JP2013217780A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2013217780A
JP2013217780A JP2012088965A JP2012088965A JP2013217780A JP 2013217780 A JP2013217780 A JP 2013217780A JP 2012088965 A JP2012088965 A JP 2012088965A JP 2012088965 A JP2012088965 A JP 2012088965A JP 2013217780 A JP2013217780 A JP 2013217780A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow
flow path
measurement
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012088965A
Other languages
Japanese (ja)
Inventor
Hajime Miyata
肇 宮田
Shin Nakano
慎 中野
Yasushi Fujii
裕史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012088965A priority Critical patent/JP2013217780A/en
Publication of JP2013217780A publication Critical patent/JP2013217780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement flow channel capable of removing influence of ultrasonic wall surface reflection in an ultrasonic flowmeter and capable of achieving also large flow rate measurement with a measuring device for a small flow rate.SOLUTION: A first flow channel 3a on the inside of a partition member 2 and a second flow channel 3b on the outside of the partition member 2 are configured by the cylindrical partition member 2 packaged concentrically with a measuring flow channel 1 whose cross section is circular, a flow rate of the second flow channel 3b is measured by using a pair of ultrasonic sensors 5, 6 and forming an ultrasonic propagation path of a V-shaped pass using a plane part formed on the outline of the partition member 2 as a reflection surface, and a flow rate of the whole measuring flow channel 1 is determined.

Description

本発明は、超音波を利用してガス、水などの流体の流量を計測する流量計測装置に関するもの、特に大流量の測定にも対応するものである。   The present invention relates to a flow rate measuring device that measures the flow rate of a fluid such as gas or water using ultrasonic waves, and particularly corresponds to measurement of a large flow rate.

従来この種の超音波式流量計測装置は、図10に示すように、計測流体が流れる主管流路101内に、その流体の一部を計測するための計測流路102を設置した構成であった。   Conventionally, this type of ultrasonic flow measuring device has a configuration in which a measurement channel 102 for measuring a part of the fluid is installed in a main channel 101 through which the measurement fluid flows, as shown in FIG. It was.

この構成においては、計測流路102内に分流された流量を計測し、予め設定された全体流量との分流比に基づいて、主管流路内に流れる流量を計算により求めるものであり、小流量の計測レンジである測定系でもって、配管全体の流れを測定できるものである。   In this configuration, the flow rate divided into the measurement flow channel 102 is measured, and the flow rate flowing through the main flow channel is obtained by calculation based on the diversion ratio with the preset overall flow rate. The flow of the entire pipe can be measured with the measurement system that is the measurement range.

図11は、計測流路102の構成を示すもので、図に示すように計測流路102の断面は、矩形形状を有し、この流路の対向する面に対向して配置された少なくとも一対の超音波センサ103,104によって送受信を行い、上流側から送信した場合の時間と下流側から送信した場合の超音波の伝播時間差で流速を求めている(例えば、特許文献1及び特許文献2参照)。   FIG. 11 shows the configuration of the measurement flow path 102. As shown in the figure, the cross section of the measurement flow path 102 has a rectangular shape, and at least a pair of the flow paths 102 arranged to face each other. The ultrasonic sensors 103 and 104 transmit and receive, and the flow velocity is obtained by the difference between the time when transmitting from the upstream side and the propagation time of ultrasonic waves when transmitting from the downstream side (see, for example, Patent Document 1 and Patent Document 2). ).

特開2004−251686号公報JP 2004-251686 A 特開2005−140729号公報JP 2005-140729 A

しかしながら、前記従来の構成では、超音波での計測部の計測速度の上限があるため、計測最大流量の仕様を満たすために、計測部の仕様を合わせこむ必要がある。超音波流量計においては、図11に示すように送信側から発信された超音波が超音波伝搬方向と平行する壁面で反射することなく受信側に到達する直接波Aと前記した壁面で反射しながら受信側に到達する反射波Bが存在し、この直接波Aと反射波Bは位相が異なり、この複合波が受信波となって受信側の超音波センサで受信されることになる。   However, in the conventional configuration, since there is an upper limit of the measurement speed of the measurement unit with ultrasonic waves, it is necessary to match the specification of the measurement unit in order to satisfy the specification of the maximum measurement flow rate. In the ultrasonic flowmeter, as shown in FIG. 11, the ultrasonic wave transmitted from the transmitting side is reflected by the direct wave A reaching the receiving side without being reflected by the wall surface parallel to the ultrasonic wave propagation direction and the above-described wall surface. However, there is a reflected wave B that reaches the reception side, and the direct wave A and the reflected wave B have different phases, and this composite wave becomes a reception wave and is received by the ultrasonic sensor on the reception side.

従って、超音波による伝播時間の測定は受信波を用いて計測するため受信波の形が変形する事が課題であり、超音波の伝搬経路の設計においては、反射波の影響をできるだけ小さくする事が求められる。   Therefore, the measurement of the propagation time by ultrasonic waves is performed using the received wave, so that the shape of the received wave is deformed. In designing the propagation path of the ultrasonic wave, the influence of the reflected wave must be minimized. Is required.

また、計測流路は大流量を流す主管流路101と計測を行う計測流路102に分けて計測流路102の計測を超音波で計測を行い、主管流路101と計測流路102の分流比より全体流量を求めるものであるが、この分流比を計測流量により一定にすることは難しく、流量に応じた補正が必要になる、また計測する流体の種類や温度によっても、その分流比が変わるため、補正のためのシステムが煩雑になるだけでなく、計測できる流体や環境に制約が生じる。   The measurement flow path is divided into a main pipe flow path 101 that flows a large flow rate and a measurement flow path 102 that performs measurement, and measurement of the measurement flow path 102 is measured with ultrasonic waves, and a shunt flow between the main flow path 101 and the measurement flow path 102 is performed. The total flow rate is obtained from the ratio, but it is difficult to make this diversion ratio constant according to the measured flow rate, and correction according to the flow rate is necessary, and the diversion ratio depends on the type and temperature of the fluid to be measured. Therefore, the correction system is not only complicated, but also restricts the fluid and environment that can be measured.

本発明は、上記従来の課題を解消するものであり、超音波センサの周波数や壁面間距離の制約を受けず壁面反射の影響を防ぎ、かつ主管流路と計測のための計測流路の分流比が条件により変化しないようにする計測手段を提供するものである。   The present invention eliminates the above-mentioned conventional problems, prevents the influence of wall reflection without being restricted by the frequency of the ultrasonic sensor and the distance between the wall surfaces, and diverts the main channel and the measurement channel for measurement. A measuring means for preventing the ratio from changing depending on conditions is provided.

上記従来の課題を解決するために本発明の超音波流量計は、流路断面が略円形の流路と、前記流路の内部に前記流路と同芯に配置された略円形筒状の区画部材と、前記流路の内壁と前記区画部材の外壁で構成される流路における流速を超音波の伝播時間で計測する流速計測手段と、前記流速計測手段で計測した流速から流路全体の流量を演算する流量演算手段と、を備え、前記流速計測手段における超音波の伝播経路を、前記流路の内壁と前記区画部材の外壁間としたものである。   In order to solve the above-described conventional problems, an ultrasonic flowmeter of the present invention includes a substantially circular flow channel having a substantially circular cross section, and a substantially circular cylindrical shape disposed concentrically with the flow channel inside the flow channel. A flow rate measuring means for measuring a flow velocity in a flow path constituted by a partition member, an inner wall of the flow path and an outer wall of the flow path member by an ultrasonic propagation time, and a flow rate of the entire flow path from the flow velocity measured by the flow speed measurement means. A flow rate calculating means for calculating a flow rate, and an ultrasonic wave propagation path in the flow velocity measuring means is between the inner wall of the flow path and the outer wall of the partition member.

そして、超音波の伝搬経路には実質的に側壁面が無くなるため直接波のみの送受信することが可能となり、従来の様な壁面反射の干渉の影響を受けることが無くなり、超音波センサの駆動周波数を考慮することなく、流路の形成ができる。   In addition, since there is substantially no side wall surface in the ultrasonic wave propagation path, it is possible to transmit and receive only direct waves, and it is not affected by the interference of wall reflection as in the past, and the ultrasonic sensor drive frequency. The flow path can be formed without considering the above.

また、流路の一部分を測定することで計測流路を流れる全体の流量を求めるバイパス構成の計測流路であるが、形状が軸対称であるため、区画部材の内と外の2つの流路の分流比の設定が容易なため超音波式計測で計測した流速から、容易に全体の流量を演算し求めることができ、小流量用の超音波計測デバイスで大流量計測が容易に可能になる。   Moreover, although it is a measurement flow path of the bypass structure which calculates | requires the whole flow volume which flows through a measurement flow path by measuring a part of flow path, since the shape is axisymmetric, two flow paths inside and outside of a partition member Since it is easy to set the diversion ratio, it is possible to easily calculate and obtain the total flow rate from the flow velocity measured by ultrasonic measurement, and it is possible to easily measure a large flow rate with an ultrasonic measurement device for small flow rate .

本発明の超音波流量計によると、壁面反射の干渉の影響を受けることが無くなり、超音波センサの駆動周波数を考慮することなく、流路の形成ができる。   According to the ultrasonic flowmeter of the present invention, it is not affected by interference of wall surface reflection, and a flow path can be formed without considering the driving frequency of the ultrasonic sensor.

