JP5277911B2 - Fluid flow measuring device - Google Patents

Fluid flow measuring device Download PDF

Info

Publication number
JP5277911B2
JP5277911B2 JP2008303976A JP2008303976A JP5277911B2 JP 5277911 B2 JP5277911 B2 JP 5277911B2 JP 2008303976 A JP2008303976 A JP 2008303976A JP 2008303976 A JP2008303976 A JP 2008303976A JP 5277911 B2 JP5277911 B2 JP 5277911B2
Authority
JP
Japan
Prior art keywords
flow path
multilayer
path member
lid
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303976A
Other languages
Japanese (ja)
Other versions
JP2010127811A (en
Inventor
真人 佐藤
武彦 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008303976A priority Critical patent/JP5277911B2/en
Priority to CNU2009200011388U priority patent/CN201364176Y/en
Priority to PCT/JP2009/006253 priority patent/WO2010061558A1/en
Priority to CN200980147950.4A priority patent/CN102227617B/en
Publication of JP2010127811A publication Critical patent/JP2010127811A/en
Application granted granted Critical
Publication of JP5277911B2 publication Critical patent/JP5277911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Electromagnetism (AREA)

Abstract

A highly accurate fluid measuring flow path device capable of measuring a fluid with improved accuracy. The fluid measuring flow path device is provided with partition plates (13) for partitioning a measuring flow path into flat flow paths (7), side plates (14, 15) for supporting both edges of each of the partition plates (13), a multilayer flow path member (8) composed of a top plate (16) and a bottom plate (17) which are provided above and below the partition plates (13) so as to be parallel to the partition plates (13) and are joined to the side plates (14, 15) to support both edges of each of the side plates, a containing section (6) for containing the multilayer flow path member (8) through the opening in the upper part of the containing section, and a lid section (9) for closing the opening.  A projection (20) deformed by external force is provided to either the containing section (6) including the lid section (9) or the multilayer flow path member (8), and the multilayer flow path member (8) is affixed to the containing section (6) by deformation of the projection (20).

Description

本発明は、複数の扁平流路を有する流体計測用流路装置に関するものである。   The present invention relates to a fluid measurement channel device having a plurality of flat channels.

例えば、超音波式流量計測メータは、計測用流路に流体を流すとともに、その上下流側に配置した超音波送受器間の超音波伝播時間で流体流速を測定して流量などを演算するものであった。   For example, an ultrasonic flow meter measures the flow rate by measuring the fluid flow rate using the ultrasonic wave propagation time between the ultrasonic transducers placed on the upstream and downstream sides of the fluid flowing in the measurement channel. Met.

この計測用流路は、断面長方形の矩形状であって、その対向する短辺側に超音波送受器が設けられており、一方の超音波送受器から発信された超音波は、計測用流路を流れる流体を斜めに横切って他方の超音波送受器に受信されるものである。   This measurement channel has a rectangular shape with a rectangular cross section, and an ultrasonic handset is provided on the opposite short side, and the ultrasonic wave transmitted from one ultrasonic handset is used for the measurement flow. The fluid flowing through the path is obliquely crossed and received by the other ultrasonic handset.

そして、近年では、計測精度を向上させるために、計測用流路に複数の隔壁を平行に配置することにより、計測用流路を多層流路としたものが見受けられる(例えば、特許文献1参照)。
In recent years, in order to improve the measurement accuracy, a plurality of partition walls are arranged in parallel in the measurement channel, and the measurement channel is a multilayer channel (see, for example, Patent Document 1). ).

また、計測用流路を多層流路として用いる場合の種々の改良も提案されている。例えば、図8に示すように、計測用流路101の外部面にシールリングを兼ねた凸部102を形成するとともに、収納部材103の対向部位には凹部104を設け、この凹部104に凸部102を嵌め込むことで、収納部材103内における計測用流路103の位置決め固定が行なうようになっており、組付け作業の簡素化を促進するようにしている(例えば、特許文献2参照)。
国際公開第2004/074783号パンフレット 特開2006−053067号公報
Various improvements have also been proposed when the measurement channel is used as a multilayer channel. For example, as shown in FIG. 8, a convex portion 102 that also serves as a seal ring is formed on the outer surface of the measurement flow channel 101, and a concave portion 104 is provided at an opposite portion of the storage member 103. By fitting 102, the measurement flow path 103 is positioned and fixed in the storage member 103, and simplification of the assembly work is promoted (see, for example, Patent Document 2).
International Publication No. 2004/074783 Pamphlet JP 2006-053067 A

しかしながら、計測用流路を多層流路とする際に、計測用流路に設けた一対の送受波部と、計測用流路を層流通路に分割する多層流路との位置関係や、さらに、多層流路を形成するための仕切板の両縁をフレームにより支持した場合の仕切板間の寸法ばらつきで、計測精度を低下させるという問題があり、高精度の計測を行うためには、高精度の多層流路部材が求められている。   However, when the measurement flow path is a multilayer flow path, the positional relationship between the pair of transmission / reception units provided in the measurement flow path and the multilayer flow path that divides the measurement flow path into laminar flow paths, and There is a problem that the measurement accuracy is reduced due to the dimensional variation between the partition plates when both edges of the partition plate for forming the multilayer flow path are supported by the frame. There is a need for an accurate multilayer channel member.

