JP4555669B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP4555669B2
JP4555669B2 JP2004351372A JP2004351372A JP4555669B2 JP 4555669 B2 JP4555669 B2 JP 4555669B2 JP 2004351372 A JP2004351372 A JP 2004351372A JP 2004351372 A JP2004351372 A JP 2004351372A JP 4555669 B2 JP4555669 B2 JP 4555669B2
Authority
JP
Japan
Prior art keywords
flow path
gas
measurement
flow
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004351372A
Other languages
Japanese (ja)
Other versions
JP2005283565A (en
Inventor
一博 牛嶋
安浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2004351372A priority Critical patent/JP4555669B2/en
Publication of JP2005283565A publication Critical patent/JP2005283565A/en
Application granted granted Critical
Publication of JP4555669B2 publication Critical patent/JP4555669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガス流入口とガス流出口とを連通するガス流路を形成するガス流路部と、前記ガス流路部内に収容され、流速センサが設けられる計測流路を形成する計測流路部とを備えた流量計測装置に関するものである。   The present invention relates to a gas flow path section that forms a gas flow path that connects a gas flow inlet and a gas flow outlet, and a measurement flow path that forms a measurement flow path that is housed in the gas flow path section and is provided with a flow velocity sensor. The present invention relates to a flow rate measuring device including a unit.

近年、マイクロコンピュータを利用して、流速センサが検出した流速からガス流量を演算する電子式ガスメータが普及している。この電子式ガスメータの小型化が進むと、流速センサ前後の流路直線部を十分確保しきれなくなり、流速センサは、その上流側のガス供給圧力や下流側のガス使用状況の影響を受けやすくなるという問題が発生する。   In recent years, an electronic gas meter that uses a microcomputer to calculate a gas flow rate from a flow rate detected by a flow rate sensor has become widespread. As the electronic gas meter is further downsized, it is not possible to sufficiently secure the straight line portion of the flow path before and after the flow velocity sensor, and the flow velocity sensor is likely to be affected by the upstream gas supply pressure and the downstream gas usage status. The problem occurs.

また、ガス消費設備としての給湯器やガスヒートポンプなどは、間欠駆動されていることが多く、このため流路内の圧力変動、すなわち脈動が発生して、逆流が発生することがある。そこで、上記の問題を解決するために、流速センサが取り付けられているメータ内の流路に整流板を装着した電子式ガスメータが提案されている。   In addition, water heaters and gas heat pumps as gas consuming equipment are often driven intermittently, and therefore pressure fluctuations in the flow path, that is, pulsation may occur, and backflow may occur. In order to solve the above problem, an electronic gas meter in which a rectifying plate is attached to a flow path in a meter to which a flow rate sensor is attached has been proposed.

図6は、従来の電子式ガスメータの構成例を示す部分縦断面図である。同図に示すように、ガスメータは、ガス流入口とガス流出口とを連通するガス流路を形成するガス流路部100と、このガス流路部100内に収容されている多層ユニット200とを備えている。多層ユニット200は、流速センサによる計測が行われる計測流路を形成すると共に、形成した計測流路を仕切る複数の整流板201が設けられている。   FIG. 6 is a partial longitudinal sectional view showing a configuration example of a conventional electronic gas meter. As shown in the figure, the gas meter includes a gas flow channel portion 100 that forms a gas flow channel that connects a gas flow inlet and a gas flow outlet, and a multilayer unit 200 that is accommodated in the gas flow channel portion 100. It has. The multilayer unit 200 is provided with a plurality of rectifying plates 201 for partitioning the formed measurement flow path while forming a measurement flow path for measurement by the flow velocity sensor.

以上のような電子式ガスメータにおいて、組み付け性を考慮するとガス流路部100と多層ユニット200との間には隙間が生じる。この隙間によって、多層ユニット200内にのみ流れるはずのガスがこの隙間Cから多層ユニット200外に流出してしまう。この流出量は、隙間Cの大小に依存して変化するため、製品毎に隙間Cの大きさにばらつきが生じると、ガスメータとしての特性にばらつきが生じ得る。   In the electronic gas meter as described above, a gap is generated between the gas flow path unit 100 and the multilayer unit 200 in consideration of assembly. Due to this gap, the gas that should flow only in the multilayer unit 200 flows out of the multilayer unit 200 from this gap C. Since this outflow amount changes depending on the size of the gap C, if the size of the gap C varies among products, the characteristics as a gas meter may vary.

また、図7(a)は図6に示す電子式ガスメータのVI−VI線断面図であり、図7(b)は図7(a)VII−VII線断面図である。同図に示すように、隙間Cl、Crは、図6に示したような多層ユニット200の上下方向だけでなく、多層ユニット200の流れ方向Y1に対して左右方向にも生じる。しかしながら、上述したように組み付け性を考慮してガス流路部100と多層ユニット200との間に隙間Cl、Crが生じるように、ガス流路部100と多層ユニット200とを形成すると、図7(b)に示すように、多層ユニット200の配置位置が本来配置されるべき中央位置に対してズレΔPが生じてしまう。   7A is a cross-sectional view taken along line VI-VI of the electronic gas meter shown in FIG. 6, and FIG. 7B is a cross-sectional view taken along line VII-VII in FIG. As shown in the figure, the gaps Cl and Cr are generated not only in the vertical direction of the multilayer unit 200 as shown in FIG. 6 but also in the horizontal direction with respect to the flow direction Y1 of the multilayer unit 200. However, when the gas flow path unit 100 and the multi-layer unit 200 are formed so that the gaps Cl and Cr are generated between the gas flow path unit 100 and the multi-layer unit 200 in consideration of the assembly property as described above, FIG. As shown in (b), a deviation ΔP occurs with respect to the central position where the multilayer unit 200 should be originally disposed.

