JP7373772B2 - Physical quantity measuring device - Google Patents

Physical quantity measuring device Download PDF

Info

Publication number
JP7373772B2
JP7373772B2 JP2020121786A JP2020121786A JP7373772B2 JP 7373772 B2 JP7373772 B2 JP 7373772B2 JP 2020121786 A JP2020121786 A JP 2020121786A JP 2020121786 A JP2020121786 A JP 2020121786A JP 7373772 B2 JP7373772 B2 JP 7373772B2
Authority
JP
Japan
Prior art keywords
channel
fluid
sub
flow
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020121786A
Other languages
Japanese (ja)
Other versions
JP2022018585A (en
Inventor
真人 佐藤
基之 名和
麻子 三好
正誉 松田
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020121786A priority Critical patent/JP7373772B2/en
Priority to CN202180048961.8A priority patent/CN115803617A/en
Priority to EP21841969.5A priority patent/EP4184159A4/en
Priority to US18/012,537 priority patent/US20230273156A1/en
Priority to PCT/JP2021/025984 priority patent/WO2022014499A1/en
Publication of JP2022018585A publication Critical patent/JP2022018585A/en
Application granted granted Critical
Publication of JP7373772B2 publication Critical patent/JP7373772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、流動する使用流体の一部をサンプリングして、流体に含まれる成分の濃度等の物理量を計測する物理量計測装置に関するものである。 The present invention relates to a physical quantity measuring device that samples a portion of a flowing working fluid and measures physical quantities such as the concentration of components contained in the fluid.

従来、流体の成分を測定する計測装置として、超音波流量計の流量計測部を流れる流体をサンプリングする成分計測部を流量計測部に併設したものが知られている(例えば、特許文献1参照)。 Conventionally, as a measuring device for measuring the components of a fluid, an ultrasonic flowmeter in which a component measuring section for sampling the fluid flowing through the flow measuring section is attached to the flow measuring section is known (see, for example, Patent Document 1). .

図4は、特許文献1に記載された超音波流量計の計測流路の一部分の断面図を示したものである。 FIG. 4 shows a cross-sectional view of a portion of the measurement flow path of the ultrasonic flowmeter described in Patent Document 1.

この流量計では、計測流路100の主流路101は、仕切板102で多層に分割されて多層流路103を形成している。この多層流路103部に流体の成分を計測する副流路104を併設している。この副流路104に主流路101を流れる流体を流入させるため、多層流路103部の入口側に主流路101へ突出部105を配置して流路断面を部分的に絞り、エジェクタ効果により多層流路103aの上流側の流出口106から誘引して流出させ、流入口(図示せず)から流体を流入させる副流路104を形成している。 In this flowmeter, a main channel 101 of a measurement channel 100 is divided into multiple layers by a partition plate 102 to form a multilayer channel 103. A sub-flow path 104 for measuring the components of the fluid is attached to the multilayer flow path 103. In order to allow the fluid flowing through the main channel 101 to flow into this sub-channel 104, a protrusion 105 is disposed toward the main channel 101 on the inlet side of the multi-layer channel 103 to partially narrow the channel cross section. A sub-flow path 104 is formed in which fluid is induced to flow out from an outflow port 106 on the upstream side of the flow path 103a, and fluid is caused to flow in through an inflow port (not shown).

そして、この副流路104において、赤外線によりガス成分を測定するものである。 Then, in this sub-flow path 104, gas components are measured using infrared rays.

国際公開第2018/185034号International Publication No. 2018/185034

しかしながら、前記従来の構成では、流体の成分を計測する副流路104に主流路の流体を誘引する場合において、主流路101を流れる流体に微細な水滴などの液滴が含まれている場合、副流路104にこの液滴が侵入して成分計測に悪影響するという課題がある。また、エジェクタ効果を発揮させるためには主流路の流れに影響を及ぼす圧力損失が発生し、この圧力損失を小さくすると副流路104に流入させる十分な吸引力が得られないという課題がある。 However, in the conventional configuration, when the fluid in the main channel is drawn to the sub-channel 104 for measuring the components of the fluid, if the fluid flowing in the main channel 101 contains droplets such as fine water droplets, There is a problem that these droplets enter the sub-channel 104 and adversely affect component measurement. Further, in order to exhibit the ejector effect, a pressure loss that affects the flow in the main channel occurs, and if this pressure loss is reduced, there is a problem that sufficient suction force to flow into the sub flow channel 104 cannot be obtained.

