JP4893754B2 - Channel device for fluid measurement and ultrasonic flow meter using the same - Google Patents

Channel device for fluid measurement and ultrasonic flow meter using the same Download PDF

Info

Publication number
JP4893754B2
JP4893754B2 JP2009005487A JP2009005487A JP4893754B2 JP 4893754 B2 JP4893754 B2 JP 4893754B2 JP 2009005487 A JP2009005487 A JP 2009005487A JP 2009005487 A JP2009005487 A JP 2009005487A JP 4893754 B2 JP4893754 B2 JP 4893754B2
Authority
JP
Japan
Prior art keywords
flow path
path member
bead
fluid
multilayer flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009005487A
Other languages
Japanese (ja)
Other versions
JP2010164366A (en
Inventor
裕治 中林
武彦 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009005487A priority Critical patent/JP4893754B2/en
Priority to CN201010003195A priority patent/CN101782409A/en
Publication of JP2010164366A publication Critical patent/JP2010164366A/en
Application granted granted Critical
Publication of JP4893754B2 publication Critical patent/JP4893754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、複数の扁平流路を有する流体計測用流路装置に関するものである。   The present invention relates to a fluid measurement channel device having a plurality of flat channels.

例えば、超音波式流量計測メータは、計測用流路に流体を流すとともに、その上下流側に配置した超音波送受器間の超音波伝播時間で流体流速を測定して流量などを演算するものであった。   For example, an ultrasonic flow meter measures the flow rate by measuring the fluid flow rate using the ultrasonic wave propagation time between the ultrasonic transducers placed on the upstream and downstream sides of the fluid flowing in the measurement channel. Met.

この計測用流路は、断面長方形の矩形状であって、その対向する短辺側に超音波送受器が設けられており、一方の超音波送受器から発信された超音波は、計測用流路を流れる流体を斜めに横切って他方の超音波送受器に受信されるものである。   This measurement channel has a rectangular shape with a rectangular cross section, and an ultrasonic handset is provided on the opposite short side, and the ultrasonic wave transmitted from one ultrasonic handset is used for the measurement flow. The fluid flowing through the path is obliquely crossed and received by the other ultrasonic handset.

そして、近年では、計測精度を向上させるために、計測用流路に複数の隔壁を並行に配置することにより、計測用流路を多層流路としたものが見受けられる(例えば、特許文献1参照)。   In recent years, in order to improve the measurement accuracy, a plurality of partition walls are arranged in parallel in the measurement flow path, whereby the measurement flow path is formed as a multilayer flow path (see, for example, Patent Document 1). ).

また、計測用流路を多層流路として用いる場合の種々の改良も提案されている。例えば、図10に示すように、計測用流路101の外部面にシールリングを兼ねた凸部102を形成するとともに、収納部材103の対向部位には凹部104を設け、この凹部104に凸部102を嵌め込むことで、収納部材103内における計測用流路103の位置決め固定が行なうようになっており、組付け作業の簡素化を促進するようにしている(例えば、特許文献2参照)。
国際公開第2004/074783号パンフレット 特開2006−053067号公報
Various improvements have also been proposed when the measurement channel is used as a multilayer channel. For example, as shown in FIG. 10, a convex portion 102 that also serves as a seal ring is formed on the outer surface of the measurement flow channel 101, and a concave portion 104 is provided at a portion facing the storage member 103. By fitting 102, the measurement flow path 103 is positioned and fixed in the storage member 103, and simplification of the assembly work is promoted (see, for example, Patent Document 2).
International Publication No. 2004/074783 Pamphlet JP 2006-053067 A

しかしながら、計測用流路を多層流路とする際に、計測用流路に設けた一対の送受波部と、計測用流路を層流通路に分割する多層流路との位置関係や、さらに、多層流路を形成するための仕切板の両縁をフレームにより支持した場合の仕切板間の寸法ばらつきで、計測精度を低下させるという問題があり、高精度の計測を行うためには、高精度の多層流路部材が求められている。   However, when the measurement flow path is a multilayer flow path, the positional relationship between the pair of transmission / reception units provided in the measurement flow path and the multilayer flow path that divides the measurement flow path into laminar flow paths, and There is a problem that the measurement accuracy is reduced due to the dimensional variation between the partition plates when both edges of the partition plate for forming the multilayer flow path are supported by the frame. There is a need for an accurate multilayer channel member.

また、計測用流路の外部面に凸部を形成するとともに、収納部材の対向面には凹部を形成して、組付け作業時において凹部に凸部を嵌め込む構成のものにおいては、組付け作業時、凹、凸部に寸法ばらつきが生起し、収納部材への計測用流路の嵌め込み寸法精度が低下してしまう課題があった。   In addition, a convex portion is formed on the outer surface of the measurement flow channel, and a concave portion is formed on the opposing surface of the storage member, and the convex portion is fitted into the concave portion during assembly work. During the work, there was a problem that dimensional variations occurred in the concave and convex portions, and the dimensional accuracy of fitting the measurement flow channel into the storage member was lowered.

したがって、計測用流路を流れる流体にも影響を及ぼし高精度測定ができなくなることがあった。   Therefore, the fluid flowing through the measurement channel is also affected, and high accuracy measurement may not be possible.

本発明は、従来の問題を解決するためになされたもので、流体の計測精度を向上する流体計測用流路装置を提供するものである。   The present invention has been made to solve the conventional problems, and provides a fluid measurement flow path device that improves the measurement accuracy of a fluid.

