow meter
WO2014057673A1 (en) Flowmeter
WO2017002281A1 (en) Measurement unit and flow rate meter
JP2012058237A (en) Flowmeter for detecting characteristic of fluid
WO2012164859A1 (en) Ultrasonic flow rate measurement unit and gas flowmeter using same
WO2013051272A1 (en) Method for setting flow quantity measurement device
JP5728639B2 (en) Ultrasonic flow meter
WO2017122239A1 (en) Gas meter
JP2010117201A (en) Flowmeter
JP4936856B2 (en) Flowmeter
US7845240B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
JP7285450B2 (en) ultrasonic flow meter
JP6134899B2 (en) Flow measurement unit
EP2278280B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
JP6229144B2 (en) Flow measuring device
WO2020054383A1 (en) Ultrasonic flowmeter
JP2021110685A (en) Ultrasonic flowmeter
JP7462271B2 (en) Ultrasonic Flow Meter
JP7373772B2 (en) Physical quantity measuring device
JP4188386B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5816831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151