本発明は、前記従来の課題を解決するもので、流体に含まれる成分の濃度等の特性を計測する副流路への水滴などの液滴の侵入を大幅に抑制し、かつ、主流のもつ流れの乱れを小さくした状態で、副流路において、流体に含まれる成分の濃度計測を精度よく行う計測装置を提供することを目的とするものである。 The present invention solves the above-mentioned conventional problems by significantly suppressing the intrusion of liquid droplets such as water droplets into the sub-channel where characteristics such as the concentration of components contained in the fluid are measured, and It is an object of the present invention to provide a measuring device that accurately measures the concentration of components contained in a fluid in a sub-channel while reducing flow turbulence.

前記従来の課題を解決するために、本発明の物理量計測装置は、被計測流体が流れる主流路と、前記主流路の流路壁に設けた入口開口部および出口開口部と、前記入口開口部と前記出口開口部とを接続する副流路と、前記入口開口部に設けた流入方向規制部と、前記副流路に配置した成分濃度計測部と、を備え、前記流入方向規制部は、前記主流路の流れ方向に対して所定の傾斜角を持つ案内片を配置して構成し、前記所定の傾斜角は、前記主流路の流れ方向との関係において、90°より大きい値とすると共に、前記案内片間の間隔hと前記主流路の高さHとの関係が、H>hとなるように構成することで、被計測流体
に微細な水滴などの液滴が含まれている場合でも、水滴などの液滴の侵入を大幅に抑制して液滴を含まない流れを副流路に供給することにより、液滴等の影響を受けることなく流体に含まれる成分の濃度計測等の計測精度を向上できる。また、ルーバー状の案内片による流れの分割により、主流のもつ乱れを小さくすることができ、副流路において、乱れの少ない状態での計測を可能にする。また、副流路へ流れを導くに際して、主流の断面積を絞ることのない構成となっているため、格別の圧力損失は、発生しないものである。
In order to solve the conventional problems, the physical quantity measuring device of the present invention includes a main channel through which a fluid to be measured flows, an inlet opening and an outlet opening provided in the channel wall of the main channel, and the inlet opening. and the outlet opening, an inflow direction regulating section provided at the inlet opening, and a component concentration measuring section disposed in the sub channel, the inflow direction regulating section comprising: A guide piece having a predetermined inclination angle with respect to the flow direction of the main flow path is arranged, and the predetermined inclination angle is larger than 90° in relation to the flow direction of the main flow path. , when the fluid to be measured contains liquid droplets such as minute water droplets, by configuring the relationship between the interval h between the guide pieces and the height H of the main flow path to be H>h. However, by greatly suppressing the intrusion of droplets such as water droplets and supplying a flow that does not contain droplets to the subchannel, it is possible to measure the concentration of components contained in the fluid without being affected by droplets. Measurement accuracy can be improved. Furthermore, by dividing the flow using the louver-shaped guide pieces, turbulence in the main flow can be reduced, making it possible to perform measurements in a state with little turbulence in the sub-channel. Further, since the configuration is such that the cross-sectional area of the main flow is not restricted when guiding the flow to the sub-channel, no particular pressure loss occurs.