また、計測用流路の外部面に凸部を形成するとともに、収納部材の対向面には凹部を形成して、組付け作業時において凹部に凸部を嵌め込む構成のものにおいては、組付け作業時、凹、凸部に寸法ばらつきが生起し、収納部材への計測用流路の嵌め込み寸法精度が低下してしまう課題があった。   In addition, a convex portion is formed on the outer surface of the measurement flow channel, and a concave portion is formed on the opposing surface of the storage member, and the convex portion is fitted into the concave portion during assembly work. During the work, there was a problem that dimensional variations occurred in the concave and convex portions, and the dimensional accuracy of fitting the measurement flow channel into the storage member was lowered.

したがって、計測用流路を流れる流体にも影響を及ぼし高精度測定ができなくなることがあった。   Therefore, the fluid flowing through the measurement channel is also affected, and high accuracy measurement may not be possible.

本発明は、従来の問題を解決するためになされたもので、流体の計測精度を向上する流体計測用流路装置を提供するものである。   The present invention has been made to solve the conventional problems, and provides a fluid measurement flow path device that improves the measurement accuracy of a fluid.

前記の目的を達成するために、本発明の流体計測用流路装置は、計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と平行に上下に配設され、前記側板と結合して両縁部を支持する天板、および底板とから構成された多層流路部材と、前記多層流路部材を上方の開口を介して収容するようにした収容部と、前記開口を閉じる蓋部とを備え、前記蓋部を含む収容部、または多層流路部材の一方に外力によって変形する突起部を設けると共に、該突起部の周囲に溝を形成し、この突起部の変形によって前記蓋部を含む収容部に多層流路部材を固定するようにしたものである。
In order to achieve the above object, a fluid measurement flow path device of the present invention includes a partition plate that divides a measurement flow path into a plurality of flat flow paths, and a side plate that is orthogonal to the partition plate and supports both edges. A multi-layer flow path member which is arranged in parallel with the partition plate and is connected to the side plate to support both edges and a bottom plate; and a multi-layer flow path member having an upper opening. a housing portion which is adapted to accommodate through, the a closing lid opening, housing portion containing the lid or Rutotomoni provided with a projection portion that deforms by external force to one of the multilayer flow path member, the A groove is formed around the protruding portion, and the multilayer flow path member is fixed to the accommodating portion including the lid portion by deformation of the protruding portion.

このように、蓋部を含む収容部、または多層流路部材の一方に外力によって変形する突起部を設けたことによって、正確に、しかもガタツキなく収容部に対する多層流路部材の固定が可能となる。   As described above, by providing the accommodating portion including the lid portion or the protruding portion deformed by the external force on one of the multilayer flow path members, the multilayer flow path member can be fixed to the accommodating portion accurately and without rattling. .

本発明によれば、正確に、しかもガタツキなく収容部に対する多層流路部材の固定ができ、したがって、流体の計測精度を高めることができるとともに、取り付け作業の効率化も促進できるものである。   According to the present invention, it is possible to fix the multilayer flow path member to the housing portion accurately and without backlash, and therefore it is possible to improve the fluid measurement accuracy and promote the efficiency of the mounting operation.

本発明は、計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と平行に上下に配設され、前記側板と結合して両縁部を支持する天板、および底板とから構成された多層流路部材と、前記多層流路部材を上方の開口を介して収容するようにした収容部と、前記開口を閉じる蓋部とを備え、前記蓋部を含む収容部、または多層流路部材の一方に外力によって変形する突起部を設けると共に、該突起部の周囲に溝を形成し、この突起部の変形によって前記蓋部を含む収容部に多層流路部材を固定するようにしたものである。 The present invention provides a partition plate that divides a measurement channel into a plurality of flat channels, a side plate that is orthogonal to the partition plate and supports both edge portions, and is disposed above and below in parallel with the partition plate, A multi-layer flow path member composed of a top plate and a bottom plate that are coupled to support both edge portions, a storage section configured to receive the multi-layer flow path member through an upper opening, and the opening being closed a lid portion, housing portions including the lid, or Rutotomoni provided with a projection portion that deforms by external force to one of the multilayer flow path member, protruding to form a groove around the raised portion, the deformation of the protrusion A multilayer flow path member is fixed to a housing portion including the lid portion.

このように、蓋部を含む収容部、または多層流路部材の一方に外力によって変形する突起部を設けたことによって、正確に、しかもガタツキなく収容部に対する多層流路部材の固定が可能となる。   As described above, by providing the accommodating portion including the lid portion or the protruding portion deformed by the external force on one of the multilayer flow path members, the multilayer flow path member can be fixed to the accommodating portion accurately and without rattling. .

