JP2009095800A - Fine passage structure and its manufacturing method - Google Patents

Fine passage structure and its manufacturing method Download PDF

Info

Publication number
JP2009095800A
JP2009095800A JP2007271473A JP2007271473A JP2009095800A JP 2009095800 A JP2009095800 A JP 2009095800A JP 2007271473 A JP2007271473 A JP 2007271473A JP 2007271473 A JP2007271473 A JP 2007271473A JP 2009095800 A JP2009095800 A JP 2009095800A
Authority
JP
Japan
Prior art keywords
resin
concave groove
convex portion
resin plate
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271473A
Other languages
Japanese (ja)
Inventor
Yukio Ota
幸生 大田
Osamu Ito
修 伊藤
Ryuichi Fukumura
竜一 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATO LIGHT KOGYO KK
Original Assignee
SATO LIGHT KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATO LIGHT KOGYO KK filed Critical SATO LIGHT KOGYO KK
Priority to JP2007271473A priority Critical patent/JP2009095800A/en
Publication of JP2009095800A publication Critical patent/JP2009095800A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine passage structure which has a fine passage excellent in airtightness and dimensional precision inside thereof and is excellent in joining strength and exterior shape, and to provide a method for manufacturing the fine passage structure. <P>SOLUTION: The fine passage structure has the tubular passage having a predetermined pattern inside a resin body. The periphery of the tubular passage is made of the resin body obtained by integrating resin plates with one another by ultrasonic welding. The tubular passage consists of an airtight space to be formed by integrally joining a resin plate having a vertical concave groove in the cross section of the thickness direction and another resin plate having a convex part to be inserted into the concave groove to each other. The convex part has a shape to be inserted into the concave groove at the tip thereof, the height shorter than the depth of the concave groove, a base end having the width wider than that of the tip thereof and a slope to be widened from the width at the tip to that at the base end on both side faces thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構造体内部に気密性および寸法精度に優れ、流体として液体および気体の搬送のための微細な流路を備えた微細流路構造体およびその製造方法に関する。   The present invention relates to a fine channel structure having excellent airtightness and dimensional accuracy inside a structure and having a fine channel for transporting liquid and gas as a fluid, and a method for manufacturing the same.

DNA等の生体物質の同定や検出に用いられるマイクロアレイや、マイクロポンプに利用される流路マニホールド、その他生体分野や化学分野において微量分析等に用いられるマイクロリアクター等で、流路幅および深さが0.05〜0.5mmである管状流路を立体物内部に有する樹脂製あるいはガラス製の構造体が採用されている。   Microarrays used for identification and detection of biological substances such as DNA, flow path manifolds used for micropumps, and other microreactors used for microanalysis in the biological and chemical fields. A resin or glass structure having a tubular flow path of 0.05 to 0.5 mm inside the three-dimensional object is employed.

従来、立体物内部に液体や気体等の流体搬送のための微細な流路を形成した構造体として、表面に凹溝等が形成された樹脂板を積層して形成したものがある。例えば、一方の樹脂板に流路となる凹溝を設け、平坦な樹脂板で被覆して接着や熱溶着等により接合したものや、一方の樹脂板に他方の樹脂板の凹溝に相対する凸部を設けて、凹溝と凸部を嵌合し、樹脂板間を接着して流路を形成したものが開示されている(特許文献1、特許文献2参照)。   2. Description of the Related Art Conventionally, there is a structure in which a resin plate having a groove or the like formed on a surface is laminated as a structure in which a fine channel for transporting fluid such as liquid or gas is formed inside a three-dimensional object. For example, one resin plate is provided with a concave groove serving as a flow path, covered with a flat resin plate and bonded by adhesion or heat welding, or one resin plate is opposed to the concave groove of the other resin plate. The thing which provided the convex part, fitted the concave groove and the convex part, adhere | attached between the resin boards, and formed the flow path is disclosed (refer patent document 1 and patent document 2).

樹脂板を積層して構造体を形成するためには、樹脂板同士を接合する必要がある。しかしながら、接着剤を用いて樹脂板を接合する場合、余分な接着剤が流路に流れ込んで流路を塞いでしまう、あるいは流路を流れる流体に接着剤が混入するおそれがある。また、拡散接合やUV接合などの手法を用いる場合では、製造工程が複雑であるため、量産性に乏しいという問題がある。超音波溶着を利用する場合でも、流路付近に溶着形状を作製すると接着剤を使用した場合と同様に溶けた樹脂が流路に流れ込んで流路を塞いでしまう、あるいは溶着バリが流体に混入するなどの問題があった。また、溶着部分を流路となる凹溝と凹溝の間に形成すると、流路と流路の間隔を広く設けて溶着形状を作製するエリアを確保する必要があり、近接した流路を形成することが困難であった。   In order to form a structure by laminating resin plates, it is necessary to join the resin plates together. However, when the resin plates are bonded using an adhesive, excessive adhesive may flow into the flow path and block the flow path, or the adhesive may be mixed into the fluid flowing through the flow path. In addition, when a technique such as diffusion bonding or UV bonding is used, there is a problem that the mass production is poor because the manufacturing process is complicated. Even when ultrasonic welding is used, if a weld shape is created near the flow path, the melted resin flows into the flow path and closes the flow path, as in the case of using an adhesive, or weld burrs are mixed into the fluid. There was a problem such as. In addition, if the welded part is formed between the groove and the groove that becomes the flow path, it is necessary to provide a space between the flow path and the flow path so as to secure an area for producing a welded shape. It was difficult to do.

また、流路構造体を構成する樹脂板同士が十分強固に接合されていないと流体の漏れ、気密性低下等の問題が起こる可能性がある。また、構造体全体として十分な接合強度が得られていても、流路周囲の箇所で十分な接合がなされていないと上記流体の漏れ等が起こりやすい。更に上記方法では、管状の流路に接着剤、あるいは溶着バリなどが流れ込む問題から流路体積を制御することが非常に困難である。例えばマイクロアレイやマイクロリアクター等では接合隙間からわずかでも物質が漏れてしまう、あるいは気泡等が混入すると正確な同定・検出等を行なうことができず、流路体積が正確でないと定量的な評価ができないという問題がある。
特開2006−142198号公報 特開2005−30927号公報
In addition, if the resin plates constituting the flow channel structure are not sufficiently firmly joined together, problems such as fluid leakage and reduced airtightness may occur. In addition, even if sufficient bonding strength is obtained as a whole structure, the fluid is likely to leak if the bonding around the flow path is not sufficient. Furthermore, in the above method, it is very difficult to control the volume of the flow path because of the problem that an adhesive or a welding burr flows into the tubular flow path. For example, in microarrays, microreactors, etc., even if a substance leaks even a little from the joint gap or bubbles are mixed, accurate identification and detection cannot be performed, and quantitative evaluation cannot be performed unless the flow path volume is accurate. There is a problem.
JP 2006-142198 A JP 2005-30927 A

本発明はこのような問題に対処するためになされたもので、構造体内部に気密性および寸法精度に優れた微細な流路を備え、接合強度および外観形状に優れた微細流路構造体およびその製造方法を提供することを目的とする。   The present invention has been made to cope with such a problem, and includes a fine channel structure having excellent airtightness and dimensional accuracy inside the structure, and excellent in bonding strength and appearance. It aims at providing the manufacturing method.

本発明の微細流路構造体は、樹脂体の内部に所定パターンを有する管状の流路を備えてなるものであって、上記管状の流路は、該流路の周囲が樹脂板の超音波溶着により一体化された樹脂体であり、上記流路は、厚さ方向断面に垂直の凹溝が設けられた樹脂板と、上記凹溝に嵌合する凸部が設けられた樹脂板とを相互に一体接合して形成される気密空間よりなり、上記凸部は、その先端部が上記凹溝に嵌合できる形状であり、上記凹溝の深さより短い凸部高さであって、該凸部の基端部の幅が凸部の先端幅より広く、かつ上記凸部の両側面に該凸部の先端幅より基端部の幅を広くする方向の傾斜面を有することを特徴とする。
本発明において「厚さ方向断面」とは「流路縦断面」を表す。「流路縦断面」とは、流路の進行方向に対して垂直に切断した面を示す。また、溶着するための凹凸形状は「流路横断面」で分割された2つの部品に形成され、重ね合わせた時に、この重ね合わせ面に対して垂直であり、嵌合できる凹凸部を有する。「流路横断面」とは、流路の進行方向に対して略平行に切断した面を示す。
The fine channel structure of the present invention is provided with a tubular channel having a predetermined pattern inside a resin body, and the tubular channel is an ultrasonic whose periphery is a resin plate. The resin body is integrated by welding, and the flow path includes a resin plate provided with a concave groove perpendicular to a cross section in a thickness direction, and a resin plate provided with a convex portion that fits into the concave groove. It consists of an airtight space formed by integrally joining with each other, and the convex portion has a shape in which the tip portion can be fitted into the concave groove, and has a convex portion height shorter than the depth of the concave groove, The width of the base end portion of the convex portion is wider than the distal end width of the convex portion, and both sides of the convex portion have inclined surfaces in a direction in which the width of the base end portion is wider than the distal end width of the convex portion. To do.
In the present invention, the “thickness direction cross section” represents a “flow channel longitudinal section”. The “flow channel longitudinal section” indicates a surface cut perpendicular to the traveling direction of the flow channel. In addition, the uneven shape for welding is formed in two parts divided by the “flow channel cross section”, and has an uneven portion that is perpendicular to the overlapping surface and can be fitted when overlapped. The “channel cross section” refers to a surface cut substantially parallel to the direction of travel of the channel.

また、上記凸部が設けられた樹脂板は、該凸部の基部の両側に溝状の樹脂溜まり部を備えることを特徴とする。   In addition, the resin plate provided with the convex portion includes groove-shaped resin reservoir portions on both sides of the base portion of the convex portion.

本発明の微細流路構造体の製造方法は、上記本発明の微細流路構造体を製造する方法であって、厚さ方向断面である流路縦断面に垂直の凹溝が設けられた樹脂板と、上記凹溝に嵌合する凸部が設けられた樹脂板とを、上記凸部を上記凹溝に嵌合させると共に、上記凸部の傾斜面を含む基端部両側面において上記凹溝の側面と超音波溶着により相互に一体接合する工程を備えてなることを特徴とする。   The method for producing a fine channel structure according to the present invention is a method for producing the fine channel structure according to the present invention, and is a resin in which a vertical groove is provided in a longitudinal direction of the channel, which is a cross section in the thickness direction. A plate and a resin plate provided with a convex part that fits into the concave groove are fitted into the concave groove, and the concave part is formed on both side surfaces of the base end including the inclined surface of the convex part. It is characterized by comprising a step of integrally joining the side surface of the groove and each other by ultrasonic welding.

本発明の微細流路構造体は、厚さ方向断面に垂直の凹溝が設けられた樹脂板と、この凹溝に嵌合する凸部が設けられた樹脂板とを相互に一体接合して形成される気密空間である管状の流路を樹脂体の内部に備えたものであり、またこの管状の流路の周囲は樹脂板の超音波溶着により一体化された樹脂体であるため、構造物内部に構成される管状流路の気密性に優れる。
なお、本発明において「気密」とは、樹脂構造体内部の流路の周囲が一体化された樹脂体になっていることで、液体または気体などの流体が流路外に流通しないように遮断された状態であることを意味する。
The fine channel structure of the present invention is formed by integrally joining a resin plate provided with a concave groove perpendicular to the thickness direction cross section and a resin plate provided with a convex portion fitted in the concave groove. Since the tubular flow path that is an airtight space to be formed is provided inside the resin body, and the periphery of the tubular flow path is a resin body integrated by ultrasonic welding of a resin plate, the structure Excellent in airtightness of the tubular flow path formed inside the object.
In the present invention, “airtight” means that a resin body in which the periphery of the flow path inside the resin structure is integrated is blocked so that fluid such as liquid or gas does not flow outside the flow path. It means that it is in the state that was done.

上記凸部は、その先端部が上記凹溝に嵌合できる形状であり、凸部の基端部の幅が凸部の先端幅より広く、かつ凸部の両側面に凸部の先端幅より基端部の幅を広くする方向の傾斜面を有して、凸部の傾斜面を含む基端部両側面において前記凹溝の側面と相互に一体接合されてなる。このため、凸部の基端部両側面において該凹溝側面と均一に溶着することが可能となる。また上記構造に加えて、凹溝の深さより短い凸部高さであることから、凸部先端面および凹溝の内壁により囲まれた気密空間を形成して寸法精度に優れた流路とすることができる。
また、凸部の傾斜面を含む基端部両側面において凹溝側面と接合されているため、流路間に溶着部分を設ける必要がなく、溶着代を広く設定する必要がなく、流路と流路の間隔を狭くすることができる。
また、樹脂板の接合に超音波溶着を採用することで、溶融バリが発生せず、多種の樹脂材料において溶着が可能であり、樹脂板が相互に強固に溶着され、構造体の接合強度および外観形状に優れる。また、接着剤等を使用しないため、接着剤等が流路内へ流出することがなく、流路の寸法精度に優れると共に、流路を流れる流体に接着剤等が混入することがない。
The convex portion has a shape such that the tip portion can be fitted into the concave groove, the width of the base end portion of the convex portion is wider than the tip width of the convex portion, and on both side surfaces of the convex portion than the tip width of the convex portion. It has an inclined surface in the direction of increasing the width of the base end portion, and is integrally joined to the side surface of the concave groove on both side surfaces of the base end portion including the inclined surface of the convex portion. For this reason, it becomes possible to weld to the side surface of the concave groove uniformly on both side surfaces of the base end portion of the convex portion. In addition to the above structure, since the height of the convex portion is shorter than the depth of the concave groove, an airtight space surrounded by the convex tip end surface and the inner wall of the concave groove is formed to provide a flow path with excellent dimensional accuracy. be able to.
In addition, since both sides of the base end including the inclined surface of the convex portion are joined to the side surface of the groove, it is not necessary to provide a welding portion between the flow paths, and it is not necessary to set a wide welding allowance. The space | interval of a flow path can be narrowed.
In addition, by adopting ultrasonic welding for the bonding of resin plates, melting burrs do not occur, it is possible to weld in various resin materials, the resin plates are firmly welded to each other, the bonding strength of the structure and Excellent appearance shape. Further, since no adhesive or the like is used, the adhesive or the like does not flow out into the flow path, and the dimensional accuracy of the flow path is excellent, and the adhesive or the like is not mixed into the fluid flowing through the flow path.

上記凸部は、その基部の両側に溝状の樹脂溜まり部を有することで、溶融した樹脂が流動した場合でも、この樹脂溜まり部に流し入れることができ、溶融した樹脂が流路内へ流出することがなく、寸法精度に優れた流路が得られると共に、溶融した樹脂またはその成分が流路を流れる流体に混入することがない。ただし、この樹脂溜まり部は、溶着する際の溶着形状に依存して溶融する樹脂が非常に少ない場合は省略することができる。   The convex portion has groove-shaped resin reservoirs on both sides of the base, so that even when molten resin flows, it can be poured into the resin reservoir, and the molten resin flows out into the flow path. In addition, a flow path having excellent dimensional accuracy is obtained, and molten resin or its components are not mixed into the fluid flowing through the flow path. However, this resin reservoir portion can be omitted when the amount of resin that melts is very small depending on the welding shape at the time of welding.

本発明の微細流路構造体の製造方法は、流路縦断面に垂直の凹溝が設けられた樹脂板と、この凹溝に嵌合する凸部が設けられた樹脂板とを、凸部を凹溝に嵌合させると共に、凸部の傾斜面を含む基端部両側面において凹溝の側面と超音波溶着により相互に一体接合する構造にすることにより微細構造体の製造が可能となる。また、本発明で得られた構造体は気密性、寸法精度、機械強度、外観にも優れる。更には、超音波溶着工法は、接着剤や拡散接合など他工法と比較して、短時間で加工することができ、量産コストを抑えることができ、工業的な観点からも非常に有効な手段である。   The method for manufacturing a fine channel structure according to the present invention includes a resin plate provided with a concave groove perpendicular to the vertical cross section of the flow channel, and a resin plate provided with a convex portion that fits into the concave groove. Can be fitted into the groove, and on the both sides of the base end portion including the inclined surface of the convex portion, the side surface of the groove can be integrally joined to each other by ultrasonic welding, so that a fine structure can be manufactured. . Moreover, the structure obtained by the present invention is excellent in airtightness, dimensional accuracy, mechanical strength, and appearance. Furthermore, the ultrasonic welding method can be processed in a short time compared to other methods such as adhesives and diffusion bonding, can reduce the mass production cost, and is very effective from an industrial viewpoint. It is.

本発明の微細流路構造体は、樹脂体の内部に所定パターンを有する管状の流路を備えた微細流路構造体である。
この構造体は、少なくとも2枚の任意の樹脂板を組み合わせて構成される。第一の樹脂板には厚さ方向断面に垂直の凹溝が設けられ、第二の樹脂板には第一の樹脂板の凹溝に嵌合する凸部が設けられている。この凸部はその先端部が上記凹溝に嵌合できる形状であり、凸部の高さは凹溝の深さより短い。また、この凸部の基端部の幅が凸部の先端幅より広くなっており、かつ凸部の両側面に、凸部の先端幅より基端部の幅を広くする方向の傾斜面とを有する。
これら2枚の樹脂板は、凸部が凹溝に嵌合して凸部の傾斜面を含む両側面において凹溝側面と相互に一体接合される。このとき、凸部の高さは凹溝の深さより短いことから、凸部先端面および該凹溝の内壁により囲まれた気密空間を形成する。この気密空間が管状の流路となり、流路の周囲は樹脂板の超音波溶着により一体化された樹脂体となる。
The fine channel structure of the present invention is a fine channel structure provided with a tubular channel having a predetermined pattern inside a resin body.
This structure is configured by combining at least two arbitrary resin plates. The first resin plate is provided with a groove that is perpendicular to the cross section in the thickness direction, and the second resin plate is provided with a protrusion that fits into the groove of the first resin plate. The convex portion has a shape in which the tip portion can be fitted into the concave groove, and the height of the convex portion is shorter than the depth of the concave groove. Further, the width of the base end portion of the convex portion is wider than the tip width of the convex portion, and inclined surfaces in a direction in which the width of the base end portion is wider than the tip width of the convex portion are formed on both side surfaces of the convex portion. Have
The two resin plates are integrally joined to the side surface of the groove on both sides including the inclined surface of the convex portion with the convex portion fitted into the groove. At this time, since the height of the convex portion is shorter than the depth of the concave groove, an airtight space surrounded by the front end surface of the convex portion and the inner wall of the concave groove is formed. This airtight space becomes a tubular flow channel, and the periphery of the flow channel becomes a resin body integrated by ultrasonic welding of a resin plate.

上記凹溝は、連続的な線形状または円形や矩形等の形状等の所定パターンに第一の樹脂板上に形成される凹状の溝である。一方、上記凸部は、上記第一の樹脂板に設けられた凹溝に嵌合でき、かつ凹溝のパターンに相対する形状として、第二の樹脂板上に形成される。
上記第一の樹脂板上に設けられる凹溝および第二の樹脂板上に設けられる凸部の形成方法については、射出成形、圧縮成形、切削加工、レーザー加工、フォトリソグラフィ等、公知の微細加工の手法を用いることができ、特に限定されない。
The concave groove is a concave groove formed on the first resin plate in a predetermined pattern such as a continuous linear shape or a circular or rectangular shape. On the other hand, the said convex part is formed on a 2nd resin board as a shape which can be fitted into the ditch | groove provided in said 1st resin board, and opposes the pattern of a ditch | groove.
About the formation method of the concave groove provided on the first resin plate and the convex portion provided on the second resin plate, known fine processing such as injection molding, compression molding, cutting, laser processing, photolithography, etc. This method can be used and is not particularly limited.

樹脂板表面に形成される凹溝および凸部の組み合わせからなる微細管状流路の断面形状としては、断面角形(図5参照)や断面円形または楕円形状(図8(b)参照)、樹脂板を貫通する円孔形状等が挙げられる。また、例えば、凹溝の底面や凸部先端面を波型形状等としたり、凹溝および凸部の幅を変えるだけでなく、凹溝の深さや凸部高さを樹脂板全体で均一とせず任意に変化させるなどして、ひとつの構造体内に任意の形状および太さ(高さおよび幅)の流路を備えることもできる。
また、貫通する孔形状を有する樹脂板を複数枚組み合わせて、立体形状の流路を形成することができる。
微細管状流路の断面形状の大きさとしては、断面角形の場合、横幅および横幅が 0.05mm 以上、2.0mm 以下、好ましくは 0.05mm 以上、1.0mm 以下、より好ましくは 0.05mm 以上、0.5mm 以下である。この範囲であると超音波溶着により気密性ある微細管状流路を確保できる。
また、微細流路の間隔としては、 0.05mm 以上、2.0mm 以下、好ましくは 0.05mm 以上、1.0mm 以下である。
As a cross-sectional shape of the fine tubular flow path formed of a combination of a concave groove and a convex portion formed on the surface of the resin plate, a cross-sectional square shape (see FIG. 5), a circular cross-section or an elliptical shape (see FIG. 8B), a resin plate For example, the shape of a circular hole penetrating can be used. In addition, for example, the bottom surface of the concave groove and the front end surface of the convex part are not only wave-shaped, and the width of the concave groove and convex part is changed, but the depth and convex part height of the concave groove are uniform throughout the resin plate. It is also possible to provide a flow path having an arbitrary shape and thickness (height and width) in one structure by arbitrarily changing the structure.
Further, a three-dimensional flow path can be formed by combining a plurality of resin plates having a hole shape therethrough.
The size of the cross-sectional shape of the microtubular channel is, in the case of a square cross section, the width and width are 0.05 mm or more and 2.0 mm or less, preferably 0.05 mm or more and 1.0 mm or less, more preferably 0.05 mm or more and 0.5 mm or less It is. Within this range, an airtight fine tubular channel can be secured by ultrasonic welding.
The interval between the fine channels is 0.05 mm or more and 2.0 mm or less, preferably 0.05 mm or more and 1.0 mm or less.

樹脂板同士を溶着する方法として、本願発明は、後述する接合形状と組み合わせることにより溶融バリの発生がなく、寸法精度および外観形状にも優れると共に、多種の樹脂材料において溶着が可能であり樹脂板が相互に強固に溶着され、微細流路構造体の接合強度に優れ、気密性および寸法精度に優れた流路を得られる等の理由から、特に超音波溶着にて樹脂板同士を溶着する。   As a method for welding resin plates together, the present invention is free from the occurrence of melting burrs by combining with the joining shape described later, has excellent dimensional accuracy and appearance shape, and can be welded in various resin materials. In particular, the resin plates are welded to each other by ultrasonic welding, for example, because they are strongly welded to each other, and a flow path having excellent bonding strength of the fine flow channel structure and excellent airtightness and dimensional accuracy can be obtained.

本発明の微細流路構造体を構成する樹脂板の樹脂材料としては、溶着が可能な樹脂であれば任意の樹脂材料を使用でき、微細流路構造体の用途に応じて適宜決定できる。特に、本発明では凸部の基端部両側面において該凹溝側面と超音波溶着により一体接合することで、一般的な形状同士では超音波溶着による溶着が困難である結晶性樹脂等も用いることができる。   As the resin material of the resin plate constituting the fine channel structure of the present invention, any resin material can be used as long as it is a resin that can be welded, and can be appropriately determined according to the use of the fine channel structure. In particular, in the present invention, a crystalline resin or the like, which is difficult to weld by ultrasonic welding between general shapes, is used by integrally joining the side surface of the groove with ultrasonic welding on both side surfaces of the base end portion of the convex portion. be able to.

樹脂材料としては例えば、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、アクリロニトリル−ブタジエン−スチレン樹脂、脂肪族ポリケトン樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、ナイロン樹脂、ポリエチレンテレフタラート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート(以下、PCと記す)樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド(以下、PPSと記す)樹脂、ポリアリーレンスルフィド樹脂、ポリスルホン(以下、PSFと記す)樹脂、ポリエーテルスルホン(以下、PESと記す)樹脂、ポリエーテルイミド、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン(以下、PEEKと記す)樹脂、液晶ポリマー、熱可塑性ポリイミド樹脂、フッ素樹脂等が挙げられる。   Examples of the resin material include polyolefin resin, polyvinyl chloride resin, polyvinylidene chloride resin, acrylonitrile-butadiene-styrene resin, aliphatic polyketone resin, polystyrene resin, polymethyl methacrylate resin, nylon resin, polyethylene terephthalate resin, polyethylene naphthalate. Resin, polycarbonate (hereinafter referred to as PC) resin, polyacetal resin, polyphenylene sulfide (hereinafter referred to as PPS) resin, polyarylene sulfide resin, polysulfone (hereinafter referred to as PSF) resin, polyethersulfone (hereinafter referred to as PES) ) Resin, polyetherimide, polyetherketone resin, polyetheretherketone (hereinafter referred to as PEEK) resin, liquid crystal polymer, thermoplastic polyimide resin, fluorine resin, etc. It is.

各樹脂材料は、相溶性があるものであれば2種以上の混合物として用いることができる。また、上記各樹脂材料は、本発明の目的を阻害しない範囲で各種強化材、添加剤等の充填材を含有させて用いることができる。
本発明の微細流路構造体をマイクロアレイ用基板等として利用する場合、透明性等が要求されることから、ポリオレフィン樹脂、PC樹脂、PSF樹脂、PES樹脂等を用いることが好ましい。
Each resin material can be used as a mixture of two or more if it is compatible. Moreover, each said resin material can be used by containing fillers, such as various reinforcing materials and an additive, in the range which does not inhibit the objective of this invention.
When the microchannel structure of the present invention is used as a microarray substrate or the like, it is preferable to use a polyolefin resin, a PC resin, a PSF resin, a PES resin, or the like because transparency is required.

本発明の微細流路構造体の一実施形態を図に基づいて説明する。図1は、本発明の一実施形態に係る微細流路構造体の組立斜視図であり、図2は、図1の微細流路構造体を図中の点線矢印方向より見た斜視図である。
図1に示すように、微細流路構造体1は、2枚の樹脂板2、3が組み合わされて構成されている。一方の樹脂板2は、その表面に連続的な線形状等である所定パターンの凹溝2aが形成されており、他方の樹脂板3は、その表面に樹脂板2の凹溝2aのパターンに相対する形状である凸部3aが形成されている(図2参照)。樹脂板2および樹脂板3が接合される際、面2cおよび面3cが衝合して各樹脂板の相互に接する面となる。
さらに、凸部3aまたは凹溝2aには、任意の箇所にそれぞれ樹脂板3または樹脂板2を貫通する孔4を設けることができる。この貫通孔4は、樹脂板を接合したときに構造体内部の管状流路と外部を連通させる孔となる(図1矢印a)。
One embodiment of the fine channel structure of the present invention will be described with reference to the drawings. FIG. 1 is an assembled perspective view of a fine channel structure according to an embodiment of the present invention, and FIG. 2 is a perspective view of the fine channel structure of FIG. 1 as viewed from the direction of the dotted arrow in the drawing. .
As shown in FIG. 1, the fine channel structure 1 is configured by combining two resin plates 2 and 3. One resin plate 2 has a predetermined pattern of concave grooves 2a having a continuous linear shape or the like formed on the surface thereof, and the other resin plate 3 has a pattern of the concave grooves 2a of the resin plate 2 formed on the surface thereof. Convex portions 3a having opposite shapes are formed (see FIG. 2). When the resin plate 2 and the resin plate 3 are joined, the surface 2c and the surface 3c come into contact with each other and become surfaces that contact each other.
Furthermore, the hole 3 which penetrates the resin board 3 or the resin board 2 can be provided in the convex part 3a or the concave groove 2a, respectively, at an arbitrary location. The through hole 4 serves as a hole for communicating the tubular flow path inside the structure and the outside when the resin plates are joined (arrow a in FIG. 1).

本発明の微細流路構造体1の製造方法を、図に基づいて各樹脂板の接合する部分を例示しながら説明する。図3、図5、図7はそれぞれ本発明の微細流路構造体1の製造方法の一例を説明する断面図である。また、図4は図3(a)におけるA部拡大図を、図6は図5におけるB部拡大図をそれぞれ示す。図7は図1におけるC−C線一部断面図でもある。   The manufacturing method of the fine flow path structure 1 of the present invention will be described with reference to the drawings, illustrating a portion where each resin plate is joined. 3, 5, and 7 are cross-sectional views illustrating an example of a method for manufacturing the fine channel structure 1 of the present invention. 4 shows an enlarged view of a portion A in FIG. 3A, and FIG. 6 shows an enlarged view of a portion B in FIG. FIG. 7 is also a partial cross-sectional view taken along line CC in FIG.

図3および図4に示すように、組み合わされる2枚の樹脂板は、樹脂板2側に厚さ方向断面に垂直の凹溝2aが設けられ、樹脂板3側には凹溝2aに嵌合する凸部3aが設けられている。なお、相互に接合する樹脂板のどちらに凹溝2aまたは凸部3aを設けるかは任意に決定できる。   As shown in FIGS. 3 and 4, the two resin plates to be combined are provided with a groove 2a perpendicular to the cross section in the thickness direction on the resin plate 2 side, and fitted into the groove 2a on the resin plate 3 side. The convex part 3a to be provided is provided. Note that it is possible to arbitrarily determine which of the resin plates to be bonded to each other is provided with the groove 2a or the protrusion 3a.

図3(a)に示すように、樹脂板3は凸部3aの基部の両側に、溝状に形成された樹脂溜まり部3bを有していてもよい。これは、凸部3aが凹溝2aに嵌合され、超音波溶着される際、溶融した樹脂をこの樹脂溜まり部3bに流し入れて、流路となる凹溝2aへ流れ出ることを防ぐためのものである。この樹脂溜まり部3bの寸法は接合部5の理論上の体積最大量以上の体積であることが好ましい。
しかしながら、凸部3aが凹溝2aに嵌合した後、溶着するための基端部の幅と凹溝の幅との差は極微小であるため、図3(b)に示すように、樹脂溜まり部3bを有さないものであってもよい。
As shown in FIG. 3A, the resin plate 3 may have a resin reservoir 3b formed in a groove shape on both sides of the base of the convex portion 3a. This is to prevent molten resin from flowing into the resin reservoir 3b and flowing out into the concave groove 2a serving as a flow path when the convex portion 3a is fitted into the concave groove 2a and is ultrasonically welded. It is. It is preferable that the size of the resin reservoir 3b is equal to or larger than the theoretical maximum volume of the joint 5.
However, since the difference between the width of the base end portion for welding after the convex portion 3a is fitted into the concave groove 2a and the width of the concave groove is extremely small, as shown in FIG. The thing which does not have the accumulation part 3b may be sufficient.

図4に示すように、樹脂板3の凸部3aは、基端部である側面3f部分の幅D2が、その先端幅D1より広くなっている。また、凸部3aの両側面に、凸部の先端幅より基端部の幅を広くする方向の傾斜面3eを有している。凸部3aはその断面形状において、傾斜面3eを含む基端部の幅が先端幅より広くなった部分が左右対称に設けられていることが好ましい。左右対称であることにより、凸部3aが凹溝2aに嵌合する際、凸部3aは凹溝2aの側面2bに当接することなく、断面方向に対して左右均一に凹溝へ嵌合され、溶着されることができる。
また、この凸部3aの先端幅より基端部の幅が広くなった構造は、凸部3aの両側面だけでなく、連続形状である場合の末端部分など、凸部3a側面全体に備えられていることが好ましい。
また、凸部3aはその先端部に凹溝に嵌合できる部分を有する。これは、凸部3aの先端から直接、この先端幅より基端部の幅を広くする傾斜面3eを形成せず、凸部3aの先端に凹溝2aに嵌合できる部分を形成している。
As shown in FIG. 4, the convex portion 3a of the resin plate 3 has a width D 2 of the side surface 3f moiety is a base end portion is wider than its front end width D 1. In addition, on both side surfaces of the convex portion 3a, there are inclined surfaces 3e in a direction in which the width of the base end portion is wider than the tip width of the convex portion. As for the convex part 3a, in the cross-sectional shape, it is preferable that the part where the width | variety of the base end part containing the inclined surface 3e was wider than the front-end | tip width is provided left-right symmetrically. Due to the left-right symmetry, when the convex portion 3a is fitted into the concave groove 2a, the convex portion 3a is fitted into the concave groove uniformly in the left-right direction with respect to the cross-sectional direction without contacting the side surface 2b of the concave groove 2a. Can be welded.
Further, the structure in which the width of the base end portion is wider than the tip width of the convex portion 3a is provided not only on both side surfaces of the convex portion 3a but also on the entire side surface of the convex portion 3a such as the end portion in the case of a continuous shape. It is preferable.
Moreover, the convex part 3a has a part which can be fitted in the concave groove at the tip part. This does not form the inclined surface 3e that makes the width of the base end wider than the tip width directly from the tip of the convex portion 3a, but forms a portion that can be fitted into the concave groove 2a at the tip of the convex portion 3a. .

また、図4に示すように、凸部3aは、その先端部の幅D1を、凹溝2aの上部内幅D3よりも、クリアランスをもたせた形状とすることが好ましい。このクリアランスは凸部3a先端部の両側に、それぞれ幅D6として設定されていることが好ましい。上記凸部3aがその先端部に凹溝に嵌合できる部分を有すると共に、さらにこのクリアランスを設定することで、溶着振動をかける前に凸部先端部を凹溝に誘い込ませて嵌合し、樹脂板2と樹脂板3とを押えて変形などを矯正させることができる。その押えを保持しながら溶着振動をかけることによって、凸部の基端部両側面において該凹溝側面と均一に溶着することが可能となる。
上記幅D1を有する凸部の先端部長さは 0.1〜0.3mm が好ましい。この長さであると凸部の先端部を凹溝に誘い込ませて嵌合し、樹脂板2と樹脂板3とを押えて変形などを矯正させることが容易にできる。
また、本発明の微細流路構造体では、上述のように凸部3aの基端部両側面に、傾斜面3eを経て先端幅より基端部の幅が広くなった部分を断面方向に対して左右対称に備えた構造であるため、クリアランスD6を狭く設定しておく必要があり、片側につき 0.01 mm 以下とする必要がある。
また、凸部3a両側面において、傾斜面3eから側面3fにかけて先端幅より基端部の幅が広くなった部分は、後述する超音波溶着の際、それぞれ凹溝2aの側面2dと一体接合される接合部5となる。凸部3aの両側面において樹脂板が相互に強固に溶着されることから、接合部5の幅である溶着代D7は 0.05〜0.5mm が好ましく、より好ましくは 0.1〜0.3mm である(図6参照)。
Further, as shown in FIG. 4, the convex portion 3a, the width D 1 of the its distal end, than the upper inner width D 3 of the groove 2a, it is preferable that a shape remembering clearance. This clearance is preferably set as a width D 6 on both sides of the tip of the convex portion 3a. The convex portion 3a has a portion that can be fitted into the concave groove at the tip portion, and further, by setting this clearance, the convex portion tip portion is guided into the concave groove and fitted before the welding vibration is applied. The deformation can be corrected by pressing the resin plate 2 and the resin plate 3. By applying welding vibration while holding the presser, it becomes possible to uniformly weld the side surface of the concave groove on both side surfaces of the base end portion of the convex portion.
The length of the tip of the convex portion having the width D 1 is preferably 0.1 to 0.3 mm. With this length, it is possible to easily deform and correct the deformation by pressing the resin plate 2 and the resin plate 3 by fitting the tip of the convex portion into the groove.
Further, in the fine channel structure according to the present invention, as described above, on both side surfaces of the base end portion of the convex portion 3a, the portions where the base end width is wider than the tip width via the inclined surface 3e are in the cross-sectional direction. Therefore, it is necessary to set the clearance D 6 narrowly, and it is necessary to set it to 0.01 mm or less per side.
Further, on both side surfaces of the convex portion 3a, the portion where the width of the base end portion is wider than the tip width from the inclined surface 3e to the side surface 3f is integrally joined to the side surface 2d of the concave groove 2a at the time of ultrasonic welding described later. This is the joint 5. Since the resin plate is firmly welded to each other at both sides of the convex portion 3a, welding margin D 7 is the width of the joint portion 5 is preferably 0.05 to 0.5 mm, more preferably 0.1 to 0.3 mm (Fig. 6).

また図4に示すように、樹脂板3の面3cから凸部3aの先端面3dまでの長さである凸部3aの高さD5は、樹脂板2の面2cから凹溝2aの底面2dまでの長さである凹溝2aの深さD4より短い長さとすることで、凸部3aが凹溝2aに嵌合されつつ超音波溶着され、各樹脂板の面2cおよび面3cが衝合したときに、該凸部先端面および該凹溝の内壁により囲まれた気密空間部分を形成することができる。 As shown in FIG. 4, the height D 5 of the convex portion 3a, which is the length from the surface 3c of the resin plate 3 to the tip surface 3d of the convex portion 3a, is from the surface 2c of the resin plate 2 to the bottom surface of the concave groove 2a. by short length than the groove 2a of the depth D 4 is the length of up to 2d, the convex portions 3a are ultrasonically welded while being fitted into the groove 2a, the surface 2c and the surface 3c of the resin plate When abutting, an airtight space portion surrounded by the front end surface of the convex portion and the inner wall of the concave groove can be formed.

樹脂板2および樹脂板3を超音波溶着により接合する方法について説明する。図3(a)に示す状態から、樹脂板2の凹溝2aに、樹脂板3の凸部3aの先端部を嵌合しつつ、超音波溶着を行なう。具体的には、樹脂板3の上面に超音波振動を与えながら加圧して、相互に圧入して溶着する。図6に示すように、超音波振動を印加することにより、接触部における変形歪の発熱が凸部傾斜面3eと2a溝の辺2bと辺2cから構成されるエッジ部を起点として発生し、圧力により溶融しながら侵入して該部位で溶着される。
ここで超音波溶着条件は、樹脂材料、凹凸形状等によって異なるが、超音波振動ホーンの振幅は、凹凸形状の嵌合上下方向に 25〜60 μm 、周波数は、15〜60 kHz で行なうのが溶着強度および気密度を高めるので好ましい。
上記のように溶着することで、図7に示すように、凸部3a両側面の傾斜面3eから基端部にかけて広くなった部分が凹溝2aの側面2bと接合して接合部5を形成する。樹脂板2および樹脂板3の各樹脂板はこの接合部5で一体化し、凸部3a先端面3dおよび凹溝2aの内壁により囲まれた、断面長方形の気密性のある空間である管状の流路が形成される。樹脂板2の面2cおよび樹脂板3の面3cにおいて溶着が行なわれなかった部分では、それぞれの面が衝合されただけで溶着は行なわれていない非接合部6となるが、この非接合部6は流路となる空間2aに接することはないため、流路の気密性は確保される。
なお、上記溶着は流路の一部分ではなく流路全体で行なう。このことにより、気密性を全箇所に確保した流路を備えた構造体が得られる。
A method of joining the resin plate 2 and the resin plate 3 by ultrasonic welding will be described. From the state shown in FIG. 3A, ultrasonic welding is performed while fitting the tip of the convex portion 3 a of the resin plate 3 into the concave groove 2 a of the resin plate 2. Specifically, pressure is applied to the upper surface of the resin plate 3 while applying ultrasonic vibration, and they are pressed into each other and welded together. As shown in FIG. 6, by applying ultrasonic vibration, heat generation of deformation distortion at the contact portion occurs from the edge portion composed of the convex inclined surface 3e and the side 2b and side 2c of the groove 2a, It enters while melting by pressure and is welded at the site.
Here, the ultrasonic welding conditions vary depending on the resin material, uneven shape, etc., but the amplitude of the ultrasonic vibration horn is 25-60 μm in the vertical direction of the uneven shape, and the frequency is 15-60 kHz. This is preferable because it increases the welding strength and gas density.
By welding as described above, as shown in FIG. 7, the widened portion from the inclined surface 3e on both sides of the convex portion 3a to the base end portion is joined to the side surface 2b of the concave groove 2a to form the joint portion 5. To do. Each resin plate of the resin plate 2 and the resin plate 3 is integrated at the joint portion 5 and is a tubular flow that is an airtight space having a rectangular cross section surrounded by the tip 3d of the convex portion 3a and the inner wall of the concave groove 2a. A path is formed. In the portion where the surface 2c of the resin plate 2 and the surface 3c of the resin plate 3 are not welded, the respective surfaces are brought into contact with each other to form a non-joined portion 6 which is not welded. Since the part 6 does not contact the space 2a serving as the flow path, the airtightness of the flow path is ensured.
The welding is performed not on a part of the flow path but on the entire flow path. As a result, a structure having a flow path ensuring airtightness at all locations can be obtained.

また、図6に示すように、凸部3aの基端部の側面3fおよび傾斜面3eの部分では超音波溶着され接合部5を形成するが、凸部3aの先端部の側面では超音波溶着されない。したがって、実際に形成される流路2aは、厳密にはその上面の両端に非接合部6’を有する形状となる。しかしながら、この非接合部6’の幅は上述のクリアランスの幅に相当し、非常に微細な深さおよび幅であり、流路2aの気密性および寸法精度に影響しない程度のものである。   Further, as shown in FIG. 6, the side surface 3 f and the inclined surface 3 e of the base end portion of the convex portion 3 a are ultrasonically welded to form the joint portion 5, but the ultrasonic welding is performed on the side surface of the tip portion of the convex portion 3 a. Not. Therefore, the flow path 2a actually formed has a shape having the non-joining portions 6 'at both ends of the upper surface. However, the width of the non-joining portion 6 ′ corresponds to the clearance width described above, is very fine depth and width, and is such that it does not affect the airtightness and dimensional accuracy of the flow path 2 a.

上述のように、樹脂板2および樹脂板3は、凹溝2aに凸部3aが嵌合されつつこの凸部3aの基端部両側面において該凹溝2a側面と相互に一体接合され、凸部3a先端面および凹溝2aの内壁により囲まれた気密空間よりなる管状の流路を形成する。したがって、本発明の微細流路構造体では、流路と流路の間に、樹脂板同士を接合する部分を設定する必要がなく、流路と流路の間隔を、上記溶着代および樹脂溜まり部の幅のみとすることができる。しかしながら、樹脂板同士の接合強度をさらに必要とする場合には、上記以外の部位においても同時に溶着することもできる。   As described above, the resin plate 2 and the resin plate 3 are integrally joined to the side surface of the concave groove 2a on both sides of the base end portion of the convex portion 3a while the convex portion 3a is fitted into the concave groove 2a. A tubular flow path is formed which is formed of an airtight space surrounded by the tip surface of the portion 3a and the inner wall of the concave groove 2a. Therefore, in the fine channel structure of the present invention, there is no need to set a portion for joining the resin plates between the channels, and the interval between the channels and the channel is set to the welding allowance and the resin pool. It can be only the width of the part. However, when the bonding strength between the resin plates is further required, it can be welded at the other portions at the same time.

本発明の微細流路構造体の実施形態の一例として、樹脂板表面に形成される凹溝および凸部の組み合わせからなる管状流路の断面形状が、断面長方形である場合について上記に説明したが、例えば図8(a)および(b)の超音波溶着の他の実施形態を説明する断面図に示すように、断面円形または楕円形形状等とすることもできる。この場合、凹溝2aの底面2dおよび凸部3aの先端面3dを断面半円形の凹状に形成する。嵌合および超音波溶着の方法については、上述する実施形態と同じであるため、説明を省略する。   As an example of the embodiment of the fine flow path structure of the present invention, the case where the cross-sectional shape of the tubular flow path formed by the combination of the concave groove and the convex portion formed on the surface of the resin plate is a rectangular cross section has been described above. For example, as shown in a cross-sectional view illustrating another embodiment of ultrasonic welding in FIGS. 8A and 8B, the cross-sectional shape may be circular or elliptical. In this case, the bottom surface 2d of the concave groove 2a and the tip surface 3d of the convex portion 3a are formed in a concave shape having a semicircular cross section. Since the method of fitting and ultrasonic welding is the same as that of the above-described embodiment, the description is omitted.

また上記した微細流路構造体1は、樹脂板が2枚からなるものについて説明したが、樹脂板の両面に凹溝または凸部を形成し、樹脂板を貫通する孔などで連結するなどして、形成する流路形状等に応じて適宜積層数を決定し、複数枚の樹脂板を積層して流路を立体的に形成することもできる。   Moreover, although the above-described fine channel structure 1 has been described as having two resin plates, a concave groove or a convex portion is formed on both surfaces of the resin plate and connected by holes or the like penetrating the resin plate. Thus, the number of layers can be appropriately determined according to the shape of the flow channel to be formed, and a plurality of resin plates can be stacked to form the flow channel in a three-dimensional manner.

また、本発明の微細流路構造体の製造方法は、上述のように貫通孔4により構造体内部と外部が連通した管状の流路を形成するのみならず、構造体内に密閉された空間を形成することも可能であり、例えば、構造体内部に密閉空間を複数形成することで軽量化したり、構造体内部に他の物体等を密封または埋設したりすることなどで応用が可能である。   Moreover, the manufacturing method of the fine channel structure of the present invention not only forms a tubular channel in which the inside and outside of the structure communicate with each other by the through-hole 4 as described above, but also creates a sealed space in the structure. For example, it is possible to reduce the weight by forming a plurality of sealed spaces in the structure, or to seal or embed other objects or the like in the structure.

実施例1
図1に示す微細流路(流路断面寸法が一辺の長さ 0.5mm、1.0mm、1.5mm の3種類で、流路幅が最小で 0.5mm )となるように凹凸を形成したポリカーボネート樹脂板2枚を超音波溶着により接合した。なお、凸部の基端両側に溶着溜り部を設けた。超音波溶着は、BRANSON2000シリーズ(日本エマソン社製)を使用して、周波数 20 kHz 、振幅 50 μm の条件により行なった。得られた樹脂微細流路構造体の接合部断面をマイクロスコープで撮影した。結果を図9に示す。図9に示すように、流路2aの周囲は樹脂で一体化されており、流路2aの上方に樹脂溜り部3bおよび非接合部6が見られる。
また、得られた微細流路について、樹脂板3の貫通穴4の片方を塞ぎ、水中でエアーを加圧( 0.02 MPa )して、気密漏れを確認した結果、気密漏れは観察されなかった。
Example 1
Polycarbonate resin plate with irregularities formed so that it has the fine flow path shown in Fig. 1 (flow path cross-sectional dimensions of 0.5 mm, 1.0 mm, and 1.5 mm on each side, with a minimum flow width of 0.5 mm) Two sheets were joined by ultrasonic welding. In addition, the welding pool part was provided in the base end both sides of the convex part. The ultrasonic welding was performed using a BRANSON 2000 series (manufactured by Nippon Emerson) under the conditions of a frequency of 20 kHz and an amplitude of 50 μm. The cross section of the joint portion of the obtained resin fine channel structure was photographed with a microscope. The results are shown in FIG. As shown in FIG. 9, the periphery of the flow path 2a is integrated with resin, and the resin reservoir 3b and the non-joining part 6 are seen above the flow path 2a.
In addition, as for the obtained fine flow path, one side of the through hole 4 of the resin plate 3 was closed and air was pressurized (0.02 MPa) in water to confirm the airtight leak. As a result, no airtight leak was observed.

実施例2
樹脂溜り部を設けない以外は、実施例1と同様にして微細流路構造体を得た。得られた樹脂微細流路構造体について、実施例1と同様にして、気密漏れを確認した結果、気密漏れは観察されなかった。
Example 2
A fine channel structure was obtained in the same manner as in Example 1 except that the resin reservoir was not provided. With respect to the obtained resin fine channel structure, airtight leakage was confirmed in the same manner as in Example 1. As a result, no airtight leakage was observed.

比較例1
図10に示すポリカーボネート樹脂板7および8を準備し、凹を形成しない樹脂板7に接着剤9を塗布して接合した。接合面10を観察したところ、流路断面に接着剤9の流入が見られた。
Comparative Example 1
Polycarbonate resin plates 7 and 8 shown in FIG. 10 were prepared, and an adhesive 9 was applied and joined to the resin plate 7 not forming a recess. When the joint surface 10 was observed, the inflow of the adhesive 9 was seen in the cross section of the flow path.

比較例2
図11に示すポリカーボネート樹脂板7および8を準備し、実施例1と同様の溶着条件で超音波溶着した。接合面10を観察したところ、流路断面に溶着バリ11の流入が見られた。
Comparative Example 2
Polycarbonate resin plates 7 and 8 shown in FIG. 11 were prepared and ultrasonically welded under the same welding conditions as in Example 1. When the joining surface 10 was observed, the inflow of the welding burr 11 was seen in the cross section of the flow path.

本発明の微細流路構造体は、構造体内部に気密性および寸法精度に優れた微細な流路を備え、接合強度および外観形状に優れているため、小型ポンプなどに使用するマニホールド(省スペース用流路回路)、マイクロアレイ用基板、マイクロリアクターなどとして好適に利用できる。   The fine channel structure of the present invention has a fine channel with excellent airtightness and dimensional accuracy inside the structure, and has excellent bonding strength and external shape. For example, a microchannel substrate, a microreactor, and the like.

本発明の一実施形態に係る微細流路構造体の組立斜視図である。It is an assembly perspective view of the fine channel structure concerning one embodiment of the present invention. 図1の微細流路構造体を点線矢印方向より見た斜視図である。It is the perspective view which looked at the fine channel structure of Drawing 1 from the dotted line arrow direction. 本発明の微細流路構造体の製造方法の一例を説明する断面図である。It is sectional drawing explaining an example of the manufacturing method of the fine channel structure of this invention. 図3(a)におけるA部拡大図である。It is the A section enlarged view in Drawing 3 (a). 本発明の微細流路構造体の製造方法の一例を説明する断面図である。It is sectional drawing explaining an example of the manufacturing method of the fine channel structure of this invention. 図5におけるB部拡大図である。It is the B section enlarged view in FIG. 本発明の微細流路構造体の製造方法の一例を説明する断面図であり、図1におけるC−C線一部断面図である。It is sectional drawing explaining an example of the manufacturing method of the fine flow path structure of this invention, and is CC sectional partial sectional drawing in FIG. 本発明の微細流路構造体の製造方法の他の例を説明する断面図である。It is sectional drawing explaining the other example of the manufacturing method of the fine channel structure of this invention. 実施例1の微細流路構造体の接合部断面写真である。2 is a cross-sectional photograph of a joint portion of a fine channel structure according to Example 1. 比較例1を説明する図である。It is a figure explaining the comparative example 1. FIG. 比較例2を説明する図である。It is a figure explaining the comparative example 2. FIG.

符号の説明Explanation of symbols

1 微細流路構造体
2、3 樹脂板
4 貫通孔
5 接合部
6 非接合部
7、8 樹脂板
9 接着剤
10 接合面
11 溶着バリ
DESCRIPTION OF SYMBOLS 1 Fine channel structure 2, 3 Resin plate 4 Through-hole 5 Joining part 6 Non-joining part 7, 8 Resin board 9 Adhesive 10 Joining surface 11 Welding burr

Claims (3)

樹脂体の内部に所定パターンを有する管状の流路を備えた微細流路構造体であって、
前記管状の流路は、該流路の周囲が樹脂板の超音波溶着により一体化された樹脂体であり、
前記流路は、厚さ方向断面に垂直の凹溝が設けられた樹脂板と、前記凹溝に嵌合する凸部が設けられた樹脂板とを相互に一体接合して形成される気密空間よりなり、
前記凸部は、その先端部が前記凹溝に嵌合できる形状であり、前記凹溝の深さより短い凸部高さであって、該凸部の基端部の幅が凸部の先端幅より広く、かつ前記凸部の両側面に該凸部の先端幅より基端部の幅を広くする方向の傾斜面を有することを特徴とする微細流路構造体。
A fine channel structure including a tubular channel having a predetermined pattern inside the resin body,
The tubular channel is a resin body in which the periphery of the channel is integrated by ultrasonic welding of a resin plate,
The flow path is an airtight space formed by integrally joining a resin plate provided with a concave groove perpendicular to the cross section in the thickness direction and a resin plate provided with a convex portion fitted into the concave groove. More
The convex portion has a shape in which a tip portion thereof can be fitted into the concave groove, has a convex portion height shorter than the depth of the concave groove, and a width of a base end portion of the convex portion is a leading end width of the convex portion. A fine channel structure characterized in that it has an inclined surface that is wider and has a direction in which the width of the base end is wider than the width of the tip of the convex on both side surfaces of the convex.
前記凸部が設けられた樹脂板は、該凸部の基部の両側に溝状の樹脂溜まり部を備えることを特徴とする請求項1記載の微細流路構造体。   2. The fine channel structure according to claim 1, wherein the resin plate provided with the convex portion includes a groove-shaped resin reservoir portion on both sides of the base portion of the convex portion. 請求項1または請求項2記載の微細流路構造体の製造方法であって、
前記製造方法は、厚さ方向断面に垂直の凹溝が設けられた樹脂板と、前記凹溝に嵌合する凸部が設けられた樹脂板とを、前記凸部を前記凹溝に嵌合させると共に、前記凸部の傾斜面を含む基端部両側面において前記凹溝の側面と超音波溶着により相互に一体接合する工程を備えてなることを特徴とする微細流路構造体の製造方法。
A method for producing a fine channel structure according to claim 1 or 2,
In the manufacturing method, a resin plate provided with a concave groove perpendicular to a cross section in the thickness direction and a resin plate provided with a convex portion to be fitted into the concave groove are fitted into the concave groove. And a step of integrally joining the side surfaces of the concave grooves and the side surfaces of the concave grooves on both side surfaces including the inclined surfaces of the convex portions by ultrasonic welding. .
JP2007271473A 2007-10-18 2007-10-18 Fine passage structure and its manufacturing method Pending JP2009095800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271473A JP2009095800A (en) 2007-10-18 2007-10-18 Fine passage structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271473A JP2009095800A (en) 2007-10-18 2007-10-18 Fine passage structure and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009095800A true JP2009095800A (en) 2009-05-07

Family

ID=40699314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271473A Pending JP2009095800A (en) 2007-10-18 2007-10-18 Fine passage structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009095800A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058053A (en) * 2010-09-08 2012-03-22 Konica Minolta Holdings Inc Chip for biochemical reaction and method for manufacturing the same
EP3170667A3 (en) * 2015-10-30 2017-08-30 Seiko Epson Corporation Method of manufacturing flow path member, flow path member, and liquid ejecting head
WO2017222048A1 (en) * 2016-06-24 2017-12-28 株式会社カネカ Flow type reactor
WO2018095829A1 (en) * 2016-11-23 2018-05-31 Koninklijke Philips N.V. Ultrasonic welding of a microfluidic device
JPWO2018008748A1 (en) * 2016-07-07 2018-07-12 ポリプラスチックス株式会社 Manufacturing method of resin composite molded body
CN113352754A (en) * 2020-03-06 2021-09-07 株式会社理光 Flow path component, liquid ejecting unit, and device for ejecting liquid
AT525606A1 (en) * 2021-11-11 2023-05-15 Kreisel Electric Gmbh & Co Kg Liquid container comprising two base bodies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234121A (en) * 1985-04-11 1985-11-20 Nichia Seimitsu Kogyo Kk Manufacture of plastic retainer for needles
JPS6256467U (en) * 1985-09-30 1987-04-08
JP2004351839A (en) * 2003-05-30 2004-12-16 Brother Ind Ltd Joint structure and method for manufacturing joint structure
JP2005224688A (en) * 2004-02-12 2005-08-25 Fuji Xerox Co Ltd Method for manufacturing microreactor chip
JP2005288808A (en) * 2004-03-31 2005-10-20 Denso Corp Resin molded article
JP2006112836A (en) * 2004-10-12 2006-04-27 Sekisui Chem Co Ltd Microreactor
JP2008216121A (en) * 2007-03-06 2008-09-18 Konica Minolta Opto Inc Method for manufacturing microchip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234121A (en) * 1985-04-11 1985-11-20 Nichia Seimitsu Kogyo Kk Manufacture of plastic retainer for needles
JPS6256467U (en) * 1985-09-30 1987-04-08
JP2004351839A (en) * 2003-05-30 2004-12-16 Brother Ind Ltd Joint structure and method for manufacturing joint structure
JP2005224688A (en) * 2004-02-12 2005-08-25 Fuji Xerox Co Ltd Method for manufacturing microreactor chip
JP2005288808A (en) * 2004-03-31 2005-10-20 Denso Corp Resin molded article
JP2006112836A (en) * 2004-10-12 2006-04-27 Sekisui Chem Co Ltd Microreactor
JP2008216121A (en) * 2007-03-06 2008-09-18 Konica Minolta Opto Inc Method for manufacturing microchip

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058053A (en) * 2010-09-08 2012-03-22 Konica Minolta Holdings Inc Chip for biochemical reaction and method for manufacturing the same
US9873251B2 (en) 2015-10-30 2018-01-23 Seiko Epson Corporation Method of manufacturing flow path member, flow path member, and liquid ejecting head
EP3170667A3 (en) * 2015-10-30 2017-08-30 Seiko Epson Corporation Method of manufacturing flow path member, flow path member, and liquid ejecting head
JPWO2017222048A1 (en) * 2016-06-24 2019-04-11 株式会社カネカ Flow reactor
WO2017222048A1 (en) * 2016-06-24 2017-12-28 株式会社カネカ Flow type reactor
US10543474B2 (en) 2016-06-24 2020-01-28 Kaneka Corporation Flow reactor
JP7058216B2 (en) 2016-06-24 2022-04-21 株式会社カネカ Flow reactor
JPWO2018008748A1 (en) * 2016-07-07 2018-07-12 ポリプラスチックス株式会社 Manufacturing method of resin composite molded body
WO2018095829A1 (en) * 2016-11-23 2018-05-31 Koninklijke Philips N.V. Ultrasonic welding of a microfluidic device
US10549480B2 (en) 2016-11-23 2020-02-04 Koninklijke Philips N.V. Ultrasonic welding of a microfluidic device
CN113352754A (en) * 2020-03-06 2021-09-07 株式会社理光 Flow path component, liquid ejecting unit, and device for ejecting liquid
AT525606A1 (en) * 2021-11-11 2023-05-15 Kreisel Electric Gmbh & Co Kg Liquid container comprising two base bodies
AT525606B1 (en) * 2021-11-11 2024-06-15 John Deere Electric Powertrain Llc Liquid container comprising two base bodies

Similar Documents

Publication Publication Date Title
JP2009095800A (en) Fine passage structure and its manufacturing method
KR100572207B1 (en) Bonding method of plastic microchip
CN105597545B (en) Method for producing hollow fiber membrane module and hollow fiber membrane unit having hollow fiber membrane module
JP2008175585A (en) Cartridge for chemical reaction and its using method
EP2851121B1 (en) Devices for and methods of forming microchannels or microfluid reservoirs
JP4496934B2 (en) Manufacturing method of micro chemical device
JP2009518599A (en) Thin wire joining and / or sealing system and method
JP5892491B2 (en) Channel chip
JPWO2018012429A1 (en) Fluid device, method of manufacturing fluid device, and valve for fluid device
JP5933518B2 (en) Bonding method and manufacturing method of microchannel device
JP2007283677A (en) Resin laminated body and its manufacturing method
JP2010043928A (en) Manufacturing method of biochip, and the biochip
JP4540491B2 (en) Manufacturing method of microreactor
JP2014122831A (en) Microfluidic device
JPWO2008053693A1 (en) Microchip, molding die and electroforming master
JP3880931B2 (en) Plate assembly structure
JP2008086888A (en) Passage structure, micro-device equipped with this structure and bubble removing method using this micro-device
JP2008216121A (en) Method for manufacturing microchip
JP2012007920A (en) Manufacturing method of micro flow channel device
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
KR20110075448A (en) A method for manufacturing a microfluidic device and a microfluidic divice manufactured using the same method
JP2005224688A (en) Method for manufacturing microreactor chip
JP2013076591A (en) Microchannel device and method for manufacturing the same
EP3544790B1 (en) Ultrasonic welding of a microfluidic device
JP7380252B2 (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313