本発明の物理量計測装置は、入口開口部には主流路の流れ方向に対して所定の傾斜角を持つ案内片を配置した流入方向規制部材を設け、この案内片の傾斜角は、主流路の流れ方向との関係において、90°より大きい値となるように構成することで、水滴などの液滴の侵入を大幅に抑制して液滴を含まない流れを副流路に供給し、液滴等の影響を受けることなく流体に含まれる成分の濃度計測等の計測精度を向上できる。また、ルーバー状の案内片による流れの分割により、主流のもつ流れの乱れを小さくすることができ、副流路において、乱れの少ない状態での計測を可能にする。また、副流路へ流れを導くに際して、主流の断面積を絞ることのない構成となっているため、格別の圧力損失は、発生しないものである。 The physical quantity measuring device of the present invention is provided with an inflow direction regulating member in which a guide piece having a predetermined inclination angle with respect to the flow direction of the main flow path is arranged at the inlet opening. By configuring the angle to be larger than 90° in relation to the flow direction, the intrusion of liquid droplets such as water droplets is greatly suppressed, and a flow containing no liquid droplets is supplied to the sub-channel, thereby preventing droplets from entering. It is possible to improve measurement accuracy such as concentration measurement of components contained in a fluid without being affected by such factors. Furthermore, by dividing the flow using the louver-shaped guide pieces, it is possible to reduce the turbulence of the flow in the main flow, and it is possible to perform measurements in a state with little turbulence in the sub-channel. Further, since the configuration is such that the cross-sectional area of the main flow is not restricted when guiding the flow to the sub-channel, no particular pressure loss occurs.

本発明の実施の形態1における物理量計測装置の構成断面図A cross-sectional diagram of the configuration of a physical quantity measuring device in Embodiment 1 of the present invention 本発明の実施の形態1における図1のA-A断面図AA sectional view of FIG. 1 in Embodiment 1 of the present invention 本発明の実施の形態1における図1のA-A断面の他の形状を示す図A diagram showing another shape of the AA cross section in FIG. 1 in Embodiment 1 of the present invention 従来の成分計測部の構成を示す断面図Cross-sectional diagram showing the configuration of a conventional component measurement unit

第1の発明は、被計測流体が流れる主流路と、前記主流路の流路壁に設けた入口開口部および出口開口部と、前記入口開口部と前記出口開口部とを接続する副流路と、前記入口開口部に設けた流入方向規制部と、前記副流路に配置した成分濃度計測部と、を備え、前記流入方向規制部は、前記主流路の流れ方向に対して所定の傾斜角を持つ案内片を配置して構成し、前記所定の傾斜角は、前記主流路の流れ方向との関係において、90°より大きい値とすると共に、前記案内片間の間隔hと前記主流路の高さHとの関係が、H>hとなるように構成した物理量計測装置で、水滴などの液滴の侵入を大幅に抑制して液滴を含まない流れを副流路に供給し、液滴等の影響を受けることなく流体に含まれる成分の濃度計測等の計測精度を向上できる。また、ルーバー状の案内片による流れの分割により、主流のもつ流れの乱れを小さくすることができ、副流路において、乱れの少ない状態での計測を可能にする。また、副流路へ流れを導くに際して、主流の断面積を絞ることのない構成となっているため、格別の圧力損失は、発生しないものである。 A first invention provides a main channel through which a fluid to be measured flows, an inlet opening and an outlet opening provided in a channel wall of the main channel, and a sub-channel connecting the inlet opening and the outlet opening. an inflow direction regulating section provided at the inlet opening; and a component concentration measuring section disposed in the sub-channel, wherein the inflow direction regulating section has a predetermined inclination with respect to the flow direction of the main channel. It is configured by arranging guide pieces with corners, and the predetermined inclination angle is a value larger than 90° in relation to the flow direction of the main flow path, and the distance h between the guide pieces and the main flow path are The physical quantity measuring device is configured such that the relationship with the height H of It is possible to improve measurement accuracy such as concentration measurement of components contained in a fluid without being affected by droplets or the like. Furthermore, by dividing the flow using the louver-shaped guide pieces, it is possible to reduce the turbulence of the flow in the main flow, and it is possible to perform measurements in a state with little turbulence in the sub-channel. Further, since the configuration is such that the cross-sectional area of the main flow is not restricted when guiding the flow to the sub-channel, no particular pressure loss occurs.

第2の発明は、特に第1の発明において、前記成分濃度計測部は、前記副流路に配置した一対の超音波送受波器と、前記被計測流体の温度を検知する温度センサと、前記一対の前記超音波送受波器からの信号と前記温度センサからの信号を受けて前記被計測流体の成分濃度を演算する信号処理部と、からなるものである。 In a second invention, particularly in the first invention, the component concentration measuring section includes a pair of ultrasonic transducers disposed in the sub-channel, a temperature sensor that detects the temperature of the fluid to be measured, and a temperature sensor that detects the temperature of the fluid to be measured. A signal processing section receives signals from the pair of ultrasonic transducers and the temperature sensor and calculates the component concentration of the fluid to be measured.

