JP4898723B2 - Multi-layer flow path member of ultrasonic fluid measuring device - Google Patents

Multi-layer flow path member of ultrasonic fluid measuring device Download PDF

Info

Publication number
JP4898723B2
JP4898723B2 JP2008056438A JP2008056438A JP4898723B2 JP 4898723 B2 JP4898723 B2 JP 4898723B2 JP 2008056438 A JP2008056438 A JP 2008056438A JP 2008056438 A JP2008056438 A JP 2008056438A JP 4898723 B2 JP4898723 B2 JP 4898723B2
Authority
JP
Japan
Prior art keywords
partition plate
flow path
frame
path member
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008056438A
Other languages
Japanese (ja)
Other versions
JP2009210524A (en
Inventor
行則 尾崎
真人 佐藤
正樹 山口
武彦 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008056438A priority Critical patent/JP4898723B2/en
Publication of JP2009210524A publication Critical patent/JP2009210524A/en
Application granted granted Critical
Publication of JP4898723B2 publication Critical patent/JP4898723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波式流体計測装置の計測流路に複数の扁平流路を形成する超音波式流体計測装置の多層流路部材に関するものである。   The present invention relates to a multilayer flow path member of an ultrasonic fluid measurement device that forms a plurality of flat flow channels in a measurement flow channel of an ultrasonic fluid measurement device.

超音波式流体計測装置は、計測用流路に流体を流し、計測用流路内に超音波を伝搬させて、超音波の伝搬時間を計測し、計測した情報に基づいて流体の流速を求めるものである。
この計測用流路は、断面長方形の角筒形状で対向する短辺側面にそれぞれ一対の送受波部が設けられている。
The ultrasonic fluid measurement device flows a fluid through a measurement channel, propagates the ultrasonic wave in the measurement channel, measures the propagation time of the ultrasonic wave, and obtains the flow velocity of the fluid based on the measured information. Is.
This measurement channel has a rectangular tube shape with a rectangular cross section, and a pair of transmission / reception units are provided on the opposing short side surfaces.

これら一対の送受波部は、計測用流路の流れ方向に対して所定の角度で交差する線に沿って超音波を送受するように配置されている。
そして、近年では、計測精度を向上させるために、計測用流路に複数の隔壁を並行に配置することにより、計測用流路を多層流路とした超音波式流体計測装置が提案されている(例えば、特許文献1参照)。
国際公開第04/074783号パンフレット
The pair of transmission / reception units are arranged so as to transmit and receive ultrasonic waves along a line that intersects the flow direction of the measurement flow channel at a predetermined angle.
In recent years, in order to improve the measurement accuracy, an ultrasonic fluid measuring apparatus in which a plurality of partition walls are arranged in parallel in the measurement flow path and the measurement flow path is a multilayer flow path has been proposed. (For example, refer to Patent Document 1).
International Publication No. 04/074783 Pamphlet

しかしながら、計測用流路を多層流路とする際に、多層流路を形成するための仕切板の両縁をフレームにより支持した場合、フレームと計測流路の内面との間に流体が流れ込むため計測精度を低下させるという問題があり、高精度の計測を行うためには、高精度の多層流路部材が求められている。   However, when the measurement flow path is a multilayer flow path, if both edges of the partition plate for forming the multilayer flow path are supported by the frame, the fluid flows between the frame and the inner surface of the measurement flow path. There is a problem that the measurement accuracy is lowered, and in order to perform highly accurate measurement, a highly accurate multilayer flow path member is required.

本発明は、従来の問題を解決するためになされたもので、流体の計測精度を向上できる高精度な超音波式流体計測装置の多層流路部材を提供することにある。   The present invention has been made to solve the conventional problems, and it is an object of the present invention to provide a multilayer flow path member of a high-accuracy ultrasonic fluid measurement device that can improve fluid measurement accuracy.

本発明の超音波式流体計測装置の多層流路部材は、超音波式流体計測装置に形成された角筒状の計測流路に配置され、前記計測流路を複数の扁平流路に区画する仕切板と、前記仕切板における流体の流れ方向に沿った縁部を支持するフレームとを有する超音波式流体計測装置の多層流路部材であって、前記仕切板の端面に倣って流動し、その状態で固化することにより前記フレームに対する前記仕切板の位置を保持する保持手段を有する構成を有している。   The multilayer flow path member of the ultrasonic fluid measurement device of the present invention is disposed in a rectangular tube-shaped measurement flow channel formed in the ultrasonic fluid measurement device, and divides the measurement flow channel into a plurality of flat flow channels. A multilayer flow path member of an ultrasonic fluid measuring device having a partition plate and a frame that supports an edge portion in the fluid flow direction in the partition plate, and flows along the end surface of the partition plate, It has the structure which has a holding means which hold | maintains the position of the said partition plate with respect to the said frame by solidifying in that state.