さらに、組み付けによっては、多層ユニット200の中央位置からのズレΔPが製品毎にばらついてしまい、このことによっても、ガスメータとしての特性にばらつきが生じてしまう。   Further, depending on the assembly, the deviation ΔP from the center position of the multilayer unit 200 varies from product to product, and this also causes variations in characteristics as a gas meter.

そこで、この隙間Cが最小隙間となり、製品毎にばらつかないように、ガス流路部100、多層ユニット200の部品精度を上げることが考えられるが、歩留まり上制限が生じてしまう。   Therefore, it is conceivable to increase the component accuracy of the gas flow path unit 100 and the multilayer unit 200 so that the gap C becomes the minimum gap and does not vary from product to product, but this limits the yield.

また、PCなどを用いて、流速からガス流量を求める演算に関する内部情報を書き換えて、流速計測特性のばらつきを補正することも考えられる。しかしながら、流速計測特性が製品毎に異なっていると補正パラメータを多く持つ必要があり、コストアップにつながる。   It is also conceivable to correct the variation in the flow velocity measurement characteristics by rewriting internal information relating to the calculation for obtaining the gas flow rate from the flow velocity using a PC or the like. However, if the flow velocity measurement characteristics are different for each product, it is necessary to have a large number of correction parameters, leading to an increase in cost.

そこで、本発明は、上記のような問題点に着目し、安価に、各製品毎の流速計測特性のばらつきを低減した流量計測装置を提供することを課題とする。   Accordingly, the present invention pays attention to the above-described problems, and an object of the present invention is to provide a flow rate measuring device that can reduce the variation in flow rate measurement characteristics for each product at a low cost.

上記課題を解決するためになされた請求項1記載の発明は、ガス流入口とガス流出口とを連通するガス流路を形成するガス流路部と、該ガス流路部内に収容され、ガスの流れ方向に互いに離間して配置された2つの超音波センサによる流速計測が行われる計測流路を形成する計測流路部と、前記ガス流路部内面と前記計測流路部外面との間の隙間を塞いで、該隙間を通過したガスが前記ガス流出口に流れることを防止する塞手段と、を備えた流路計測装置であって、前記塞手段が、前記2つの超音波センサのうちガスの流れ方向上流側に配置された超音波センサよりも上流側と、ガス流れ方向下流側に配置された超音波センサよりも下流側と、にそれぞれ設けられたことを特徴とする流路計測装置に存する。 The invention of claim 1, wherein has been made to solve the above problems, a gas passage portion forming a gas passage for communicating the gas inlet and gas outlet are accommodated in the gas flow portion, gas Between a measurement flow path portion that forms a measurement flow path in which flow velocity measurement is performed by two ultrasonic sensors arranged apart from each other in the flow direction, and between the inner surface of the gas flow path section and the outer surface of the measurement flow path section And a clogging means for preventing gas that has passed through the gap from flowing to the gas outlet, wherein the clogging means includes two ultrasonic sensors. Of these, the flow path is provided on the upstream side of the ultrasonic sensor disposed on the upstream side in the gas flow direction and on the downstream side of the ultrasonic sensor disposed on the downstream side in the gas flow direction. It exists in a measuring device.

請求項1記載の発明によれば、塞手段が、ガス流路部内面と、計測流路部外面との間の隙間を塞いで、隙間を通過したガスがガス流出口に流れることを防止する。従って、ガスが隙間から計測流路部外に流出してしまうことがなくなり、隙間の大小により流速計測特性がばらついてしまうことがない。また、塞手段が、2つの超音波センサのうちガスの流れ方向上流側に配置された超音波センサよりも上流側と、ガス流れ方向下流側に配置された超音波センサよりも下流側と、にそれぞれ設けられている。従って、2つの超音波センサ間におけるガスの流れに、隙間に流れるガスが影響を与えることがなくなり、より一層、隙間の大小による流速計測特性のばらつきを低減することができる。 According to the first aspect of the present invention, the closing means closes the gap between the inner surface of the gas flow path section and the outer surface of the measurement flow path section, and prevents the gas passing through the gap from flowing to the gas outlet. . Accordingly, the gas does not flow out of the measurement flow path portion from the gap, and the flow velocity measurement characteristic does not vary depending on the size of the gap. Further, the blocking means is an upstream side of the ultrasonic sensor disposed upstream of the two ultrasonic sensors in the gas flow direction, and a downstream side of the ultrasonic sensor disposed on the downstream side of the gas flow direction, Are provided respectively. Therefore, the gas flowing in the gap does not affect the gas flow between the two ultrasonic sensors, and variation in flow velocity measurement characteristics due to the size of the gap can be further reduced.

請求項記載の発明は、請求項に記載の流量計測装置であって、前記計測流路は、前記計測流路内を分割する整流板を備えたことを特徴とする流量計測装置に存する。 According to a second aspect of the invention, a flow rate measuring device according to claim 1, wherein the measurement flow path, there is provided a flow rate measuring apparatus characterized by comprising a rectifying plate for dividing the measurement flow path .

請求項記載の発明によれば、ガスの隙間から整流板で分割された計測流路外に流出してしまうことがなくなり、隙間の大小により流速計測特性がばらついてしまうことがない。 According to the second aspect of the present invention, the gas flow does not flow out of the measurement flow path divided by the rectifying plate, and the flow velocity measurement characteristics do not vary depending on the size of the gap.

請求項記載の発明は、請求項1又は2に記載の流路計測装置であって、前記塞手段が、前記計測流路部外面に巻かれた弾性のバンドから構成されていることを特徴とする流路計測装置に存する。 Wherein the invention according to claim 3, a flow path measuring device according to claim 1 or 2, wherein the busy means is an elastic band which is wound around the measurement flow path outer surface It exists in the flow-path measuring device.

請求項記載の発明によれば、塞手段が、計測流路部外面に巻かれた弾性のバンドから構成されている。従って、隙間に接着材を充填する場合に比べて、リサイクルなどでガス流路部から計測流路部を取り外す必要があっても、簡単に取り外すことができる。 According to the third aspect of the present invention, the closing means is constituted by an elastic band wound around the outer surface of the measurement flow path portion. Therefore, as compared with the case where the adhesive is filled in the gap, even if it is necessary to remove the measurement flow path portion from the gas flow path portion by recycling or the like, it can be easily removed.

請求項4記載の発明は、請求項1又は2に記載の流路計測装置であって、前記塞手段が、前記計測流路部外面に形成された弾性の凸部であることを特徴とする流量計測装置に存する。 Invention of Claim 4 is the flow-path measuring apparatus of Claim 1 or 2 , Comprising: The said block means is an elastic convex part formed in the said measurement flow-path part outer surface, It is characterized by the above-mentioned. It exists in the flow measurement device.

請求項記載の発明によれば、塞手段が、計測流路部外面に形成された弾性の凸部である。従って、隙間に接着材を充填する場合に比べて、リサイクルなどでガス流路部から計測流路部を取り外す必要があっても、簡単に取り外すことができる。しかも、計測流路部を樹脂などの弾性部材で形成すれば、塞手段である凸部を計測流路部と一体に形成することができる。 According to the fourth aspect of the present invention, the blocking means is an elastic convex portion formed on the outer surface of the measurement flow path portion. Therefore, compared with the case where the gap is filled with an adhesive, it is possible to easily remove the measurement flow path portion from the gas flow path portion by recycling or the like. In addition, if the measurement flow path portion is formed of an elastic member such as a resin, the convex portion that is the blocking means can be formed integrally with the measurement flow path portion.

請求項記載の発明は、請求項記載の流路計測装置であって、前記計測流路部は、当該計測流路を形成する一面に設けられ、前記超音波センサの超音波を通して前記2つの超音波センサ間で超音波の授受を行うために設けた一対の開口部と、該開口部をそれぞれ塞ぐ一対のメッシュホルダと、を備え、前記バンドは、前記メッシュホルダ上に巻かれていることを特徴とする流量計測装置に存する。 Invention of Claim 5 is the flow-path measuring apparatus of Claim 3 , Comprising: The said measurement flow-path part is provided in the one surface which forms the said measurement flow-path, and said 2nd through the ultrasonic wave of the said ultrasonic sensor A pair of openings provided to exchange ultrasonic waves between the two ultrasonic sensors, and a pair of mesh holders that respectively close the openings, and the band is wound on the mesh holder It exists in the flow measuring device characterized by this.

請求項記載の発明によれば、バンドが、メッシュホルダ上に巻かれている。従って、バンドを流用して、メッシュホルダを計測流路部からはずれ難くすることができる。 According to invention of Claim 5 , the band is wound on the mesh holder. Therefore, it is possible to make it difficult for the mesh holder to be detached from the measurement flow path by using the band.

請求項記載の発明は、請求項1又は2に記載の流量計測装置であって、前記塞手段は、前記ガス流路内面と前記計測流路部外面との間の隙間に塗布されたシール剤であることを特徴とする流量計測装置に存する。 A sixth aspect of the present invention is the flow rate measuring device according to the first or second aspect , wherein the blocking means is a seal applied to a gap between the gas channel inner surface and the measurement channel portion outer surface. It exists in the flow measuring device characterized by being an agent.

請求項記載の発明によれば、ガス流路内面と計測流路部外面との間の隙間にシール剤が塗布されている。従って、シール剤を使って簡単に隙間を塞ぐことができる。 According to invention of Claim 6 , the sealing agent is apply | coated to the clearance gap between a gas flow path inner surface and a measurement flow path part outer surface. Therefore, the gap can be easily closed using the sealant.

以上説明したように請求項1記載の発明によれば、ガスの隙間から計測流路部外に流出してしまうことがなくなり、隙間の大小により流速計測特性がばらついてしまうことがないので、安価に、各製品毎の流速計測特性のばらつきを低減した流量計測装置を得ることができる。また、2つの超音波センサ間におけるガスの流れに、隙間に流れるガスが影響を与えることがなくなり、より一層、隙間の大小による流速計測特性のばらつきを低減することができる流量計測装置を得ることができる。 As described above, according to the first aspect of the present invention, the gas flow does not flow out of the measurement flow path portion, and the flow velocity measurement characteristics do not vary depending on the size of the gap. In addition, it is possible to obtain a flow rate measuring device in which variations in flow rate measurement characteristics for each product are reduced. In addition, a gas flow measuring device is obtained in which the gas flowing in the gap does not affect the gas flow between the two ultrasonic sensors, and variation in flow velocity measurement characteristics due to the size of the gap can be further reduced. Can do.

請求項記載の発明によれば、ガスの隙間から整流板で分割された計測流路外に流出してしまうことがなくなり、隙間の大小により流速計測特性がばらついてしまうことがないので、安価に、各製品毎の流速計測特性のばらつきを低減した流量計測装置を得ることができる。 According to the second aspect of the present invention, the gas flow does not flow out of the measurement flow path divided by the rectifying plate, and the flow velocity measurement characteristics do not vary depending on the size of the gap. In addition, it is possible to obtain a flow rate measuring device in which variations in flow rate measurement characteristics for each product are reduced.

請求項記載の発明によれば、隙間に接着剤を充填する場合に比べて、リサイクルなどでガス流路部から計測流路部を取り外す必要があっても、簡単に取り外すことができるので、取り外し時にもコストダウンを図った流量計測装置を得ることができる。 According to the invention of claim 3 , compared with the case where the gap is filled with an adhesive, even if it is necessary to remove the measurement flow path part from the gas flow path part by recycling or the like, it can be easily removed. It is possible to obtain a flow rate measuring device that reduces costs even when it is detached.

請求項記載の発明によれば、隙間に接着剤を充填する場合に比べて、リサイクルなどでガス流路部から計測流路部を取り外す必要があっても、簡単に取り外すことができる。しかも、計測流路部を樹脂などの弾性部材で形成すれば、塞手段である凸部を係争流路部と一体に形成することができるので、取り外し時にも、塞手段の形成時にもコストダウンを図った流量計測装置を得ることができる。 According to the invention described in claim 4, it is possible to easily remove the measurement flow path portion from the gas flow path portion by recycling or the like as compared with the case where the adhesive is filled in the gap. In addition, if the measurement channel part is made of an elastic member such as resin, the convex part, which is the clogging means, can be formed integrally with the disputed flow path part. Thus, a flow rate measuring device that achieves the above can be obtained.

請求項記載の発明によれば、バンドを流用して、メッシュホルダを計測流路部からはずれ難くすることができる流量計測装置を得ることができる。 According to the fifth aspect of the present invention, it is possible to obtain a flow rate measuring device that can divert the mesh holder from the measurement flow path part by using the band.

請求項記載の発明によれば、シール剤を使って簡単に隙間を塞ぐことができる流量計測装置を得ることができる。 According to the sixth aspect of the present invention, it is possible to obtain a flow rate measuring device that can easily close the gap using the sealant.

第1実施形態
以下、本発明の流量計測装置を、図面に基づいて説明する。図1は、本発明の流量計測装置を組み込んだガスメータの分解断面図であり、図2は、図1のガスメータを構成する多層ユニットの斜示図である。
First Embodiment Hereinafter, a flow rate measuring device of the present invention will be described with reference to the drawings. FIG. 1 is an exploded cross-sectional view of a gas meter incorporating the flow rate measuring apparatus of the present invention, and FIG. 2 is a perspective view of a multilayer unit constituting the gas meter of FIG.

図1に示すように、ガスメータは、上面にガス流入口11及びガス流出口12が設けられ、かつ、底面に開口部13が設けられたメータボディ10と、メータボディ10内に収容される流路ユニット20(=ガス流路部)とを備えている。上述した流路ユニット20は、ガス流入口11と連通する入口流路部21、ガス流出口12と連通する出口流路部23、入口流路部21−出口流路部23間を連通する中間流路部22とから構成され、ガス流入口11とガス流出口12とを連通するガス流路を形成している。   As shown in FIG. 1, the gas meter has a meter body 10 having a gas inlet 11 and a gas outlet 12 on the top surface and an opening 13 on the bottom surface, and a flow accommodated in the meter body 10. A path unit 20 (= gas flow path part) is provided. The channel unit 20 described above includes an inlet channel 21 that communicates with the gas inlet 11, an outlet channel 23 that communicates with the gas outlet 12, and an intermediate that communicates between the inlet channel 21 and the outlet channel 23. The gas flow path part 22 is comprised and the gas flow path which connects the gas inflow port 11 and the gas outflow port 12 is formed.

上述した中間流路部22は、入口流路部21及び出口流路部23の底面に設けられた開口部21a及び23aと各々連通する開口部22a1及び22a2が上面に設けられている。そして、開口部21a及び23aの周縁に設けたフランジ部21b及び23bと、中間流路部22の開口部22a1及び22a2の周縁とが、ネジD1により固定されている。これにより、入口流路部21及び出口流路部23と、中間流路部22との固定を、流路ユニット20内部のガス気密を保ちつつ行うことができる。   The intermediate channel portion 22 described above is provided with openings 22a1 and 22a2 on the upper surface thereof, which communicate with the openings 21a and 23a provided on the bottom surfaces of the inlet channel portion 21 and the outlet channel portion 23, respectively. And the flange parts 21b and 23b provided in the periphery of opening part 21a and 23a, and the periphery of opening part 22a1 and 22a2 of the intermediate flow path part 22 are being fixed with the screw | thread D1. Thereby, fixation with the inlet flow path part 21 and the outlet flow path part 23, and the intermediate flow path part 22 can be performed, maintaining the gas tightness inside the flow path unit 20. FIG.

また、中間流路部22は、底面側に設けられる中間流路部本体22bと、中間流路部本体22bとは別体に形成されると共に、上面側に設けられる上蓋22cとから構成されている。また、この中間流路部22内には、流速センサによる流速計測が行われる多層ユニット24(=計測流路部)が収容されている。本実施形態では、流速センサとして、ガス流れ方向に離間し、かつ、流れ方向と角度を成すように互いに対向して配置された2つの超音波センサを用いている。   Further, the intermediate flow path portion 22 is formed of an intermediate flow path body 22b provided on the bottom surface side and an upper lid 22c provided on the upper surface side while being formed separately from the intermediate flow path body 22b. Yes. In addition, a multilayer unit 24 (= measurement flow path portion) in which flow velocity measurement is performed by a flow velocity sensor is accommodated in the intermediate flow path portion 22. In the present embodiment, two ultrasonic sensors that are spaced apart from each other in the gas flow direction and arranged opposite to each other so as to form an angle with the flow direction are used as the flow velocity sensors.

多層ユニット24は、図2に示すように、断面略四角形の計測流路を形成する流路形成部24aと、この流路形成部24aにより形成された計測流路を分割する整流板24bとが樹脂により一体形成されている。また、流路形成部24aの左右側面には各々、ガス流れ方向に離間した2つの開口部が設けられ、この2つの開口部が各々メッシュホルダ24cによって塞がれている。メッシュホルダ24cは、ホルダ開口部24c1に貼り付けられたメッシュ25を保持している。   As shown in FIG. 2, the multilayer unit 24 includes a flow path forming portion 24a that forms a measurement flow path having a substantially square cross section, and a rectifying plate 24b that divides the measurement flow path formed by the flow path formation portion 24a. It is integrally formed of resin. In addition, the left and right side surfaces of the flow path forming portion 24a are each provided with two openings spaced apart in the gas flow direction, and the two openings are respectively closed by the mesh holder 24c. The mesh holder 24c holds the mesh 25 attached to the holder opening 24c1.

上述した2つの超音波センサは、2つのメッシュホルダ24cの背面にそれぞれ配置され、このメッシュホルダ24cのホルダ開口部24c1を通して、超音波の授受が行われる。メッシュ25は、超音波センサとホルダ開口部24c1との間にできる空間に生じる渦を防止するために設けられている。なお、メッシュホルダ24cの固定方法としては、例えば、メッシュホルダ24cや、流路形成部24aの開口部に爪を設けて固定する方法が考えられる。   The two ultrasonic sensors described above are respectively disposed on the back surfaces of the two mesh holders 24c, and ultrasonic waves are transmitted and received through the holder openings 24c1 of the mesh holders 24c. The mesh 25 is provided to prevent vortices generated in a space formed between the ultrasonic sensor and the holder opening 24c1. In addition, as a fixing method of the mesh holder 24c, for example, a method of providing a claw at the opening of the mesh holder 24c or the flow path forming portion 24a and fixing it can be considered.

さらに、多層ユニット24外面には、2つのゴムバンド26a及び26b(=バンド、塞手段)が巻き付けられている。詳しくは、それぞれ上述したメッシュホルダ24c上であって、2つのメッシュホルダ24cのうち、ガス流方向上流側のホルダ開口部24c1より上流側と、ガス流方向下流側のホルダ開口部24c1より下流側に巻き付けられている。   Further, two rubber bands 26 a and 26 b (= band, closing means) are wound around the outer surface of the multilayer unit 24. Specifically, on the mesh holder 24c described above, of the two mesh holders 24c, upstream from the holder opening 24c1 on the upstream side in the gas flow direction and downstream from the holder opening 24c1 on the downstream side in the gas flow direction. It is wrapped around

以上の構成の多層ユニット24を中間流路部22内に、中間流路本体22bと上蓋22cとの間に挟んで収容すれば、図1に示すように、中間流路部22内面と多層ユニット24外面との間の隙間Cをゴムバンド26a及び26bにより塞いで、ガスが隙間Cを通ってガス流出口12に流れることを防止することができる。これにより、ガスが隙間Cから多層ユニット24外に流出してしまうことがなくなり、全てのガスが多層ユニット24内の整流板24bで分割された計測流路を通過するため、隙間Cの大小により流速計測特性がばらついてしまうことがない。   If the multi-layer unit 24 having the above configuration is accommodated in the intermediate flow path portion 22 between the intermediate flow path body 22b and the upper lid 22c, the inner surface of the intermediate flow path portion 22 and the multi-layer unit as shown in FIG. The gap C between the outer surface 24 and the outer surface 24 can be closed by the rubber bands 26a and 26b, so that gas can be prevented from flowing to the gas outlet 12 through the gap C. As a result, no gas flows out of the multilayer unit 24 from the gap C, and all the gas passes through the measurement flow path divided by the rectifying plate 24b in the multilayer unit 24. Flow rate measurement characteristics will not vary.

図3(a)は図1に示す電子式ガスメータのI−I線断面図であり、図3(b)は図3(a)II−II線断面図である。上述したガスメータによれば、図3に示すように、中央流路部22のガス流れ方向Y1左側内面22dと右側内面22eとの両方に隙間Cl、Crを作った状態で、ゴムバンド26a及び26bがその隙間Cl、Crを塞いでいる。これにより、多層ユニット24を中央流路部22の左側内面22d及び右側内面22e間の中央に配置することができると共に、その配置位置が製品毎にばらつくこともなくなり、安価に、各製品毎の流速計測特性のばらつきを低減することができる。   3A is a cross-sectional view taken along the line II of the electronic gas meter shown in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line II-II of FIG. According to the gas meter described above, as shown in FIG. 3, the rubber bands 26a and 26b are formed with the gaps Cl and Cr formed in both the left inner surface 22d and the right inner surface 22e in the gas flow direction Y1 of the central flow path portion 22. Closes the gaps Cl and Cr. As a result, the multilayer unit 24 can be arranged in the center between the left inner surface 22d and the right inner surface 22e of the central flow path portion 22, and the arrangement position does not vary from product to product. Variations in flow velocity measurement characteristics can be reduced.

以上のことから明らかなように、多層ユニット24の左側面に位置するゴムバンド26a及び26bが中央流路部22の左側内面22dと多層ユニット24外面との間の隙間Clを塞ぐ左塞手段に相当し、多層ユニット24の右側面に位置するゴムバンド26a及び26bが中央流路部22の右側内面22eと多層ユニット24外面との間の隙間Crを塞ぐ右塞手段に相当することがわかる。   As is clear from the above, the rubber bands 26a and 26b located on the left side surface of the multilayer unit 24 serve as a left plug means for closing the gap Cl between the left inner surface 22d of the central flow path portion 22 and the outer surface of the multilayer unit 24. It can be seen that the rubber bands 26 a and 26 b located on the right side surface of the multilayer unit 24 correspond to a right closing means for closing the gap Cr between the right inner surface 22 e of the central flow path portion 22 and the outer surface of the multilayer unit 24.

また、上述したガスメータによれば、ゴムバンド26aは、2つのメッシュホルダ24cのうち、上流側にあるメッシュホルダ24cのホルダ開口部24c1よりも下流側に設けられ、ゴムバンド26bは、下流側にあるメッシュホルダ24cのホルダ開口部24c1よりも下流側に設けられている。   Further, according to the gas meter described above, the rubber band 26a is provided on the downstream side of the two mesh holders 24c with respect to the holder opening 24c1 of the mesh holder 24c on the upstream side, and the rubber band 26b is disposed on the downstream side. The mesh holder 24c is provided downstream of the holder opening 24c1.

つまり、ゴムバンド26aが、2つの超音波センサのうち、ガス流方向上流側に設けられた超音波センサより上流側の隙間Cを塞ぎ、ゴムバンド26bが、ガス流方向下流側に設けられた超音波センサより下流側の隙間Cを塞ぐように設けられている。以上の構成により、2つの超音波センサ間におけるガスの流れに、隙間Cによる影響がなくなり、一層流速計測特性のばらつきを低減することができる。   That is, of the two ultrasonic sensors, the rubber band 26a closes the gap C on the upstream side of the ultrasonic sensor provided on the upstream side in the gas flow direction, and the rubber band 26b is provided on the downstream side in the gas flow direction. It is provided so as to close the gap C downstream of the ultrasonic sensor. With the above configuration, the gas flow between the two ultrasonic sensors is not affected by the gap C, and the variation in flow velocity measurement characteristics can be further reduced.

また、上述したガスメータによれば、ゴムバンド26a及び26bによって、隙間Cを塞いでいる。これにより、隙間Cにシール剤を塗布する場合に比べて、リサイクルなどで中間流路部22から多層ユニット24を取り外す必要があっても、簡単に取り外すことができる。   Further, according to the gas meter described above, the gap C is closed by the rubber bands 26a and 26b. Thereby, compared with the case where the sealing agent is applied to the gap C, the multilayer unit 24 can be easily removed even if it is necessary to remove the multilayer unit 24 from the intermediate flow path portion 22 by recycling or the like.

ところで、メッシュホルダ24cは、爪などにより固定されているが、ガスメータを組み立てている最中に、メッシュホルダ24cに何らかの力がかかって、爪が外れてメッシュホルダ24cが多層ユニット24から脱落する恐れがある。そこで上述したように、ゴムバンド26a及び26bをメッシュホルダ24c上に巻けば、ゴムバンド26a及び26bを流用して、メッシュホルダ24cを多層ユニット24からより一層はずれ難くすることができる。   By the way, although the mesh holder 24c is fixed by a claw or the like, some force is applied to the mesh holder 24c during the assembly of the gas meter, and the claw may come off and the mesh holder 24c may fall off the multilayer unit 24. There is. Therefore, as described above, if the rubber bands 26 a and 26 b are wound on the mesh holder 24 c, the rubber bands 26 a and 26 b can be used to make the mesh holder 24 c more difficult to disengage from the multilayer unit 24.

第2実施形態
なお、上述した第1実施形態では、塞手段としてゴムバンド26a及び26bを用いていたが、例えば、図4に示すように、多層ユニット24の外面に設けた弾性の凸部24f、24gを塞手段としても、ゴムバンド26a及び26bと同様の効果を得ることができる。図5に示すように、多層ユニット24の下面と中間流路部22とが隙間なく配置できる構成であれば、凸部24fは、多層ユニット24の上面と左右側面にそれぞれ設けるだけでもよい。
Second Embodiment In the first embodiment described above, the rubber bands 26a and 26b are used as the blocking means. For example, as shown in FIG. 4, the elastic convex portion 24f provided on the outer surface of the multilayer unit 24 is used. , 24g can be used as the closing means, and the same effect as the rubber bands 26a and 26b can be obtained. As shown in FIG. 5, the convex portions 24 f may be provided only on the upper surface and the left and right side surfaces of the multilayer unit 24 as long as the lower surface of the multilayer unit 24 and the intermediate flow path portion 22 can be arranged without gaps.

凸部24fを多層ユニット24の左右側面にそれぞれ設けることにより、図3に示すゴムバンド26a及び26bの場合と同様に、中央流路部22の左側内面22dと右側内面22eとの両方に隙間Cl、Cuを作った状態で、凸部24fによりその隙間Cを塞いでいる。   By providing the convex portions 24f on the left and right side surfaces of the multilayer unit 24, a clearance Cl is formed on both the left inner surface 22d and the right inner surface 22e of the central flow path portion 22 as in the case of the rubber bands 26a and 26b shown in FIG. In the state where Cu is made, the gap C is closed by the convex portion 24f.

また、この場合も、ゴムバンド26a、26bと同様に、凸部24fを、2つのメッシュホルダ24cのうち、上流側にあるメッシュホルダ24cのホルダ開口部24c1よりも下流側に設け、凸部24gを、下流側にあるメッシュホルダ24cのホルダ開口部24c1よりも下流側に設けることにより、流速計測特性のばらつきをより一層低減できる。   Also in this case, similarly to the rubber bands 26a and 26b, the convex portion 24f is provided on the downstream side of the holder opening 24c1 of the mesh holder 24c on the upstream side of the two mesh holders 24c, and the convex portion 24g Is provided on the downstream side of the holder opening 24c1 of the mesh holder 24c on the downstream side, the variation in flow velocity measurement characteristics can be further reduced.

また、凸部24f、24gを多層ユニット24と同様の素材である樹脂で形成すれば、多層ユニット24と一体形成することができ、コストダウンを図ることができる。   Further, if the convex portions 24f and 24g are formed of a resin that is the same material as the multilayer unit 24, the convex portions 24f and 24g can be integrally formed with the multilayer unit 24, and the cost can be reduced.

さらに、上述した第1及び第2実施形態では、ゴムバンド26a及び26bや、凸部24f、24gを用いて隙間Cを塞いでいた。しかしながら、リサイクルなどで中間流路部22から多層ユニット24を取り外す必要がなければ、例えば、隙間にシール剤を塗布して、隙間を塞ぐことも考えられる。この場合、多層ユニット24の左右側面の両者にシール剤を塗布すれば、中央流路部22の左側内面22dと右側内面22eとの両方に隙間Cl、Crを作った状態で、シール剤によりその隙間Cl及びCrを塞ぐことができる。   Furthermore, in the first and second embodiments described above, the gap C is closed using the rubber bands 26a and 26b and the convex portions 24f and 24g. However, if it is not necessary to remove the multilayer unit 24 from the intermediate flow path portion 22 due to recycling or the like, for example, a sealing agent may be applied to the gap to close the gap. In this case, if a sealant is applied to both the left and right side surfaces of the multi-layer unit 24, the gaps Cl and Cr are formed in both the left inner surface 22d and the right inner surface 22e of the central flow path portion 22, and the The gaps Cl and Cr can be closed.

第1実施形態における本発明の流量計測装置を組み込んだガスメータの分解断面図である。It is a disassembled sectional view of the gas meter which incorporated the flow measuring device of the present invention in a 1st embodiment. 図1のガスメータを構成する多層ユニット24の斜示図である。It is a perspective view of the multilayer unit 24 which comprises the gas meter of FIG. (a)は図1に示すガスメータのI−I線断面図であり、(b)は(a)に示すII−II線断面図である。(A) is the II sectional view taken on the line of the gas meter shown in FIG. 1, (b) is the II-II sectional view taken on the line shown in (a). 第2実施形態におけるガスメータを構成する多層ユニット24の斜示図である。It is a perspective view of the multilayer unit 24 which comprises the gas meter in 2nd Embodiment. 第2実施形態におけるガスメータを構成する中間流路部22及び該中間流路部22に収容された多層ユニット24の断面図である。It is sectional drawing of the multilayer unit 24 accommodated in the intermediate flow path part 22 and this intermediate flow path part 22 which comprise the gas meter in 2nd Embodiment. 従来の電子式ガスメータの一例を示す部分断面図である。It is a fragmentary sectional view showing an example of the conventional electronic gas meter. (a)は図1に示すガスメータのVI−VI線断面図であり、(b)は(a)に示すVII−VII線断面図である。(A) is the VI-VI sectional view taken on the line of the gas meter shown in FIG. 1, (b) is the VII-VII sectional view taken on the line shown in (a).

符号の説明Explanation of symbols

20 流路ユニット(ガス流路部)
22d 上側内面
22e 下側内面
24 多層ユニット(計測流路部)
24c メッシュホルダ
26a ゴムバンド(バンド、塞手段、右塞手段、左塞手段)
26b ゴムバンド(バンド、塞手段、右塞手段、左塞手段)
Cl 隙間
Cr 隙間
C 隙間
20 Channel unit (gas channel)
22d upper inner surface 22e lower inner surface 24 multilayer unit (measurement flow path)
24c Mesh holder 26a Rubber band (band, closing means, right closing means, left closing means)
26b Rubber band (band, closing means, right closing means, left closing means)
Cl gap Cr gap C gap

Claims (6)

ガス流入口とガス流出口とを連通するガス流路を形成するガス流路部と、該ガス流路部内に収容され、ガスの流れ方向に互いに離間して配置された2つの超音波センサによる流速計測が行われる計測流路を形成する計測流路部と、前記ガス流路部内面と前記計測流路部外面との間の隙間を塞いで、該隙間を通過したガスが前記ガス流出口に流れることを防止する塞手段と、を備えた流路計測装置であって、
前記塞手段が、前記2つの超音波センサのうちガスの流れ方向上流側に配置された超音波センサよりも上流側と、ガス流れ方向下流側に配置された超音波センサよりも下流側と、にそれぞれ設けられた
ことを特徴とする流路計測装置。
A gas flow path portion that forms a gas flow path that connects the gas flow inlet and the gas flow outlet, and two ultrasonic sensors that are housed in the gas flow path portion and are spaced apart from each other in the gas flow direction. A measurement flow path portion that forms a measurement flow path in which flow velocity measurement is performed, and a gap between the inner surface of the gas flow path section and the outer surface of the measurement flow path section is closed, and the gas that has passed through the gap flows into the gas outlet A flow path measuring device comprising a blocking means for preventing flow of
The blocking means is an upstream side of an ultrasonic sensor arranged upstream of the two ultrasonic sensors in the gas flow direction, and a downstream side of an ultrasonic sensor arranged downstream of the gas flow direction, A flow path measuring device provided in each of the above.
請求項1に記載の流量計測装置であって、
前記計測流路は、前記計測流路内を分割する整流板を備えたことを特徴とする流量計測装置。
The flow rate measuring device according to claim 1,
The flow measurement device, wherein the measurement flow path includes a rectifying plate that divides the measurement flow path.
請求項1又は2に記載の流路計測装置であって、
前記塞手段が、前記計測流路部外面に巻かれた弾性のバンドから構成されている
ことを特徴とする流路計測装置。
The flow channel measuring device according to claim 1 or 2,
The flow path measuring device, wherein the blocking means is composed of an elastic band wound around the outer surface of the measurement flow path section.
請求項1又は2に記載の流路計測装置であって、
前記塞手段が、前記計測流路部外面に形成された弾性の凸部であることを特徴とする流量計測装置。
The flow channel measuring device according to claim 1 or 2 ,
The flow rate measuring device, wherein the blocking means is an elastic convex portion formed on the outer surface of the measurement flow path portion.
請求項3記載の流路計測装置であって、
前記計測流路部は、当該計測流路を形成する一面に設けられ、前記超音波センサの超音波を通して前記2つの超音波センサ間で超音波の授受を行うために設けた一対の開口部と、該開口部をそれぞれ塞ぐ一対のメッシュホルダと、を備え、
前記バンドは、前記メッシュホルダ上に巻かれている
ことを特徴とする流量計測装置。
The flow path measuring apparatus according to claim 3,
The measurement channel section is provided on one surface forming the measurement channel, and a pair of openings provided for transmitting and receiving ultrasonic waves between the two ultrasonic sensors through the ultrasonic waves of the ultrasonic sensor. A pair of mesh holders that respectively close the openings,
The band is wound on the mesh holder.
請求項1又は2に記載の流量計測装置であって、
前記塞手段は、前記ガス流路内面と前記計測流路部外面との間の隙間に塗布されたシール剤であることを特徴とする流量計測装置。
The flow rate measuring device according to claim 1 or 2,
The flow rate measuring device, wherein the blocking means is a sealant applied to a gap between the gas channel inner surface and the measurement channel portion outer surface.
JP2004351372A 2004-03-02 2004-12-03 Flow measuring device Active JP4555669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351372A JP4555669B2 (en) 2004-03-02 2004-12-03 Flow measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004057873 2004-03-02
JP2004351372A JP4555669B2 (en) 2004-03-02 2004-12-03 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2005283565A JP2005283565A (en) 2005-10-13
JP4555669B2 true JP4555669B2 (en) 2010-10-06

Family

ID=35182082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351372A Active JP4555669B2 (en) 2004-03-02 2004-12-03 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4555669B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589625A (en) 2007-07-09 2012-07-18 松下电器产业株式会社 Multilayer channel member of ultrasonic fluid measuring device and ultrasonic fluid measuring device
JP5225625B2 (en) * 2007-07-09 2013-07-03 パナソニック株式会社 Ultrasonic fluid measuring device
JP5213218B2 (en) * 2007-07-09 2013-06-19 パナソニック株式会社 Multi-layer flow path member of ultrasonic fluid measuring device
JP4893754B2 (en) * 2009-01-14 2012-03-07 パナソニック株式会社 Channel device for fluid measurement and ultrasonic flow meter using the same
JP5728639B2 (en) * 2009-10-01 2015-06-03 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
JP5712358B2 (en) 2009-11-24 2015-05-07 パナソニックIpマネジメント株式会社 Ultrasonic fluid measuring structure and ultrasonic fluid measuring device
JP2011112378A (en) * 2009-11-24 2011-06-09 Panasonic Corp Flow channel member and ultrasonic fluid measurement device
JP5963294B2 (en) * 2011-11-30 2016-08-03 矢崎エナジーシステム株式会社 Gas meter
JP6134899B2 (en) * 2012-03-09 2017-05-31 パナソニックIpマネジメント株式会社 Flow measurement unit
JP6191871B2 (en) 2014-01-09 2017-09-06 パナソニックIpマネジメント株式会社 Flow measuring device
JP6689582B2 (en) * 2014-07-25 2020-04-28 矢崎エナジーシステム株式会社 Ultrasonic gas meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790490A1 (en) * 1996-02-16 1997-08-20 Landis & Gyr Technology Innovation AG Utrasonic sensor to determine flow rate of a flowing liquid
JP2001141536A (en) * 1999-11-18 2001-05-25 Yazaki Corp Measuring instrument for measuring flow rate
JP2004012403A (en) * 2002-06-11 2004-01-15 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2005106726A (en) * 2003-10-01 2005-04-21 Toyo Gas Meter Kk Gas meter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655574B (en) * 1982-03-01 1986-04-30
GB9021441D0 (en) * 1990-10-02 1990-11-14 British Gas Plc Measurement system
JP3334856B2 (en) * 1997-08-06 2002-10-15 矢崎総業株式会社 Gas meter and its gas velocity measuring tube
JPH11281434A (en) * 1998-03-31 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790490A1 (en) * 1996-02-16 1997-08-20 Landis & Gyr Technology Innovation AG Utrasonic sensor to determine flow rate of a flowing liquid
JP2001141536A (en) * 1999-11-18 2001-05-25 Yazaki Corp Measuring instrument for measuring flow rate
JP2004012403A (en) * 2002-06-11 2004-01-15 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2005106726A (en) * 2003-10-01 2005-04-21 Toyo Gas Meter Kk Gas meter

Also Published As

Publication number Publication date
JP2005283565A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4555669B2 (en) Flow measuring device
JP2012057629A (en) Oil pan with oil filter
JP2009186430A (en) Gas meter
US20140230540A1 (en) Flow meter comprising a measuring insert with a sound transducer
US20160341584A1 (en) Gas flowmeter
TWI593945B (en) Ultrasonic gas meter
JP2022181906A (en) gas meter
JP2008122218A (en) Measurement flow passage unit for ultrasonic sensor, and ultrasonic type gas meter
JP2014089123A (en) Ultrasonic gas meter
JP4404662B2 (en) Measurement channel and gas meter
JP2008232943A (en) Ultrasonic gas meter
JP4225801B2 (en) Ultrasonic flow meter
TWI636239B (en) Barometer
JP7033948B2 (en) Ultrasonic flow meter
JP2006118864A (en) Gas meter
JP2018500501A (en) System and method for reducing at least one of air turbulence and pressure fluctuations near a valve
CN102466499B (en) Flow sensor
JP5963294B2 (en) Gas meter
CN109791063B (en) Flow meter
JP2021117215A (en) Ultrasonic flowmeter
JP2009287966A (en) Assembling method of flowmeter, and flowmeter
JP6022203B2 (en) Gas meter
JP7312121B2 (en) ultrasonic flow meter
JP2005030795A (en) Measurement channel section, channel unit, and gas meter
JP4087687B2 (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250