第3の発明は、特に第1の発明において、前記成分濃度計測部は、前記副流路に配置した熱流センサと、前記熱流センサからの信号を受けて前記被計測流体の成分濃度を演算する信号処理部と、からなるものである。 In a third invention, particularly in the first invention, the component concentration measuring section calculates the component concentration of the fluid to be measured based on a heat flow sensor disposed in the sub-flow path and a signal from the heat flow sensor. It consists of a signal processing section.

以下、本発明の実施の形態について、図面を参照しながら説明する。
但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
Embodiments of the present invention will be described below with reference to the drawings.
However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.

(実施の形態1)
実施の形態1について、図1~図2を用いて説明する。
(Embodiment 1)
Embodiment 1 will be described using FIGS. 1 and 2.

図1は、本発明の実施の形態1における物理量計測装置の構成断面図であり、図2は本発明の実施の形態1における図1のA-A断面図である。 FIG. 1 is a sectional view of the configuration of a physical quantity measuring device according to Embodiment 1 of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. 1 according to Embodiment 1 of the present invention.

図1、図2において、被計測流体が流れる主流路1は、その断面が長辺を幅W、短辺を高さHで示す矩形断面の流路であり、主流路1は、入口2および出口3を備える。 1 and 2, the main channel 1 through which the fluid to be measured flows is a channel with a rectangular cross section whose long side is a width W and whose short side is a height H. Equipped with an outlet 3.

主流路1の流路壁4には、上流側に入口開口部5を設け、さらに、この入口開口部5の下流側には出口開口部6を設けている。この入口開口部5と出口開口部6とを接続する副流路7を主流路1に並列に配置している。副流路7には、流れ方向に対向するように配置した一対の超音波送受波器8、9と流体の温度を検知する温度センサ10を配置している。 The channel wall 4 of the main channel 1 is provided with an inlet opening 5 on the upstream side, and further provided with an outlet opening 6 on the downstream side of the inlet opening 5. A sub-channel 7 connecting the inlet opening 5 and the outlet opening 6 is arranged in parallel to the main channel 1. A pair of ultrasonic transducers 8 and 9 arranged to face each other in the flow direction and a temperature sensor 10 for detecting the temperature of the fluid are arranged in the sub-flow path 7.

この一対の超音波送受波器8、9と温度センサ10は信号処理部11と電気的に接続され、この信号処理部11は、この一対の超音波送受波器8、9からの信号と温度センサ10からの信号を受けて流体の成分濃度を演算する。 The pair of ultrasonic transducers 8 and 9 and the temperature sensor 10 are electrically connected to a signal processing unit 11, and the signal processing unit 11 processes the signals from the pair of ultrasonic transducers 8 and 9 and the temperature sensor 10. The component concentration of the fluid is calculated based on the signal from the sensor 10.

そして、本実施の形態において、成分濃度計測部は、一対の超音波送受波器8、9と温度センサ10と信号処理部11とで構成されている。 In the present embodiment, the component concentration measuring section includes a pair of ultrasonic transducers 8 and 9, a temperature sensor 10, and a signal processing section 11.

上記の副流路7の入口開口部5には、主流路1の流れ方向に対して所定の傾斜角θを持つ複数の板状あるいはルーバー状の案内片12を複数配置した流入方向規制部13を設け、この案内片12の傾斜角θは、主流路1の流れ方向との関係において、図1に示すように90°より大きい値となるように構成している。 At the inlet opening 5 of the sub-channel 7, an inflow direction regulating section 13 is provided with a plurality of plate-shaped or louver-shaped guide pieces 12 having a predetermined inclination angle θ with respect to the flow direction of the main channel 1. The inclination angle θ of the guide piece 12 is configured to be larger than 90° as shown in FIG. 1 in relation to the flow direction of the main flow path 1.