前記の目的を達成するために、本発明の流体計測用流路装置は、仕切板を介して計測流路を複数の扁平流路に区画した多層流路部材と、前記多層流路部材を収容する収容部を有する流体路とを具備し、前記多層流路部材の外周からはビー部を周方向に突設するとともに、このビー部に対応して流体路の収容部内壁からは、同ビー部が嵌合する凹条を凹設し、さらに前記ビー部の一部に外力によって変形する突起部を形成し、この突起部の変形によって前記収容部に多層流路部材を固定するようにしたものである。 In order to achieve the above object, a fluid measuring flow path device of the present invention accommodates a multilayer flow path member in which a measurement flow path is divided into a plurality of flat flow paths via a partition plate, and the multilayer flow path member. accommodating portion includes a fluid passage having a to, as well as projecting the bead portion from an outer periphery of the multilayer flow path member in the circumferential direction, from the housing inner wall of the fluid path corresponding to the bead portions, recessed and concave stripes the bead portion is fitted, further to form a protrusion is deformed by an external force to a portion of the bead portion, fixing the multilayer flow path member in the housing portion by deformation of the protrusion It is what you do.

このように、ビー部に外力によって変形する突起部を設けたことによって、正確に、しかもガタツキなく収容部に対する多層流路部材の固定が可能となる。 Thus, by providing the protrusion is deformed by an external force to the bead portion, exactly, and which yet are fixed multilayer flow path member relative without backlash accommodating portion.

本発明によれば、正確に、しかもガタツキなく収容部に対する多層流路部材の固定ができ、したがって、流体の計測精度を高めることができるとともに、取り付け作業の効率化も促進できるものである。   According to the present invention, it is possible to fix the multilayer flow path member to the housing portion accurately and without backlash, and therefore it is possible to improve the fluid measurement accuracy and promote the efficiency of the mounting operation.

本発明は、仕切板を介して計測流路を複数の扁平流路に区画した多層流路部材と、前記多層流路部材を収容する収容部を有する流体路とを具備し、前記多層流路部材の外周からはビー部を周方向に突設するとともに、このビー部に対応して流体路の収容部内壁からは、同ビー部が嵌合する凹条を凹設し、さらに前記ビー部の一部に外力によって変形する突起部を形成し、この突起部の変形によって前記収容部に多層流路部材を固定するようにしたものである。 The present invention comprises a multilayer flow path member in which a measurement flow path is partitioned into a plurality of flat flow paths via a partition plate, and a fluid path having an accommodating portion for accommodating the multilayer flow path member, and the multilayer flow path together from the outer periphery of the member to project the bead portion in the circumferential direction, from the housing inner wall of the fluid path corresponding to the bead portions, recessed a concave stripes the bead portion is fitted, further wherein a portion of the bead portion to form a protrusion is deformed by an external force, but which is adapted to secure the multilayer flow path member in the housing portion by deformation of the protrusion.

このように、ビー部に外力によって変形する突起部を設けたことによって、正確に、しかもガタツキなく収容部に対する多層流路部材の固定が可能となり、また、その外力はビー部で受け止められるところから、多層流路部材に変形などが生起するようなこともない。 Thus, by providing the protrusion is deformed by an external force to the bead portion, exactly, yet it can be fixed in the multilayer flow path member relative without backlash accommodating portion, also, the external force is received by the bead portion Therefore, deformation or the like does not occur in the multilayer flow path member.

前記多層流路部材と流体路の収容部とは断面形状が矩形状に設定されており、突起部はビー部のコーナ部をはさむ両側に形成した。 Wherein is the cross-sectional shape and the housing portion of the multilayer flow path member and the fluid passage is set in a rectangular shape, protrusions formed on both sides of the corner portion of the bead portion.

したがって、外力はビー部で受け止められるとともに、その応力がビー部の長手方向に加わるため、より一層確実に多層流路部材の変形を阻止することができるものとなる。 Therefore, external force with is received by the bead portion, because the stress is applied in the longitudinal direction of the bead portion, and it can be prevented even more reliably deformation of the multilayer flow path member.

具体的には、突起部は矩形枠状のビー部の長手方向に対応する部位にそれぞれ形成しておくのが好ましい。 Specifically, protrusions it is preferable to form each of the portions corresponding to the longitudinal direction of the rectangular frame-shaped bead portion.

ビー部は多層流路部材の長手方向に複数条形成することも考えられる。この場合、これらビー部と個々に対応して流体路の収容部に複数条の凹条を凹設しておけば、収容部と多層流路部材とに隙間があっても、それが蛇行状、つまりはラビリンスを構成するようになり、同隙間を介した流体の流れを可及的に抑制できるものとなる。 Bead portion is also conceivable to form plural rows in the longitudinal direction of the multilayer flow path member. In this case, if recessed a concave of plural rows in the housing portion of the fluid path corresponding to an individual and these bead portions, even if there is a gap and housing portion and the multilayer flow path member, it meander In other words, a labyrinth is formed, and the flow of fluid through the gap can be suppressed as much as possible.

前記ビー部と凹条を多層流路部材および収容部の長手方向非対称位置に形成すれば、収容部への多層流路部材の逆付けを防止でき、逆に、長手方向対称位置に形成すれば、取り付け時の方向性をなくすことができるものである。 By forming the bead portion and the concave in the longitudinal direction asymmetric position of the multilayer flow path member and the accommodating portion, it can prevent reverse with the multilayer flow path member of the housing portion, on the contrary, be formed in the longitudinal direction symmetrically In this case, the directionality at the time of attachment can be eliminated.