本発明の実施の形態1における超音波流量計の断面図Sectional drawing of the ultrasonic flowmeter in Embodiment 1 of this invention 本発明の実施の形態1における超音波流量計の側面断面図Side surface sectional drawing of the ultrasonic flowmeter in Embodiment 1 of this invention 本発明の実施の形態1にシステム構成図System configuration diagram according to Embodiment 1 of the present invention 本発明の実施の形態1における超音波流量計測の動作説明図Operation explanatory diagram of ultrasonic flow measurement in Embodiment 1 of the present invention 本発明の実施の形態1における超音波流量計の側面図Side view of ultrasonic flowmeter in embodiment 1 of the present invention 本発明の実施の形態2における超音波流量計の断面図Sectional drawing of the ultrasonic flowmeter in Embodiment 2 of this invention 本発明の実施の形態2における超音波流量計の側面断面図Side surface sectional drawing of the ultrasonic flowmeter in Embodiment 2 of this invention 本発明の実施の形態2における他の形態の超音波流量計の側面断面図Side surface sectional drawing of the ultrasonic flowmeter of the other form in Embodiment 2 of this invention 本発明の実施の形態3における超音波流量計の断面図Sectional drawing of the ultrasonic flowmeter in Embodiment 3 of this invention 従来の超音波流量計用いたバイパス流量計の構成図Configuration diagram of bypass flow meter using conventional ultrasonic flow meter 従来の超音波流量計部の構成図Configuration diagram of conventional ultrasonic flowmeter

第1の発明は、流路断面が略円形の流路と、前記流路の内部に前記流路と同芯に配置された略円形筒状の区画部材と、前記流路の内壁と前記区画部材の外壁で構成される流路における流速を超音波の伝播時間で計測する流速計測手段と、前記流速計測手段で計測した流速から流路全体の流量を演算する流量演算手段と、を備え、前記流速計測手段における超音波の伝播経路を、前記流路の内壁と前記区画部材の外壁間としたことで、計測部の超音波伝搬方向の壁面が無くなるため直接波のみ送受信され、壁面反射波と直接伝搬波が干渉し受信波形に影響することが無く、センサの駆動周波数を考慮する必要無く、流路の形成ができる。また、流路の一部分を測定することで筒状流路を流れる流体量を計測できるため小型用の超音波デバイスで大流量計測も可能になる。   A first aspect of the present invention is a flow path having a substantially circular cross section, a substantially circular cylindrical partition member disposed concentrically with the flow path inside the flow path, an inner wall of the flow path, and the partition A flow velocity measuring means for measuring the flow velocity in the flow path constituted by the outer wall of the member by the propagation time of the ultrasonic wave, and a flow rate calculating means for calculating the flow rate of the entire flow path from the flow velocity measured by the flow velocity measuring means, By setting the ultrasonic wave propagation path in the flow velocity measuring means between the inner wall of the flow path and the outer wall of the partition member, only the direct wave is transmitted / received because the wall surface in the ultrasonic wave propagation direction of the measuring unit is eliminated, and the reflected wave on the wall surface. The direct propagation wave does not interfere with the received waveform, and the flow path can be formed without considering the driving frequency of the sensor. Further, since the amount of fluid flowing through the cylindrical flow path can be measured by measuring a part of the flow path, a large flow rate can be measured with a small-sized ultrasonic device.

第2の発明は、特に、第1の発明において、前記流路の上流側と下流側に配置された一対の超音波センサと、前記区画部材の外面に設けた平面と、前記区画部材の外面に設けた平面と、を備え、一方の超音波センサから発信された超音波が前記平面に反射して他方の超音波センサに伝播するように構成したものであり、流路外壁に超音波センサを配置でき
、従来のように中央に計測部を設ける必要が無く、装置を簡素化できる。
In particular, according to a second invention, in the first invention, a pair of ultrasonic sensors disposed on the upstream side and the downstream side of the flow path, a flat surface provided on the outer surface of the partition member, and the outer surface of the partition member The ultrasonic wave transmitted from one ultrasonic sensor is reflected on the plane and propagates to the other ultrasonic sensor, and the ultrasonic sensor is disposed on the outer wall of the flow path. Since there is no need to provide a measuring unit in the center as in the prior art, the apparatus can be simplified.

第3の発明は、特に、第2の発明において、前記区画部材の外郭断面形状が多角形状を成す筒状の形状であることで、流路断面形状が軸対称となり、より流れの均一化が図れるとともに、複数の伝搬パスを構成することも可能であり、計測範囲が異なる超音波センサ並びに伝播路の長さを変える等の違う構成の測定システムを組み合わせるとこにより、より広範囲の測定と精度向上を図ることができる。   According to a third aspect of the invention, in particular, in the second aspect of the invention, the sectional shape of the partition member is a cylindrical shape that forms a polygonal shape. It is possible to configure multiple propagation paths, and by combining ultrasonic sensors with different measurement ranges and measurement systems with different configurations such as changing the length of the propagation path, a wider range of measurements and improved accuracy Can be achieved.

第4の発明は、特に、第1〜3のいずれか1つの発明において、前記流路の流体流入部分に整流部材を有することで計測流路内には流体が均一に流れるため、小流量から大流量まで、第1流路と第2流路に流れる流量の分流比が一定となる、また流体の種類や温度などの環境が変化しても同じく分流比が一定となるため、分流比の補正が容易で安定した測定精度を容易に得やすくなる。   In particular, in the fourth invention, in any one of the first to third inventions, since the fluid flows uniformly in the measurement flow path by having the rectifying member in the fluid inflow portion of the flow path, Up to a large flow rate, the diversion ratio of the flow rates flowing in the first flow path and the second flow path is constant, and even if the environment such as the type of fluid and temperature changes, the diversion ratio is also constant. It is easy to correct and easily obtain stable measurement accuracy.

第5の発明は、特に第4の発明において、計測流路の流出側にも整流部材を有することで、逆流時も正確に流量を計測することが可能となる。   In the fifth aspect of the invention, in particular, in the fourth aspect of the invention, the flow rate can be accurately measured even at the time of back flow by having the rectifying member on the outflow side of the measurement flow path.

第6の発明は、特に第4または5の発明の整流部材を多孔体からなる材料を用いることで、十分な整流効果を発揮することが可能となり、安定した測定精度を容易に確保することが可能となる。   In the sixth aspect of the invention, the rectifying member of the fourth or fifth aspect of the invention is made of a porous material, so that a sufficient rectifying effect can be exhibited and stable measurement accuracy can be easily ensured. It becomes possible.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1を示す超音波流量計の断面図である。また、図2は図1に示すA−A’矢視断面図である。
(Embodiment 1)
FIG. 1 is a sectional view of an ultrasonic flow meter showing Embodiment 1 of the present invention. 2 is a cross-sectional view taken along line AA ′ shown in FIG.

被計測流体が流れる計測流路1には計測流路の内部に支持部材(図示せず)を介して計測流路1と同芯上に円形筒状の区画部材2が内設されており、この区画部材2の内部空間により第1流路3aが形成されている。また、計測流路1の内壁と区画部材2の外壁で形成された空間により第2流路3bが構成されている。   In the measurement channel 1 through which the fluid to be measured flows, a circular cylindrical partition member 2 is provided on the same axis as the measurement channel 1 via a support member (not shown) inside the measurement channel. A first flow path 3 a is formed by the internal space of the partition member 2. A second flow path 3 b is configured by a space formed by the inner wall of the measurement flow path 1 and the outer wall of the partition member 2.

即ち、計測流路1は、区画部材2により、第1流路3aと第2流路3bに区画された構成となっている。   That is, the measurement flow path 1 is configured to be partitioned into a first flow path 3 a and a second flow path 3 b by the partition member 2.

また、計測流路1の被計測流体(白抜きの矢印で示す)の流入側には整流部材4が設けられており、第1流路3a及び第2流路3bには面積当たりの流れ込む流量が一定になるように構成されている。   Further, a flow regulating member 4 is provided on the inflow side of the fluid to be measured (indicated by a white arrow) in the measurement flow path 1, and the flow rate per area flows into the first flow path 3a and the second flow path 3b. Is configured to be constant.

更に、計測流路1には一対の超音波センサ5、6が第1流路の平面2aで反射しV字の伝播路を形成するように設置され、上流側に配置された超音波センサ5と下流側に配置された超音波センサ6間で超音波の送受信が行われる。   Further, a pair of ultrasonic sensors 5 and 6 are installed in the measurement flow path 1 so as to be reflected by the plane 2a of the first flow path to form a V-shaped propagation path, and the ultrasonic sensor 5 arranged on the upstream side. Ultrasonic waves are transmitted and received between the ultrasonic sensors 6 arranged on the downstream side.

図3は、本実施の形態の超音波流量計のブロック図を示すもので、図に示すように計測流路1に配置された超音波センサ5,6により超音波伝搬時間が計測され、この超音波伝搬時間から第2流路3bの流速が演算回路7により演算される。   FIG. 3 shows a block diagram of the ultrasonic flowmeter of the present embodiment, and the ultrasonic propagation time is measured by the ultrasonic sensors 5 and 6 arranged in the measurement flow path 1 as shown in the figure. The calculation circuit 7 calculates the flow velocity of the second flow path 3b from the ultrasonic wave propagation time.

そして、この流速とから第1流路3aと第2流路3bの流路断面積から計測流路1を流れる被計測流体の流量が演算され、その結果は計測装置10の制御手段8を介して表示部
9に表示される。
From this flow velocity, the flow rate of the fluid to be measured flowing through the measurement flow channel 1 is calculated from the cross-sectional areas of the first flow channel 3a and the second flow channel 3b, and the result is obtained via the control means 8 of the measurement device 10. Is displayed on the display unit 9.

なお、本実施の形態では結果を表示部9により表示するようにしているが、測定結果は数値データとしてデータロガーなどに出力することでもよく、また無線システムまた有線によるデータ転送機能を搭載して他の場所で出力することも可能である。   In the present embodiment, the result is displayed on the display unit 9, but the measurement result may be output as numerical data to a data logger or the like, or equipped with a wireless system or wired data transfer function. It is also possible to output at other places.

以下、超音波計測の動作について図4を用いて説明する。   Hereinafter, the operation of ultrasonic measurement will be described with reference to FIG.

まず、超音波センサ5,6間で交互に超音波を送受信させて流体の流れに対して順方向と逆方向の超音波の伝搬時間の差を一定間隔を置いて計り、伝搬時間差信号として出力する。この伝搬時間差信号を受けて演算回路7により被計測流体の流速、および計測流路の流量を算出するものである。   First, ultrasonic waves are alternately transmitted and received between the ultrasonic sensors 5 and 6, and the difference between the propagation times of the ultrasonic waves in the forward direction and the reverse direction with respect to the flow of the fluid is measured at regular intervals and output as a propagation time difference signal. To do. In response to this propagation time difference signal, the arithmetic circuit 7 calculates the flow velocity of the fluid to be measured and the flow rate of the measurement channel.

上流側の超音波センサ5から発せられた超音波が下流側の超音波センサ6で受信されるまでの伝搬時間T1を計測する。また一方、下流側の超音波センサ6から発せられた超音波が上流側の超音波センサ5で受信されるまでの伝搬時間T2を計測する。   The propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic sensor 5 is received by the downstream ultrasonic sensor 6 is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the downstream ultrasonic sensor 6 is received by the upstream ultrasonic sensor 5 is measured.

このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により演算回路で流量が算出される。   Based on the propagation times T1 and T2 measured in this way, the flow rate is calculated by an arithmetic circuit using the following arithmetic expression.

いま、計測流路の流動方向の被計測流体の流速Vと超音波伝搬路とのなす角度をθとし、超音波センサ間の距離を2×L、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。   If the angle between the flow velocity V of the fluid to be measured in the flow direction of the measurement channel and the ultrasonic propagation path is θ, the distance between the ultrasonic sensors is 2 × L, and the sound velocity of the fluid to be measured is C, the flow velocity V is calculated by the following equation.

式(1) T1=2×L/(C+Vcosθ)
式(2) T2=2×L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
式(3) V=(2×L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。
Formula (1) T1 = 2 × L / (C + V cos θ)
Formula (2) T2 = 2 × L / (C−V cos θ)
The speed of sound C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1. Equation (3) V = (2 × L / 2 cos θ) ((1 / T1) − (1 / T2))
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2.

以上のように構成された超音波流量計について、以下その図1、5を用いその作用を説明する。なお、図5は図1におけるB矢視図である。   The operation of the ultrasonic flowmeter configured as described above will be described below with reference to FIGS. 5 is a view taken in the direction of arrow B in FIG.

超音波計測方式の特徴として、計測部での圧損は発生しないため、計測流路1に流れ込む被計測流体は整流部材4により、単位面積当たり一定の流量として分流され、第1流路3a、第2流路3bに流れ込む。   As a feature of the ultrasonic measurement method, since pressure loss does not occur in the measurement unit, the fluid to be measured flowing into the measurement flow path 1 is divided by the rectifying member 4 as a constant flow rate per unit area, and the first flow path 3a, It flows into the two flow paths 3b.

ここで示す整流部材4はハニカム構造の多孔体を用いているが、整流作用のある部材であれば他の部材でももちろん構わない。   The rectifying member 4 shown here uses a porous body having a honeycomb structure, but other members may of course be used as long as they have a rectifying action.

第2流路3bに流れた被計測流体の一部は、前述した超音波測定原理により流速が計測され、予め求められている補正係数を乗算することで、計測流路1の流量を求めることができる。   The flow rate of a part of the fluid to be measured that has flowed into the second flow path 3b is measured by the above-described ultrasonic measurement principle, and the flow rate of the measurement flow path 1 is obtained by multiplying the correction coefficient that is obtained in advance. Can do.

なお、第2流路3bで形成される超音波伝播路においては伝播路と平行する壁面が無いためV字パスを通る直接波のみが受信されるため、他の壁面で反射した伝播波と直接波が干渉して受信波が乱れ正確な超音波の伝播時間が計測できなくなることが無くなるため、センサの特性の影響を受けにくい計測システムの構築が可能となる。   In the ultrasonic wave propagation path formed by the second flow path 3b, since there is no wall surface parallel to the propagation path, only the direct wave passing through the V-shaped path is received. Since the received wave is disturbed due to the interference of waves and the propagation time of the ultrasonic wave cannot be measured accurately, it is possible to construct a measurement system that is not easily affected by the characteristics of the sensor.

(実施の形態2)
図6、図7を用い実施の形態2について説明する。図6は実施の形態2の計測流路断面図で、図7は図6のC−C’矢視断面図である。なお、図1と同一符号のものは同一構造を有し、説明は省略する。
(Embodiment 2)
The second embodiment will be described with reference to FIGS. 6 is a cross-sectional view of the measurement channel of the second embodiment, and FIG. 7 is a cross-sectional view taken along the line CC ′ of FIG. In addition, the thing of the same code | symbol as FIG. 1 has the same structure, and abbreviate | omits description.

図7に示すように計測流路12は、区画部材13によって、第1流路14aと第2流路14bに区分されており、区画部材13は、外郭形状が12角形となっており、この各辺をそれぞれ超音波伝播のV字パスの反射面として使用することが可能である。また、計測流路12の内壁も同様の12角形としている。   As shown in FIG. 7, the measurement channel 12 is divided into a first channel 14a and a second channel 14b by a partition member 13, and the partition member 13 has a dodecagonal outer shape. Each side can be used as a reflection surface of a V-shaped path for ultrasonic propagation. In addition, the inner wall of the measurement channel 12 has a similar dodecagon.

また、超音波センサは、図1の超音波センサ5,6と、更にこの超音波センサ5,6とは異なる特性を有する超音波センサ15,16を備え、それぞれの反射面を平面13a、13bとすることで2つの伝播経路を構成しており、流量や非計測流体の種類に合わせて適宜選択することで、最適な計測結果を得ることができるようになっている。   Further, the ultrasonic sensor includes the ultrasonic sensors 5 and 6 in FIG. 1 and ultrasonic sensors 15 and 16 having characteristics different from those of the ultrasonic sensors 5 and 6, and the reflecting surfaces of the ultrasonic sensors 5 and 6 are flat surfaces 13 a and 13 b. Thus, two propagation paths are configured, and an optimum measurement result can be obtained by appropriately selecting according to the flow rate and the type of the non-measurement fluid.

さらに、図8に示すように、超音波センサ5,6間の距離Cと超音波センサ17、18間の距離Dを異なるように構成するにより、計測流量範囲に応じて2つの伝播距離を適宜選択できるようにすることも可能となる。この場合、超音波センサ17,18の特性は超音波センサ5,6と同じとしても良いし、異なるようにしても良く、流量や非計測流体の種類に合わせて適宜選択することができる。   Further, as shown in FIG. 8, by configuring the distance C between the ultrasonic sensors 5 and 6 and the distance D between the ultrasonic sensors 17 and 18 to be different, the two propagation distances are appropriately set according to the measurement flow rate range. It is also possible to make it selectable. In this case, the characteristics of the ultrasonic sensors 17 and 18 may be the same as or different from those of the ultrasonic sensors 5 and 6 and can be appropriately selected according to the flow rate and the type of non-measurement fluid.

超音波式の流量計測としてセンサの特性(例えば、センサの駆動周波数やセンサの感度)により、計測できる流速の範囲が異なってくる。例えば、流速が小さい場合は、センサ駆動周波数が高い方が、計測の分解能が上がるため有利であるが、流速が大きい場合は低い周波数の方が流れの乱れに対して安定して計測が可能である。   The range of flow velocity that can be measured varies depending on the characteristics of the sensor (for example, the drive frequency of the sensor and the sensitivity of the sensor) for ultrasonic flow measurement. For example, when the flow velocity is small, a higher sensor drive frequency is advantageous because the resolution of measurement increases, but when the flow velocity is large, a lower frequency is more stable and can measure stably against flow disturbance. is there.

そして、図7に示す事例では、2組の超音波センサの周波数特性を異なるように設定している。   In the example shown in FIG. 7, the frequency characteristics of the two sets of ultrasonic sensors are set differently.

一方、図8に示すように伝播路が長い方が小さな流速でも安定して計測できるようにが、センサ間の超音波の減衰が大きくなるため流速が大きくなると計測が不安定になる傾向がある。   On the other hand, as shown in FIG. 8, the longer propagation path allows stable measurement even at a low flow rate, but the attenuation of ultrasonic waves between the sensors increases, so the measurement tends to become unstable when the flow rate increases. .

従って、センサの特性や超音波の伝播経路の組合せで、安定して計測が可能な流速の範囲が決まってくる。本実施の形態では、一つの計測流路で複数の異なる計測部を形成し、流量に応じて切り替えて使用することで、計測流路の構成の変更無しで計測範囲を広げる事や計測精度を上げる事が可能となり、計測装置としての適用範囲を広げる事ができる。   Therefore, the range of the flow velocity that can be stably measured is determined by the combination of the sensor characteristics and the ultrasonic propagation path. In the present embodiment, a plurality of different measurement units are formed with one measurement channel, and the measurement range can be expanded without changing the configuration of the measurement channel and the measurement accuracy can be changed by using according to the flow rate. It is possible to increase the range of application as a measuring device.

なお、本実施の形態では、区画部材13の外郭形状を12角形としているが、超音波の反射が利用できる範囲において形状の角数に制限があるものでは無い。   In the present embodiment, the outer shape of the partition member 13 is a dodecagon, but the number of corners of the shape is not limited within a range where the reflection of ultrasonic waves can be used.

(実施の形態3)
図9は、実施の形態3の計測流路断面を示すもので、図1と同一符号のものは同一構造を有し、説明は省略する。
(Embodiment 3)
FIG. 9 shows a cross section of the measurement channel of the third embodiment, and the same reference numerals as those in FIG.

図9に示すように、計測流路1の流出側にも整流部材19を設ける事により、超音波の計測方式では逆流の測定も可能であるため、正逆両方の流れを正確に測ることが可能となる。   As shown in FIG. 9, by providing a rectifying member 19 on the outflow side of the measurement channel 1, it is possible to measure a reverse flow in the ultrasonic measurement method, and therefore it is possible to accurately measure both forward and reverse flows. It becomes possible.

以上のように、本発明の超音波流量計は、計測流路に設けられた第2流路に第1流路の
外壁を使いV字パスの伝播路を形成することで、壁面反射の影響を受けず、受信波形が安定し、精度良く計測できるとともに、計測流路の一部を計測して全体流量を求めるバイパス方式の計測構成でもって、計測部の第2流路と主流路の第1流路の分流比の制御が容易であり、小流量の計測デバイスでもって簡単な構成で大流量計への応用展開も容易に図れる。
As described above, the ultrasonic flowmeter of the present invention has the effect of wall reflection by forming a V-shaped path using the outer wall of the first channel in the second channel provided in the measurement channel. In addition, the received waveform is stable and can be measured with high accuracy, and the second flow path of the measurement section and the main flow path of the main flow path are measured with a bypass-type measurement configuration in which a part of the measurement flow path is measured to obtain the total flow rate. Control of the diversion ratio of one flow path is easy, and application development to a large flowmeter can be easily achieved with a simple configuration with a small flow rate measuring device.

1、12 計測流路(流路)
2、13 区画部材
2a、13a、13b 平面
3a、14a 第1流路
3b、14b 第2流路
4、19 整流部材
5、6、15、16、17、18 超音波センサ(流速計測手段)
7 演算回路(流量演算手段)
1, 12 Measurement channel (channel)
2, 13 Partition member 2a, 13a, 13b Plane 3a, 14a First flow path 3b, 14b Second flow path 4, 19 Rectification member 5, 6, 15, 16, 17, 18 Ultrasonic sensor (flow velocity measuring means)
7 Calculation circuit (flow rate calculation means)

Claims (6)

流路断面が略円形の流路と、
前記流路の内部に前記流路と同芯に配置された略円形筒状の区画部材と、
前記流路の内壁と前記区画部材の外壁で構成される流路における流速を超音波の伝播時間で計測する流速計測手段と、
前記流速計測手段で計測した流速から流路全体の流量を演算する流量演算手段と、を備え、
前記流速計測手段における超音波の伝播経路を、前記流路の内壁と前記区画部材の外壁間とした超音波流量計。
A flow path having a substantially circular cross section,
A substantially circular cylindrical partition member disposed concentrically with the flow path inside the flow path;
A flow velocity measuring means for measuring a flow velocity in a flow channel constituted by an inner wall of the flow channel and an outer wall of the partition member by an ultrasonic propagation time;
A flow rate calculating means for calculating the flow rate of the entire flow path from the flow rate measured by the flow rate measuring means,
The ultrasonic flowmeter which made the propagation path of the ultrasonic wave in the said flow velocity measurement means between the inner wall of the said flow path, and the outer wall of the said division member.
前記流路の上流側と下流側に配置された一対の超音波センサと、前記区画部材の外面に設けた平面と、を備え、
一方の前記超音波センサから発信された超音波が前記平面に反射して他方の前記超音波センサに伝播するように構成したことを特徴とする請求項1記載の超音波流量計。
A pair of ultrasonic sensors disposed on the upstream side and the downstream side of the flow path, and a plane provided on the outer surface of the partition member,
The ultrasonic flowmeter according to claim 1, wherein ultrasonic waves transmitted from one of the ultrasonic sensors are reflected on the plane and propagated to the other ultrasonic sensor.
前記区画部材の外郭断面形状が多角形状を成す筒状の形状である請求項2に記載の超音波流量計。 The ultrasonic flowmeter according to claim 2, wherein an outer cross-sectional shape of the partition member is a cylindrical shape having a polygonal shape. 前記流路の流体流入側に整流部材を有する請求項1〜3のいずれか1項に記載の超音波流量計。 The ultrasonic flowmeter according to any one of claims 1 to 3, further comprising a rectifying member on a fluid inflow side of the flow path. 前記流路の流出側にも整流部材を有する請求項4に記載の超音波流量計。 The ultrasonic flowmeter according to claim 4, further comprising a rectifying member on the outflow side of the flow path. 前記整流部材は多孔体よりなる請求項4または5に記載の超音波流量計。 The ultrasonic flowmeter according to claim 4 or 5, wherein the rectifying member is made of a porous body.
JP2012088965A 2012-04-10 2012-04-10 Ultrasonic flowmeter Pending JP2013217780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088965A JP2013217780A (en) 2012-04-10 2012-04-10 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088965A JP2013217780A (en) 2012-04-10 2012-04-10 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2013217780A true JP2013217780A (en) 2013-10-24

Family

ID=49590038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088965A Pending JP2013217780A (en) 2012-04-10 2012-04-10 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2013217780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094144A1 (en) * 2014-12-11 2016-06-16 General Electric Company Ultrasonic method and device for measuring fluid flow
CN105758476A (en) * 2016-02-02 2016-07-13 贺成 Insertion type ultrasonic flowmeter with flushing spray-head and submerged camera
CN111765932A (en) * 2020-05-19 2020-10-13 临沂市东方仪表有限公司 Ultrasonic water meter jam-proof device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233122A (en) * 2003-01-29 2004-08-19 Nissan Motor Co Ltd Ultrasonic flowmeter
JP2011053081A (en) * 2009-09-02 2011-03-17 Panasonic Corp Device for measuring flow of fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233122A (en) * 2003-01-29 2004-08-19 Nissan Motor Co Ltd Ultrasonic flowmeter
JP2011053081A (en) * 2009-09-02 2011-03-17 Panasonic Corp Device for measuring flow of fluid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094144A1 (en) * 2014-12-11 2016-06-16 General Electric Company Ultrasonic method and device for measuring fluid flow
CN105737918A (en) * 2014-12-11 2016-07-06 通用电气公司 Ultrasonic method and device for measuring fluid flow
NO20170831A1 (en) * 2014-12-11 2017-05-22 Gen Electric Ultrasonic method and device for measuring fluid flow
CN105758476A (en) * 2016-02-02 2016-07-13 贺成 Insertion type ultrasonic flowmeter with flushing spray-head and submerged camera
CN111765932A (en) * 2020-05-19 2020-10-13 临沂市东方仪表有限公司 Ultrasonic water meter jam-proof device

Similar Documents

Publication Publication Date Title
EP3268701B1 (en) Hybrid sensing ultrasonic flowmeter
CA2702666C (en) A method and system for detecting deposit buildup within an ultrasonic flow meter
JP2010164558A (en) Device for measuring flow of fluid
US9091575B2 (en) Ultrasonic flow-meter
EP2816327B1 (en) Ultrasonic flowmeter
WO2017002281A1 (en) Measurement unit and flow rate meter
JP2008504543A (en) Method for calibrating mounting type or clamp type ultrasonic flow measuring device
JP2014077679A (en) Flow meter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP6375519B2 (en) Gas meter
JP5875999B2 (en) Ultrasonic flow meter, fluid velocity measuring method, and fluid velocity measuring program
JP2013217780A (en) Ultrasonic flowmeter
EP3063508B1 (en) A flow meter for ultrasonically measuring the flow velocity of fluids
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP7151311B2 (en) ultrasonic flow meter
JP6982737B2 (en) Ultrasonic flow meter
JP6229144B2 (en) Flow measuring device
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
JP6149587B2 (en) Ultrasonic flow meter
JP2016206147A (en) Ultrasonic type thermal energy meter
JP5663288B2 (en) Ultrasonic measuring device
JP2011053081A (en) Device for measuring flow of fluid
JP4604520B2 (en) Flow measuring device
JP4561071B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802