また、案内片12間の間隔hは、主流路1の高さHとの関係がH>hとなるように構成されている。ここでの案内片12間の間隔hや、主流路高さHは、レイノルズ数の代表長さに相当する値である。 Further, the distance h between the guide pieces 12 is configured such that the relationship with the height H of the main flow path 1 is H>h. The distance h between the guide pieces 12 and the height H of the main flow path here are values corresponding to the representative length of the Reynolds number.

なお、流入方向規制部13は流路壁4から主流路1に突出しないように配置し、さらに、副流路7では流体の流れが滑らかになるように、曲がり部の内壁面B,C等にはコーナR(丸み付け)を行っている。 The inflow direction regulating portion 13 is arranged so as not to protrude from the channel wall 4 into the main channel 1, and the inner wall surfaces B, C, etc. of the curved portion are arranged so as not to protrude from the channel wall 4 into the main channel 1. The corners are rounded.

次に、本発明の物理量計測装置の動作について説明する。 Next, the operation of the physical quantity measuring device of the present invention will be explained.

主流路1を流れる被計測流体は、入口2から図1の白抜き矢印Yで示すように流入し、主流路1の流れの大部分は流れFmとなり、最終的には、出口3から図1の黒抜き矢印Zのように流出する。 The fluid to be measured flowing through the main channel 1 flows from the inlet 2 as shown by the white arrow Y in FIG. It flows out as shown by the black arrow Z.

流入方向規制部13が設けられた入口開口部5では、流入方向規制部13を構成する複数の板状あるいはルーバー状の案内片12が主流路1の流れ方向に対する角度θが90°より大きい値として設定されているので、主流路1の被計測流体に水滴などの微細な液滴を含んでいても、液滴は、案内片12に衝突して滴下したり、付着したりして、容易に副
流路7に流入することはない。また、塵埃等の異物についても案内片12への衝突による落下等、同様の効果が期待される。
In the inlet opening 5 in which the inflow direction regulating part 13 is provided, the plurality of plate-shaped or louver-shaped guide pieces 12 constituting the inflow direction regulating part 13 have an angle θ with respect to the flow direction of the main flow path 1 that is larger than 90°. Therefore, even if the fluid to be measured in the main flow path 1 contains minute droplets such as water droplets, the droplets will easily collide with the guide piece 12 and drip or adhere to the guide piece 12. It does not flow into the sub-channel 7 during this time. Further, a similar effect is expected with respect to foreign matter such as dust, such as falling due to collision with the guide piece 12.

また、案内片12間の間隔hは、主流路1の高さHとの関係がH>hとなるように構成されているため、主流が有する流れの乱れについては、ルーバー状の案内片12を通過するときに、主流が有する、大きなスケールの渦や乱れが、小さなスケールの渦や乱れとなり、副流路7における流れの乱れは、主流路1の乱れよりも小さくなる。 Furthermore, since the interval h between the guide pieces 12 is configured such that the relationship with the height H of the main flow path 1 is H>h, the louver-shaped guide pieces 12 When passing through, the large-scale vortices and turbulence of the main stream become small-scale vortices and turbulence, and the turbulence of the flow in the sub-channel 7 becomes smaller than the turbulence in the main channel 1.

このように、被計測流体中の水滴などの液滴が除去され、流れの乱れが減少した状態は、超音波送受波器8,9間での超音波の送受における信号の乱れを少なくすることになり、一対の超音波送受波器8、9を用いて音速を安定して計測することができる。信号処理部11は、このようにして得られた音速と、温度センサ10で計測された流体の温度を用いて、公知の方法により被計測流体に含まれる成分濃度を演算する。 In this manner, the state in which liquid droplets such as water droplets in the fluid to be measured are removed and flow turbulence is reduced reduces disturbances in signals during transmission and reception of ultrasonic waves between the ultrasonic transducers 8 and 9. Therefore, the speed of sound can be stably measured using the pair of ultrasonic transducers 8 and 9. The signal processing unit 11 uses the sound velocity obtained in this way and the temperature of the fluid measured by the temperature sensor 10 to calculate the concentration of the component contained in the fluid to be measured using a known method.

