JP2014071109A - Ultrasonic gas concentration meter - Google Patents

Ultrasonic gas concentration meter Download PDF

Info

Publication number
JP2014071109A
JP2014071109A JP2012230318A JP2012230318A JP2014071109A JP 2014071109 A JP2014071109 A JP 2014071109A JP 2012230318 A JP2012230318 A JP 2012230318A JP 2012230318 A JP2012230318 A JP 2012230318A JP 2014071109 A JP2014071109 A JP 2014071109A
Authority
JP
Japan
Prior art keywords
ultrasonic
gas concentration
gas
propagation time
concentration meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230318A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Tanaka
義克 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUSHIN ELECTRONICS KK
Original Assignee
HOKUSHIN ELECTRONICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUSHIN ELECTRONICS KK filed Critical HOKUSHIN ELECTRONICS KK
Priority to JP2012230318A priority Critical patent/JP2014071109A/en
Publication of JP2014071109A publication Critical patent/JP2014071109A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small oxygen content meter intended to be installed in an apparatus, which improves responsiveness to gas concentration change and reduces a failure risk of a control electronic circuit.SOLUTION: An ultrasonic gas concentration meter 5 uses one ultrasonic vibrator 4 performing two operations of transmission and reception to measure a time required for an outgoing ultrasonic sound to be reflected from a reflection plate 6 provided with a certain distance, and includes an ultrasonic vibrator of 100 kHz or greater so that residual vibration of the vibrator is decreased before the time when an ultrasonic sound reflection wave arrives. The ultrasonic gas concentration meter further performs measurement by programming of a microcomputer so that reception waveform processing is not executed until residual vibration caused by ultrasonic emission stops and so that only a reflection wave is determined to measure propagation time, thus obtaining an accurate propagation time. The reception waveform is amplified 1,000 times or more with an amplifier, is all-wave rectified, and is thereafter used as a trigger signal for acquiring propagation time. Thus, an electronic circuit configuration is achieved which can perform measurement with reduced measurement error.

Description

本発明は、医療の分野において使用される機器や装置で、様々な気体の混合気体が流れる、または滞留、貯蔵系に組み込まれる、各ガス濃度(混合比率)、特に酸素濃度を超音波の伝搬時間を用いて算出する装置である。  The present invention is a device or device used in the medical field, and various ultrasonic gas concentrations (mixing ratios), especially oxygen concentrations, are propagated by ultrasonic waves in various gas mixtures flowing or staying in a storage system. It is a device that calculates using time.

従来、新生児から老人まで、特に呼吸が不調になっている患者や肺疾患を抱える患者に対して用いられる医療器では、高濃度の酸素を添加した空気すなわち窒素と酸素の混合気体が患者の吸気用として供給される。  Traditionally, medical devices used from newborns to the elderly, especially those with poor breathing and patients with pulmonary disease, are air infused with high-concentration oxygen, that is, a mixture of nitrogen and oxygen. Supplied for use.

従来、超音波の伝搬時間から混合気体の混合比率(ガス濃度)を算出することを目的とした酸素濃度計は存在するが、いずれも対向配置された送信受信専用の2つの超音波振動子、または交互に送信受信を行う2つの超音波振動子で送受信を繰り返して音速を知り、ガス濃度を算出する方式である。  Conventionally, there are oximeters for the purpose of calculating the mixture ratio (gas concentration) of the mixed gas from the propagation time of the ultrasonic wave, but two ultrasonic transducers dedicated to transmission and reception, both facing each other, Alternatively, the gas concentration is calculated by knowing the speed of sound by repeating transmission and reception with two ultrasonic transducers that alternately transmit and receive.

また、送信と受信を行う2つの超音波振動子が必要となるので、送受信を行うための専用回路が必要となり、電子回路が複雑になる。  In addition, since two ultrasonic transducers for transmitting and receiving are required, a dedicated circuit for transmitting and receiving is necessary, and the electronic circuit becomes complicated.