この構成により、超音波式流体計測装置の多層流路部材を構成する仕切板をフレームに取付ける保持手段が、仕切板の端面に倣って流動するので仕切板とフレームとの間に浸透し、例えば治具により位置決めされている位置を保持した状態で固化する。これにより、仕切板の間隔を高精度に保持することができるので、仕切板を取付けるフレームの製作精度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   With this configuration, the holding means for attaching the partition plate constituting the multilayer flow path member of the ultrasonic fluid measuring device to the frame flows along the end face of the partition plate, so that it penetrates between the partition plate and the frame. Solidify while holding the position positioned by the jig. As a result, the spacing between the partition plates can be maintained with high accuracy, so that a simple configuration can be achieved without increasing the manufacturing accuracy of the frame for mounting the partition plates and without using a separate member for ensuring dimensional accuracy. Thus, a highly accurate multilayer flow path member can be formed.

また、本発明の超音波式流体計測装置の多層流路部材では、前記保持手段が、接着剤である構成を有している。   Moreover, in the multilayer flow path member of the ultrasonic fluid measuring device of the present invention, the holding means is configured to be an adhesive.

この構成により、保持手段である接着剤は、仕切板の端面に倣って流動して仕切板とフレームとの間に浸透し、例えば治具により位置決めされている位置を保持した状態で仕切板とフレームを接着して、高精度で所望の位置に固定することができる。   With this configuration, the adhesive as the holding means flows along the end face of the partition plate and permeates between the partition plate and the frame, for example, with the partition plate in a state where the position positioned by the jig is held. The frame can be bonded and fixed at a desired position with high accuracy.

また、本発明の超音波式流体計測装置の多層流路部材では、前記保持手段が、前記端面に倣って軟化してから固化する前記フレームの一部である構成を有している。   Moreover, in the multilayer flow path member of the ultrasonic fluid measurement device of the present invention, the holding means is configured to be a part of the frame that is softened following the end face and then solidified.

この構成により、フレームの一部が軟化して仕切板の端面に倣って流動して仕切板とフレームとの間に浸透し、その後固化して再びフレームの一部を形成するので、仕切板を位置決めされたフレーム位置に高精度で固定することができる。   With this configuration, a part of the frame is softened and flows along the end face of the partition plate, penetrates between the partition plate and the frame, and then solidifies to form a part of the frame again. It can be fixed with high accuracy to the positioned frame position.

また、本発明の超音波式流体計測装置の多層流路部材では、前記保持手段が、前記仕切板の表面および裏面のうちの少なくとも一方に接触した構成を有している。   In the multilayer flow path member of the ultrasonic fluid measuring device of the present invention, the holding means has a configuration in contact with at least one of the front surface and the back surface of the partition plate.

この構成により、仕切板の表面および裏面のうちの少なくとも一方に接触して支持するので、仕切板はフレームに確実に保持されることになる。   With this configuration, at least one of the front and back surfaces of the partition plate is in contact with and supported, so that the partition plate is securely held by the frame.

また、本発明の超音波式流体計測装置の多層流路部材では、前記フレームに、前記仕切板の前記端面が露出する貫通孔が設けられている構成を有している。   Moreover, in the multilayer flow path member of the ultrasonic fluid measuring device of the present invention, the frame has a configuration in which a through hole through which the end face of the partition plate is exposed is provided.

この構成により、フレームに設けられた貫通孔から、露出する仕切板の端面に接着剤を注入したり、フレームの一部を軟化する手段を作用させることができるので、仕切板の固定が容易になる。   With this configuration, it is possible to inject adhesive into the exposed end face of the partition plate from the through hole provided in the frame or to act as a means for softening a part of the frame, so that the partition plate can be fixed easily. Become.

また、本発明の超音波式流体計測装置の多層流路部材では、前記貫通孔が、前記仕切板の数に応じて複数設けられている構成を有している。   Moreover, in the multilayer flow path member of the ultrasonic fluid measuring device of the present invention, a plurality of the through holes are provided according to the number of the partition plates.