前記突起部は多層流路部材を構成する側板の端部に形成するのが望ましい。こうすることで、突起部の変形に伴う応力は側板の幅方向に加わり、変形などを生じないものとなる。   The protrusion is preferably formed at the end of the side plate constituting the multilayer flow path member. By doing so, the stress accompanying the deformation of the protrusion is applied in the width direction of the side plate, and no deformation or the like occurs.

また、突起部を先細状のテーパ状に構成しておけば、同突起部の変形が的確になされ、作業性をさらに高めることができる。   Further, if the projecting portion is formed in a tapered shape, the projecting portion is accurately deformed, and the workability can be further improved.

加えて、突起部の周囲に溝を形成することで、同突起部の変形分がこの溝に吸収されることとなる。   In addition, by forming a groove around the protrusion, the deformation of the protrusion is absorbed by the groove.

多層流路部材を構成する側板の端部に突起部を、蓋部を含む収容部の前記突起部と対応する部位には凹部をそれぞれ形成し、かつこの凹部の容積は突起部の体積よりも小さく設定しておくことも考えられる。この場合にも、突起部の変形分がこの凹部に吸収されることとなる。   A protrusion is formed at the end of the side plate constituting the multilayer flow path member, and a recess is formed at a portion corresponding to the protrusion of the housing portion including the lid, and the volume of the recess is larger than the volume of the protrusion. It may be possible to set a smaller value. Also in this case, the deformation of the protrusion is absorbed by the recess.

好ましくは、蓋部を含む収容部と多層流路部材とに、相嵌合する位置決め用の凸部と穴とを別に形成しておく。   Preferably, positioning convex portions and holes to be fitted to each other are formed separately in the accommodating portion including the lid portion and the multilayer flow path member.

これによって、突起部の変形などに伴うずれがこの凸部と穴の嵌合で阻止され、収容部への多層流路部材の取り付け精度をより一層高めることができる。   Accordingly, the displacement due to the deformation of the protrusion is prevented by the fitting of the protrusion and the hole, and the accuracy of attaching the multilayer flow path member to the housing portion can be further enhanced.

そして、凸部と穴とを左右非対称位置に形成しておくことで、左右逆の取り付けなどが防止できるものである。   Further, by forming the convex portion and the hole at the left-right asymmetric position, it is possible to prevent left-right reverse mounting.

これら流体計測用流路装置を超音波式流量計測メータに搭載することで、流量などの高精度計測を実現できる。   By mounting these fluid measurement channel devices on an ultrasonic flow meter, it is possible to achieve high-precision measurement of flow rate and the like.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1〜図4は実施の形態1として、超音波式流量計測メータ1に実施した場合を示し、その流体路2は左右の鉛直流路3a,3bと、これらを連結する水平流路4とで略逆U字状に形成されている。
(Embodiment 1)
1 to 4 show a case where the ultrasonic flow meter 1 is implemented as Embodiment 1, and the fluid path 2 includes left and right vertical channels 3a and 3b and a horizontal channel 4 connecting them. It is formed in a substantially inverted U shape.

水平流路4は、長方形の矩形断面をなし、上面が開口するとともに、対向する側壁には超音波送受器取付部5a,5bを形成した収容部6を有している。   The horizontal flow path 4 has a rectangular rectangular cross section, an upper surface is opened, and an accommodating portion 6 in which ultrasonic transmitter / receiver mounting portions 5a and 5b are formed on opposing side walls.

前記収容部6には、複数の扁平流路7からなる多層流路部材8が収納され、蓋部9で上面の開口が密閉されるようにしてある。   The accommodating portion 6 accommodates a multilayer flow path member 8 composed of a plurality of flat flow paths 7, and an opening on the upper surface is sealed with a lid portion 9.

したがって、鉛直流路3aに流入した流体は多層流路部材8の複数の扁平流路7に分流され、次いで、鉛直流路3bに流動して流出されるものである。   Therefore, the fluid that has flowed into the vertical flow path 3a is diverted to the plurality of flat flow paths 7 of the multilayer flow path member 8, and then flows and flows out to the vertical flow path 3b.

前記超音波送受器取付部5a,5bに対応する収容部6、および多層流路部材8の側壁には超音波通過口10,11を設けることで超音波伝播路12が形成されている。   An ultrasonic wave propagation path 12 is formed by providing ultrasonic passage ports 10 and 11 on the side wall of the accommodating portion 6 and the multilayer flow path member 8 corresponding to the ultrasonic transmitter / receiver mounting portions 5a and 5b.

この超音波伝播路12は多層流路部材8の扁平流路7を層流状態で流れる流体を斜めに横切るように形成されるものである。   The ultrasonic wave propagation path 12 is formed so as to obliquely cross the fluid flowing in the laminar flow state in the flat flow path 7 of the multilayer flow path member 8.

このように、超音波伝搬路12が斜めに形成されている配置パターンは、所謂、Zパス(Z−path)またはZ法と呼ばれており、本実施の形態では、このZパス配置について例示する。   Thus, the arrangement pattern in which the ultrasonic wave propagation paths 12 are formed obliquely is called a so-called Z path (Z-path) or Z method. In the present embodiment, this Z path arrangement is illustrated. To do.