高濃度の酸素を添加した空気すなわち窒素と酸素の混合気体が患者の吸気用として供給される医療器では、混合気体の酸素濃度を簡便な測定装置で計測し、管理できることが望ましい。  In a medical device in which high-concentration oxygen-added air, that is, a mixed gas of nitrogen and oxygen is supplied for inhalation of a patient, it is desirable that the oxygen concentration of the mixed gas can be measured and managed with a simple measuring device.

超音波を用いたガス濃度計において、正確に音速を計測する場合は伝搬時間の変位を正確に関知するために、送信振動子と受信振動子を対向して配置し、気体の流れによる伝搬時間の影響が少なくなるような機構を設ける必要があり、これは医療機器や装置に組込むために大きさが障害となる。装置組込み目的の酸素濃度計とするためには小型化が課題となる。  In a gas concentration meter that uses ultrasonic waves, when measuring the speed of sound accurately, in order to accurately know the displacement of the propagation time, the transmitting transducer and the receiving transducer are placed facing each other, and the propagation time due to the gas flow It is necessary to provide a mechanism that reduces the influence of the above, and this is an obstacle to the size because it is incorporated into a medical device or apparatus. Miniaturization is an issue in order to obtain an oxygen concentration meter for the purpose of incorporating the device.

また、前述の方式では、伝搬経路の気体の流れを大きくすることができないため、ガス濃度の変化を応答良く計測することができない課題がある。  Further, in the above-described method, there is a problem that a change in gas concentration cannot be measured with good response because the gas flow in the propagation path cannot be increased.

更に、応答性の良い計測を行うために、気体の流れによる伝搬時間の影響を避けるため、2つの超音波振動子を対向させ、送受信を交互に切り替えて、超音波の伝搬経路を往復させる方法がある。然しながら、この方式では部品点数が多くなることと、制御電子回路が複雑になり、医療機器や装置に組込むためには、複雑な電子回路は故障リスクが課題となる。  Furthermore, in order to perform measurement with good responsiveness, in order to avoid the influence of the propagation time due to the gas flow, a method of making two ultrasonic transducers face each other, alternately switching transmission and reception, and reciprocating the ultrasonic propagation path There is. However, in this method, the number of parts is increased and the control electronic circuit becomes complicated, and the failure risk of the complicated electronic circuit becomes a problem in order to be incorporated in a medical device or apparatus.

本発明の超音波式ガス濃度計は、小型化するために、送信受信の2つの働きをする1個の超音波振動子を用い、発信した超音波がある一定の距離に設けた反射板から跳ね返ってくるまでの時間を計測する方式である。  In order to reduce the size, the ultrasonic gas concentration meter of the present invention uses a single ultrasonic vibrator that performs two functions of transmission and reception, and transmits a transmitted ultrasonic wave from a reflector provided at a certain distance. It is a method of measuring the time until it bounces.

前述の超音波反射波が到達するまでの時間に振動子の残響振動が小さくなるような、100kHz以上の超音波振動子を用いることで、振動子の小型化と装置自体の小型化できる。  By using an ultrasonic vibrator of 100 kHz or higher so that the reverberation vibration of the vibrator is reduced in the time until the above-described ultrasonic reflected wave arrives, the vibrator can be downsized and the apparatus itself can be downsized.

発信による残響振動が収まるまで、受信波形の処理は行わず、反射波だけを判断して、伝播時間を計測できるように、マイコンのプログラミングによる計測を行い、正確な伝搬時間を求めている。  Until the reverberation vibration due to the transmission is settled, the processing of the received waveform is not performed, and only the reflected wave is judged, and the measurement by the programming of the microcomputer is performed so that the propagation time can be measured to obtain the accurate propagation time.

受信波形を増幅器で1000倍以上にし、その波形を全波整流したあとで、伝搬時間を求めるためのトリガー信号とすることで、測定誤差の少ない測定が可能な電子回路構成としている。  The reception waveform is increased 1000 times or more by an amplifier, the waveform is subjected to full-wave rectification, and then used as a trigger signal for obtaining the propagation time, whereby an electronic circuit configuration capable of measurement with a small measurement error is obtained.