この構成により、貫通孔が仕切板の数に応じて設けられているので、各仕切板ごとに接着剤の注入等を行うことができ、各仕切板を確実にフレームに固定することができる。   With this configuration, since the through holes are provided according to the number of partition plates, it is possible to inject adhesive or the like for each partition plate, and to securely fix each partition plate to the frame.

さらに、本発明の超音波式流体計測装置の多層流路部材では、前記仕切板における前記流れ方向に対して直交する縁部に鍔部が設けられ、前記鍔部が前記保持手段により固定されている構成を有している。   Further, in the multilayer flow path member of the ultrasonic fluid measuring device of the present invention, a flange is provided at an edge of the partition plate that is orthogonal to the flow direction, and the flange is fixed by the holding means. It has the composition which is.

この構成により、仕切板から外側へ突出した鍔部をフレームに固定するため、フレーム内部の流路に保持手段が突出するのを最小限して、流体の流れを乱すのを防止することができ、高精度の測定を行うことができる。   With this configuration, since the flange portion protruding outward from the partition plate is fixed to the frame, it is possible to minimize the protrusion of the holding means in the flow path inside the frame and prevent the fluid flow from being disturbed. Highly accurate measurement can be performed.

本発明は、超音波式流体計測装置の多層流路部材を構成する仕切板をフレームに取付ける保持手段が、仕切板の端面に倣って流動するので仕切板とフレームとの間に浸透し、例えば治具により位置決めされている位置を保持した状態で固化する。これにより、仕切板の間隔を高精度に保持することができるので、仕切板を取付けるフレームの製作精度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができるという効果を有する超音波式流体計測装置の多層流路部材を提供することができるものである。   In the present invention, since the holding means for attaching the partition plate constituting the multilayer flow path member of the ultrasonic fluid measuring device to the frame flows following the end face of the partition plate, the penetration means penetrates between the partition plate and the frame. Solidify while holding the position positioned by the jig. As a result, the spacing between the partition plates can be maintained with high accuracy, so that a simple configuration can be achieved without increasing the manufacturing accuracy of the frame for mounting the partition plates and without using a separate member for ensuring dimensional accuracy. Therefore, it is possible to provide a multilayer flow path member of an ultrasonic fluid measuring device having an effect that a highly accurate multilayer flow path member can be formed.

以下、本発明の実施の形態の超音波式流体計測装置の多層流路部材について、図面を用いて説明する。
図1は本発明の実施の形態に係る多層流路部材を用いる超音波式流体計測装置の一例を示す全体斜視図、図2は図1中II-II位置の断面図、図3は多層流路部材の分解斜視図、図4は図3中IV−IV位置の断面図、図5(A)〜(C)は多層流路部材の製造工程を示す説明図、図6(A)〜(D)は仕切板とフレームとの接合状態を示す断面図である。
Hereinafter, a multilayer flow path member of an ultrasonic fluid measuring device according to an embodiment of the present invention will be described with reference to the drawings.
1 is an overall perspective view showing an example of an ultrasonic fluid measuring device using a multilayer flow path member according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and FIG. 4 is an exploded perspective view of the road member, FIG. 4 is a cross-sectional view of the IV-IV position in FIG. 3, FIGS. 5A to 5C are explanatory views showing the manufacturing process of the multilayer flow path member, and FIGS. D) is a cross-sectional view showing a joined state of the partition plate and the frame.

図1に示すように、超音波式流体計測装置1は、例えば、左右の鉛直流路3a、3bと、この左右の鉛直流路3a、3bの上端部同士を連結する水平流路4とで略逆U字状に形成された流体路2を有している。水平流路4は、流体を計測するための上面が開口した角筒状の計測流路4aを有しており、この計測流路4aにおける一対の対向する内面5a,5bにはそれぞれ送受波器(図示省略)を有する超音波計測部9が設けられている。さらに、計測流路4aには、流体を複数の扁平流路に区画する多層流路部材10と、多層流路部材10を計測流路4aに収容して密閉する蓋7を有している。従って、蓋7を水平流路4に被せると、計測流路4aは断面矩形の角筒状に形成されることになる。   As shown in FIG. 1, the ultrasonic fluid measuring apparatus 1 includes, for example, left and right vertical flow paths 3a and 3b and a horizontal flow path 4 that connects the upper ends of the left and right vertical flow paths 3a and 3b. The fluid passage 2 is formed in a substantially inverted U shape. The horizontal flow path 4 has a square-tube-shaped measurement flow path 4a whose upper surface for measuring a fluid is opened, and a pair of opposed inner surfaces 5a and 5b in the measurement flow path 4a are respectively connected to a transducer. An ultrasonic measuring unit 9 having (not shown) is provided. Furthermore, the measurement channel 4a includes a multilayer channel member 10 that divides the fluid into a plurality of flat channels, and a lid 7 that accommodates the multilayer channel member 10 in the measurement channel 4a and seals it. Therefore, when the lid 7 is put on the horizontal flow path 4, the measurement flow path 4a is formed in a rectangular tube shape having a rectangular cross section.

なお、送受波器同士を結ぶ計測方向の超音波伝搬路8bは、流体の流れる方向に対して斜めに交差するように設けられている。このように、超音波伝搬路8bを流れに対して角度を有し対向して配置している配置パターンは、Zパス(Z−path)またはZ法と呼ばれており、本実施の形態では、このZパス配置について例示する。   Note that the ultrasonic propagation path 8b in the measurement direction connecting the transducers is provided so as to obliquely intersect the fluid flowing direction. In this way, the arrangement pattern in which the ultrasonic wave propagation path 8b is arranged opposite to the flow with an angle is called a Z path (Z-path) or a Z method. This Z path arrangement will be exemplified.

水平流路4の側壁6a、6bには、外側へ突出する三角形状の送受波器取付部8、8がそれぞれ設けられている。両送受波器取付部8、8および側壁6a、6bには、両送受波器取付部8、8を結ぶ方向に貫通する例えば円形の貫通穴8aが設けられており、超音波伝播路8bが形成されている。   The side walls 6a and 6b of the horizontal flow path 4 are respectively provided with triangular transducer mounting portions 8 and 8 protruding outward. For example, a circular through hole 8a penetrating in the direction connecting the both transducer attachment parts 8 and 8 is provided in the both transducer attachment parts 8 and 8 and the side walls 6a and 6b. Is formed.

水平流路4の計測流路4a内部には多層流路部材取付部4bが設けられており、多層流路部材10を上方からはめ込むための段差4cが設けられている。各段差4cには、多層流路部材10のフレーム12内側面と水平流路4の内面5a、5bに滑らかに連続させるための傾斜面4dが各々設けられている。   A multilayer channel member mounting portion 4b is provided inside the measurement channel 4a of the horizontal channel 4, and a step 4c for fitting the multilayer channel member 10 from above is provided. Each step 4 c is provided with an inclined surface 4 d for smoothly continuing to the inner surface of the frame 12 of the multilayer flow path member 10 and the inner surfaces 5 a and 5 b of the horizontal flow path 4.

図2および図3に示すように、多層流路部材10は、計測流路4aを複数の扁平流路4eに区画するための仕切板11と、仕切板11における流体の流れ方向に沿った縁部11aを支持するフレーム12とを有している。すなわち、フレーム12は、左右の側板13、14、天板15および底板16によって矩形箱状に形成されており、左右の側板13、14間に仕切板11が水平に所定間隔で保持される。   As shown in FIGS. 2 and 3, the multilayer flow path member 10 includes a partition plate 11 for partitioning the measurement flow path 4 a into a plurality of flat flow paths 4 e, and an edge along the fluid flow direction in the partition plate 11. And a frame 12 that supports the portion 11a. That is, the frame 12 is formed in a rectangular box shape by the left and right side plates 13, 14, the top plate 15 and the bottom plate 16, and the partition plate 11 is held horizontally at a predetermined interval between the left and right side plates 13, 14.

図3に示すように、側板13、14の内面には、仕切板11を所定間隔で保持するため複数本のスリット17が設けられている。このスリット17は、各仕切板11によって仕切られる扁平流路4eの断面積が均一になるように、流体の流れに対して直交する方向(図2、図3で上下方向)に沿って等間隔で設けられている。   As shown in FIG. 3, a plurality of slits 17 are provided on the inner surfaces of the side plates 13 and 14 in order to hold the partition plate 11 at a predetermined interval. The slits 17 are equally spaced along the direction perpendicular to the fluid flow (vertical direction in FIGS. 2 and 3) so that the cross-sectional areas of the flat flow paths 4e partitioned by the partition plates 11 are uniform. Is provided.

また、図1および図3に示すように、多層流路部材10を計測流路4aの多層流路部材取付部4bに嵌めた状態で、超音波伝搬路8bに位置する多層流路部材10のフレーム12の側板13、14には、超音波通過用の開口18が設けられている。この開口18には、流体は通過させないが超音波を透過させることができる例えば細かなメッシュ・パンチングメタル等のフィルタ部材19が取り付けられている。   Further, as shown in FIGS. 1 and 3, the multilayer flow path member 10 positioned in the ultrasonic wave propagation path 8b in a state where the multilayer flow path member 10 is fitted to the multilayer flow path member mounting portion 4b of the measurement flow path 4a. The side plates 13 and 14 of the frame 12 are provided with openings 18 for passing ultrasonic waves. A filter member 19 such as a fine mesh punching metal that can transmit ultrasonic waves but does not allow fluid to pass through is attached to the opening 18.

図3に示すように、仕切板11は全体矩形の薄板状部材であり、仕切板11における縁部11aには、複数個の鍔部11bが設けられている。鍔部11bは、例えば、仕切板11の四隅および中央部から幅方向外側へ突出して設けることができる。
一方、フレーム12の側板13、14に設けられているスリット17には、仕切板11の鍔部11bに対応した位置に貫通孔21が設けられており、外部から貫通孔21を通して仕切板11の端面11cが露出するようになっている(図4参照)。貫通孔21は、鍔部11bごとに設けられているので、鍔部11bをフレーム12に固定する際に、容易に接着剤33を注入することができる。
As shown in FIG. 3, the partition plate 11 is an overall rectangular thin plate member, and the edge portion 11 a of the partition plate 11 is provided with a plurality of flange portions 11 b. The eaves part 11b can be provided, for example, protruding from the four corners and the central part of the partition plate 11 outward in the width direction.
On the other hand, the slit 17 provided in the side plates 13 and 14 of the frame 12 is provided with a through hole 21 at a position corresponding to the flange portion 11b of the partition plate 11, and the partition plate 11 of the partition plate 11 is passed through the through hole 21 from the outside. The end face 11c is exposed (see FIG. 4). Since the through hole 21 is provided for each flange 11b, the adhesive 33 can be easily injected when the flange 11b is fixed to the frame 12.

次に、前述した多層流路部材10の製造方法について説明する。
図5(A)に示すように、まず、治具30において、所望の仕切板11間隔に設定されたスリット32を有する一対の保持部31a、31bを、スリット32が対向するように配置する。
Next, the manufacturing method of the multilayer flow path member 10 mentioned above is demonstrated.
As shown in FIG. 5A, first, in the jig 30, a pair of holding portions 31a and 31b having slits 32 set at a desired interval between the partition plates 11 are arranged so that the slits 32 face each other.

図5(B)に示すように、対向配置された保持部31a、31bのスリット32に、各仕切板11の長手方向両端部11d、11dを挿入して保持する。なお、保持部31a、31bのスリット32の位置および幅は、フレーム12の側板13、14に設けられているスリット17に比較して、高精度で仕切板11の間隔および厚さに設定されており、仕切板11を高精度で位置決めするものである。従って、仕切板11をスリット32に挿嵌することにより、仕切板11は高精度で間隔が設定される。   As shown in FIG. 5B, the longitudinal end portions 11d and 11d of each partition plate 11 are inserted and held in the slits 32 of the holding portions 31a and 31b arranged to face each other. The positions and widths of the slits 32 of the holding portions 31a and 31b are set to the intervals and thicknesses of the partition plates 11 with higher accuracy than the slits 17 provided on the side plates 13 and 14 of the frame 12. The partition plate 11 is positioned with high accuracy. Therefore, by inserting the partition plate 11 into the slit 32, the partition plate 11 is set with high accuracy.

次いで、図5(C)に示すように、フレーム12の側板13、14を治具30に保持されている仕切板の側端面11cに接近させ、側板13、14のスリット17に仕切板11の縁部11aを挿入する。このとき、仕切板11に設けられている各鍔部11bが、スリット17に設けられている貫通孔21に嵌合するようにする。側板13、14のスリット17および貫通孔21は、保持部31のスリット31aに比して余裕を持って形成されているので、容易に仕切板11を挿入することができる。   Next, as shown in FIG. 5C, the side plates 13 and 14 of the frame 12 are brought close to the side end face 11 c of the partition plate held by the jig 30, and the slits 17 of the side plates 13 and 14 are inserted into the slits 17 of the side plate 13. Insert the edge 11a. At this time, each flange portion 11 b provided in the partition plate 11 is fitted into the through hole 21 provided in the slit 17. Since the slits 17 and the through holes 21 of the side plates 13 and 14 are formed with a margin as compared to the slit 31a of the holding portion 31, the partition plate 11 can be easily inserted.

次に、側板13、14の貫通孔21から、保持手段として例えば接着剤を注入する。接着剤は仕切板11の端面11cに倣って流動し、治具30により正確に位置決めされた状態を保って固化する。ここでは、鍔部11bが貫通孔21に収容されているので、鍔部11bを貫通孔21に固定するようにして、接着剤が計測流路4aに突出しないようにすることができ、扁平流路4eを流れる流体の流れをスムーズにすることができる。   Next, for example, an adhesive is injected from the through holes 21 of the side plates 13 and 14 as a holding means. The adhesive flows along the end surface 11 c of the partition plate 11 and solidifies while being accurately positioned by the jig 30. Here, since the collar part 11b is accommodated in the through hole 21, the collar part 11b can be fixed to the through hole 21 so that the adhesive does not protrude into the measurement flow path 4a. The flow of the fluid flowing through the path 4e can be made smooth.

そして、接着剤が固化したら、側板13、14の上下に天板15および底板16を取付けてフレーム12とし、多層流路部材10が完成する。なお、天板15および底板16は、接着剤等を用いて接着することができるが、側板13、14の上下両端面および天板15および底板16に嵌合部を設けておき、嵌合させて組み立てることもできる。   When the adhesive is solidified, the top plate 15 and the bottom plate 16 are attached to the upper and lower sides of the side plates 13 and 14 to form the frame 12, and the multilayer flow path member 10 is completed. The top plate 15 and the bottom plate 16 can be bonded using an adhesive or the like. However, the upper and lower end surfaces of the side plates 13 and 14 and the top plate 15 and the bottom plate 16 are provided with fitting portions to be fitted. Can be assembled.

なお、接着剤を用いずに、貫通孔21を介して超音波や加熱処理してフレーム12の一部を保持手段として溶融させ、仕切板11の端面11cに倣って流動させた後に固化させて、溶着により仕切板11を取り付けるようにすることも可能である。   It should be noted that without using an adhesive, ultrasonic waves or heat treatment is performed through the through-hole 21 to melt a part of the frame 12 as a holding means, and it is made to flow along the end surface 11c of the partition plate 11 and then solidified. It is also possible to attach the partition plate 11 by welding.

以上、説明した超音波式流体計測装置の多層流路部材10によれば、多層流路部材10を構成する仕切板11をフレーム12に取付ける接着材33が、仕切板11の端面11cに倣って流動するので仕切板11とフレーム12との間に浸透し、治具30により位置決めされている位置を保持した状態で固化する。これにより、仕切板11の間隔を高精度に保持することができるので、仕切板11を取付けるフレーム12の製作精度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材10を形成することができることとなる。   As described above, according to the multilayer flow path member 10 of the ultrasonic fluid measuring apparatus described above, the adhesive 33 for attaching the partition plate 11 constituting the multilayer flow path member 10 to the frame 12 follows the end surface 11c of the partition plate 11. Since it flows, it permeates between the partition plate 11 and the frame 12 and solidifies in a state where the position positioned by the jig 30 is maintained. Thereby, since the space | interval of the partition plate 11 can be hold | maintained with high precision, without using the separate member for ensuring the dimensional accuracy, without raising the manufacture precision of the flame | frame 12 which attaches the partition plate 11, A highly accurate multilayer flow path member 10 can be formed with a simple configuration.

なお、本発明の超音波式流体計測装置の多層流路部材は、前述した実施形態に限定されるものでなく、適宜な変形,改良等が可能である。
例えば、前述した実施形態においては、仕切板11の幅方向に突出する鍔部11bを設けて、鍔部11bをフレーム12の側板13、14に接合する場合について説明したが、鍔部11bを設けずに、仕切板11の端面11cをフレーム12に接合するようにしてもよい。
この場合、仕切板11とフレーム12の側板13、14との接合状態は、図6(A)に示すように、接着剤33(フレームの一部を保持手段とする場合も同様である。)が仕切板11の端面11cと側板13、14の内面との間をつき合わせて接合することができる。あるいは、図6(B)〜(D)に示すように、仕切板11の上面あるいは下面、あるいは上下両面を支持する形とすることもできる。
Note that the multilayer flow path member of the ultrasonic fluid measurement device of the present invention is not limited to the above-described embodiment, and can be appropriately modified and improved.
For example, in the above-described embodiment, the case where the flange portion 11b protruding in the width direction of the partition plate 11 is provided and the flange portion 11b is joined to the side plates 13 and 14 of the frame 12 has been described, but the flange portion 11b is provided. Instead, the end surface 11 c of the partition plate 11 may be joined to the frame 12.
In this case, as shown in FIG. 6A, the bonding state between the partition plate 11 and the side plates 13 and 14 of the frame 12 is the same as that of the adhesive 33 (when a part of the frame is used as the holding means). However, the end surface 11c of the partition plate 11 and the inner surfaces of the side plates 13 and 14 can be brought into contact with each other. Alternatively, as shown in FIGS. 6B to 6D, the upper and lower surfaces of the partition plate 11 or both upper and lower surfaces can be supported.

本発明の実施の形態に係る多層流路部材を用いる超音波式流体計測装置の一例を示す全体斜視図1 is an overall perspective view showing an example of an ultrasonic fluid measuring device using a multilayer flow path member according to an embodiment of the present invention. 図1中II-II位置の断面図Sectional view at II-II position in Fig. 1 多層流路部材の分解斜視図Exploded perspective view of multilayer channel member 図3中IV−IV位置の断面図Sectional view at position IV-IV in Fig. 3 (A)〜(C)は多層流路部材の製造工程を示す説明図(A)-(C) is explanatory drawing which shows the manufacturing process of a multilayer flow-path member. (A)〜(D)は仕切板とフレームとの接合状態を示す断面図(A)-(D) is sectional drawing which shows the joining state of a partition plate and a flame | frame.

符号の説明Explanation of symbols

1 超音波式流体計測装置
4a 計測流路
4e 扁平流路
10 多層流路部材
11 仕切板
11b 鍔部
11c 端面
12 フレーム
21 貫通孔
33 接着剤(保持手段)
DESCRIPTION OF SYMBOLS 1 Ultrasonic fluid measuring device 4a Measurement flow path 4e Flat flow path 10 Multi-layer flow path member 11 Partition plate 11b Gutter part 11c End surface 12 Frame 21 Through-hole 33 Adhesive (holding means)

Claims (7)

超音波式流体計測装置に形成された角筒状の計測流路に配置され、前記計測流路を複数の扁平流路に区画する仕切板と、
前記仕切板における流体の流れ方向に沿った縁部を支持するフレームとを有する超音波式流体計測装置の多層流路部材であって、
前記フレームは、前記仕切板の前記縁部を挿入する挿入余裕をもったスリットを備える側板を有し、
前記スリットに前記仕切板の前記縁部が挿入された状態で、前記仕切板の端面に倣って流動し、前記仕切板と前記フレームとの間に浸透してその状態で固化することにより前記フレームに対する前記仕切板の位置を保持する保持手段を有していることを特徴とする超音波式流体計測装置の多層流路部材。
A partition plate arranged in a rectangular tubular measurement channel formed in the ultrasonic fluid measurement device, and partitioning the measurement channel into a plurality of flat channels;
A multilayer flow path member of an ultrasonic fluid measuring device having a frame that supports an edge portion in the fluid flow direction in the partition plate,
The frame has a side plate provided with a slit having an insertion margin for inserting the edge of the partition plate;
The frame flows by following the end face of the partition plate in a state where the edge of the partition plate is inserted into the slit, and penetrates between the partition plate and the frame and solidifies in that state. A multilayer flow path member for an ultrasonic fluid measuring device, characterized by comprising holding means for holding the position of the partition plate with respect to.
前記保持手段が、接着剤であり、前記接着剤は、前記仕切板の端面に倣って流動し、前記仕切板が正確に位置決めされている状態を保って固化したものであることを特徴とする請求項1記載の超音波式流体計測装置の多層流路部材。 It said retaining means, Ri adhesive der, the adhesive, and wherein following the partition plate end face of the flow, the partition plate is obtained by solidifying while maintaining the state of being accurately positioned The multilayer flow path member of the ultrasonic fluid measuring device according to claim 1. 前記保持手段が、前記端面に倣って軟化してから固化する前記フレームの一部であることを特徴とする請求項1記載の超音波式流体計測装置の多層流路部材。   The multilayer flow path member for an ultrasonic fluid measuring device according to claim 1, wherein the holding means is a part of the frame that is softened along the end face and then solidifies. 前記保持手段が、前記仕切板の表面および裏面のうちの少なくとも一方に接触していることを特徴とする請求項1ないし請求項3のいずれかに記載の超音波式流体計測装置の多層流路部材。   The multilayer flow path of the ultrasonic fluid measuring device according to any one of claims 1 to 3, wherein the holding means is in contact with at least one of a front surface and a back surface of the partition plate. Element. 前記フレームに、前記仕切板の前記端面が露出する貫通孔が設けられていることを特徴とする請求項1ないし請求項4のいずれかに記載の超音波式流体計測装置の多層流路部材。   The multilayer flow path member of the ultrasonic fluid measuring device according to any one of claims 1 to 4, wherein the frame is provided with a through hole through which the end face of the partition plate is exposed. 前記貫通孔が、前記仕切板の数に応じて複数設けられていることを特徴とする請求項5に記載の超音波式流体計測装置の多層流路部材。   The multilayer flow path member of the ultrasonic fluid measuring device according to claim 5, wherein a plurality of the through holes are provided according to the number of the partition plates. 前記仕切板における前記流れ方向に対して直交する縁部に鍔部が設けられ、前記鍔部が前記保持手段により固定されていることを特徴とする請求項1ないし請求項6のいずれかに記載の超音波式流体計測装置の多層流路部材。   The flange part is provided in the edge part orthogonal to the said flow direction in the said partition plate, The said flange part is being fixed by the said holding means, The Claim 1 thru | or 6 characterized by the above-mentioned. The multilayer flow path member of the ultrasonic fluid measuring device.
JP2008056438A 2008-03-06 2008-03-06 Multi-layer flow path member of ultrasonic fluid measuring device Active JP4898723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056438A JP4898723B2 (en) 2008-03-06 2008-03-06 Multi-layer flow path member of ultrasonic fluid measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056438A JP4898723B2 (en) 2008-03-06 2008-03-06 Multi-layer flow path member of ultrasonic fluid measuring device

Publications (2)

Publication Number Publication Date
JP2009210524A JP2009210524A (en) 2009-09-17
JP4898723B2 true JP4898723B2 (en) 2012-03-21

Family

ID=41183820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056438A Active JP4898723B2 (en) 2008-03-06 2008-03-06 Multi-layer flow path member of ultrasonic fluid measuring device

Country Status (1)

Country Link
JP (1) JP4898723B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916162B2 (en) * 1997-04-18 2007-05-16 松下電器産業株式会社 Ultrasonic flow meter
JP3659935B2 (en) * 2002-06-19 2005-06-15 株式会社オーバル Rectifier, rectifier tube and flow meter provided with the same
JP4455000B2 (en) * 2003-10-01 2010-04-21 東洋ガスメーター株式会社 Gas meter

Also Published As

Publication number Publication date
JP2009210524A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
EP3485233B1 (en) Ultrasonic flowmeter with measurement channel
US8978482B2 (en) Partition plate securement for an ultrasonic flow meter
JP4579214B2 (en) Ultrasonic fluid measuring device
JP4898724B2 (en) Method for manufacturing multilayer flow path member of ultrasonic fluid measuring device
CN105102937B (en) Ultrasonic flow rate measurement device
US8418566B2 (en) Multi-layered flow passage member and ultrasonic wave fluid measuring device
JP4986748B2 (en) Multi-layer flow path member of ultrasonic fluid measuring device
JP4898723B2 (en) Multi-layer flow path member of ultrasonic fluid measuring device
JP2009095800A (en) Fine passage structure and its manufacturing method
US20090095088A1 (en) Device for Determining and/or Monitoring a Volume Flow and/or a Mass Flow
JP5125996B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP2010127811A (en) Flow path device for measurement of fluid
JP5126004B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP4893754B2 (en) Channel device for fluid measurement and ultrasonic flow meter using the same
JP4990655B2 (en) Ultrasonic gas meter
JP5225625B2 (en) Ultrasonic fluid measuring device
JP2006002503A (en) Door and its manufacturing method
JP2010145635A (en) Junction structure of display
JP5125997B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP2011005366A (en) Air filter, and method of producing the same
JP2023174289A (en) partition unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3