このようにして、副流路7では、水滴などの液滴や異物の侵入を大幅に抑制し、また、乱れの少ない状態が実現されるため、被計測流体に含まれる微細な水滴などの液滴による影響を受けたり、被計測流体の流れの乱れによる影響を受ける計測方法を用いる場合でも、被計測流体に含まれる成分の濃度計測等の計測精度を向上できる。また、このような構成は、主流路1の断面縮小を与えないので主流路での格別の圧力損失を生じることがない。 In this way, in the sub-channel 7, the intrusion of liquid droplets such as water droplets and foreign matter is greatly suppressed, and a state with little turbulence is achieved, so that liquid such as minute water droplets contained in the fluid to be measured is Even when using a measurement method that is affected by droplets or by disturbances in the flow of the fluid to be measured, it is possible to improve measurement accuracy such as concentration measurement of components contained in the fluid to be measured. Further, since such a configuration does not reduce the cross section of the main flow path 1, no particular pressure loss occurs in the main flow path.

また、一対の超音波送受波器8、9を、副流路7での流れの方向に対向配置することで必要な計測精度に合わせて伝搬距離である副流路7の直線部の長さを延ばすことができ、さらに、伝搬時間逆数差法も用いた流量計測を行うことができる。 In addition, by arranging a pair of ultrasonic transducers 8 and 9 to face each other in the direction of flow in the sub-channel 7, the length of the straight section of the sub-channel 7, which is the propagation distance, can be adjusted to meet the required measurement accuracy. Furthermore, flow rate measurement can be performed using the reciprocal propagation time difference method.

以上、本発明の実施の形態において、副流路7の幅(図1の奥行き方向)は主流路1の幅W方向の全域で説明したが、図3に示すように、幅W方向の幅を全域では無く長辺の幅の一部である幅W1とした副流路7’であっても良い。 In the above embodiments of the present invention, the width of the sub-channel 7 (in the depth direction in FIG. 1) has been explained as the entire width W direction of the main channel 1, but as shown in FIG. The sub flow path 7' may have a width W1 which is not the entire width but a part of the width of the long side.

また、主流路1の断面形状は矩形断面の流路で説明したが、円形断面など矩形以外の形状であっても良い。円形断面の場合、直径をDとすると、案内片12間の間隔hと直径Dとの関係は、D>hとなる。 Moreover, although the cross-sectional shape of the main flow path 1 has been described as a channel with a rectangular cross section, it may have a shape other than a rectangular shape, such as a circular cross section. In the case of a circular cross section, if the diameter is D, the relationship between the distance h between the guide pieces 12 and the diameter D is D>h.

また、温度センサ10は副流路7に配置した場合で説明したが、主流路1に配置しても良い。 Further, although the temperature sensor 10 has been described in the case where it is disposed in the sub-channel 7, it may be disposed in the main channel 1.

また、流体の成分を計測する物理量計測装置として説明したが、主流路1の上流側あるいは下流側に流量計測部を直列に配置した流量計、あるいは副流路7を有する主流路1に流量計測部を並列配置した流量計として展開できるのは云うまでもない。 In addition, although the description has been made as a physical quantity measuring device that measures the components of a fluid, a flow meter in which a flow rate measuring section is arranged in series on the upstream or downstream side of the main channel 1, or a flow meter that measures the flow rate in the main channel 1 having the sub channel 7 is also used. Needless to say, it can be developed as a flow meter with sections arranged in parallel.

また、本実施の形態では、成分濃度計測部を、一対の超音波送受波器8、9と温度センサ10と信号処理部11とで構成して説明したが、超音波送受波器や温度センサの代わりに熱流センサを用いて構成しても良い。その他、特定のガスの濃度を計測可能な、例えば、水素センサなどを用いてもよい。 In addition, in this embodiment, the component concentration measuring section is explained as being composed of a pair of ultrasonic transducers 8 and 9, a temperature sensor 10, and a signal processing section 11, but the ultrasonic transducer and temperature sensor A heat flow sensor may be used instead. In addition, for example, a hydrogen sensor or the like that can measure the concentration of a specific gas may be used.

以上のように、本発明の物理量計測装置は、副流路への液滴の侵入を抑制するとともに乱れの少ない安定した流れを供給し、主流路での圧力損失が少ない構成の計測装置を提供できるもので、流体の成分の計測装置だけで無く、流量計測部を併設して計測精度および汎用性の高い流量計をも実現できる。 As described above, the physical quantity measuring device of the present invention suppresses the intrusion of droplets into the sub-channel, supplies a stable flow with little turbulence, and provides a measuring device configured to have a configuration with little pressure loss in the main channel. It is possible to realize not only a device for measuring fluid components, but also a flowmeter with high measurement accuracy and versatility by adding a flow rate measurement section.

1 主流路
4 流路壁
5 入口開口部
6 出口開口部
7 副流路
8、9 超音波送受波器(成分濃度計測部)
10 温度センサ(成分濃度計測部)
11 信号処理部(成分濃度計測部)
12 案内片
13 流入方向規制部
1 Main channel 4 Channel wall 5 Inlet opening 6 Outlet opening 7 Sub-channel 8, 9 Ultrasonic transducer (component concentration measuring section)
10 Temperature sensor (component concentration measurement section)
11 Signal processing section (component concentration measurement section)
12 Guide piece 13 Inflow direction regulating part

Claims (3)

被計測流体が流れる主流路と、
前記主流路の流路壁に設けた入口開口部および出口開口部と、
前記入口開口部と前記出口開口部とを接続する副流路と、
前記入口開口部に設けた流入方向規制部と、
前記副流路に配置した成分濃度計測部と、を備え、
前記流入方向規制部は、前記主流路の流れ方向に対して所定の傾斜角を持つ案内片を配置して構成し、前記所定の傾斜角は、前記主流路の流れ方向との関係において、90°より大きい値とすると共に、前記案内片間の間隔hと前記主流路の高さHとの関係が、H>hとなるように構成した物理量計測装置。
a main channel through which the fluid to be measured flows;
an inlet opening and an outlet opening provided in a channel wall of the main channel;
a secondary channel connecting the inlet opening and the outlet opening;
an inflow direction regulating section provided at the inlet opening;
a component concentration measuring section disposed in the sub-channel,
The inflow direction regulating portion is configured by arranging a guide piece having a predetermined inclination angle with respect to the flow direction of the main flow path, and the predetermined inclination angle is 90° with respect to the flow direction of the main flow path. The physical quantity measuring device is configured such that the relationship between the distance h between the guide pieces and the height H of the main flow path is H>h.
前記成分濃度計測部は、
前記副流路に配置した一対の超音波送受波器と、
前記被計測流体の温度を検知する温度センサと、
前記一対の前記超音波送受波器からの信号と前記温度センサからの信号を受けて前記被計測流体の成分濃度を演算する信号処理部と、からなる請求項1記載の物理量計測装置。
The component concentration measuring section includes:
a pair of ultrasonic transducers disposed in the sub-channel;
a temperature sensor that detects the temperature of the fluid to be measured;
2. The physical quantity measuring device according to claim 1, further comprising a signal processing section that receives signals from the pair of ultrasonic transducers and the temperature sensor and calculates a component concentration of the fluid to be measured.
前記成分濃度計測部は、
前記副流路に配置した熱流センサと、
前記熱流センサからの信号を受けて前記被計測流体の成分濃度を演算する信号処理部と、からなる請求項1記載の物理量計測装置。
The component concentration measuring section includes:
a heat flow sensor disposed in the sub-channel;
The physical quantity measuring device according to claim 1, further comprising a signal processing section that receives a signal from the heat flow sensor and calculates a component concentration of the fluid to be measured.
JP2020121786A 2020-07-16 2020-07-16 Physical quantity measuring device Active JP7373772B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020121786A JP7373772B2 (en) 2020-07-16 2020-07-16 Physical quantity measuring device
CN202180048961.8A CN115803617A (en) 2020-07-16 2021-07-09 Physical quantity measuring device
EP21841969.5A EP4184159A4 (en) 2020-07-16 2021-07-09 Physical quantity measurement device
US18/012,537 US20230273156A1 (en) 2020-07-16 2021-07-09 Physical quantity measurement device
PCT/JP2021/025984 WO2022014499A1 (en) 2020-07-16 2021-07-09 Physical quantity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121786A JP7373772B2 (en) 2020-07-16 2020-07-16 Physical quantity measuring device

Publications (2)

Publication Number Publication Date
JP2022018585A JP2022018585A (en) 2022-01-27
JP7373772B2 true JP7373772B2 (en) 2023-11-06

Family

ID=80203406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121786A Active JP7373772B2 (en) 2020-07-16 2020-07-16 Physical quantity measuring device

Country Status (1)

Country Link
JP (1) JP7373772B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965813A (en) 1998-07-23 1999-10-12 Industry Technology Research Institute Integrated flow sensor
JP2003337119A (en) 2002-04-09 2003-11-28 Siemens Elema Ab Acoustical gas monitor
JP2007322221A (en) 2006-05-31 2007-12-13 Aichi Tokei Denki Co Ltd Ultrasound flowmeter
JP2014071109A (en) 2012-09-28 2014-04-21 Hokushin Electronics:Kk Ultrasonic gas concentration meter
JP2014106225A (en) 2012-11-27 2014-06-09 Hokushin Electronics:Kk Ultrasonic wave compact gas content meter
US20150260672A1 (en) 2012-10-15 2015-09-17 Robert Bosch Gmbh Sensor system for determining the moisture content of a fluid medium flowing in a main flow direction
JP2020051969A (en) 2018-09-28 2020-04-02 東芝プラントシステム株式会社 Byproduct gas measuring system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219450A (en) * 1982-06-15 1983-12-20 Nishihara Environ Sanit Res Corp Measuring instrument for concentration
US5589642A (en) * 1994-09-13 1996-12-31 Agar Corporation Inc. High void fraction multi-phase fluid flow meter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965813A (en) 1998-07-23 1999-10-12 Industry Technology Research Institute Integrated flow sensor
JP2003337119A (en) 2002-04-09 2003-11-28 Siemens Elema Ab Acoustical gas monitor
JP2007322221A (en) 2006-05-31 2007-12-13 Aichi Tokei Denki Co Ltd Ultrasound flowmeter
JP2014071109A (en) 2012-09-28 2014-04-21 Hokushin Electronics:Kk Ultrasonic gas concentration meter
US20150260672A1 (en) 2012-10-15 2015-09-17 Robert Bosch Gmbh Sensor system for determining the moisture content of a fluid medium flowing in a main flow direction
JP2014106225A (en) 2012-11-27 2014-06-09 Hokushin Electronics:Kk Ultrasonic wave compact gas content meter
JP2020051969A (en) 2018-09-28 2020-04-02 東芝プラントシステム株式会社 Byproduct gas measuring system

Also Published As

Publication number Publication date
JP2022018585A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP2010164558A (en) Device for measuring flow of fluid
JP5974307B2 (en) Ultrasonic flow meter
CA2680616A1 (en) Bi-directional oscillating jet flowmeter
JP2014077679A (en) Flow meter
JP2895704B2 (en) Ultrasonic flow meter
JP2023164607A (en) Physical quantity measurement device
RU2469276C1 (en) Vortex flow meter housing with groove on back surface
JP4936856B2 (en) Flowmeter
JP7373772B2 (en) Physical quantity measuring device
US11815381B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP6134899B2 (en) Flow measurement unit
JP5816831B2 (en) Ultrasonic flow meter
JP2020024149A (en) Ultrasonic flowmeter
JP4984348B2 (en) Flow measuring device
JP7373771B2 (en) Physical quantity measuring device
JP2008014829A (en) Ultrasonic flowmeter
JP7462271B2 (en) Ultrasonic Flow Meter
JP2001317974A (en) Ultrasonic flowmeter
US20230273156A1 (en) Physical quantity measurement device
JP3355130B2 (en) Pulsation absorption structure of flow meter
JP4656889B2 (en) Core flow measurement device
CN210135957U (en) Ultrasonic gas meter and gas pipeline
JP3131174B2 (en) Fluidic flow meter
JP2006064626A (en) Flow rate measuring apparatus
JP4346458B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R151 Written notification of patent or utility model registration

Ref document number: 7373772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151