図2および図3に示すように、多層流路部材8は複数の扁平流路7に区画するための複数の仕切板13と、これら仕切板13における流体の流れ方向に沿った縁部13aを支持する側板14,15と、天板16、および底板17とによって矩形箱状に形成されており、左右の側板14,15間に仕切板13が水平に所定間隔で保持されている。   As shown in FIGS. 2 and 3, the multilayer flow path member 8 includes a plurality of partition plates 13 for partitioning into a plurality of flat flow paths 7, and edge portions 13 a along the fluid flow direction in these partition plates 13. The side plates 14 and 15 to be supported, the top plate 16 and the bottom plate 17 are formed in a rectangular box shape, and the partition plate 13 is horizontally held at a predetermined interval between the left and right side plates 14 and 15.

さらに述べると、側板14,15の対向する内面には、仕切板13を所定間隔で保持するため複数本のスリット18が設けられている。   More specifically, a plurality of slits 18 are provided on the opposing inner surfaces of the side plates 14 and 15 to hold the partition plate 13 at a predetermined interval.

これらスリット18は、各仕切板13によって仕切られる扁平流路7の断面積が均一になるように、流体の流れに対して直交する上下方に沿って等間隔で設けられている。   These slits 18 are provided at equal intervals along the upper and lower sides perpendicular to the fluid flow so that the cross-sectional areas of the flat flow paths 7 partitioned by the respective partition plates 13 are uniform.

なお、多層流路部材8の側壁に形成した超音波通過口11は、超音波を透過させることができる、例えば細かなメッシュ、パンチングメタルなどのフィルタ部材19が取り付けられている。   The ultrasonic passage port 11 formed on the side wall of the multilayer flow path member 8 is provided with a filter member 19 such as a fine mesh or punching metal that can transmit ultrasonic waves.

仕切板13は全体矩形の薄板状部材であり、それらの縁部13aには、複数個の鍔部13bが設けられている。   The partition plate 13 is an overall rectangular thin plate-like member, and a plurality of flange portions 13b are provided on the edge portion 13a.

これら鍔部13bは、例えば、仕切板13の四隅および中央部から幅方向外側へ突出し
て設けてある。
These flanges 13b are provided so as to protrude outward in the width direction from the four corners and the center of the partition plate 13, for example.

一方、側板14,15に設けられているスリット18には、仕切板13の鍔部13bに対応した位置に貫通孔18aを設け、これら貫通孔18aを通して鍔部13bの端面が外側に露出するようになっていている。   On the other hand, the slit 18 provided in the side plates 14 and 15 is provided with a through hole 18a at a position corresponding to the flange 13b of the partition plate 13, and the end surface of the flange 13b is exposed to the outside through the through hole 18a. It has become.

さて、側板14,15の上、下端部の前後には先端が小径のテーパ状突起部20をそれぞれ一体形成するとともに、これら突起部20に相対して収容部6の底壁と蓋部9に凹部21が形成してある。   Now, tapered projections 20 with small diameters are formed integrally on the front and rear sides of the side plates 14 and 15, respectively, and the bottom wall of the housing 6 and the lid 9 are opposed to these projections 20. A recess 21 is formed.

凹部21の容積は突起部20の体積よりも大きく、また、突起部20の高さは凹部21の深さよりも大にそれぞれ設定されている。   The volume of the recess 21 is larger than the volume of the protrusion 20, and the height of the protrusion 20 is set to be greater than the depth of the recess 21.

さらに、天板14、および底板15の突起部20の近傍には位置決め用の凸部22を配設するとともに、これら凸部22と相対して収容部6の底壁と蓋部9とには凹部23が形成してある。   Further, a positioning convex portion 22 is disposed in the vicinity of the top plate 14 and the protruding portion 20 of the bottom plate 15, and the bottom wall and the lid portion 9 of the housing portion 6 are opposed to the convex portion 22. A recess 23 is formed.

ここで、前記多層流路部材8は計測流路2の収容部6に収容され、蓋部9で密閉するようにしてあるので、多層流路部材8の周囲の隙間は、あってもなくても流体漏れなどの支障はないが、超音波伝播路12の流体の流れを代表値として計測することから、多層流路部材6の外側を流れる量と内部、つまりは扁平流路7を流れる流体量のバランスや、超音波伝播路12を形成する多層流路部材8の位置関係は重要である。   Here, since the multilayer flow path member 8 is accommodated in the accommodating portion 6 of the measurement flow path 2 and sealed with the lid portion 9, there is no gap around the multilayer flow path member 8. However, since the fluid flow in the ultrasonic wave propagation path 12 is measured as a representative value, the amount of fluid flowing outside the multilayer flow path member 6 and the fluid flowing in the flat flow path 7 are measured. The balance of the quantity and the positional relationship of the multilayer flow path member 8 forming the ultrasonic wave propagation path 12 are important.

つまり、多層流路部材8ががたつきを有していたり、その周囲の隙間がばらついていたりすると、流体の流れの計測精度に影響を与えるので、超音波伝播路12の流体の流れを安定させるため、収容部6に多層流路部材8を収容して蓋部9で密閉したときに、多層流路部材8がきっちりと固定されていなければならない。   That is, if the multilayer flow path member 8 has rattling or the surrounding gaps vary, the fluid flow measurement accuracy is affected, so that the fluid flow in the ultrasonic propagation path 12 is stabilized. Therefore, when the multilayer flow path member 8 is accommodated in the accommodating portion 6 and sealed with the lid portion 9, the multilayer flow path member 8 must be firmly fixed.

本実施の形態では、図4に示すように、収容部6に多層流路部材8を収容して蓋部9で密閉したときに、凹部21とこれに挿入される突起部20が、突起部20の高さ>凹部21の深さに設定されているため、突起部20の各先端部が変形した状態となり、したがって、収容部6に多層流路部材8が動かないように固定され、他の部品を用いずに簡単な構成で、安価にそのがたつきなどを防止できる。   In the present embodiment, as shown in FIG. 4, when the multilayer flow path member 8 is accommodated in the accommodating portion 6 and sealed with the lid portion 9, the concave portion 21 and the protruding portion 20 inserted therein are Since the height of 20> the depth of the recess 21 is set, each tip of the protrusion 20 is in a deformed state. Therefore, the multilayer flow path member 8 is fixed to the housing portion 6 so as not to move. It is possible to prevent rattling and the like at a low cost with a simple configuration without using any parts.

また、突起部20の体積が凹部21の容積より小としてあるので、突起部20が変形しても凹部21からはみ出すことがなく、収容部6と多層流路部材8の外壁の間にはみ出した部分が挟まって、収容部6と蓋部9がしまらないという心配がなく、寸法ばらつきの影響を受けずに固定ができるようになり、収容部6と収容した多層流路部材8の隙間を小さく設定することができようになる。   Further, since the volume of the protrusion 20 is smaller than the volume of the recess 21, it does not protrude from the recess 21 even if the protrusion 20 is deformed, and protrudes between the housing 6 and the outer wall of the multilayer flow path member 8. There is no worry that the accommodating portion 6 and the lid portion 9 will not be pinched, and the fixing can be performed without being affected by the dimensional variation, and the gap between the accommodating portion 6 and the accommodated multilayer flow path member 8 is formed. It becomes possible to set small.

そして、突起部20は変形するため位置規制が不安定となりやすく、また、突起部20が変形代の分遊び部分が必要となり寸法精度を高めにくいが、この突起部20の近傍位置に、位置決め用の凸部22を配設するとともに、これら凸部22と相対して収容部6の底壁と蓋部9とに凹部23が形成してあるため、位置決め性の阻害はこれによって排除されるもので、組立性も向上できることとなる。   Since the protrusion 20 is deformed, the position regulation is likely to be unstable, and the protrusion 20 needs a play portion for the deformation allowance, so that it is difficult to improve the dimensional accuracy. The concave portions 23 are formed in the bottom wall of the housing portion 6 and the lid portion 9 so as to be opposed to the convex portions 22, so that the obstruction of positioning is eliminated by this. Thus, the assemblability can be improved.

また、収容部6に多層流路部材8を収容して蓋部9で密閉したときに、突起部20がテーパ状であるところから、その先端が座屈して根本から折れる心配がなくなり、多層流路部材8を確実に動かないように固定することができるとともに、密閉するときの力も小さくなる。   Further, when the multilayer flow path member 8 is accommodated in the accommodating portion 6 and sealed with the lid portion 9, since the protrusion 20 is tapered, there is no fear that the tip is buckled and broken from the root, and the multilayer flow member is eliminated. The road member 8 can be fixed so as not to move reliably, and the force for sealing is reduced.

そして、突起部20を、側板14,15の平面方向に直交する端部に形成してあるので、それが変形する際の応力で多層流路部材8が変形することもなくなり、併せて、突起部20による固定力も向上させ、多層流路部材8を確実に固定できる。   And since the projection part 20 is formed in the edge part orthogonal to the plane direction of the side plates 14 and 15, the multilayer flow path member 8 does not deform | transform with the stress at the time of the deformation | transformation. The fixing force by the part 20 is also improved, and the multilayer flow path member 8 can be fixed securely.

(実施の形態2)
図5は実施の形態2を示し、図4と同作用を行う構成には同一符号を付し、具体的説明は実施の形態1のものを援用する。
(Embodiment 2)
FIG. 5 shows the second embodiment, and the same reference numerals are given to the components that perform the same operations as those in FIG. 4, and those of the first embodiment are used for specific description.

実施の形態1と相違するところは、突起部31の周囲で、かつこの突起部31より低い環状の溝32を設け、かつ、突起部31の体積を溝32の容積より小とし、さらに、蓋部9を含む収容部6の側には突起部31が嵌る凹部は形成していない点である。   The difference from the first embodiment is that an annular groove 32 is provided around the protrusion 31 and lower than the protrusion 31, the volume of the protrusion 31 is smaller than the volume of the groove 32, and the lid The recessed part into which the projection part 31 fits is not formed in the side of the accommodating part 6 including the part 9.

前記構成において、収容部6に多層流路部材8を収容して蓋部9で密閉したときに、突起部31が変形して、収容部6に収容した多層流路部材8は動かないように固定できるものである。   In the above configuration, when the multilayer flow path member 8 is accommodated in the accommodating portion 6 and sealed with the lid portion 9, the protrusion 31 is deformed so that the multilayer flow path member 8 accommodated in the accommodating portion 6 does not move. It can be fixed.

そして、突起部31の体積が溝部32の容積より小としてあるので、それが変形してもはみ出す心配がない。そのため、収容部6と蓋部9の間にはみ出した部分が挟まって、収容部6と蓋部9がしまらないという心配がなく、寸法ばらつきの影響を受けずに固定ができるようになり、収容部6と収容した多層流路部材9の隙間を小さく設定することができようになる。   And since the volume of the projection part 31 is made smaller than the volume of the groove part 32, even if it deform | transforms, there is no worry of protruding. Therefore, there is no concern that the protruding portion is sandwiched between the accommodating portion 6 and the lid portion 9 and the accommodating portion 6 and the lid portion 9 do not get stuck, and it can be fixed without being affected by dimensional variations. It becomes possible to set a small gap between the accommodating portion 6 and the accommodated multilayer flow path member 9.

なお、実施の形態2では、突起部31の周囲に溝部32を設け、蓋部9を含む収容部6の側には突起部31が嵌る凹部は形成していないが、図6に示すように、実施の形態1と同様に凹部21を設けても同様の効果が得られ、これによれば、突起部31の溝部32と、凹部21で突起部31の変形代を分散できるので、溝部32と、凹部21を小さくできるようになる。   In the second embodiment, the groove portion 32 is provided around the protrusion portion 31 and the recess portion into which the protrusion portion 31 is fitted is not formed on the side of the housing portion 6 including the lid portion 9, but as shown in FIG. Even if the recess 21 is provided as in the first embodiment, the same effect can be obtained. According to this, the groove 32 of the protrusion 31 and the deformation allowance of the protrusion 31 can be dispersed by the recess 21. And the recessed part 21 can be made small.

また、実施の形態1および実施の形態2の位置合わせ部は多層流路部材8の中心に配設したが、これは多層流路部材8の収容方向に方向性がない場合に有効で、収容方向に方向性がある場合には、図7に示すように、位置合わせ部の数を変えたり、あるいは、左右非対称の形状となるようにして、逆方向に組み込めないようにすると、組み込みミスを防止できるようになる。   In addition, the alignment portion of the first and second embodiments is disposed at the center of the multilayer flow path member 8, but this is effective when the accommodation direction of the multilayer flow path member 8 has no directionality. If there is directionality in the direction, as shown in FIG. 7, if the number of alignment parts is changed or the shape is asymmetrical so that it cannot be installed in the opposite direction, an installation error will occur. Can be prevented.

さらに、収容部6に多層流路部材8を収容して蓋部9で密閉したときに、突起部20,31が変形して、収容部6に多層流路部材8が動かないように固定する構成で説明したが、これに加え、突起部20,31の近傍に位置させ、多層流路部材8の外周と収容部6と蓋部9との隙間を一定に規制するように、多層流路部材8の外周、あるいは収容部6と蓋部9のいずれかに位置合わせの段部(図示せず)を設けるようにしてもよい。   Further, when the multilayer flow path member 8 is accommodated in the accommodating portion 6 and sealed with the lid portion 9, the protrusions 20 and 31 are deformed and fixed to the accommodating portion 6 so that the multilayer flow path member 8 does not move. Although described in the configuration, in addition to this, the multi-layer flow path is positioned in the vicinity of the protrusions 20 and 31 so that the outer periphery of the multi-layer flow path member 8 and the gap between the accommodating section 6 and the lid section 9 are regulated to be constant. You may make it provide the step part (not shown) of alignment in the outer periphery of the member 8, or either the accommodating part 6 and the cover part 9. As shown in FIG.

これによれば、多層流路部材8を収容して収容部6と蓋部9を密閉したときに、段部に相対する壁面に接するまで、突起部20,31が変形するようにできるので、多層流路部材8の外周と収容部6、および蓋部9との隙間を一定に規制することができるとともに、突起部20,31の変形代を制御できるようになり、安定した固定力を得ることができるようになる。   According to this, when the multilayer flow path member 8 is accommodated and the accommodating portion 6 and the lid portion 9 are sealed, the projecting portions 20 and 31 can be deformed until they contact the wall surface facing the step portion. The gap between the outer periphery of the multilayer flow path member 8 and the accommodating portion 6 and the lid portion 9 can be regulated to a constant level, and the deformation allowance of the projecting portions 20 and 31 can be controlled to obtain a stable fixing force. Will be able to.

また、突起部20,31は多層流路部材8の側に設けたが、これとは逆に、蓋部9を含む収容部6の側に形成することも考えられる。   Moreover, although the projection parts 20 and 31 were provided in the multilayer flow path member 8 side, conversely, forming in the accommodating part 6 side containing the cover part 9 is also considered.

以上のように本発明にかかる流体計測用流路装置は、簡単な構成で、多層流路部材をがたつきを防止して固定できるようになり、高い信頼性が得られるもので、超音波式流量計測メータに応用すれば高精度の計測を可能とするものである。   As described above, the fluid measuring flow path device according to the present invention has a simple configuration and can fix the multilayer flow path member while preventing rattling, so that high reliability can be obtained. When applied to a flow meter, it enables high-precision measurement.

本発明の実施の形態1における超音波式流量計測メータの全体分解斜視図1 is an overall exploded perspective view of an ultrasonic flow meter according to Embodiment 1 of the present invention. 本発明の実施の形態1における流体計測用流路装置の要部断面図Sectional drawing of the principal part of the flow-path apparatus for fluid measurement in Embodiment 1 of this invention 同流体計測用流路装置の分解斜視図Exploded perspective view of the fluid measurement channel device 組み立作業説明図Assembly work explanatory diagram 本発明の実施の形態2における組み立作業説明図Assembly work explanatory drawing in Embodiment 2 of this invention 実施の形態2における他の例を示す組み立作業説明図Assembly work explanatory diagram showing another example in the second embodiment 実施の形態2におけるさらに他の例を示す要部断面図Cross-sectional view of main parts showing still another example of the second embodiment 従来の流体計測用流路装置の要部断面図Sectional view of the main part of a conventional fluid measurement channel device

符号の説明Explanation of symbols

1 超音波式流体計測装置
6 収容部
7 扁平流路
8 多層流路部材
9 蓋部
13 仕切板
14,15 側板
16 天板
17 底板
20,31 突起部
21,32 凹部
DESCRIPTION OF SYMBOLS 1 Ultrasonic fluid measuring device 6 Accommodating part 7 Flat flow path 8 Multilayer flow path member 9 Lid part 13 Partition plate 14,15 Side plate 16 Top plate 17 Bottom plate 20,31 Protrusion part 21,32 Recessed part

Claims (7)

計測流路を複数の扁平流路に区画する仕切板と、
前記仕切板に直交し両縁部を支持する側板と、
前記仕切板と平行に上下に配設され、前記側板と結合して両縁部を支持する天板、および底板とから構成された多層流路部材と、
前記多層流路部材を上方の開口を介して収容するようにした収容部と、
前記開口を閉じる蓋部とを備え、
前記蓋部を含む収容部、または多層流路部材の一方に外力によって変形する突起部を設けると共に、該突起部の周囲に溝を形成し、この突起部の変形によって前記蓋部を含む収容部に多層流路部材を固定するようにした流体計測用流路装置。
A partition plate that divides the measurement flow path into a plurality of flat flow paths;
A side plate orthogonal to the partition plate and supporting both edges;
A multi-layer flow path member which is arranged in parallel with the partition plate, and is composed of a top plate which is coupled to the side plate and supports both edges, and a bottom plate;
An accommodating portion adapted to accommodate the multilayer flow path member through an upper opening;
A lid for closing the opening;
Housing portion containing the lid or Rutotomoni provided with a projection portion that deforms by external force to one of the multilayer flow path member, a groove is formed around the protrusion portion, accommodating including the lid by deformation of the protrusion A fluid measuring channel device in which a multilayer channel member is fixed to a portion.
計測流路を複数の扁平流路に区画する仕切板と、
前記仕切板に直交し両縁部を支持する側板と、
前記仕切板と平行に上下に配設され、前記側板と結合して両縁部を支持する天板、および底板とから構成された多層流路部材と、
前記多層流路部材を上方の開口を介して収容するようにした収容部と、
前記開口を閉じる蓋部とを備え、
前記多層流路部材を構成する側板の端部に突起部を、前記蓋部を含む収容部の前記突起部と対応する部位には凹部をそれぞれ形成し、かつこの凹部の容積は突起部の体積よりも大きく設定し、前記突起部の変形によって前記蓋部を含む収容部に多層流路部材を固定するようにした流体計測用流路装置。
A partition plate that divides the measurement flow path into a plurality of flat flow paths;
A side plate orthogonal to the partition plate and supporting both edges;
A multi-layer flow path member which is arranged in parallel with the partition plate, and is composed of a top plate which is coupled to the side plate and supports both edges, and a bottom plate;
An accommodating portion adapted to accommodate the multilayer flow path member through an upper opening;
A lid for closing the opening;
A projection on the end of the side plate constituting the multilayered flow passage member, the recess in the portions corresponding to the protrusions of the housing portion including the cover portion is formed respectively, and the volume of the recesses of the projections A fluid measurement channel device that is set to be larger than the volume, and a multilayer channel member is fixed to a housing portion including the lid by deformation of the projection .
多層流路部材を構成する側板の端部に突起部を形成した請求項1または2記載の流体計測用流路装置。 3. The fluid measuring channel device according to claim 1, wherein a protrusion is formed at an end of the side plate constituting the multilayer channel member. 突起部を先細状のテーパ状に構成した請求項1〜3のいずれか1項記載の流体計測用流路装置。 The fluid measuring flow path device according to any one of claims 1 to 3, wherein the protrusion is configured in a tapered shape. 蓋部を含む収容部と多層流路部材とに、相嵌合する位置決め用の凸部と穴とを別に形成した請求項1〜いずれか1項記載の流体計測用流路装置。 The fluid measuring flow path device according to any one of claims 1 to 4, wherein a positioning convex part and a hole to be fitted to each other are formed separately in the housing part including the lid part and the multilayer flow path member. 凸部と穴とは左右非対称位置に形成した請求項記載の流体計測用流路装置。 6. The fluid measuring flow path device according to claim 5, wherein the convex portion and the hole are formed in a laterally asymmetric position. 請求項1〜いずれか1項記載の流体計測用流路装置を用いた超音波式流量計測メータ。
Ultrasonic flow measurement meter with the fluid measuring channel device according to any one of claims 1-6.
JP2008303976A 2008-11-28 2008-11-28 Fluid flow measuring device Expired - Fee Related JP5277911B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008303976A JP5277911B2 (en) 2008-11-28 2008-11-28 Fluid flow measuring device
CNU2009200011388U CN201364176Y (en) 2008-11-28 2009-01-15 Flow path device for measurement of fluid and ultrasonic fluid measuring instrument utilizing same
PCT/JP2009/006253 WO2010061558A1 (en) 2008-11-28 2009-11-19 Fluid measuring flow path device
CN200980147950.4A CN102227617B (en) 2008-11-28 2009-11-19 Fluid measuring flow path device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303976A JP5277911B2 (en) 2008-11-28 2008-11-28 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2010127811A JP2010127811A (en) 2010-06-10
JP5277911B2 true JP5277911B2 (en) 2013-08-28