さらに、具体的には、計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合して両縁部を支持する天板、および底板とから構成された多層流路部材と、前記多層流路部材を上方の開口を介して収容するようにした収容部、および前記開口を閉じる蓋部を有する流体路とを具備し、前記多層流路部材の外周からはビー部を周方向に突設するとともに、このビー部に対応して流体路の収容部と蓋部の内壁からは、同ビー部が嵌合する凹条を凹設し、さらに前記ビー部の一部に外力によって変形する突起部を形成して、この突起部の変形によって前記収容部に多層流路部材を固定するようにした。 Furthermore, specifically, a partition plate that divides the measurement channel into a plurality of flat channels, a side plate that is orthogonal to the partition plate and supports both edges, and is arranged vertically in parallel with the partition plate, A multi-layer channel member composed of a top plate and a bottom plate coupled to the side plate and supporting both edges; a housing unit configured to house the multi-layer channel member through an upper opening; and comprising a fluid passage having a lid for closing the opening, as well as projecting the bead portion from an outer periphery of the multilayer flow path member in the circumferential direction, a housing portion of the fluid path corresponding to the bead portion lid from the inner wall of the part, recessed a concave stripes the bead portion is fitted, and further forming a protrusion is deformed by an external force to a portion of the bead portion, the receiving portion by deformation of the protrusion The multi-layer flow path member is fixed to.

そして、これら流体計測用流路装置を超音波式流量計測メータに用いれば、流体の流速および/または流量の計測が高精度にできるものである。   If these fluid measurement channel devices are used in an ultrasonic flow meter, the flow velocity and / or flow rate of the fluid can be measured with high accuracy.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1〜図7は実施の形態1として、超音波式流量計測メータ1に実施した場合を示し、アルミダイキャストでつくられたその流体路2は左右の鉛直流路3a,3bと、これらを連結する水平流路4とで略逆U字状に形成されている。
(Embodiment 1)
1 to 7 show a case where the ultrasonic flow meter 1 is implemented as the first embodiment, and the fluid path 2 made of aluminum die casting includes left and right vertical flow paths 3a and 3b and these. The horizontal flow path 4 to be connected is formed in a substantially inverted U shape.

水平流路4は、長方形の矩形断面をなし、上面が開口するとともに、対向する側壁には超音波送受器取付部5a,5bを形成した収容部6を有している。   The horizontal flow path 4 has a rectangular rectangular cross section, an upper surface is opened, and an accommodating portion 6 in which ultrasonic transmitter / receiver mounting portions 5a and 5b are formed on opposing side walls.

前記収容部6には、複数の扁平流路7からなり、全体として長方形の矩形断面の多層流路部材8が収納され、蓋部9で上面の開口が密閉されるようにしてある。   The accommodating portion 6 is composed of a plurality of flat flow passages 7 and accommodates a multi-layer flow passage member 8 having a rectangular cross section as a whole, and an opening on the upper surface is sealed with a lid portion 9.

前記多層流路部材8は、例えば、ガラス繊維を充填したブチエチレンテレフタレート、ポリエチレンテレフタレートなどの合成樹脂で成型されている。   The multilayer flow path member 8 is molded from a synthetic resin such as butyethylene terephthalate or polyethylene terephthalate filled with glass fiber.

鉛直流路3aに流入した流体は多層流路部材8の複数の扁平流路7に分流され、次いで、鉛直流路3bに流動して流出されるものである。   The fluid that has flowed into the vertical flow path 3a is divided into a plurality of flat flow paths 7 of the multilayer flow path member 8, and then flows and flows out to the vertical flow path 3b.

前記超音波送受器取付部5a,5bに対応する収容部6、および多層流路部材8の側壁には超音波通過口10,11を設けることで超音波伝播路12が形成されている。   An ultrasonic wave propagation path 12 is formed by providing ultrasonic passage ports 10 and 11 on the side wall of the accommodating portion 6 and the multilayer flow path member 8 corresponding to the ultrasonic transmitter / receiver mounting portions 5a and 5b.

この超音波伝播路12は多層流路部材8の扁平流路7を層流状態で流れる流体を斜めに横切るように形成されるものである。   The ultrasonic wave propagation path 12 is formed so as to obliquely cross the fluid flowing in the laminar flow state in the flat flow path 7 of the multilayer flow path member 8.

このように、超音波伝搬路12が斜めに形成されている配置パターンは、所謂、Zパス(Z−path)またはZ法と呼ばれており、本実施の形態では、このZパス配置について例示する。   Thus, the arrangement pattern in which the ultrasonic wave propagation paths 12 are formed obliquely is called a so-called Z path (Z-path) or Z method. In the present embodiment, this Z path arrangement is illustrated. To do.

多層流路部材8は、複数の扁平流路7に区画するための複数の仕切板13と、これら仕切板13における流体の流れ方向に沿った縁部13aを支持する側板14,15と、これら側板14,15の内側に接合される天板16、および底板17とによって矩形箱状に形
成されており、左右の側板14,15間に仕切板13が水平に所定間隔で保持されている。
The multilayer channel member 8 includes a plurality of partition plates 13 for partitioning into a plurality of flat channels 7, side plates 14 and 15 that support edge portions 13a along the fluid flow direction in these partition plates 13, and these The top plate 16 and the bottom plate 17 joined to the inside of the side plates 14 and 15 are formed in a rectangular box shape, and the partition plate 13 is horizontally held at a predetermined interval between the left and right side plates 14 and 15.

さらに述べると、側板14,15の対向する内面には、仕切板13を所定間隔で保持するため複数本のスリット18が設けられている。   More specifically, a plurality of slits 18 are provided on the opposing inner surfaces of the side plates 14 and 15 to hold the partition plate 13 at a predetermined interval.

これらスリット18は、各仕切板13によって仕切られる扁平流路7の断面積が均一になるように、流体の流れに対して直交する上下方に沿って等間隔で設けられている。   These slits 18 are provided at equal intervals along the upper and lower sides perpendicular to the fluid flow so that the cross-sectional areas of the flat flow paths 7 partitioned by the respective partition plates 13 are uniform.

なお、多層流路部材8の側壁に形成した超音波通過口11は、超音波を透過させることができる、例えば細かなメッシュ、パンチングメタルなどのフィルタ部材19が取り付けられている。   The ultrasonic passage port 11 formed on the side wall of the multilayer flow path member 8 is provided with a filter member 19 such as a fine mesh or punching metal that can transmit ultrasonic waves.

仕切板13は全体矩形の薄板状部材であり、それらの縁部13aには、複数個の鍔部13bが設けられている。   The partition plate 13 is an overall rectangular thin plate-like member, and a plurality of flange portions 13b are provided on the edge portion 13a.

これら鍔部13bは、例えば、仕切板13の四隅および中央部から幅方向外側へ突出して設けてある。   These flanges 13b are provided so as to protrude outward in the width direction from the four corners and the center of the partition plate 13, for example.

一方、側板14,15に設けられているスリット18には、仕切板13の鍔部13bに対応した位置に貫通孔18aを設け、これら貫通孔18aを通して鍔部13bの端面が外側に露出するようになっていている。   On the other hand, the slit 18 provided in the side plates 14 and 15 is provided with a through hole 18a at a position corresponding to the flange 13b of the partition plate 13, and the end surface of the flange 13b is exposed to the outside through the through hole 18a. It has become.

さて、多層流路部材8の外周面長手方向中央部には2条のビー部20,21が周方向に連続して一体形成してあり、一方、水平流路4の収容部6およびその上方開口を閉じる蓋部9には前記ビー部20,21が嵌合する1条の凹条22が凹設してある。 Well, Yes and the outer peripheral surface longitudinal center bead portions 20, 21 of the two rows in the multilayer flow path member 8 is integrally formed continuously in the circumferential direction, while the receiving section 6 and the horizontal channel 4 the lid 9 for closing the upper opening concave 22 Paragraph said bead portions 20, 21 is fitted are recessed.

前記多層流路部材8の一方のビー部20は、その側板14,15に一体形成したビー部材20a,20bと、天板16および底板17に一体形成したビー部材20c、20dとを枠状に連結して得たもので、また、他方のビー部21も、側板14,15に一体形成したビー部材21a,21bと、天板16および底板17に一体形成したビー部材21c、21dとを枠状に連結して得たものである。 The one bead portion 20 of the multilayer flow path member 8, bead member 20a which is integrally formed on the side plates 14, 15, and 20b, bead member 20c which is integrally formed in the top plate 16 and bottom plate 17, and 20d those obtained by connecting the frame-like, also, the other bead portion 21, bead members 21a which is integrally formed in the side plates 14, 15, and 21b, bead member which is integrally formed in the top plate 16 and bottom plate 17 21c and 21d are connected in a frame shape.

そして、側板14,15に一体形成した一方のビー部材20a,20bの上下端部は同側板14,15の上下縁より突出していて、それらの内側に天板16および底板17の一方のビー部材20c、20dの両端が接合され、また、天板16および底板17に一体形成した他方のビー部材21c、21dの両端部は側板14,15の切欠き23を介して同天板16および底板17の側方へ突出し、側板14,15の他方のビー部材21a,21bの上、下端に接合するようにしてある。 Then, one of the bead member 20a which is integrally formed in the side plates 14 and 15, upper and lower ends of 20b is protrude from the upper and lower edges of the side plates 14 and 15, their one Bee top plate 16 and bottom plate 17 on the inside de member 20c, both ends of 20d are joined, also, the top plate 16 and the bottom plate other bead member 21c which is integrally formed in 17, 21d both ends notch 23 through the same top plate of the side plates 14, 15 of the 16 and projecting laterally of the bottom plate 17, the other bead member 21a of the side plates 14 and 15, on the 21b, are to be joined to the lower end.

前記側板14,15の上下縁より突出した一方のビー部材20a,20bの上下端部は凹状に形成され、その底部分よりピン状の突起部24が突設してある。前記突起部24は天板16および底板17の一方のビー部材20c、20dの高さよりも大でそれらビー部材20c,20dより外側へ飛び出すように設定されている。 One bead member 20a projecting from the upper and lower edge of the side plates 14 and 15, upper and lower ends of 20b is formed in a concave shape, a pin-like projection 24 from the bottom portion are protruded. The protrusion 24 is set so as pop one bead member 20c, which bead member 20c in greater than the height of the 20d of the top plate 16 and the bottom plate 17, from 20d to the outside.

さらに、前記天板16および底板17の他方のビー部材21c、21dの両端部、すなわち、側板14,15の切欠き23を介して天板16および底板17の側方へ突出した部位には、間に隙間25をおいて三角形状の突起部26が突設してある。前記突起部26の高さは側板14,15のビー部材21a,21bのそれよりも大に設定してある。 Furthermore, the other bead member 21c of the top plate 16 and bottom plate 17, both end portions of the 21d, i.e., the portion that protrudes to the side of the top plate 16 and bottom plate 17 via the cutout 23 of the side plates 14 and 15 Further, a triangular protrusion 26 is provided with a gap 25 therebetween. The bead member 21a of the height of the projections 26 the side plates 14 and 15, is set to larger than that of 21b.

前記の構成において、流体路2への多層流路部材8の組込みについて説明する。   In the above configuration, the incorporation of the multilayer flow path member 8 into the fluid path 2 will be described.

先ず、収納部6の上方開放部より多層流路部材8を挿入する。このとき、収納部6の両内壁に形成した凹条22に多層流路部材8の側板14,15より突設したビー部材20a,20b、および21a,21bが嵌合してガイド作用を果たすため、前記挿入作業が円滑になされ、収納部6の内底面に存在する凹条22に多層流路部材8の底板17より突設したビー部材20d,21dが嵌まり込んだところでその挿入作業が完了する。 First, the multilayer flow path member 8 is inserted from the upper open part of the storage part 6. At this time, fulfill bead member 20a which projects from the side plate 14, 15 of the multilayered flow passage member 8 in concave 22 formed on both the inner wall of the housing part 6, 20b, and 21a, and 21b are fitted guiding action Therefore, the insertion work is made smoothly, bead member 20d to the concave 22 that is present on the inner bottom surface and projecting from the bottom plate 17 of the multilayer flow path member 8 of the housing part 6, the insertion work where 21d took crowded fits Is completed.

次に、収納部6の上方開放部に蓋部9を覆設すればよい。   Next, the lid portion 9 may be provided so as to cover the upper open portion of the storage portion 6.

ところで、収納部6の上方開放部より多層流路部材8を挿入する際、その天板16、底板17における横方向のビー部材21c,21dの両端に形成した三角形状の突起部26の高さが側板14,15のビー部材21a,21bのそれよりも大に設定してあるために、それぞれの頂点部分が潰れるように変形することとなる。 Incidentally, when inserting the multilayer flow path member 8 from the upper opening of the housing part 6, the top plate 16, lateral bead member 21c of the bottom plate 17, 21d triangular formed at both ends of the high protrusion portion 26 bead member 21a Saga side plates 14 and 15, in order is set to larger than that of 21b, and thus be transformed into the respective apex portion collapsing.

また、収納部6の上方開放部より挿入した多層流路部材8を蓋部9で押圧すれば、その側板14,15における縦方向のビー部材20a,20bの上下端に形成したピン状の突起部24の高さが天板16、底板17のビー部材20c,20dのそれよりも大に設定してあるために、それぞれの頂点部分が潰れるように変形することとなる。 Also, the storage unit 6 if the multilayer flow path member 8 inserted from above the opening portion by pressing by the lid 9, the longitudinal direction of the bead member 20a at the side plates 14 and 15, pin-shaped formed on the upper and lower ends of the 20b height top plate 16 of the projection 24, bead members 20c of the bottom plate 17, in order is set to larger than that of the 20d, and thus be transformed into each apex portion collapsing.

したがって、前記多層流路部材8はその横方向は勿論、縦方向双方にわたってがたつきなど確実に阻止されて収納部6に固定されるものである。   Accordingly, the multi-layer flow path member 8 is fixed to the storage portion 6 while being reliably prevented from wobbling in both the vertical direction as well as the horizontal direction.

ここで、前記多層流路部材8は計測流路2の収容部6に収容され、蓋部9で密閉するようにしてあるので、その周囲の隙間はあってもなくても流体漏れなどの支障はないが、超音波伝播路12の流体の流れを代表値として計測することから、多層流路部材8の外側を流れる量と、内部、つまりは扁平流路7を流れる流体量のバランスや、超音波伝播路12を形成する多層流路部材8の位置関係は非常に重要である。   Here, since the multilayer flow path member 8 is accommodated in the accommodating portion 6 of the measurement flow path 2 and sealed with the lid portion 9, troubles such as fluid leakage may occur even if there is no gap around it. However, since the flow of the fluid in the ultrasonic propagation path 12 is measured as a representative value, the balance between the amount flowing outside the multilayer flow path member 8 and the amount of fluid flowing inside, that is, the flat flow path 7, The positional relationship of the multilayer flow path member 8 forming the ultrasonic propagation path 12 is very important.

つまり、多層流路部材8ががたつきを有していたり、その周囲の隙間がばらついていたりすると流体の流れの計測精度に影響を与えるので、超音波伝播路12を流動する流体の流れを安定させるためには、収容部6に多層流路部材8を収容して蓋部9で密閉したときに、この多層流路部材8が確実に固定されている必要がある。   That is, if the multilayer flow path member 8 has shakiness, or if the surrounding gaps vary, the measurement accuracy of the fluid flow is affected, so the flow of the fluid flowing through the ultrasonic propagation path 12 is reduced. In order to stabilize, the multilayer flow path member 8 needs to be securely fixed when the multilayer flow path member 8 is accommodated in the accommodating portion 6 and sealed with the lid portion 9.

本実施の形態では、突起部24,26を変形させることによりそれを可能にしているものである。   In the present embodiment, this is made possible by deforming the protrusions 24 and 26.

一方の突起部24の体積は凹状部の容積より小としてあり、また、他方の突起部26の近傍には隙間25が存在するため、それらが変形してもはみ出すことがなく、収容部6と多層流路部材8の外壁の間にはみ出した部分が挟まって、蓋部9が閉まらないというおそれもなく、寸法ばらつきの影響を受けずに固定ができるようになり、収容部6と収容した多層流路部材8の隙間を小さく設定することができることとなる。   The volume of one projection 24 is smaller than the volume of the concave portion, and since there is a gap 25 in the vicinity of the other projection 26, it does not protrude even if they are deformed. The protruding portion is sandwiched between the outer walls of the multilayer flow path member 8 so that the lid portion 9 is not closed and can be fixed without being affected by dimensional variations. The gap between the flow path members 8 can be set small.

加えて、突起部24、26をビー部材20a〜20d、および21a〜21dの長手方向端部に対応して位置させているところから、それら突起部24、26に加わる変形応力はビー部材20a〜20d、および21a〜21dで受け止められることとなり、多層流路部材8の側板14,15や天板16、底板17には加わらないものとなる。つまり、多層流路部材8そのものの変形を防止でき、確実に固定できる。 In addition, the projections 24 and 26 of bead members 20a to 20d, and 21a~21d from where that is positioned to correspond to the longitudinal end portion of the deformation stress applied to them protrusion 24,26 bead member It will be received by 20a-20d and 21a-21d, and will not be added to the side plates 14, 15 of the multilayer flow path member 8, the top plate 16, and the bottom plate 17. That is, the multilayer flow path member 8 itself can be prevented from being deformed and reliably fixed.

(実施の形態2)
図8は実施の形態2を示し、図7と同作用を行う構成には同一符号を付し、具体的説明は実施の形態1のものを援用する。
(Embodiment 2)
FIG. 8 shows the second embodiment, and the same reference numerals are given to the components that perform the same operations as those in FIG. 7, and the specific descriptions of the first embodiment are used.

実施の形態1と相違するところは、ビー部20,21をそれぞれ独立した凹条22a,22bに嵌め込むようにした点である。 Which differ in the first embodiment, the independent concave 22a of the bead portions 20 and 21 lies in that as fitted to 22b.

この構成によれば、流路体2の収納部6と多層流路部材8との間のラビリンス効果が高まり、確実に多層流路部材8の扁平流路7に流体を流動させることができる。   According to this configuration, the labyrinth effect between the storage portion 6 of the flow path body 2 and the multilayer flow path member 8 is enhanced, and the fluid can be reliably flowed to the flat flow path 7 of the multilayer flow path member 8.

(実施の形態3)
図9は実施の形態3を示し、図2などと同作用を行う構成には同一符号を付し、具体的説明は実施の形態1のものを援用する。
(Embodiment 3)
FIG. 9 shows the third embodiment, and the same reference numerals are given to the components performing the same operations as those in FIG.

実施の形態1と相違するところは、ビー部20,21に直接的に突起部24a,26bを形成したもので、それぞれの突起部24a,26bは略山形状に設定され、それらの頂部が変形しやすいようにしている。 Where differs from the first embodiment, directly protrusions 24a in bead portions 20 and 21, obtained by forming a 26b, each of the projections 24a, 26b are set in a substantially mountain shape, their top It is designed to be easily deformed.

なお、前記実施の形態では、多層流路部材8の長手方向中心部にビー部を配設したが、これは多層流路部材8の収容方向に方向性がない場合に有効で、収容方向に方向性がある場合には、位置合わせ部の数を変えたり、あるいは、左右非対称の形状となるようにして、逆方向に組み込めないようにすると、組み込みミスを防止できるようになる。 Incidentally, the above embodiment has been arranged bead portion in the longitudinal direction center portion of the multilayer flow path member 8, which is effective when there is no directionality in the accommodating direction of the multilayer flow path member 8, housing direction If there is a directionality, it is possible to prevent an assembly error by changing the number of alignment portions or by making the shape asymmetrical so that it cannot be assembled in the reverse direction.

さらに、収容部に多層流路部材を収容して蓋部で密閉したときに、突起部が変形して、収容部6に多層流路部材が動かないように固定する構成で説明したが、これに加え、突起部の近傍に位置させて、多層流路部材の外周と収容部と蓋部との隙間を一定に規制するように、多層流路部材の外周、あるいは収容部と蓋部のいずれかに位置合わせの段部を設けるようにしてもよい。   Furthermore, although the multilayer flow path member is accommodated in the accommodating portion and sealed with the lid portion, the protruding portion is deformed and the multilayer flow path member is fixed to the accommodating portion 6 so as not to move. In addition, the outer periphery of the multilayer flow path member or the outer periphery of the multilayer flow path member or the storage section and the lid portion is positioned in the vicinity of the protruding portion so as to regulate the gap between the outer periphery of the multilayer flow path member and the storage portion and the lid portion constant Crab alignment step portions may be provided.

これによれば、多層流路部材を収容して収容部と蓋部を密閉したときに、段部に相対する壁面に接するまで、突起部が変形するようにできるので、多層流路部材の外周と収容部、および蓋部との隙間を一定に規制することができるとともに、突起部の変形代を制御できるようになり、安定した固定力を得ることができるようになる。   According to this, when the multilayer flow path member is accommodated and the accommodating portion and the lid portion are sealed, the protrusion can be deformed until it comes into contact with the wall surface facing the stepped portion. The gap between the housing portion and the lid portion can be regulated to a constant level, and the deformation allowance of the projection can be controlled, so that a stable fixing force can be obtained.

以上のように本発明にかかる流体計測用流路装置は、簡単な構成で、多層流路部材をがたつきを防止して固定できるようになり、高い信頼性が得られるもので、超音波式流量計測メータに応用すれば高精度の計測を可能とするものである。   As described above, the fluid measuring flow path device according to the present invention has a simple configuration and can fix the multilayer flow path member while preventing rattling, so that high reliability can be obtained. When applied to a flow meter, it enables high-precision measurement.

本発明の実施の形態1における超音波式流量計測メータの全体分解斜視図1 is an overall exploded perspective view of an ultrasonic flow meter according to Embodiment 1 of the present invention. 本発明の実施の形態1における流体計測用流路装置の分解斜視図1 is an exploded perspective view of a fluid measurement channel device according to Embodiment 1 of the present invention. FIG. 図2のA部の拡大斜視図Enlarged perspective view of part A in FIG. 図2のB部の拡大斜視図Enlarged perspective view of part B in FIG. 同流体計測用流路装置の正断面図Front sectional view of the fluid flow measurement device 同流体計測用流路装置の他の部分での正断面図Front sectional view of the other part of the fluid measuring channel device 同流体計測用流路装置の側断面図Side cross-sectional view of the fluid flow measurement device 本発明の実施の形態2における流体計測用流路装置の側断面図Side sectional view of a fluid measuring flow path device according to Embodiment 2 of the present invention. 本発明の実施の形態3における流体計測用流路装置の要部斜視図The principal part perspective view of the flow-path apparatus for fluid measurement in Embodiment 3 of this invention 従来の流体計測用流路装置の断面図Sectional view of a conventional fluid measurement channel device

1 超音波式流体計測装置
2 流体路
6 収容部
7 扁平流路
8 多層流路部材
9 蓋部
13 仕切板
14,15 側板
16 天板
17 底板
24,24a,26,26a 突起部
22,22a,22b 凹条
DESCRIPTION OF SYMBOLS 1 Ultrasonic fluid measuring device 2 Fluid path 6 Storage part 7 Flat flow path 8 Multi-layer flow path member 9 Lid part 13 Partition plate 14,15 Side plate 16 Top plate 17 Bottom plate 24, 24a, 26, 26a Protrusion part 22,22a, 22b concave

Claims (7)

仕切板を介して計測流路を複数の扁平流路に区画した断面形状が矩形状の多層流路部材と、
前記多層流路部材を上方の開口を介して収容する収容部、および前記開口を閉じる蓋部を有する断面形状が矩形状の流体路とを具備し、
前記多層流路部材には外周ビー部を周方向に突設前記収容部には内壁に前記ビー部が嵌合する凹条を凹設し、さらに前記ビー部のコーナ部をはさむ両側には外力によって変形する突起部を形成すると共に、前記蓋部と接する突起部をピン状とし、
前記多層流路部材を前記収容部に収容し前記蓋を装着した際、前記の突起部の変形によって前記収容部に前記多層流路部材を固定するようにした流体計測用流路装置。
A multilayer flow path member having a rectangular cross-sectional shape in which the measurement flow path is partitioned into a plurality of flat flow paths via a partition plate;
A housing portion that houses the multilayer flow path member through an upper opening , and a fluid passage having a rectangular cross-sectional shape having a lid portion that closes the opening ;
The projecting the bead portion to the outer periphery in the multilayered flow passage member in the circumferential direction, and recessed a concave which the bead portion is fitted to the inner wall in the housing unit further corners of the bead portion And forming protrusions that deform due to external force on both sides of the cover, and the protrusions in contact with the lid are pin-shaped,
Wherein when the multilayer flow path member fitted with the lid and housed in the housing portion, wherein the multilayer flow path member fluid measuring channel device designed to fix to the housing portion by deformation of the protrusion.
ビー部を多層流路部材の長手方向に複数条形成した請求項1記載の流体計測用流路装置。 Bead portion fluid measuring channel device according to claim 1, wherein the plural rows formed in the longitudinal direction of the multilayer flow path member. ビー部を多層流路部材の長手方向に複数条形成するとともに、前記ビー部と個々に対応して流体路の収容部に複数条の凹条を凹設した請求項1または2記載の流体計測用流路装置。 The bead portion with a plurality of strip form in the longitudinal direction of the multilayer flow path member, the bead portion and according to claim 1, wherein the recessed a concave of plural rows in the housing portion individually corresponding fluid passage A flow measuring device for fluid measurement. ビー部と凹条を多層流路部材および収容部の長手方向非対称位置に形成した請求項または記載の流体計測用流路装置。 Bead portions and concave multilayer flow path member and the accommodating portion fluid measuring channel devices longitudinally asymmetrical position was formed to claim 2 or 3 wherein the a. ビー部と凹条を多層流路部材および収容部の長手方向対称位置に形成した請求項または記載の流体計測用流路装置。 Bead portions and concave multilayer flow path member and the accommodating portion fluid measuring channel devices longitudinally symmetrical positions are formed to claim 2 or 3 wherein the a. 計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合して両縁部を支持する天板、および底板とから構成された多層流路部材と、前記多層流路部材を上方の開口を介して収容するようにした収容部、および前記開口を閉じる蓋部を有する流体路とを具備し、前記多層流路部材の外周からはビー部を周方向に突設するとともに、このビー部に対応して流体路の収容部と蓋部の内壁からは、同ビー部が嵌合する凹条を凹設し、さらに前記
ビー部のコーナ部をはさむ両側には外力によって変形する突起部を形成すると共に、前記蓋部と接する突起部をピン状とし、この突起部の変形によって前記収容部に多層流路部材を固定するようにした流体計測用流路装置。
A partition plate that divides the measurement channel into a plurality of flat channels, a side plate that is orthogonal to the partition plate and supports both edge portions, and is arranged vertically in parallel with the partition plate. A multi-layer channel member composed of a top plate supporting an edge and a bottom plate; a housing unit configured to house the multi-layer channel member through an upper opening; and a lid for closing the opening. comprising a fluid passage, while projecting the bead portion from an outer periphery of the multilayer flow path member in the circumferential direction, from the inner wall of the housing portion and the lid portion of the fluid path corresponding to the bead portion, the with bead portion is recessed a concave that fits, on both sides further sandwich the corner portion of the <br/> bead portion to form a protrusion is deformed by an external force, the projecting portion in contact with the lid portion and pin-like, and to fix the multilayer flow path member in the housing portion by deformation of the protrusion Body measuring channel device.
請求項1〜いずれか1項記載の流体計測用流路装置を用いた超音波式流量計測メータ。 Ultrasonic flow measurement meter with the fluid measuring channel device according to any one of claims 1-6.
JP2009005487A 2009-01-14 2009-01-14 Channel device for fluid measurement and ultrasonic flow meter using the same Expired - Fee Related JP4893754B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009005487A JP4893754B2 (en) 2009-01-14 2009-01-14 Channel device for fluid measurement and ultrasonic flow meter using the same
CN201010003195A CN101782409A (en) 2009-01-14 2010-01-14 Flow path apparatus for fluid measuring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005487A JP4893754B2 (en) 2009-01-14 2009-01-14 Channel device for fluid measurement and ultrasonic flow meter using the same

Publications (2)

Publication Number Publication Date
JP2010164366A JP2010164366A (en) 2010-07-29
JP4893754B2 true JP4893754B2 (en) 2012-03-07

Family

ID=42522499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005487A Expired - Fee Related JP4893754B2 (en) 2009-01-14 2009-01-14 Channel device for fluid measurement and ultrasonic flow meter using the same

Country Status (2)

Country Link
JP (1) JP4893754B2 (en)
CN (1) CN101782409A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8695417B2 (en) * 2011-01-31 2014-04-15 Honeywell International Inc. Flow sensor with enhanced flow range capability
JP6022203B2 (en) * 2012-05-09 2016-11-09 矢崎エナジーシステム株式会社 Gas meter
CN104075758A (en) * 2014-06-09 2014-10-01 沈阳市航宇星仪表有限责任公司 Ultrasonic gas meter rectification unit flowing channel device
JP6302774B2 (en) * 2014-07-03 2018-03-28 前澤化成工業株式会社 Enclosure
CN109579924A (en) * 2018-11-17 2019-04-05 德闻仪器仪表(上海)有限公司 A kind of more card slot type ultrasonic flow rate measurement devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053797B2 (en) * 2002-03-13 2008-02-27 矢崎総業株式会社 rectifier
JP4045974B2 (en) * 2003-02-24 2008-02-13 松下電器産業株式会社 Flow measuring device
JP4555669B2 (en) * 2004-03-02 2010-10-06 矢崎総業株式会社 Flow measuring device
JP4404662B2 (en) * 2004-03-11 2010-01-27 矢崎総業株式会社 Measurement channel and gas meter
JP2006118864A (en) * 2004-10-19 2006-05-11 Yazaki Corp Gas meter
JP2008107234A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring apparatus
JP2008122218A (en) * 2006-11-13 2008-05-29 Yazaki Corp Measurement flow passage unit for ultrasonic sensor, and ultrasonic type gas meter

Also Published As

Publication number Publication date
CN101782409A (en) 2010-07-21
JP2010164366A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5793644B2 (en) Ultrasonic flow meter
JP4893754B2 (en) Channel device for fluid measurement and ultrasonic flow meter using the same
EP3012593B1 (en) Ultrasonic flow meter device
CN201152879Y (en) Ultrasonic type fluid measurement apparatus
US9372105B2 (en) Ultrasonic flow rate measurement device
JP5277911B2 (en) Fluid flow measuring device
EP2485016B1 (en) Ultrasonic flow rate measuring unit
US8418566B2 (en) Multi-layered flow passage member and ultrasonic wave fluid measuring device
KR102614417B1 (en) Straight type flow sensor
JP7121858B2 (en) Flow measurement device
JP4898724B2 (en) Method for manufacturing multilayer flow path member of ultrasonic fluid measuring device
JP5963294B2 (en) Gas meter
JP4583831B2 (en) Gas meter
JP4588386B2 (en) Gas meter
JP5125997B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP2006017499A (en) Gas meter
JP2022181906A (en) gas meter
JP2020024180A (en) Ultrasonic flow meter
KR102088257B1 (en) Apparatus for measuring flow rate
KR20140001680U (en) A gasket mounting apparatus of pressure sensor
JP6022203B2 (en) Gas meter
JP4898723B2 (en) Multi-layer flow path member of ultrasonic fluid measuring device
JP2020012653A (en) Gas meter
JP2008128890A (en) Gas flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees