JP6134899B2 - Flow measurement unit - Google Patents

Flow measurement unit Download PDF

Info

Publication number
JP6134899B2
JP6134899B2 JP2012052659A JP2012052659A JP6134899B2 JP 6134899 B2 JP6134899 B2 JP 6134899B2 JP 2012052659 A JP2012052659 A JP 2012052659A JP 2012052659 A JP2012052659 A JP 2012052659A JP 6134899 B2 JP6134899 B2 JP 6134899B2
Authority
JP
Japan
Prior art keywords
measurement
flow
flow rate
measurement channel
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012052659A
Other languages
Japanese (ja)
Other versions
JP2013186032A (en
Inventor
宮田 肇
肇 宮田
慎 中野
慎 中野
藤井 裕史
裕史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012052659A priority Critical patent/JP6134899B2/en
Publication of JP2013186032A publication Critical patent/JP2013186032A/en
Application granted granted Critical
Publication of JP6134899B2 publication Critical patent/JP6134899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガスなどの流量を計測する超音波流量計測に関するものである。   The present invention relates to ultrasonic flow measurement for measuring a flow rate of gas or the like.

図8に示すような従来の超音波式の流量計測ユニット12は、流体が流れ込む開口部13を有し、流体が流れる流路断面が矩形に形成された計測流路14と、計測流路における流体の流れ方向に所定の距離をおいて配置した一対の超音波送センサ15a,15bと、一対の超音波送センサ15a,15bの一方から送信された超音波信号が、超音波センサと対向する計測流路14内の壁面に反射して他方に受信されるまでの伝播時間から流体の流速を計測し、この流速をもとに流量を演算する流量演算部16とから構成されていた(例えば、特許文献1参照)。   A conventional ultrasonic flow rate measurement unit 12 as shown in FIG. 8 has an opening 13 into which a fluid flows, a measurement channel 14 in which a cross section of the channel through which the fluid flows is formed in a rectangular shape, and a measurement channel A pair of ultrasonic transmission sensors 15a and 15b arranged at a predetermined distance in the fluid flow direction, and an ultrasonic signal transmitted from one of the pair of ultrasonic transmission sensors 15a and 15b face the ultrasonic sensor. It is composed of a flow rate calculation unit 16 that measures the flow velocity of the fluid from the propagation time until it is reflected by the wall surface in the measurement flow path 14 and received by the other, and calculates the flow rate based on this flow velocity (for example, , See Patent Document 1).

特開2011−112377号公報JP 2011-112377 A

しかしながら、前記従来の構成では、流体の流れが直接計測流路に流れ込むため、流量計測ユニットに流れ込む流体の乱れが大きい場合、超音波の伝播路まで流れに乱れが生じやすくなるため、超音波による伝播時間の計測に影響し、計測精度に悪影響をもたらす要因となっていた。   However, in the conventional configuration, since the fluid flow flows directly into the measurement flow path, if the fluid flowing into the flow rate measurement unit is largely disturbed, the flow tends to be disturbed up to the ultrasonic propagation path. It affected the measurement of propagation time, and had a negative effect on measurement accuracy.

前記従来の課題を解決するために、本発明の流量計測ユニットは、計測流路に流体を流入するため、計測流路の上流側に設けられたチャンバー部とチャンバー部の側面に開口部を有する構成としたものである。   In order to solve the above-described conventional problems, the flow rate measurement unit of the present invention has a chamber portion provided on the upstream side of the measurement flow channel and an opening on the side surface of the chamber portion in order to allow fluid to flow into the measurement flow channel. It is a configuration.

これによって、流量計測ユニットに流れる流体は、一旦チャンバー部を通り整流され計測流路に入るため、流れの安定した計測を行うことが可能となる。   As a result, the fluid flowing through the flow rate measurement unit is once rectified through the chamber and enters the measurement flow path, so that stable measurement of the flow can be performed.

本発明の流量計測ユニットは、計測流路に流入する流れに乱れが存在していても流体の計測流路への流入の際にチャンバー部を介することで、流れの整流効果が生じ、超音波伝播経路での流れを安定させ、測定精度のばらつきの少ない安定した計測を可能にし、正確に流速を計測することができる。   The flow rate measurement unit of the present invention has a flow rectification effect by passing through the chamber portion when fluid flows into the measurement flow path even if there is a turbulence in the flow flowing into the measurement flow path, and the ultrasonic wave It is possible to stabilize the flow in the propagation path, enable stable measurement with little variation in measurement accuracy, and accurately measure the flow velocity.

本発明の実施の形態1における流量計測ユニットの外観斜視図1 is an external perspective view of a flow rate measurement unit according to Embodiment 1 of the present invention. 本発明の実施の形態1における流量計測ユニットの断面図Sectional drawing of the flow measurement unit in Embodiment 1 of this invention 本発明の実施の形態1における流量計測ユニットを用いたガスメータの構成図Configuration diagram of a gas meter using a flow rate measurement unit according to Embodiment 1 of the present invention 本発明の実施の形態1における超音波流量計測の動作説明図Operation explanatory diagram of ultrasonic flow measurement in Embodiment 1 of the present invention 従来例の流体解析結果の流れの図Flow diagram of conventional fluid analysis results 本発明の実施の形態1における流体解析結果の流れの図Flow diagram of fluid analysis results in Embodiment 1 of the present invention 本発明の実施の形態2における流量計測ユニットの断面図Sectional drawing of the flow measurement unit in Embodiment 2 of this invention 従来の流量計測ユニットを用いた超音波流量計の構成図Configuration diagram of ultrasonic flowmeter using conventional flow measurement unit

第1の発明は、計測流路と、前記計測流路の同一壁面側に設置され対向側の前記計測流路壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、前記超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する演算手段と、前記計測流路の上流側に設けられ、前記計測流路に流体を流入するための開口部を有するチャンバー部と、を備え、前記チャンバー部は前記計測流路から脱着可能な構成とし、前記開口部は、前記チャンバー部側面に前記計測流路の流れ方向とは垂直方向に設けた構成であり、これによって、計測する流体流れに乱れが存在していてもチャンバー部を介して計測流路に流入させることで流れの整流効果が生じ、超音波伝播経路での流れを安定させ、測定精度のばらつきの少ない安定した計測を可能にすることができる。
According to a first aspect of the present invention, a measurement channel and a pair of ultrasonic waves arranged on the same wall surface side of the measurement channel and arranged to constitute an ultrasonic propagation path using reflection on the measurement channel wall surface on the opposite side A sound wave sensor, a calculation means for detecting a flow rate based on a propagation time of ultrasonic waves by transmission / reception of the ultrasonic sensor, and an opening provided on the upstream side of the measurement flow path to allow fluid to flow into the measurement flow path A chamber portion having a portion, wherein the chamber portion is configured to be detachable from the measurement channel, and the opening is provided on a side surface of the chamber portion in a direction perpendicular to the flow direction of the measurement channel. As a result, even if turbulence exists in the fluid flow to be measured, the flow is rectified by flowing into the measurement flow path through the chamber, and the flow in the ultrasonic propagation path is stabilized and measured. Small variation in accuracy It can allow stomach stable measurement.

の発明は、計測流路と、前記計測流路の同一壁面側に設置され対向側の前記計測流路壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、前記超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する流量演算手段と、前記計測流路の上流側に設けられ、前記計測流路に流体を流入するための開口部を有するチャンバー部と、を備え、前記チャンバー部は、前記計測流路の外形より大きく構成し、前記開口部は、流入する流体の流れ方向が、前記計測流路の流体の流れ方向と平行かつ逆向きとなるように前記計測流路外形よりも外側で、且つ、前記計測流路の開口方向とは逆方向に設けたもので、流れの整流効果が生じ、超音波伝播経路での流れを安定させ、測定精度のばらつきの少ない安定した計測ができ、正確に流速を計測することが可能となる。
According to a second aspect of the present invention, a measurement channel and a pair of ultrasonic waves disposed on the same wall surface side of the measurement channel and arranged to constitute an ultrasonic propagation path using reflection on the measurement channel wall surface on the opposite side A sound wave sensor, a flow rate calculation means for detecting a flow rate based on a propagation time of ultrasonic waves transmitted and received by the ultrasonic sensor, and an upstream side of the measurement flow path for flowing a fluid into the measurement flow path A chamber portion having an opening, and the chamber portion is configured to be larger than an outer shape of the measurement flow path, and the flow direction of the fluid flowing in the opening is defined as a flow direction of the fluid in the measurement flow path. It is provided outside the measurement channel outer shape so as to be parallel and in the opposite direction and in the direction opposite to the opening direction of the measurement channel . Stabilizes the flow and minimizes variations in measurement accuracy Can stable measurement, it is possible to measure accurately the flow rate.

第3の発明は、特に、第2の発明において、前記チャンバー部は前記計測流路から脱着可能な構成であることにより、整流が必要無いメータ構成では、ユニットの簡素化が計れる他、配管を直接計測流路に接続して使うことも可能になる。 According to a third aspect of the invention, in particular , in the second aspect of the invention, the chamber portion is configured to be detachable from the measurement flow path, so that in a meter configuration that does not require rectification, the unit can be simplified and piping can be provided. It can also be used by connecting directly to the measurement channel.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態である流量計測ユニットの斜視図を示す。また、図2には、図1に示した流量計測ユニットの断面図を示す。
(Embodiment 1)
FIG. 1 is a perspective view of a flow rate measurement unit according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view of the flow rate measurement unit shown in FIG.

図1及び図2において、流量計測ユニット1は、計測流路2と、計測流路の上流側に設けられたチャンバー部3、チャンバー部3に設けた計測対象である流体を流入する開口部4を有する。また、計測流路2に隣接するセンサ取付け部5を備え、センサ取付け部5には一対の超音波センサ6a、6bが取付けられ、その上部に超音波センサの信号から流量を算出する流量演算回路7(流量演算手段)が設置されている。   1 and 2, a flow rate measurement unit 1 includes a measurement channel 2, a chamber portion 3 provided on the upstream side of the measurement channel, and an opening 4 through which a fluid to be measured provided in the chamber portion 3 flows. Have Further, the sensor mounting portion 5 adjacent to the measurement flow path 2 is provided, and a pair of ultrasonic sensors 6a and 6b is mounted on the sensor mounting portion 5, and a flow rate calculation circuit for calculating a flow rate from the signal of the ultrasonic sensor above the sensor mounting portion 5. 7 (flow rate calculation means) is installed.

なお、流量演算回路7に関しては流量計測ユニット1に一体に設けない構成でも構わない。   The flow rate calculation circuit 7 may be configured not to be provided integrally with the flow rate measurement unit 1.

次に、図3を用いて、流量計測ユニット1を用いたガスメータの構成について説明する
Next, the configuration of the gas meter using the flow rate measurement unit 1 will be described with reference to FIG.

流体供給路8は、途中にステッピングモータなどの電磁装置による駆動部と連係した弁体で開閉される遮断弁9を有する。そして、遮断弁9の弁(図示せず)が開放状態においては流体供給路8よりガス(流体)がメータ筐体10内部に流出される。計測流路2は、流体が流れる流路の断面が長方形をなす矩形に構成されており、メータ筐体10内部に充満した流体が計測流路2内に流入し、さらにはその下流側に接続された流体流出路11を経てメータ筐体10外部へ流出する。   The fluid supply path 8 includes a shut-off valve 9 that is opened and closed by a valve body that is linked to a drive unit that is an electromagnetic device such as a stepping motor. When the valve (not shown) of the shutoff valve 9 is open, gas (fluid) flows out from the fluid supply path 8 into the meter housing 10. The measurement flow path 2 is configured in a rectangular shape in which the cross section of the flow path through which the fluid flows is rectangular, and the fluid filled in the meter housing 10 flows into the measurement flow path 2 and is connected to the downstream side thereof. It flows out of the meter housing 10 through the fluid outflow path 11 formed.

なお、遮断弁9は流量演算回路7で演算された流体の流量に異常があった時や、感震器(図示せず)による地震発生の検知時などに閉じるようにしてある。   The shut-off valve 9 is closed when there is an abnormality in the fluid flow rate calculated by the flow rate calculation circuit 7 or when an earthquake occurrence is detected by a seismic device (not shown).

次に、超音波による流量計測動作を図4を用い説明する。図1〜3に示すように本発明においては一対の超音波センサをユニット化するため計測流路の矩形断面の同一面上に超音波センサを配置する構成としており、超音波の送受信の伝播経路は対向面で反射させたV字型の超音波の伝播路となり、上流と下流に配置された超音波センサ間で超音波の送受が行われる。   Next, the flow measurement operation using ultrasonic waves will be described with reference to FIG. As shown in FIGS. 1-3, in this invention, in order to unitize a pair of ultrasonic sensor, it is set as the structure which arrange | positions an ultrasonic sensor on the same surface of the rectangular cross section of a measurement flow path, The propagation path of transmission / reception of an ultrasonic wave Is a propagation path of a V-shaped ultrasonic wave reflected by the opposite surface, and ultrasonic waves are transmitted and received between ultrasonic sensors arranged upstream and downstream.

そして、まず上流側の超音波センサ6aから発せられた超音波が下流側の超音波センサ6bで受信されるまでの伝搬時間T1を計測する。また一方、その逆に下流側の超音波センサ6bから発せられた超音波が上流側の超音波センサ6aで受信されるまでの伝搬時間T2を計測する。   First, the propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic sensor 6a is received by the downstream ultrasonic sensor 6b is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the downstream ultrasonic sensor 6b is received by the upstream ultrasonic sensor 6a is measured.

このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により流量演算回路7で流量が算出される。   Based on the propagation times T1 and T2 measured in this way, the flow rate calculation circuit 7 calculates the flow rate by the following calculation formula.

いま、計測流路の流動方向の被計測流体の流速Vと超音波伝搬路とのなす角度をθとし、超音波センサ間の距離を2×L、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。   If the angle between the flow velocity V of the fluid to be measured in the flow direction of the measurement channel and the ultrasonic propagation path is θ, the distance between the ultrasonic sensors is 2 × L, and the sound velocity of the fluid to be measured is C, the flow velocity V is calculated by the following equation.

式(1) T1=2×L/(C+Vcosθ)
式(2) T2=2×L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
式(3) V=(2×L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。いま、空気の流量を計ることを考え、角度θ=45度、距離L=35mm、音速C=340m/s、流速V=8m/sを想定すると、T1=2.0×10−4秒、T2=2.1×10−4秒であり、瞬時計測ができる。後、得られた流速と流路断面積の掛算で流量を求めることができる。
Formula (1) T1 = 2 × L / (C + V cos θ)
Formula (2) T2 = 2 × L / (C−V cos θ)
The speed of sound C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1. Equation (3) V = (2 × L / 2 cos θ) ((1 / T1) − (1 / T2))
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2. Assuming that the air flow rate is measured, assuming that the angle θ = 45 degrees, the distance L = 35 mm, the sound velocity C = 340 m / s, and the flow velocity V = 8 m / s, T1 = 2.0 × 10 −4 seconds, T2 = 2.1 × 10 −4 seconds, and instantaneous measurement is possible. Thereafter, the flow rate can be obtained by multiplying the obtained flow velocity and the flow path cross-sectional area.

前記した従来の構成においては、流体が一度メータ筐体10内部に充填されてから計測流路2内に流入するため、流体の流入部から配管で直接計測流路へ接続する方式に比較して、メータ筐体10内の構成によっては、計測流路へ流入する流れに偏流が生じ、計測流路内の流れも影響を受け測定の誤差要因になる可能性がある。   In the above-described conventional configuration, since the fluid is once filled in the meter housing 10 and then flows into the measurement flow path 2, it is compared with a system in which the fluid is directly connected to the measurement flow path by piping. Depending on the configuration in the meter housing 10, there is a possibility that a drift occurs in the flow flowing into the measurement flow path, and the flow in the measurement flow path is also affected, which may cause measurement errors.

本発明では、図1〜3に示すように計測流路2の流体流入側にチャンバー部3からなる整流構成が設けられている。   In this invention, as shown in FIGS. 1-3, the rectification | straightening structure which consists of the chamber part 3 is provided in the fluid inflow side of the measurement flow path 2. As shown in FIG.

チャンバー部3側面に計測流路2の流れ方向とは垂直方向に開口部4が設けられているため、計測流路2に流入する流体は、流量計測ユニット1の直前の流れに乱れや偏流が生
じていても、直接的に計測流路2内に流入することは無く、チャンバー部3内における通過抵抗により、乱れや偏流が抑制されて、均一化した流れとなって計測流路2に流入し、超音波の伝播路での流れが安定化されるため、計測の受信波形が安定し、計測精度が向上するだけで無く、計測ロジックの簡素化にも貢献できる。
Since the opening 4 is provided on the side of the chamber 3 in the direction perpendicular to the flow direction of the measurement flow path 2, the fluid flowing into the measurement flow path 2 is disturbed or drifted in the flow immediately before the flow rate measurement unit 1. Even if it occurs, it does not flow directly into the measurement channel 2, and the turbulence and drift are suppressed by the passage resistance in the chamber 3, and the flow flows into the measurement channel 2 as a uniform flow. In addition, since the flow in the ultrasonic wave propagation path is stabilized, the measurement reception waveform is stabilized, the measurement accuracy is improved, and the measurement logic can be simplified.

また、チャンバー部3の外形は、計測流路2の外形より大きく、チャンバー部3の開口部4は、計測流路2に隣接する面に設けた構成としており、計測流路2の外形より大きくすることで、計測流路2までの流路長を確保することで整流効果を得ることができる。   Further, the outer shape of the chamber portion 3 is larger than the outer shape of the measurement channel 2, and the opening 4 of the chamber unit 3 is provided on a surface adjacent to the measurement channel 2, and is larger than the outer shape of the measurement channel 2. By doing so, it is possible to obtain a rectifying effect by securing the channel length to the measurement channel 2.

図5、図6に、それぞれ図8で示す従来の構成メータと、図3に示す本発明の構成のメータ筐体内の流れを流体解析した結果を示す。   FIG. 5 and FIG. 6 show the results of fluid analysis of the flow in the conventional meter shown in FIG. 8 and the meter casing of the present invention shown in FIG.

図5では、メータ筐体内の乱れた流れがそのまま、計測流路14に流入しているが、本発明では図6に示すように、メータ筐体内の流れはチャンバー部3を迂回して、計測流路2に均一に流入している。   In FIG. 5, the turbulent flow in the meter casing flows into the measurement flow path 14 as it is, but in the present invention, the flow in the meter casing bypasses the chamber portion 3 and is measured as shown in FIG. It flows uniformly into the flow path 2.

なお、チャンバー部3における開口部4の形状において本発明では、計測流路の矩形断面の短辺部以下の寸法を有しているが、整流効果を有していればその長さは矩形断面の短辺と異なった任意の長さであっても構わない。   In the present invention, the shape of the opening 4 in the chamber 3 has a dimension equal to or smaller than the short side of the rectangular cross section of the measurement channel. The length may be any length different from the short side.

また、本発明を示す図1〜3においてはチャンバー部3の形状は矩形形状を成しているが、これは円弧状であっても構わない。   Moreover, in FIGS. 1-3 which show this invention, although the shape of the chamber part 3 has comprised the rectangular shape, this may be circular arc shape.

(実施の形態2)
図7は本発明の第2の実施の形態における流量計測ユニット1’の断面を示すもので、チャンバー部3’の開口部4’を計測流路2’内の流れと逆流方向から流入するように設けることで、流れが大きく迂回することで、整流作用が増しチャンバー部内での整流効果をより向上することができる。
(Embodiment 2)
FIG. 7 shows a cross section of the flow rate measurement unit 1 ′ according to the second embodiment of the present invention, so that the opening 4 ′ of the chamber 3 ′ flows in the direction opposite to the flow in the measurement flow path 2 ′. By providing in, the flow is greatly diverted, the rectification action is increased, and the rectification effect in the chamber portion can be further improved.

また、上記の実施の形態において、チャンバー部3,3’が計測流路2、2’と一体構成でなく、取り外しができる構成でも構わない。   Further, in the above-described embodiment, the chamber portions 3 and 3 ′ may not be integrated with the measurement flow paths 2 and 2 ′ but may be removable.

以上のように、本発明にかかる流量計測ユニットは、メータ筐体内の流れ方に関係なく、流量計測ユニットそのものに整流効果を持つことで、流量計測ユニットのみで、計測性能が担保できるため、メータ筐体設計の自由度が増すとともに、いかなる使用状態でも正確に流速を計測することが可能となり、小型、低コスト化が可能なためガスメータをはじめとして種々の流量計として応用展開が可能である。   As described above, the flow rate measurement unit according to the present invention has a rectifying effect on the flow rate measurement unit itself regardless of the flow in the meter housing, so that the measurement performance can be secured only by the flow rate measurement unit. As the degree of freedom in housing design increases, it is possible to accurately measure the flow velocity in any use state, and it is possible to reduce the size and cost, so that it can be applied to various flow meters including gas meters.

1、1’ 流量計測ユニット
2、2’ 計測流路
3、3’ チャンバー部
4、4’ 開口部
6a,6b 超音波センサ
7 流量演算回路(流量演算手段)
DESCRIPTION OF SYMBOLS 1, 1 'Flow measurement unit 2, 2' Measurement flow path 3, 3 'Chamber part 4, 4' Opening part 6a, 6b Ultrasonic sensor 7 Flow rate calculation circuit (flow rate calculation means)

Claims (3)

計測流路と、
前記計測流路の同一壁面側に設置され対向側の前記計測流路壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、
前記超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する流量演算手段と、
前記計測流路の上流側に設けられ、前記計測流路に流体を流入するための開口部を有するチャンバー部と、を備え、
前記チャンバー部は前記計測流路から脱着可能な構成とし、
前記開口部は、前記チャンバー部側面に前記計測流路の流れ方向とは垂直方向に設けた流量計測ユニット。
A measurement channel;
A pair of ultrasonic sensors installed on the same wall surface side of the measurement channel and arranged to constitute an ultrasonic propagation path utilizing reflection on the measurement channel wall surface on the opposite side;
A flow rate calculating means for detecting a flow rate based on a propagation time of ultrasonic waves by transmission and reception of the ultrasonic sensor;
A chamber portion provided on the upstream side of the measurement flow path, and having an opening for flowing fluid into the measurement flow path,
The chamber part is configured to be removable from the measurement channel,
The opening is a flow rate measurement unit provided on a side surface of the chamber portion in a direction perpendicular to the flow direction of the measurement channel.
計測流路と、
前記計測流路の同一壁面側に設置され対向側の前記計測流路壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、
前記超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する流量演算手段と、
前記計測流路の上流側に設けられ、前記計測流路に流体を流入するための開口部を有するチャンバー部と、を備え、
前記チャンバー部は、前記計測流路の外形より大きく構成し、
前記開口部は、流入する流体の流れ方向が、前記計測流路の流体の流れ方向と平行かつ逆向きとなるように前記計測流路外形よりも外側で、且つ、前記計測流路の開口方向とは逆方向に設けた流量計測ユニット。
A measurement channel;
A pair of ultrasonic sensors installed on the same wall surface side of the measurement channel and arranged to constitute an ultrasonic propagation path utilizing reflection on the measurement channel wall surface on the opposite side;
A flow rate calculating means for detecting a flow rate based on a propagation time of ultrasonic waves by transmission and reception of the ultrasonic sensor;
A chamber portion provided on the upstream side of the measurement flow path, and having an opening for flowing fluid into the measurement flow path,
The chamber portion is configured to be larger than the outer shape of the measurement channel,
The opening portion is outside the measurement channel outer shape so that the flow direction of the flowing fluid is parallel and opposite to the fluid flow direction of the measurement channel, and the opening direction of the measurement channel Flow rate measurement unit installed in the opposite direction.
前記チャンバー部は前記計測流路から脱着可能な構成である請求項2に記載の流量計測ユニット。 Flow rate measurement unit of the chamber part is describedMotomeko 2 is a detachable structure from the measurement flow path.
JP2012052659A 2012-03-09 2012-03-09 Flow measurement unit Active JP6134899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052659A JP6134899B2 (en) 2012-03-09 2012-03-09 Flow measurement unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052659A JP6134899B2 (en) 2012-03-09 2012-03-09 Flow measurement unit

Publications (2)

Publication Number Publication Date
JP2013186032A JP2013186032A (en) 2013-09-19
JP6134899B2 true JP6134899B2 (en) 2017-05-31

Family

ID=49387567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052659A Active JP6134899B2 (en) 2012-03-09 2012-03-09 Flow measurement unit

Country Status (1)

Country Link
JP (1) JP6134899B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889239B1 (en) * 2019-12-26 2021-06-18 東洋ガスメーター株式会社 Ultrasonic gas meter
JP6889238B1 (en) * 2019-12-26 2021-06-18 東洋ガスメーター株式会社 Ultrasonic gas meter
JP2023064782A (en) 2021-10-27 2023-05-12 パナソニックIpマネジメント株式会社 Flow path adapter
CN114323174B (en) * 2021-11-25 2023-06-06 山东大卫国际建筑设计有限公司 Ultrasonic flowmeter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313316A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd Ultrasonic wave type flow meter
JP2003114142A (en) * 2001-10-09 2003-04-18 Fuji Electric Co Ltd Ultrasonic gas meter
JP4555669B2 (en) * 2004-03-02 2010-10-06 矢崎総業株式会社 Flow measuring device
JP4926519B2 (en) * 2006-03-29 2012-05-09 東京瓦斯株式会社 Gas flow measurement structure of ultrasonic gas meter

Also Published As

Publication number Publication date
JP2013186032A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
EP2639560B1 (en) Ultrasonic flow rate measurement device
JP2010164558A (en) Device for measuring flow of fluid
US20130312537A1 (en) Ultrasonic flow rate measurement device
JP6134899B2 (en) Flow measurement unit
WO2012086156A1 (en) Ultrasonic flowmeter
JP6375519B2 (en) Gas meter
JPH06249690A (en) Ultrasonic flowmeter
JP2014077750A (en) Ultrasonic meter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP5816831B2 (en) Ultrasonic flow meter
JP6491536B2 (en) Ultrasonic flow meter
JP2009186429A (en) Gas meter
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
JP6028215B2 (en) Ultrasonic flow meter
JP2013217780A (en) Ultrasonic flowmeter
JP2008014829A (en) Ultrasonic flowmeter
RU123939U1 (en) SENSOR FOR ULTRASONIC FLOW METER
JP3794683B2 (en) Flow measuring device and gas meter
JP4877602B2 (en) Vortex flow meter
JP3398251B2 (en) Flowmeter
JP7373772B2 (en) Physical quantity measuring device
CN106092228A (en) Ultrasonic type heat accumulative meter
JP4789435B2 (en) Ultrasonic flow meter
JP2022109347A (en) Ultrasonic flowmeter
JP2022188333A (en) ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R151 Written notification of patent or utility model registration

Ref document number: 6134899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151