本発明は、100kHz以上の超音波振動子を1個のみ使用し、超音波信号を反射往復させる事で伝搬距離をかせぎ、送信受信を兼用の1個の超音波素子で音速やガス濃度、酸素濃度を算出し、小型でありながら精度良く音速を計測する構造を有する、超音波式のガス濃度計である。  In the present invention, only one ultrasonic transducer of 100 kHz or more is used, the propagation distance is increased by reflecting and reciprocating the ultrasonic signal, and the speed of sound, the gas concentration, the oxygen is transmitted with one ultrasonic element that is also used for transmission and reception. It is an ultrasonic gas concentration meter having a structure for calculating the concentration and measuring the speed of sound with high accuracy while being small.

ガス濃度と音速の関係について、混合気体が酸素と窒素の2種類の混合気体であるとすると気体の分子量Mは酸素の分子量M、窒素の分子量M、酸素濃度αおよび窒素濃度αを用いて次式で表される。

Figure 2014071109
一方、気体の分子量Mは音速Cと次の関係がある。
Figure 2014071109
ここで、比熱比γ=1.4、気体定数R=8314、Tは絶対温度である。したがって、音速Cを求めることにより分子量Mが決まり、酸素濃度αが定められることを原理とした装置である。Regarding the relationship between gas concentration and sound velocity, if the gas mixture is two kinds of gas mixture of oxygen and nitrogen, the molecular weight M of the gas is the molecular weight M A of oxygen, the molecular weight M B of nitrogen, the oxygen concentration α A and the nitrogen concentration α B. Is represented by the following formula.
Figure 2014071109
On the other hand, the molecular weight M of the gas has the following relationship with the speed of sound C.
Figure 2014071109
Here, the specific heat ratio γ = 1.4, the gas constant R = 8314, and T is an absolute temperature. Therefore, the apparatus is based on the principle that the molecular weight M is determined by determining the sound velocity C, and the oxygen concentration α A is determined.

この混合気体の酸素濃度を簡便な測定装置で管理できることが望ましい。気体の音速が分かれば気体の分子量が分かるので、混合気体のガス混合比率すなわち酸素濃度を算出出来る。本発明の、超音波式のガス濃度計は、超音波の伝搬時間を計測する事により流体の音速を知り、混合気体の混合比率(ガス濃度)を算出することを目的とした、酸素濃度計に関するものである。
本発明は、以上の構成からなる超音波式ガス濃度計である。
It is desirable that the oxygen concentration of the mixed gas can be managed with a simple measuring device. If the sound speed of the gas is known, the molecular weight of the gas can be known, so the gas mixing ratio of the mixed gas, that is, the oxygen concentration can be calculated. The ultrasonic type gas concentration meter of the present invention is an oxygen concentration meter for the purpose of calculating the mixing ratio (gas concentration) of a mixed gas by knowing the sound speed of the fluid by measuring the propagation time of the ultrasonic wave. It is about.
The present invention is an ultrasonic gas concentration meter having the above-described configuration.

本発明は、小型化が可能で医療機器や装置への組込みが容易である。  The present invention can be reduced in size and can be easily incorporated into medical devices and apparatuses.

本発明は、組込み相手となる医療機器や装置の一部を反射面とする事で、混合気体の流れの影響を排除した測定が可能である。  In the present invention, by making a part of a medical device or apparatus that is an assembly partner a reflective surface, measurement that eliminates the influence of the flow of the mixed gas is possible.

本発明の使用例である。It is an example of use of the present invention. 本発明の全体図である。1 is an overall view of the present invention. 本発明の超音波伝搬である。It is an ultrasonic wave propagation of the present invention. 従来方式の超音波伝搬である。This is a conventional ultrasonic wave propagation.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明品を医療機器、装置に取り付けた例を示している。(1)はガスの引込口と排出口を別々に独立させている。(2)は、ガスの引込口と排出口を共用し、1つとしている。
図2は、本発明品の構成図の説明である。
図3は、本発明品の超音波信号の伝搬距離が往復で測定部の約2倍となっていることを示す。伝搬距離の2分の1の大きさに小型化が可能であることを示している。
図4は、従来の超音波方式で、超音波振動子を送信、受信、の2個を使用した時の図である。超音波信号の伝搬距離が一方向なので測定部とほぼ同じ伝搬距離となっている。小型化が困難である事を示す。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example in which the product of the present invention is attached to a medical device or apparatus. (1) makes the gas inlet and outlet separate independently. In (2), the gas inlet and outlet are shared, and the number is one.
FIG. 2 is an explanatory diagram of a configuration diagram of the product of the present invention.
FIG. 3 shows that the propagation distance of the ultrasonic signal of the product of the present invention is about twice that of the measurement unit in a reciprocating manner. This shows that the size can be reduced to a half of the propagation distance.
FIG. 4 is a diagram when two ultrasonic transducers are used for transmission and reception in the conventional ultrasonic method. Since the propagation distance of the ultrasonic signal is one direction, the propagation distance is almost the same as that of the measurement unit. Indicates that it is difficult to downsize.

従来、医療機器や装置に組込むタイプの超音波式のガス濃度、酸素濃度計は、送信受信に専用の2個の超音波振動子を使用してきた。本発明は、超音波信号を反射させて音速を計測するために、使用する振動子を送受信兼用の1個とし、制御回路も単純化することで、小型で故障の少ない超音波式ガス濃度計として、小型の医療機器や装置に組込み使用する事を可能とした。  Conventionally, ultrasonic gas concentration and oximeters of the type incorporated in medical equipment and devices have used two ultrasonic transducers dedicated for transmission and reception. In order to measure the speed of sound by reflecting an ultrasonic signal, the present invention uses a single transducer for both transmission and reception, and simplifies the control circuit, so that the ultrasonic gas concentration meter is small and has few failures. As a result, it can be incorporated into small medical devices and devices.

1 組込み相手の混合気体流路
2 タンク
3 測定気体(ガス)の引込口
4 超音波振動子(送受信)
5 発明品の超音波式ガス濃度計
6 超音波信号の反射面
7 測定気体の排出口
8 接続ケーブル
9 超音波振動子(送信側)
10 超音波振動子(受信側)
1 Mixing gas flow path to be assembled 2 Tank 3 Measurement gas (gas) inlet 4 Ultrasonic transducer (transmission / reception)
5 Ultrasonic gas concentration meter of invention 6 Ultrasonic signal reflection surface 7 Measurement gas outlet 8 Connection cable 9 Ultrasonic transducer (transmission side)
10 Ultrasonic transducer (receiving side)

Claims (5)

超音波を反射往復させることで伝搬距離を2倍として、精度良く音速を知ることを特徴とする、1個の超音波振動子を使用した、ガス濃度、酸素濃度を測定する装置。  An apparatus for measuring gas concentration and oxygen concentration using one ultrasonic transducer, wherein the propagation speed is doubled by reflecting and reciprocating ultrasonic waves, and the sound speed is accurately known. 1個の超音波振動子に送信受信をさせて音速を知ることを特徴とする、ガス濃度、酸素濃度を測定する装置。  An apparatus for measuring a gas concentration and an oxygen concentration, characterized by transmitting and receiving an ultrasonic transducer to know the speed of sound. 伝搬経路を往復させることで、混合気体の流れによる影響を受けないことを特徴とする、ガス濃度、酸素濃度を測定する装置。  An apparatus for measuring gas concentration and oxygen concentration, wherein the device is not affected by the flow of the mixed gas by reciprocating the propagation path. 混合気体の中にサーミスタを配置することで、温度を知ることを特徴とする、ガス濃度、酸素濃度を測定する装置。  An apparatus for measuring gas concentration and oxygen concentration, characterized in that the temperature is known by arranging a thermistor in the mixed gas. 超音波を反射往復させることで、混合気体の流れによる影響を受けないことを特徴とする、ガス濃度、酸素濃度を測定する装置。  An apparatus for measuring gas concentration and oxygen concentration, characterized in that it is not affected by the flow of mixed gas by reciprocating ultrasonic waves.
JP2012230318A 2012-09-28 2012-09-28 Ultrasonic gas concentration meter Pending JP2014071109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230318A JP2014071109A (en) 2012-09-28 2012-09-28 Ultrasonic gas concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230318A JP2014071109A (en) 2012-09-28 2012-09-28 Ultrasonic gas concentration meter

Publications (1)

Publication Number Publication Date
JP2014071109A true JP2014071109A (en) 2014-04-21

Family

ID=50746420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230318A Pending JP2014071109A (en) 2012-09-28 2012-09-28 Ultrasonic gas concentration meter

Country Status (1)

Country Link
JP (1) JP2014071109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014499A1 (en) * 2020-07-16 2022-01-20 パナソニックIpマネジメント株式会社 Physical quantity measurement device
JP2022018585A (en) * 2020-07-16 2022-01-27 パナソニックIpマネジメント株式会社 Physical quantity measuring device
JP2022018584A (en) * 2020-07-16 2022-01-27 パナソニックIpマネジメント株式会社 Physical quantity measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014499A1 (en) * 2020-07-16 2022-01-20 パナソニックIpマネジメント株式会社 Physical quantity measurement device
JP2022018585A (en) * 2020-07-16 2022-01-27 パナソニックIpマネジメント株式会社 Physical quantity measuring device
JP2022018584A (en) * 2020-07-16 2022-01-27 パナソニックIpマネジメント株式会社 Physical quantity measuring device
JP7373771B2 (en) 2020-07-16 2023-11-06 パナソニックIpマネジメント株式会社 Physical quantity measuring device
JP7373772B2 (en) 2020-07-16 2023-11-06 パナソニックIpマネジメント株式会社 Physical quantity measuring device

Similar Documents

Publication Publication Date Title
JP2014106225A (en) Ultrasonic wave compact gas content meter
JP7266404B2 (en) Flow path sensing for flow therapy devices
US10031011B2 (en) Ultrasonic flow meter including a single transmitting transducer and a pair of receiving transducers
CN104870950B (en) Method and ultrasonic flowmeter for the reliability for verifying the measurement data that the measuring ultrasonic wave flow carried out by transit time difference method is known
JPH0749976B2 (en) Ultrasonic measuring device
JP2017517319A5 (en)
US20140345373A1 (en) Fuel consumption measuring instrument
JP2014071109A (en) Ultrasonic gas concentration meter
US7806003B2 (en) Doppler type ultrasonic flow meter
CN101592630B (en) Device for analyzing oxygen density and flow rate and analysis method thereof
CN114088151A (en) External clamping type multi-channel ultrasonic flow detection device and detection method
US6817250B2 (en) Acoustic gas meter with a temperature probe having an elongated sensor region
JP5938597B2 (en) Oxygen concentration meter using ultrasonic flowmeter
US20230273057A1 (en) Ultrasonic Gas Flow Calibration Device
JP2010256075A (en) Flowmeter and method of measuring flow rate
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
JP2004294434A (en) Acoustic type gas analyzer
JP2010261872A (en) Ultrasonic flowmeter
JP2017187310A (en) Ultrasonic flowmeter
CN104655211A (en) Ultrasonic measuring device
JP4688253B2 (en) Ultrasonic flow meter
US7617738B2 (en) Method and apparatus for measuring flow rate of fluid
CN103765170A (en) An ultrasonic measurement device and a method for operating the same
JPS60115810A (en) Ultrasonic flowmeter
JP2009058444A (en) Flowmeter for artificial respirator