Family

ID=41474844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303976A Expired - Fee Related JP5277911B2 (en) 2008-11-28 2008-11-28 Fluid flow measuring device

Country Status (3)

Country Link
JP (1) JP5277911B2 (en)
CN (2) CN201364176Y (en)
WO (1) WO2010061558A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615428A1 (en) * 2012-01-13 2013-07-17 Atsuden Co., Ltd Ultrasonic flowmeter apparatus
JP2014077679A (en) * 2012-10-10 2014-05-01 Panasonic Corp Flow meter
JP6145645B2 (en) * 2013-06-19 2017-06-14 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
DE102015120791A1 (en) * 2015-11-30 2017-06-01 Axetris Ag Flow rate measuring unit and flow rate control unit
JP2020003465A (en) * 2018-07-02 2020-01-09 東洋計器株式会社 Structure for preventing wrong assembly of component for measuring flow rate of gas meter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3245362B2 (en) * 1996-08-05 2002-01-15 株式会社日立製作所 Rectifier grid for air flow measurement device
CA2310050A1 (en) * 1997-12-15 1999-06-24 Kazumitsu Nukui Flowmeter
JP4053797B2 (en) * 2002-03-13 2008-02-27 矢崎総業株式会社 rectifier
JP4186645B2 (en) * 2003-02-24 2008-11-26 松下電器産業株式会社 Ultrasonic flow measuring device
JP2004316685A (en) * 2003-04-11 2004-11-11 Yazaki Corp Flow passage unit, layered part, and manufacturing method of layered part
JP4404662B2 (en) * 2004-03-11 2010-01-27 矢崎総業株式会社 Measurement channel and gas meter
WO2006075786A1 (en) * 2005-01-13 2006-07-20 Toyota Jidosha Kabushiki Kaisha Fuel cell and fuel cell-use separator
JP2008107234A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring apparatus

Also Published As

Publication number Publication date
JP2010127811A (en) 2010-06-10
WO2010061558A1 (en) 2010-06-03
CN102227617A (en) 2011-10-26
CN102227617B (en) 2013-01-23
CN201364176Y (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP5793644B2 (en) Ultrasonic flow meter
RU2727062C1 (en) Flow meter having a measuring channel
JP5277911B2 (en) Fluid flow measuring device
US9372105B2 (en) Ultrasonic flow rate measurement device
JP2008107234A (en) Ultrasonic fluid measuring apparatus
EP3012593B1 (en) Ultrasonic flow meter device
JP4893754B2 (en) Channel device for fluid measurement and ultrasonic flow meter using the same
EP3104134A1 (en) Gas flowmeter
CN108463693B (en) Gas meter
JP2007304040A (en) Electromagnetic flowmeter
KR102614417B1 (en) Straight type flow sensor
JP4583831B2 (en) Gas meter
JP4898724B2 (en) Method for manufacturing multilayer flow path member of ultrasonic fluid measuring device
JP4459734B2 (en) Gas meter
JP4741207B2 (en) Gas meter
JP5125997B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP2023151375A (en) Ultrasonic vortex flowmeter, and manufacturing method of ultrasonic vortex flowmeter
CN108700447B (en) Gas meter
KR20140001680U (en) A gasket mounting apparatus of pressure sensor
JP2019144002A (en) Ultrasonic flow meter
JP2008128890A (en) Gas flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5277911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees