JP4540491B2 - Manufacturing method of microreactor - Google Patents

Manufacturing method of microreactor Download PDF

Info

Publication number
JP4540491B2
JP4540491B2 JP2005017444A JP2005017444A JP4540491B2 JP 4540491 B2 JP4540491 B2 JP 4540491B2 JP 2005017444 A JP2005017444 A JP 2005017444A JP 2005017444 A JP2005017444 A JP 2005017444A JP 4540491 B2 JP4540491 B2 JP 4540491B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
liquid chromatograph
ridge
resin substrate
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005017444A
Other languages
Japanese (ja)
Other versions
JP2006204983A (en
Inventor
聡史 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005017444A priority Critical patent/JP4540491B2/en
Publication of JP2006204983A publication Critical patent/JP2006204983A/en
Application granted granted Critical
Publication of JP4540491B2 publication Critical patent/JP4540491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/7805Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features
    • B29C65/7814Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features in the form of inter-cooperating positioning features, e.g. tenons and mortises
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/126Tenon and mortise joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being non-straight, e.g. forming non-closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、複数の熱可塑性樹脂基板の間に微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターの製造方法に関する。   The present invention relates to a method for producing a microreactor in which a fine channel and / or a liquid chromatograph column is formed between a plurality of thermoplastic resin substrates.

近年、シリコンなどの基板上にフォトリソグラフィーなどの半導体加工技術を用いて微細な流路や液体クロマトグラフ用カラムを形成し、流路内で様々な化学反応を行わせることにより既存の分析装置の小型化や、化学プラントの小型・高機能化を行うマイクロリアクターの研究が活発に行われている。   In recent years, by using semiconductor processing technology such as photolithography on a substrate such as silicon, a fine channel and a column for liquid chromatography are formed, and various chemical reactions are carried out in the channel, so that an existing analyzer can be used. Research on microreactors for miniaturization and chemical plant miniaturization and high functionality is being actively conducted.

上記マイクロリアクターを構成する材料は、ガラス、シリコンウエハー等の無機材料から、量産が容易であり、コストの安い合成樹脂、特に、成形性のよい熱可塑性樹脂に置き換わってきている。   The material constituting the microreactor has been replaced with a synthetic resin, particularly a thermoplastic resin having good moldability, which is easy to mass-produce from inorganic materials such as glass and silicon wafer.

上記マイクロリアクターに微細流路や液体クロマトグラフを形成するには、微細流路用凹部や液体クロマトグラフ用凹部を形成した2枚の基板を積層して微細流路や液体クロマトグラフを形成することが一般的であり、積層は接着剤や粘着テープ等で接着することにより行われている(例えば、特許文献1及び特許文献2参照)。
特開2001−70784号公報 特開2003−522944号公報
In order to form a microchannel and a liquid chromatograph in the microreactor, a microchannel and a liquid chromatograph are formed by laminating two substrates formed with a microchannel recess and a liquid chromatograph recess. In general, lamination is performed by bonding with an adhesive, a pressure-sensitive adhesive tape, or the like (see, for example, Patent Document 1 and Patent Document 2).
JP 2001-70784 A JP 2003-522944 A

しかしながら、基板の表面に接着剤を塗布し、積層して接着剤で接着しようとすると、接着剤が流動して、微細流路用凹部や液体クロマトグラフ用凹部に流れ込み微細流路や液体クロマトグラフが詰まってしまうという欠点があり、接着剤の成分によっては、被検出物への汚染という問題もあった。   However, if an adhesive is applied to the surface of the substrate, and then laminated and bonded with the adhesive, the adhesive flows and flows into the concave portion for the fine channel or the concave portion for the liquid chromatograph. However, depending on the components of the adhesive, there is also a problem of contamination of the object to be detected.

又、粘着テープで接着する方法は簡便ではあるが、粘着テープを構成する粘着剤は耐薬品性が低いのでマイクロリアクター内で使用可能な試薬が制限される、粘着剤の接着力が低いので圧力がかかると液漏れをおこすので、マイクロリアクター化されるプロセスが制限される等の欠点があった。   Although the method of bonding with an adhesive tape is simple, the pressure-sensitive adhesive constituting the pressure-sensitive adhesive tape has low chemical resistance, which limits the reagents that can be used in the microreactor. When this occurs, the liquid leaks, so that there are disadvantages such as the restriction of the microreactor process.

本発明の目的は、上記欠点に鑑み、微細流路や液体クロマトグラフ用カラムに接着剤等が詰まることなく、複数の熱可塑性樹脂基板が強固に接着され、その間に微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターを容易且つ安価に製造する方法を提供することにある。   In view of the above-mentioned drawbacks, the object of the present invention is that a plurality of thermoplastic resin substrates are firmly bonded without clogging an adhesive or the like in a fine flow path or a liquid chromatograph column, and the fine flow path and / or liquid are interposed therebetween. An object of the present invention is to provide a method for easily and inexpensively producing a microreactor in which a chromatographic column is formed.

請求項1記載のマイクロリアクターの製造方法は、複数の熱可塑性樹脂基板が積層され、その間に、幅及び深さが0.1〜10000μmの微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターの製造方法であって、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板又はそれに積層される熱可塑性樹脂基板のいずれか一方に、積層した際に微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように、底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されており、両方の熱可塑性樹脂基板を積層し、積算発振エネルギー200ws以下、発振時間5秒以下、熱可塑性樹脂基板の押
さえ圧力0.1〜10kg/cm2 の条件で超音波融着することを特徴とする。
The method for producing a microreactor according to claim 1, wherein a plurality of thermoplastic resin substrates are laminated, and a fine flow path and / or a liquid chromatograph column section having a width and depth of 0.1 to 10,000 μm are formed between them. A method of manufacturing a microreactor, wherein the microreactor and / or a liquid chromatograph column part is provided with a recess for a liquid crystal column or a thermoplastic resin substrate laminated thereon. , Ultrasonic fusion of ridges having a bottom width of 0.01 to 0.5 mm and a height of 0.01 to 0.5 mm so as to surround the periphery of the fine flow path and / or the liquid chromatograph column when stacked. The thermoplastic resin substrate is laminated, the accumulated oscillation energy is 200 ws or less, the oscillation time is 5 seconds or less, and the pressing pressure of the thermoplastic resin substrate is 0.1 to 10 kg / c. Characterized by ultrasonic welding at a second condition.

本発明で使用される基板の素材は、超音波融着することにより積層するのであるから熱可塑性樹脂である。
上記熱可塑性樹脂の種類は、特に限定されるものではないが、超音波融着がし易く、加熱により簡単に表面加工出来る樹脂が好ましく、例えば、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ乳酸系樹脂、ポリメチルメタクリレートなどのポリアクリル系樹脂、ポリカーボネート系樹脂、ポリジメチルシロキサンなどのシリコン系樹脂等が挙げられる。
The substrate material used in the present invention is a thermoplastic resin because it is laminated by ultrasonic fusion.
The type of the thermoplastic resin is not particularly limited, but is preferably a resin that is easily ultrasonically fused and can be easily surface-treated by heating. For example, a polyolefin resin such as polyethylene resin or polypropylene resin, polystyrene Examples thereof include polyacrylic resins such as polyresin, polylactic acid resin, and polymethyl methacrylate, polycarbonate resins, and silicon resins such as polydimethylsiloxane.

マイクロリアクターとして、様々な流体を用いる場合は、耐酸性、耐アルカリ性、耐薬品性等の優れたポリオレフィン系樹脂が好ましく、マイクロリアクターの内部状態を光学的測定方法で測定する場合は、光線透過性の優れたポリアクリル系樹脂が好ましい。   When using various fluids as the microreactor, polyolefin resin with excellent acid resistance, alkali resistance, chemical resistance, etc. is preferable. When measuring the internal state of the microreactor with an optical measurement method, light transmittance Are preferred.

又、耐候性、機械的強度、耐薬品性等を向上させるために各種試薬、添加剤等が添加されてもよい。   Various reagents and additives may be added to improve weather resistance, mechanical strength, chemical resistance, and the like.

又、基板の大きさは特に限定されるものではないが、大きくなるとマイクロリアクターとしてのハンドリング性が低下するので400cm2 以下が好ましく、厚さは0.01〜100mmが好ましい。厚さが薄くなると、基板がフィルム又はシート状になる。 Further, the size of the substrate is not particularly limited, but if it becomes larger, the handling property as a microreactor is lowered, so that it is preferably 400 cm 2 or less, and the thickness is preferably 0.01 to 100 mm. As the thickness decreases, the substrate becomes a film or sheet.

本発明においては、複数の熱可塑性樹脂基板が積層され、その間に、微細流路及び/又は液体クロマトグラフ用カラムが形成されている。微細流路液体及びクロマトグラフ用カラムの幅及び深さは、小さくなると液体を輸送する際に圧力損失により送液が困難になり、大きくなると、微細流路内を流れる液体の流れが不均一になったり、測定するための試料が多量に必要になり測定が困難になるので、0.1〜10000μmであり、好ましくは10〜3000μmであり、より好ましくは50〜1000μmである。   In the present invention, a plurality of thermoplastic resin substrates are laminated, and a fine channel and / or a liquid chromatograph column are formed between them. When the width and depth of the microchannel liquid and the chromatographic column are reduced, it becomes difficult to send the liquid due to pressure loss when transporting the liquid, and when the width and depth are increased, the flow of the liquid flowing in the microchannel becomes uneven. Or a large amount of a sample for measurement is required, which makes measurement difficult. Therefore, the thickness is 0.1 to 10,000 μm, preferably 10 to 3000 μm, and more preferably 50 to 1000 μm.

上記液体クロマトグラフ用カラム部は、微細流路に挟まれて形成されており、カラム部に液体クロマトグラフ用充填材を充填し、測定物質を含有する液体試料を通過させ、測定物質を吸着させた後、溶離液を通過させ測定物質を離脱させることにより、測定物質の濃縮、分離等の機能を有する領域である。   The liquid chromatograph column section is formed by being sandwiched between fine flow paths. The column section is filled with a liquid chromatograph packing material, and a liquid sample containing a measurement substance is allowed to pass through to adsorb the measurement substance. After that, it is a region having functions such as concentration and separation of the measurement substance by allowing the eluent to pass and releasing the measurement substance.

上記液体クロマトグラフ用カラム部の形状は、特に限定されないが、液体試料や溶離液が均一に流入あるいは流出するように、微細流路側から液体クロマトグラフ用カラム部の入口方向あるいは出口方向を見た場合左右対称であるのが好ましい。   The shape of the liquid chromatograph column section is not particularly limited, but the inlet direction or the outlet direction of the liquid chromatograph column section is viewed from the fine channel side so that the liquid sample and the eluent flow in or out uniformly. In this case, it is preferable to be symmetrical.

又、液体クロマトグラフ用カラム部の体積は、特に限定されないが、使用する際に想定される目的の測定物質及びマトリックスの最大量より、カラム部での分離、吸着必要量を想定し、大きさを決定すればよい。   The volume of the liquid chromatograph column is not particularly limited, but it is assumed that the required amount of separation and adsorption in the column is greater than the maximum amount of the target measurement substance and matrix expected when used. Can be determined.

上記液体クロマトグラフ用カラム部には液体クロマトグラフ用充填材が充填される。液体クロマトグラフ用カラム部に液体クロマトグラフ用充填材を充填する方法は、例えば、一方の熱可塑性樹脂基板に液体クロマトグラフ用カラム部に連通した充填材注入口を穿設し、液体クロマトグラフ用充填材の懸濁液を充填したディスペンサーを充填材注入口に接続し加圧して液体クロマトグラフ用充填材の懸濁液を液体クロマトグラフ用カラム部に注入し、注入後、シール材で充填材注入口を封止する方法が挙げられる。   The liquid chromatograph column is filled with a liquid chromatograph filler. The method for filling the liquid chromatograph column with the liquid chromatograph filler is, for example, by forming a filler inlet communicating with the liquid chromatograph column on one of the thermoplastic resin substrates and using the liquid chromatograph filler. A dispenser filled with the suspension of the filler is connected to the filler inlet and pressurized to inject the suspension of the filler for liquid chromatography into the column for the liquid chromatograph. After injection, the filler is filled with a sealant. The method of sealing an injection port is mentioned.

液体クロマトグラフ用充填材は、一般に液体クロマトグラフで使用されている微粒子の充填剤であれば特に限定されず、例えば、スチレン−ジビニルベンゼン共重合体、ポリメ
タクリレート樹脂、ポリヒドロキシメタクリレート樹脂、ポリビニルアルコール、シリカ、アルミナ等の微粒子が挙げられる。
The packing material for liquid chromatography is not particularly limited as long as it is a filler for fine particles generally used in liquid chromatography. For example, styrene-divinylbenzene copolymer, polymethacrylate resin, polyhydroxymethacrylate resin, polyvinyl alcohol , Fine particles such as silica and alumina.

又、スチレン−ジビニルベンゼン共重合体、ポリメタクリレート樹脂、ポリヒドロキシメタクリレート樹脂、ポリビニルアルコール、シリカ、アルミナなどの液体クロマトグラフィーで用いられる担体材料、ポリエチレン、ポリプロピレン及びエチレンープロピレン共重合体等に代表されるポリオレフィン;エチレンーテトラフルオロエチレン共重合体、エチレンークロロトリフルオロエチレン共重合体に代表されるオレフィン−ハロゲン化オレフィン共重合体;ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等に代表されるハロゲン化ポリオレフィン及びポリスルホン等;セルロース系の多孔膜等の多孔質膜材料、綿や麻などの植物性繊維;絹や羊毛などの動物性繊維に代表される各種の天然繊維あるいは再生繊維;ポリエステル繊維やポリアミド繊維等の各種合成繊維等の繊維状材料、多孔質セラミック、多孔質ガラス等のモノリス型多孔質無機材料あるいは;ポリアクリルアミドゲル、スチレンジビニルベンゼン共重合体等を多孔質化したモノリス型多孔質有機材料等の担体に、液体試料内の目的とする測定物質と、例えば、物理的吸着や、イオン結合、配位結合、キレート結合、疎水性相互作用、分子内極性による相互作用等の相互作用する官能基や原子団を固定化した充填材であってもよい。   Typical examples include styrene-divinylbenzene copolymer, polymethacrylate resin, polyhydroxymethacrylate resin, polyvinyl alcohol, silica, carrier materials used in liquid chromatography such as alumina, polyethylene, polypropylene, and ethylene-propylene copolymers. Polyolefins; olefin-halogenated olefin copolymers typified by ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer; polytetrafluoroethylene, polyvinylidene fluoride, polychlorotrifluoroethylene, etc. Representative halogenated polyolefins and polysulfones, etc .; porous membrane materials such as cellulosic porous membranes; plant fibers such as cotton and hemp; various natural fibers typified by animal fibers such as silk and wool Recycled fibers; fibrous materials such as various synthetic fibers such as polyester fibers and polyamide fibers; monolithic porous inorganic materials such as porous ceramics and porous glass; or polyacrylamide gel, styrene divinylbenzene copolymer, etc. To a carrier such as a porous monolithic porous organic material, the target measurement substance in a liquid sample, for example, physical adsorption, ionic bond, coordination bond, chelate bond, hydrophobic interaction, intramolecular It may be a filler in which an interacting functional group or atomic group such as an interaction due to polarity is fixed.

液体クロマトグラフ用カラム部の上流側入口付近及び下流側出口付近に、液体クロマトグラフ用カラム部に充填された液体クロマトグラフ用充填材が、液体クロマトグラフ用カラム部から流出することを防止するためにフィルターが設置されてもよく、フィルターは上記液体クロマトグラフ用充填材の微粒子の平均粒径以下の孔径を有するのが好ましい。   In order to prevent the liquid chromatograph packing material packed in the liquid chromatograph column from flowing out of the liquid chromatograph column near the upstream inlet and the downstream outlet of the liquid chromatograph column A filter may be installed, and the filter preferably has a pore size equal to or smaller than the average particle size of the fine particles of the liquid chromatographic filler.

上記フィルターの材料としては、カラム部に充填されている液体クロマトグラフ用充填材の微粒子の平均粒径以下の孔径を有し、液体クロマトグラフで使用される溶媒に対して溶解しない材料であれば、特に限定されず、例えば、ステンレス、ガラス、シリカ、ポリエーテルエーテルケトン、ポリビニリデンジフロライド、ポリテトラフルオロエチレン、ポリカーボネート、ポリエチレン、ポリプロピレン、セルロース混合エステル、ポリエチレンテレフタレート等が挙げられる。   The material of the filter is a material that has a pore diameter equal to or smaller than the average particle diameter of the liquid chromatographic packing material packed in the column portion and does not dissolve in the solvent used in the liquid chromatograph. There are no particular limitations, and examples include stainless steel, glass, silica, polyether ether ketone, polyvinylidene difluoride, polytetrafluoroethylene, polycarbonate, polyethylene, polypropylene, cellulose mixed ester, and polyethylene terephthalate.

上記材料を主材料とするメンブレンフィルター、ガラス繊維濾紙、モノリス状ガラス、モノリス状ポリマーを適当なフィルター形状、例えば短冊状に切断、あるいは同形状に成形することにより、簡便にフィルターを作製できる。   A filter can be easily produced by cutting a membrane filter, glass fiber filter paper, monolithic glass, or monolithic polymer containing the above material as a main material into an appropriate filter shape, for example, a strip shape, or forming the same shape.

上記材料を前述の孔径を有する状態で、例えば、短冊状に成形することにより、フィルターとして使用することができる。   The above-mentioned material can be used as a filter by forming it into a strip shape, for example, in a state having the aforementioned pore diameter.

液体試料や溶離液を液体クロマトグラフに供給する際には液体試料や溶離液は層流の状態で供給されるのが好ましいが、フィルターの厚みが厚くなると、液体試料や溶離液の流れが乱され、乱流になり易いので、流入出口に接するフィルターの断面積は10mm2 以下が好ましく、より好ましくは1mm2 以下である。 When supplying a liquid sample or eluent to a liquid chromatograph, it is preferable to supply the liquid sample or eluent in a laminar flow state. However, as the filter becomes thicker, the flow of the liquid sample or eluent is disturbed. The cross-sectional area of the filter in contact with the inflow / outlet is preferably 10 mm 2 or less, more preferably 1 mm 2 or less.

微細流路及び/又は液体クロマトグラフ用カラムを形成するには、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板と、他の熱可塑性樹脂基板を積層すればよく、他の熱可塑性樹脂基板は微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されていてもよいし、形成されていなくてもよい。   In order to form a microchannel and / or a liquid chromatograph column, a thermoplastic resin substrate having a recess for the microchannel and / or liquid chromatograph column and another thermoplastic resin substrate are formed. What is necessary is just to laminate | stack, and the recessed part for the column part for liquid chromatographs and / or other thermoplastic resin substrates may be formed, and it does not need to be formed.

しかし、両方の熱可塑性樹脂基板に微細流路及び/又は液体クロマトグラフ用カラム部用の凹部を形成することは面倒であり、コストがかかるので、微細流路及び/又は液体ク
ロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板と、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されていない他の熱可塑性樹脂基板を積層し、他の熱可塑性樹脂基板で微細流路及び/又は液体クロマトグラフ用カラム部用の凹部を覆うことにより、微細流路及び/又は液体クロマトグラフ用カラムを形成するのが好ましく、この場合、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部の幅及び深さは、0.1〜10000μmであり、好ましくは10〜3000μmであり、より好ましくは50〜1000μmである。
However, it is cumbersome and costly to form the recesses for the fine flow path and / or the liquid chromatograph column on both thermoplastic resin substrates, so the fine flow path and / or the liquid chromatograph column Laminate a thermoplastic resin substrate in which a concave portion is formed and another thermoplastic resin substrate in which a concave portion for a microchannel and / or a column portion for liquid chromatography is not formed, to form another thermoplastic resin substrate It is preferable to form the fine channel and / or the liquid chromatograph column by covering the concave portion for the fine channel and / or the liquid chromatograph column with, in this case, in this case, the fine channel and / or the liquid chromatograph The width and depth of the concave portion for the graph column is 0.1 to 10,000 μm, preferably 10 to 3000 μm, more preferably 50 to 1000 μm. That.

本発明においては、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板又はそれに積層される熱可塑性樹脂基板のいずれか一方に、積層した際に微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように、底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されている。   In the present invention, when the fine flow path and / or the thermoplastic resin substrate on which the concave portion for the column portion for liquid chromatography is formed or the thermoplastic resin substrate laminated thereon, the fine flow when laminated. A convex ultrasonic fusion part having a bottom face width of 0.01 to 0.5 mm and a height of 0.01 to 0.5 mm is formed so as to surround the periphery of the path and / or the column part for liquid chromatography. .

凸条の超音波融着部の断面形状は、超音波で先端部が溶融して他の熱可塑性樹脂基板と接着するのであるから、先端部が尖った形状が好ましく、例えば、略二等辺三角形、略正三角形、略直角三角形、円形、楕円形等が挙げられ、略二等辺三角形、略正三角形又は略直角三角形が好ましい。   The cross-sectional shape of the ultrasonic welded portion of the ridge is preferable because the tip is melted and bonded to another thermoplastic resin substrate by ultrasonic waves, and the tip is sharp, for example, an approximately isosceles triangle A substantially equilateral triangle, a substantially right triangle, a circle, an ellipse and the like, and a substantially isosceles triangle, a substantially regular triangle or a substantially right triangle is preferable.

凸条の超音波融着部の幅及び高さは、幅が狭くなったり、高さが低くなると溶融樹脂量が少なくなり、接着が不充分になり、逆に幅が広くなったり、高さが高くなると、溶融樹脂が多くなって、微細流路及び/又は液体クロマトグラフ用カラム部に流入して微細流路及び/又は液体クロマトグラフ用カラム部の閉塞や体積の減少を引き起こし、マイクロリアクターとしての所望の性能を発揮できなくなったり、未溶融部が発生し、微細流路及び/又は液体クロマトグラフ用カラム部の深さが深くなり、その流量を制御しにくくなるので、底面幅は0.01〜0.5mmであり、高さは0.01〜0.5mmである。   The width and height of the ultrasonic welded portion of the ridge are reduced in width or reduced in height, the amount of molten resin decreases, adhesion becomes insufficient, and conversely the width increases or increases in height. As the flow rate increases, the amount of molten resin increases and flows into the microchannel and / or liquid chromatograph column, causing blockage of the microchannel and / or liquid chromatograph column and a decrease in volume. As a result, it becomes impossible to exhibit the desired performance as a non-melted part, the depth of the fine flow path and / or the liquid chromatograph column becomes deep, and it becomes difficult to control the flow rate. 0.01 to 0.5 mm, and the height is 0.01 to 0.5 mm.

又、凸条の超音波融着部が微細流路及び/又は液体クロマトグラフ用カラム部に近すぎると超音波融着する際に、溶融樹脂が微細流路及び/又は液体クロマトグラフ用カラム部に流入して微細流路及び/又は液体クロマトグラフ用カラム部の閉塞や体積の減少を引き起こし、マイクロリアクターとしての所望の性能を発揮できなくなり、逆に、遠すぎると所望の微細流路及び/又は液体クロマトグラフ用カラム部の体積より大幅なズレがでるので流れの管理が困難になるので、微細流路及び/又は液体クロマトグラフ用カラム部と、凸条の超音波融着部の底面端部との間隔は0.05〜2mmが好ましい。   Further, when the ultrasonic fusion part of the ridges is too close to the fine flow path and / or the liquid chromatograph column part, the molten resin becomes a fine flow path and / or the liquid chromatograph column part when the ultrasonic fusion is performed. Into the flow path of the liquid chromatograph and / or the liquid chromatograph column and block the volume of the liquid chromatograph, and the desired performance as a microreactor cannot be achieved. Alternatively, since the flow is difficult to control because the displacement is much larger than the volume of the liquid chromatograph column, the bottom end of the fine channel and / or liquid chromatograph column and the ultrasonic fusion part of the ridge The distance from the part is preferably 0.05 to 2 mm.

凸条の超音波融着部は微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように形成されているので、最低4箇所の屈曲部を有することになるが、屈曲部の角度が90度に設計するのは困難であり、屈曲部の熱可塑性樹脂を超音波エネルギーで溶融するのは他の部分に比較し困難であり、接着不良を起こす可能性があるので、屈曲部は緩やかな曲面であるのが好ましく、曲率半径が0.01〜1.0mmであるのが好ましい。   Since the ultrasonic fusion part of the ridge is formed so as to surround the fine channel and / or the liquid chromatograph column part, it has at least four bent parts. Is difficult to design at 90 degrees, and it is difficult to melt the thermoplastic resin of the bent portion with ultrasonic energy as compared with other portions, which may cause poor adhesion. A gentle curved surface is preferable, and a radius of curvature is preferably 0.01 to 1.0 mm.

上記熱可塑性樹脂基板には、両方の熱可塑性樹脂基板を積層する際に位置決めが容易になされ、超音波融着する際に熱可塑性樹脂基板がずれないように、熱可塑性樹脂基板のいずれか一方に、底面幅0.01〜5mm、高さ0.001〜5mmの凸状の固定部が形成され、他方の熱可塑性樹脂基板に該固定部が嵌合されうる凹部が形成されているのが好ましい。   Either one of the thermoplastic resin substrates is positioned on the thermoplastic resin substrate so that positioning is easy when the two thermoplastic resin substrates are laminated, and the thermoplastic resin substrate is not displaced when ultrasonically fusing. In addition, a convex fixed portion having a bottom width of 0.01 to 5 mm and a height of 0.001 to 5 mm is formed, and a concave portion into which the fixed portion can be fitted is formed on the other thermoplastic resin substrate. preferable.

上記凸状の固定部の平面形状は、特に限定されるものではなく、例えば、正方形、長方形、三角形、六角形、星形、円形、長円形等が挙げられ、熱可塑性樹脂基板の任意の位置に形成されればよい。又、長尺の凸条であってもよいし、微細流路及び/又は液体クロマ
トグラフ用カラム部の周囲を囲むように形成されててもよい。固定部の底面と上面は同一面積であってもよいし、底面から上面に行くに従って次第に面積が小さくなっていてもよい。
The planar shape of the convex fixing part is not particularly limited, and examples thereof include a square, a rectangle, a triangle, a hexagon, a star, a circle, and an oval, and any position of the thermoplastic resin substrate. What is necessary is just to form. Further, it may be a long ridge, or may be formed so as to surround the periphery of the fine channel and / or the column portion for liquid chromatography. The bottom surface and the top surface of the fixed portion may have the same area, or the area may gradually decrease from the bottom surface to the top surface.

上記凹部の形状は、上記凸状の固定部が嵌合されうる形状であればよいが、凸状の固定部と凹部が接していると、超音波融着する際に、超音波により接触部分が溶融され、超音波エネルギーが無駄に消費されることになるので、凹部の深さは凸状の固定部の高さより深く、凹部の幅は凸状の固定部の幅より広くなされ、両方の熱可塑性樹脂基板を積層した際に、固定部と凹部の間に実質的に空隙が形成されているのが好ましい。   The shape of the concave portion may be any shape that allows the convex fixing portion to be fitted. However, when the convex fixing portion and the concave portion are in contact, when the ultrasonic fusion is performed, the contact portion is formed by ultrasonic waves. Is melted and ultrasonic energy is wasted, so the depth of the recess is deeper than the height of the convex fixing part, and the width of the concave part is wider than the width of the convex fixing part. It is preferable that a gap is substantially formed between the fixed portion and the recess when the thermoplastic resin substrate is laminated.

この空隙の間隔は少しあればよく、大きくなると両方の熱可塑性樹脂基板を積層した際に、熱可塑性樹脂基板がずれ位置決めが正確になされなくなるので、0.01〜0.1mmが好ましい。   The space between the gaps may be small, and if it is large, the thermoplastic resin substrates will be displaced and positioning will not be performed accurately when both of the thermoplastic resin substrates are laminated, so 0.01 to 0.1 mm is preferable.

本発明においては、上記両方の熱可塑性樹脂基板を積層し、積算発振エネルギー200ws以下、発振時間5秒以下、熱可塑性樹脂基板の押さえ圧力0.1〜10kg/cm2 の条件で超音波融着する。 In the present invention, both the above thermoplastic resin substrates are laminated, and ultrasonic fusion is performed under the conditions of an integrated oscillation energy of 200 ws or less, an oscillation time of 5 seconds or less, and a pressing pressure of the thermoplastic resin substrate of 0.1 to 10 kg / cm 2. To do.

超音波融着の際の積算発振エネルギーは、大きくなると超音波融着部以外の部分が溶融したり、熱可塑性樹脂基板が変形するようになるので、200ws以下であり、好ましくは50ws以下である。   The accumulated oscillation energy at the time of ultrasonic welding is 200 ws or less, preferably 50 ws or less, because a portion other than the ultrasonic fusing part melts or the thermoplastic resin substrate is deformed when it becomes large. .

超音波融着の際の発振時間も、長くなると超音波融着部以外の部分が溶融したり、熱可塑性樹脂基板が変形するようになるので、5秒以下であり、好ましくは1秒以下である。   The oscillation time during ultrasonic welding is also 5 seconds or less, preferably 1 second or less, because the part other than the ultrasonic fusion part is melted or the thermoplastic resin substrate is deformed when it becomes long. is there.

更に、超音波融着の際には接着すべき熱可塑性樹脂基板同士を加圧して押さえつける必要があるが、圧力が低くなると接着強度が低下し、圧力が高くなると熱可塑性樹脂基板が割れたり変形するので、熱可塑性樹脂基板の押さえ圧力は0.1〜10kg/cm2 である。 Furthermore, it is necessary to press and hold the thermoplastic resin substrates to be bonded together during ultrasonic fusion, but the adhesive strength decreases when the pressure is lowered, and the thermoplastic resin substrate is cracked or deformed when the pressure is increased. Therefore, the pressing pressure of the thermoplastic resin substrate is 0.1 to 10 kg / cm 2 .

次に図面を参照して説明する。図1は微細流路及び液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板の一例を示す平面図であり、図2は図1におけるA−A断面図である。   Next, a description will be given with reference to the drawings. FIG. 1 is a plan view showing an example of a thermoplastic resin substrate on which a microchannel and a recess for a liquid chromatograph column are formed, and FIG. 2 is a cross-sectional view taken along line AA in FIG.

熱可塑性樹脂基板1は縦30mm、横50mm、厚さ1mmであり、略中央に幅2mm、深さ0.2mm、長さ30mmの液体クロマトグラフ用カラム部用の凹部2が形成されている。液体クロマトグラフ用カラム部用の凹部2の両端部には、幅1mm、深さ0.3mm、長さ20mmの濾紙設置部用の凹部3、3を介して、幅1mm、深さ0.2mm、長さ約7mmの微細流路用の凹部4、4が形成されている。   The thermoplastic resin substrate 1 has a length of 30 mm, a width of 50 mm, and a thickness of 1 mm, and a recess 2 for a liquid chromatograph column having a width of 2 mm, a depth of 0.2 mm, and a length of 30 mm is formed in the approximate center. At both ends of the recess 2 for the liquid chromatograph column, through the recesses 3 and 3 for the filter paper installation part having a width of 1 mm, a depth of 0.3 mm, and a length of 20 mm, the width is 1 mm and the depth is 0.2 mm. The recesses 4 and 4 for the fine flow path having a length of about 7 mm are formed.

微細流路用凹部4、4の一方の端部には試料及び溶離液注入口5が穿設され、他方の端部には液体排出口6が穿設されている。又、液体クロマトグラフ用カラム部用の凹部2の端部には液体クロマトグラフ用充填材注入口7が穿設されている。更に、熱可塑性樹脂基板1の周辺付近には、縦2.1mm、横2.1mm、高さ0.2mmの角柱状の固定部8、8・・が形成されている。   A sample and eluent inlet 5 is drilled at one end of the microchannel recesses 4, 4, and a liquid outlet 6 is drilled at the other end. A liquid chromatograph filler inlet 7 is formed at the end of the recess 2 for the liquid chromatograph column. Further, in the vicinity of the periphery of the thermoplastic resin substrate 1, prismatic fixing portions 8, 8,... Having a length of 2.1 mm, a width of 2.1 mm, and a height of 0.2 mm are formed.

図3は微細流路及び液体クロマトグラフ用カラム部用の凹部が形成されていない熱可塑性樹脂基板の一例を示す平面図であり、図4は図2におけるB−B断面図である。   FIG. 3 is a plan view showing an example of a thermoplastic resin substrate in which a microchannel and a recess for a liquid chromatograph column are not formed, and FIG. 4 is a cross-sectional view taken along line BB in FIG.

熱可塑性樹脂基板9は縦30mm、横50mm、厚さ1mmであり、略中央に底面1m
m、高さ0.5mmの断面形状が二等辺三角形の凸条である超音波融着部10が形成されている。、超音波融着部10は、熱可塑性樹脂基板1と熱可塑性樹脂基板9を積層した際に、液体クロマトグラフ用カラム部用の凹部2、濾紙設置部用の凹部3及び微細流路用の凹部4の周囲を0.5mmの間隔で囲むように形成されている。
The thermoplastic resin substrate 9 has a length of 30 mm, a width of 50 mm, and a thickness of 1 mm.
The ultrasonic fusion bonding part 10 which is a protrusion with an isosceles triangle having a sectional shape of m and a height of 0.5 mm is formed. When the thermoplastic resin substrate 1 and the thermoplastic resin substrate 9 are laminated, the ultrasonic fusion part 10 is provided with a concave part 2 for a liquid chromatograph column part, a concave part 3 for a filter paper installation part, and a fine channel part. It is formed so as to surround the periphery of the recess 4 at intervals of 0.5 mm.

又、熱可塑性樹脂基板9の周辺付近には、縦2.2mm、横2.2mm、深さ0.21mmの角柱状の凹部11、11・・が、熱可塑性樹脂基板1と熱可塑性樹脂基板9を積層した際に、熱可塑性樹脂基板1の固定部8、8・・が嵌合可能に形成されている。   Further, in the vicinity of the periphery of the thermoplastic resin substrate 9, there are prismatic concave portions 11, 11,... Having a length of 2.2 mm, a width of 2.2 mm, and a depth of 0.21 mm, and the thermoplastic resin substrate 1 and the thermoplastic resin substrate. When the 9 is laminated, the fixing portions 8, 8... Of the thermoplastic resin substrate 1 are formed so as to be fitted.

マイクロリアクターを形成するには、凹部3にフィルターを設置した後、上記熱可塑性樹脂基板1と熱可塑性樹脂基板9の上面を対向させ、固定部8、8・・を凹部11、11・・に嵌合し、上記超音波融着条件で接着し、注入口7からクロマトグラフ用充填剤を充填すればよく、その結果、熱可塑性樹脂基板1と熱可塑性樹脂基板9の間に微細流路、液体クロマトグラフ用カラム部及び濾紙設置部が形成されているマイクロリアクターが得られる。   In order to form a microreactor, after a filter is installed in the recess 3, the upper surfaces of the thermoplastic resin substrate 1 and the thermoplastic resin substrate 9 are opposed to each other, and the fixing portions 8, 8,. It only has to be fitted and bonded under the above-mentioned ultrasonic fusing conditions and filled with a chromatographic filler from the inlet 7, and as a result, a fine flow path between the thermoplastic resin substrate 1 and the thermoplastic resin substrate 9, A microreactor having a liquid chromatograph column section and a filter paper installation section is obtained.

尚、マイクロリアクターが3枚以上の熱可塑性樹脂基板で形成されている場合には、隣り合う熱可塑性樹脂基板のいずれかを微細流路及び液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板と微細流路及び液体クロマトグラフ用カラム部用の凹部が形成されていない熱可塑性樹脂基板として理解して積層することによりマイクロリアクターを形成すればよい。   In the case where the microreactor is formed of three or more thermoplastic resin substrates, a microchannel and a recess for a liquid chromatograph column are formed in one of the adjacent thermoplastic resin substrates. What is necessary is just to form a microreactor by understanding and laminating | stacking as a thermoplastic resin substrate in which the recessed part for the micro resin flow path and the column part for liquid chromatographs is not formed.

請求項6記載のマイクロリアクターの製造方法は、複数の熱可塑性樹脂基板が積層され、その間に、幅及び深さが0.1〜10000μmの微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターの製造方法であって、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板又はそれに積層される熱可塑性樹脂基板の少なくとも一方に、積層した際に微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように、底面幅0.01〜5mm、高さ0.001〜5mmの凸条の固定部が形成され、その上に底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されており、他方の熱可塑性樹脂基板に該固定部及び超音波融着部が嵌合されうる凹条が形成されており、両方の熱可塑性樹脂基板を積層し、積算発振エネルギー200ws以下、発振時間5秒以下、熱可塑性樹脂基板の押さえ圧力0.1〜10kg/cm2 の条件で超音波融着することを特徴とする。 The method for producing a microreactor according to claim 6, wherein a plurality of thermoplastic resin substrates are laminated, and a fine channel and / or a liquid chromatograph column having a width and a depth of 0.1 to 10,000 μm are formed between them. A microreactor manufacturing method, wherein at least one of a thermoplastic resin substrate on which a microchannel and / or a recess for a liquid chromatograph column is formed or a thermoplastic resin substrate laminated thereon, A ridged fixed portion having a bottom width of 0.01 to 5 mm and a height of 0.001 to 5 mm is formed so as to surround the fine flow path and / or the liquid chromatograph column when stacked. Is formed with a convex ultrasonic fusion part having a bottom width of 0.01 to 0.5 mm and a height of 0.01 to 0.5 mm, and the fixing part and ultrasonic fusion are provided on the other thermoplastic resin substrate. Part Are engaged that may be concave stripes formed, both of the thermoplastic resin substrate is laminated, integrated oscillation energy 200ws hereinafter oscillation time 5 seconds or less, the thermoplastic resin substrate pressing pressure 0.1 to 10 / cm 2 conditions It is characterized by ultrasonic welding.

以下、請求項1〜5記載のマイクロリアクターの製造方法と異なる点のみ説明する。
本発明においては、熱可塑性樹脂基板のいずれか一方に、凸条の固定部が形成され、その上に凸条の超音波融着部が形成されており、他方の熱可塑性樹脂基板に該固定部及び超音波融着部が嵌合されうる凹条が形成されている。
Hereinafter, only differences from the microreactor manufacturing method according to claims 1 to 5 will be described.
In the present invention, a convex fixing portion is formed on any one of the thermoplastic resin substrates, and a convex ultrasonic fusion portion is formed thereon, and the fixing is performed on the other thermoplastic resin substrate. A recess is formed in which the portion and the ultrasonic fusion portion can be fitted.

上記固定部は、両方の熱可塑性樹脂基板を積層する際に位置決めが容易になされ、超音波融着する際に熱可塑性樹脂基板がずれないようにするためのものであり、熱可塑性樹脂基板のいずれか一方に、底面幅0.01〜5mm、高さ0.001〜5mmの凸条が積層した際に微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように形成されている。   The fixing part is for easy positioning when laminating both thermoplastic resin substrates, and for preventing the thermoplastic resin substrate from shifting when ultrasonically fusing. When either one of the protrusions having a bottom surface width of 0.01 to 5 mm and a height of 0.001 to 5 mm is laminated, it is formed so as to surround the periphery of the fine channel and / or the liquid chromatograph column. .

上記凸条の固定部の断面形状は、特に限定されるものではないが、その上に底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されるので、矩形又は台形が好ましい。   The cross-sectional shape of the fixed portion of the ridge is not particularly limited, but the ultrasonic fusion of the ridge having a bottom surface width of 0.01 to 0.5 mm and a height of 0.01 to 0.5 mm is provided thereon. Since a part is formed, a rectangle or a trapezoid is preferable.

上記凸条の固定部の幅は小さくなると、その上に超音波融着部を形成しにくくなり、広
くなると微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように形成しにくくなるので、底面幅は0.01〜0.5mmである。
When the width of the fixed portion of the ridge is reduced, it is difficult to form an ultrasonic fusion portion thereon, and when the width is widened, it is difficult to form so as to surround the microchannel and / or the liquid chromatograph column portion. Therefore, the bottom face width is 0.01 to 0.5 mm.

又、凸条の固定部の高さは、低くなると、両方の熱可塑性樹脂基板を積層する際に位置決めが困難になり、高くなると凹条を深くする必要がありマイクロリアクターの厚みを厚くしなければならず使い勝手が悪く不経済的なので0.01〜0.5mmである。   In addition, if the height of the fixed portion of the ridge is lowered, positioning becomes difficult when laminating both thermoplastic resin substrates, and if it is higher, the ridge must be deepened and the thickness of the microreactor must be increased. Since it is inconvenient and uneconomical, it is 0.01 to 0.5 mm.

凸条の固定部の上には底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されているが、超音波融着部の断面形状は、超音波で先端部が溶融して他の熱可塑性樹脂基板と接着するのであるから、先端部が尖った形状が好ましく、例えば、略二等辺三角形、略正三角形、略直角三角形、円形、楕円形等が挙げられ、略二等辺三角形、略正三角形又は略直角三角形が好ましい。   On the fixed portion of the ridge, there is formed an ultrasonic fusion portion of a ridge having a bottom width of 0.01 to 0.5 mm and a height of 0.01 to 0.5 mm. The cross-sectional shape is that the tip is melted and bonded to another thermoplastic resin substrate with ultrasonic waves, and therefore the tip is preferably sharp, for example, an approximately isosceles triangle, an approximately equilateral triangle, an approximately right triangle, A circle, an ellipse, etc. are mentioned, A substantially isosceles triangle, a substantially equilateral triangle, or a substantially right triangle is preferable.

凸条の超音波融着部の幅及び高さは、幅が狭くなったり、高さが低くなると溶融樹脂量が少なくなり、接着が不充分になり、逆に幅が広くなったり、高さが高くなると、溶融樹脂が多くなって、微細流路及び/又は液体クロマトグラフ用カラム部に流入して微細流路及び/又は液体クロマトグラフ用カラム部の閉塞や体積の減少を引き起こし、マイクロリアクターとしての所望の性能を発揮できなくなったり、未溶融部が発生し、微細流路及び/又は液体クロマトグラフ用カラム部の深さが深くなり、その流量を制御しにくくなるので、底面幅は0.01〜0.5mmであり、高さは0.01〜0.5mmである。   The width and height of the ultrasonic welded portion of the ridge are reduced in width or reduced in height, the amount of molten resin decreases, adhesion becomes insufficient, and conversely the width increases or increases in height. As the flow rate increases, the amount of molten resin increases and flows into the microchannel and / or liquid chromatograph column, causing blockage of the microchannel and / or liquid chromatograph column and a decrease in volume. As a result, it becomes impossible to exhibit the desired performance as a non-melted part, the depth of the fine flow path and / or the liquid chromatograph column becomes deep, and it becomes difficult to control the flow rate. 0.01 to 0.5 mm, and the height is 0.01 to 0.5 mm.

又、凸条の固定部と凸条の超音波融着部の断面形状が一体として、略二等辺三角形、略正三角形又は略直角三角形になされてもよく、この場合の底面幅は0.01〜mm、高さは0.011〜5.5mmになされるのが好ましい。   Further, the cross-sectional shapes of the fixed portion of the ridge and the ultrasonic fused portion of the ridge may be integrated to form a substantially isosceles triangle, a regular regular triangle, or a substantially right triangle. In this case, the bottom surface width is 0.01. It is preferable that the height is set to 0.011 to 5.5 mm.

凸条の固定部が微細流路及び/又は液体クロマトグラフ用カラム部に近すぎると超音波融着する際に、溶融樹脂が微細流路及び/又は液体クロマトグラフ用カラム部に流入して微細流路及び/又は液体クロマトグラフ用カラム部の閉塞や体積の減少を引き起こし、マイクロリアクターとしての所望の性能を発揮できなくなり、逆に、遠すぎると、所望の微細流路及び/又は液体クロマトグラフ用カラム部の体積により大幅なズレが出るので流れの管理が困難になるので、微細流路及び/又は液体クロマトグラフ用カラム部と、凸条の固定部の底面端部との間隔は0.05〜2mmが好ましい。   When the fixed portion of the ridge is too close to the fine channel and / or the liquid chromatograph column, the molten resin flows into the fine channel and / or the liquid chromatograph column when the ultrasonic fusion is performed. Clogging of the flow path and / or liquid chromatograph column and reduction of the volume cause the desired performance as a microreactor cannot be exhibited. Conversely, if it is too far, the desired fine flow path and / or liquid chromatograph Since the flow is difficult to control because of the large displacement due to the volume of the column for the column, the distance between the fine channel and / or the liquid chromatograph column and the bottom end of the fixed portion of the ridge is 0. 05-2 mm is preferable.

上記凹部の形状は、上記凸条の固定部が嵌合されうる形状であればよいが、凸状の固定部と凹部が接していると、超音波融着する際に、超音波により接触部分が溶融され、超音波エネルギーが無駄に消費されることになるので、凹部の幅は凸状の固定部の幅より広くなされ、両方の熱可塑性樹脂基板を積層した際に、固定部と凹部の間に実質的に空隙が形成されているのが好ましい。   The shape of the concave portion may be any shape as long as the convex fixing portion can be fitted to the concave portion. When the convex fixing portion and the concave portion are in contact, when the ultrasonic fusion is performed, the contact portion is formed by ultrasonic waves. Is melted and ultrasonic energy is consumed wastefully, the width of the concave portion is made wider than the width of the convex fixing portion, and when both thermoplastic resin substrates are laminated, the fixing portion and the concave portion are It is preferable that a space is substantially formed between them.

この空隙の間隔は少しあればよく、大きくなると両方の熱可塑性樹脂基板を積層した際に、熱可塑性樹脂基板がずれ位置決めが正確になされなくなるので、0.01〜0.1mmが好ましい。   The space between the gaps may be small, and if it is large, the thermoplastic resin substrates will be displaced and positioning will not be performed accurately when both of the thermoplastic resin substrates are laminated, so 0.01 to 0.1 mm is preferable.

又、凹条の深さは、凸条の固定部と凸条の超音波融着部の高さの合計より浅く、両方の熱可塑性樹脂基板を積層した際に、凸条の超音波融着部の先端が凹条底部に当接されるのが好ましく、更に、超音波融着部を超音波溶融して融着した際に凸条の固定部の底面と凹条の表面が面一になるように形成されているのが好ましい。   Further, the depth of the concave stripe is shallower than the total height of the fixed portion of the convex stripe and the height of the ultrasonic fused portion of the convex stripe, and when both thermoplastic resin substrates are laminated, the ultrasonic fusion of the convex stripe is performed. It is preferable that the tip of the part is in contact with the bottom of the groove, and further, the bottom surface of the fixed part of the protrusion and the surface of the groove are flush when the ultrasonic fusion part is fused by ultrasonic fusion. It is preferable to be formed as follows.

次に図面を参照して説明する。図5は液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板の異なる例を示す要部断面図であり、図6は微細流路及び液体
クロマトグラフ用カラム部用の凹部が形成されていない熱可塑性樹脂基板の異なる例を示す要部断面図である。
Next, a description will be given with reference to the drawings. FIG. 5 is a cross-sectional view of the main part showing a different example of the thermoplastic resin substrate on which the recess for the liquid chromatograph column is formed, and FIG. 6 shows the micro channel and the recess for the liquid chromatograph column. It is principal part sectional drawing which shows the example from which the thermoplastic resin board | substrate which is not formed differs.

熱可塑性樹脂基板1’は縦30mm、横50mm、厚さ1mmであり、略中央に幅2mm、深さ0.2mmの液体クロマトグラフ用カラム部用の凹部2’が形成されている。液体クロマトグラフ用カラム部用の凹部2’の両側には、液体クロマトグラフ用カラム部用の凹部2’の端部に沿って0.5mmの間隔で、幅2.1mm、深さ0.22mmの凹条12、12が形成されている。   The thermoplastic resin substrate 1 ′ has a length of 30 mm, a width of 50 mm, and a thickness of 1 mm, and a recess 2 ′ for a liquid chromatograph column portion having a width of 2 mm and a depth of 0.2 mm is formed in the approximate center. On both sides of the recess 2 ′ for the liquid chromatograph column section, a width of 2.1 mm and a depth of 0.22 mm are spaced 0.5 mm along the end of the recess section 2 ′ for the liquid chromatograph column section. Are formed.

熱可塑性樹脂基板9’は縦30mm、横50mm、厚さ1mmであり、底面幅2.0mm、高さ0.15mmの断面形状が略長方形の凸条である固定部8’、8’が形成され、固定部8’、8’の上に底面幅2.0mm、高さ0.09mmの断面形状が略二等辺三角形の凸条である超音波融着部10’、10’が形成されている。、固定部8’、8’は、熱可塑性樹脂基板1’と熱可塑性樹脂基板9’を積層した際に、凹条12、12に嵌合されるように形成されている。   The thermoplastic resin substrate 9 ′ has a length of 30 mm, a width of 50 mm, and a thickness of 1 mm, and is formed with fixed portions 8 ′ and 8 ′ having a substantially rectangular shape with a cross-sectional shape of a bottom width of 2.0 mm and a height of 0.15 mm. Then, ultrasonic fused portions 10 ′ and 10 ′, which are ridges having an isosceles triangle in cross section with a bottom width of 2.0 mm and a height of 0.09 mm, are formed on the fixing portions 8 ′ and 8 ′. Yes. The fixing portions 8 ′ and 8 ′ are formed so as to be fitted into the recesses 12 and 12 when the thermoplastic resin substrate 1 ′ and the thermoplastic resin substrate 9 ′ are laminated.

上記熱可塑性樹脂基板1’と熱可塑性樹脂基板9’を超音波融着するには、上記熱可塑性樹脂基板1’と熱可塑性樹脂基板9’の上面を対向させ、超音波融着部10’、10’及び固定部8’、8’を凹部12、12に嵌合し、上記超音波融着条件で接着すればよく、その結果、熱可塑性樹脂基板1’と熱可塑性樹脂基板9’の間に液体クロマトグラフ用カラム部等が形成されているマイクロリアクターが得られる。   In order to ultrasonically weld the thermoplastic resin substrate 1 ′ and the thermoplastic resin substrate 9 ′, the upper surfaces of the thermoplastic resin substrate 1 ′ and the thermoplastic resin substrate 9 ′ are opposed to each other, and the ultrasonic welded portion 10 ′. 10 ′ and the fixing portions 8 ′ and 8 ′ may be fitted into the recesses 12 and 12 and bonded under the above ultrasonic fusion conditions. As a result, the thermoplastic resin substrate 1 ′ and the thermoplastic resin substrate 9 ′ A microreactor having a liquid chromatograph column or the like formed therebetween is obtained.

請求項1記載のマイクロリアクターの製造方法の構成は上述の通りであり、微細流路や液体クロマトグラフ用カラムに接着剤等が詰まることなく、複数の熱可塑性樹脂基板が強固に接着され、その間に微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターを容易且つ安価に製造することができる。   The structure of the manufacturing method of the microreactor according to claim 1 is as described above, and a plurality of thermoplastic resin substrates are firmly bonded without clogging an adhesive or the like in the fine flow path or the liquid chromatograph column, It is possible to easily and inexpensively manufacture a microreactor in which a fine channel and / or a liquid chromatograph column is formed.

請求項2記載のマイクロリアクターの製造方法の構成は上述の通りであり、凸条の超音波融着部の断面形状が、略二等辺三角形、略正三角形又は略直角三角形であるので、超音波融着により熱可塑性樹脂基板がより強固に接着される。   The configuration of the manufacturing method of the microreactor according to claim 2 is as described above, and since the cross-sectional shape of the ultrasonic welded portion of the ridge is an approximately isosceles triangle, an approximately equilateral triangle, or an approximately right triangle, The thermoplastic resin substrate is more firmly bonded by fusing.

請求項3記載のマイクロリアクターの製造方法の構成は上述の通りであり、微細流路及び/又は液体クロマトグラフ用カラム部と、凸条の超音波融着部の底面端部との間隔が0.05〜2mmであるので、超音波融着しても溶融した熱可塑性樹脂が微細流路及び/又は液体クロマトグラフ用カラム部に流入して微細流路及び/又は液体クロマトグラフ用カラム部が閉塞されたり、体積が減少することがない。   The structure of the manufacturing method of the microreactor according to claim 3 is as described above, and the interval between the fine channel and / or the liquid chromatograph column part and the bottom end part of the ultrasonic fusion part of the ridge is 0. 0.05 mm to 2 mm, the melted thermoplastic resin flows into the fine channel and / or liquid chromatograph column portion even after ultrasonic fusion, and the fine channel and / or liquid chromatograph column portion becomes There is no blockage or volume reduction.

請求項4記載のマイクロリアクターの製造方法の構成は上述の通りであり、更に、熱可塑性樹脂基板のいずれか一方に、底面幅0.01〜5mm、高さ0.001〜5mmの凸状の固定部が形成され、他方の熱可塑性樹脂基板に該固定部が嵌合されうる凹部が形成されているので、熱可塑性樹脂基板を積層する際に位置決めが容易であり、熱融着する際にずれることがなく容易にマイクロリアクターを製造することができる。   The structure of the manufacturing method of the microreactor according to claim 4 is as described above, and further, any one of the thermoplastic resin substrates has a convex shape having a bottom surface width of 0.01 to 5 mm and a height of 0.001 to 5 mm. Since the fixing portion is formed and the concave portion into which the fixing portion can be fitted is formed on the other thermoplastic resin substrate, positioning is easy when laminating the thermoplastic resin substrate, and when heat-sealing A microreactor can be easily produced without deviation.

請求項5記載のマイクロリアクターの製造方法の構成は上述の通りであり、両方の熱可塑性樹脂基板を積層した際に、固定部と凹部の間に実質的に空隙が形成されているので、熱融着する際に固定部が溶融されることがなく、超音波融着部と他の熱可塑性樹脂基板が超音波融着されるので効率よく融着することができる。   The structure of the manufacturing method of the microreactor according to claim 5 is as described above, and when the both thermoplastic resin substrates are laminated, a gap is substantially formed between the fixed portion and the concave portion. Since the fixing portion is not melted during the fusion, and the ultrasonic fusion portion and the other thermoplastic resin substrate are ultrasonically fused, the fusion can be efficiently performed.

請求項6記載のマイクロリアクターの製造方法の構成は上述の通りであり、熱可塑性樹
脂基板のいずれか一方に、積層した際に微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように、熱可塑性樹脂基板のいずれか一方に、底面幅0.01〜5mm、高さ0.001〜5mmの凸条の固定部が形成され、その上に底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されているので、微細流路や液体クロマトグラフ用カラムに接着剤等が詰まることなく、複数の熱可塑性樹脂基板が強固に接着され、その間に微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターをより容易且つ安価に製造することができる。
The structure of the manufacturing method of the microreactor according to claim 6 is as described above, and surrounds the micro flow path and / or the liquid chromatograph column section when laminated on any one of the thermoplastic resin substrates. In any one of the thermoplastic resin substrates, a fixed portion of a ridge having a bottom surface width of 0.01 to 5 mm and a height of 0.001 to 5 mm is formed, and a bottom surface width of 0.01 to 0.5 mm is formed thereon. Since an ultrasonic fusion part having a convex line with a height of 0.01 to 0.5 mm is formed, a plurality of thermoplastic resin substrates can be formed without clogging an adhesive or the like in a fine channel or a column for liquid chromatography. A microreactor that is firmly bonded and in which a fine channel and / or a liquid chromatograph column is formed can be manufactured more easily and inexpensively.

請求項7記載のマイクロリアクターの製造方法の構成は上述の通りであり、凸条の固定部の断面形状が矩形又は台形であり、凸条の超音波融着部の断面形状が、略二等辺三角形、略正三角形又は略直角三角形である、又は凸条の固定部と凸条の超音波融着部の断面形状が一体として、略二等辺三角形、略正三角形又は略直角三角形であるので超音波融着により熱可塑性樹脂基板をより強固に接着することができる。   The structure of the manufacturing method of the microreactor according to claim 7 is as described above, the cross-sectional shape of the fixed portion of the ridge is rectangular or trapezoidal, and the cross-sectional shape of the ultrasonic weld portion of the ridge is substantially isosceles It is a triangle, a substantially equilateral triangle, or a substantially right triangle, or the cross-sectional shape of the fixed portion of the ridge and the ultrasonic fusion portion of the ridge is an integral isosceles triangle, a regular equilateral triangle, or a substantially right triangle. The thermoplastic resin substrate can be more firmly bonded by sonic fusion.

請求項8記載のマイクロリアクターの製造方法の構成は上述の通りであり、微細流路及び/又は液体クロマトグラフ用カラム部と、凸条の固定部の底面端部との間隔が0.05〜2mmであるので、超音波融着しても溶融した熱可塑性樹脂が微細流路及び/又は液体クロマトグラフ用カラム部に流入して微細流路及び/又は液体クロマトグラフ用カラム部が閉塞されたり、体積が減少することがない。   The structure of the manufacturing method of the microreactor of Claim 8 is as above-mentioned, and the space | interval of the fine flow path and / or the liquid chromatograph column part, and the bottom face edge part of the fixing part of a protruding item | line is 0.05-. Since the thickness is 2 mm, the molten thermoplastic resin flows into the fine channel and / or the liquid chromatograph column even after ultrasonic fusion, and the fine channel and / or the liquid chromatograph column is blocked. , The volume will not decrease.

請求項9記載のマイクロリアクターの製造方法の構成は上述の通りであり、凹条の深さは、凸条の固定部と凸条の超音波融着部の高さの合計より浅く、両方の熱可塑性樹脂基板を積層した際に、凸条の超音波融着部の先端が凹条底部に当接されるので、超音波融着部を凹条の底部に押圧しながら超音波融着することになり、より強固に接着することができる。   The structure of the manufacturing method of the microreactor according to claim 9 is as described above, and the depth of the concave stripe is shallower than the sum of the heights of the fixing portion of the convex stripe and the ultrasonic fusion portion of the convex stripe, When the thermoplastic resin substrate is laminated, the tip of the ultrasonic welded portion of the ridge is brought into contact with the bottom of the concave strip, so that the ultrasonic fusion is performed while pressing the ultrasonic fused portion against the bottom of the concave strip. As a result, it is possible to bond more firmly.

請求項10記載のマイクロリアクターの製造方法の構成は上述の通りであり、凹条の幅は凸状の固定部の幅より広く、両方の熱可塑性樹脂基板を積層した際に、固定部と凹条の間に実質的に空隙が形成されているので、熱融着する際に固定部が溶融されることがなく、超音波融着部と他の熱可塑性樹脂基板が超音波融着されるので効率よく融着することができる。   The structure of the manufacturing method of the microreactor according to claim 10 is as described above, and the width of the concave line is wider than the width of the convex fixing part, and when both the thermoplastic resin substrates are laminated, the fixing part and the concave part are formed. Since a gap is substantially formed between the strips, the fixing portion is not melted when heat-sealing, and the ultrasonic fusion-bonded portion and another thermoplastic resin substrate are ultrasonically fused. Therefore, it can fuse | melt efficiently.

請求項11記載のマイクロリアクターの製造方法の構成は上述の通りであり、凸条の超音波融着部の屈曲部の曲率半径が0.01〜0.5mmであるので、超音波融着部の屈曲部と他の熱可塑性樹脂基板を効率よく融着することができる。   The structure of the manufacturing method of the microreactor according to claim 11 is as described above, and the curvature radius of the bent portion of the ultrasonic welded portion of the ridge is 0.01 to 0.5 mm. The bent portion and the other thermoplastic resin substrate can be efficiently fused.

次に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

(実施例1)
図1〜4で示したメチルメタクリレート樹脂製の熱可塑性樹脂基板1及び9を用いてマイクロリアクターを製造した。先ず、熱可塑性樹脂基板1の濾紙設置部用の凹部3に濾紙を設置し、接着剤で仮止めした。
Example 1
A microreactor was manufactured using the thermoplastic resin substrates 1 and 9 made of methyl methacrylate resin shown in FIGS. First, the filter paper was set in the concave portion 3 for the filter paper setting portion of the thermoplastic resin substrate 1 and temporarily fixed with an adhesive.

次に、熱可塑性樹脂基板1を超音波融着機のサンプルステージにセットし、その上に熱可塑性樹脂基板9を固定部8が凹部11に嵌合し、超音波融着部10が熱可塑性樹脂基板1に当接するように積層し、熱可塑性樹脂基板1と水平にホーン(超音波発振治具)を接触させた。これにより、基板全面に均一に超音波が照射される。   Next, the thermoplastic resin substrate 1 is set on the sample stage of the ultrasonic fusion machine, and the thermoplastic resin substrate 9 is fitted on the concave portion 11 on the thermoplastic resin substrate 9, and the ultrasonic fusion part 10 is thermoplastic. Lamination was performed so as to contact the resin substrate 1, and a horn (ultrasonic oscillation jig) was brought into contact with the thermoplastic resin substrate 1 horizontally. Thereby, the ultrasonic wave is uniformly irradiated on the entire surface of the substrate.

次いで、照射時間0.1秒、積算発振エネルギー10ws、熱可塑性樹脂基板9へのプレス圧力6kg/cm2 、プレス速度5cm/secの条件で超音波融着を行い、更に、液体クロマトグラフ用充填材注入口7から液体クロマトグラフ用充填材(昭和電工社製、商品名PS−130)を注入し、液体クロマトグラフ用充填材注入口7を接着剤で塞いでマイクロリアクターを得た。尚、液体クロマトグラフ用充填材の平均粒径は20μmであり、予め10-3Nの硝酸で再生し、水で洗浄して使用した。 Next, ultrasonic fusion was performed under the conditions of an irradiation time of 0.1 second, an integrated oscillation energy of 10 ws, a pressing pressure of 6 kg / cm 2 to the thermoplastic resin substrate 9 and a pressing speed of 5 cm / sec, and further filling for liquid chromatography. A liquid chromatograph filler (trade name PS-130, manufactured by Showa Denko KK) was injected from the material inlet 7, and the liquid chromatograph filler 7 was closed with an adhesive to obtain a microreactor. The average particle size of the packing material for liquid chromatograph was 20 μm, which was regenerated in advance with 10 −3 N nitric acid and washed with water before use.

得られたマイクロリアクターの試料及び溶離液注入口5とHPLCポンプ(昭和電工社製、商品名DS−4型)を接続し、水を50μl/minの速度で供給し、通液した。液体排出口6から水がでてくるのを確認した後、液体排出口6を閉鎖し、更に、HPLCポンプから水を供給し、マイクロリアクターから水漏れが始まったポンプ圧力を測定したところ50kgf/cmであった。   The sample of the microreactor and the eluent injection port 5 were connected to an HPLC pump (manufactured by Showa Denko KK, trade name: DS-4 type), and water was supplied at a rate of 50 μl / min and passed through. After confirming that water came out from the liquid discharge port 6, the liquid discharge port 6 was closed, water was further supplied from the HPLC pump, and the pump pressure at which water leakage started from the microreactor was measured. cm.

(比較例1)
図1で示した熱可塑性樹脂基板1と熱可塑性樹脂基板を両面粘着テープで接着してマイクロリアクターを得た。得られたマイクロリアクターを用いて実施例1で行ったと同様にしてマイクロリアクターから水漏れが始まったポンプ圧力を測定したところ4kgf/cmであった。
(Comparative Example 1)
The thermoplastic resin substrate 1 and the thermoplastic resin substrate shown in FIG. 1 were bonded with a double-sided adhesive tape to obtain a microreactor. When the pump pressure at which water leakage started from the microreactor was measured in the same manner as in Example 1 using the obtained microreactor, it was 4 kgf / cm.

微細流路及び液体クロマトグラフ用カラム部の凹部が形成されている熱可塑性樹脂基板の一例を示す平面図である。It is a top view which shows an example of the thermoplastic resin board | substrate in which the recessed part of the microchannel and the column part for liquid chromatographs is formed. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 微細流路及び液体クロマトグラフ用カラム部の凹部が形成されていない熱可塑性樹脂基板の一例を示す平面図である。It is a top view which shows an example of the thermoplastic resin substrate in which the recessed part of the microchannel and the column part for liquid chromatographs is not formed. 図3におけるB−B断面図である。It is BB sectional drawing in FIG. 液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板の異なる例を示す要部断面図である。It is principal part sectional drawing which shows the different example of the thermoplastic resin substrate in which the recessed part for column parts for liquid chromatographs is formed. 微細流路及び液体クロマトグラフ用カラム部用の凹部が形成されていない熱可塑性樹脂基板の異なる例を示す要部断面図である。It is principal part sectional drawing which shows a different example of the thermoplastic resin board | substrate in which the recessed part for microchannels and the column part for liquid chromatographs is not formed.

符号の説明Explanation of symbols

1 微細流路及び液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板
2 液体クロマトグラフ用カラム部用の凹部
3 濾紙設置部用の凹部
4 微細流路用の凹部
5 試料及び溶離液注入口
6 液体排出口
7 液体クロマトグラフ用充填材注入口
8 固定部
9 微細流路及び液体クロマトグラフ用カラム部の凹部が形成されていない熱可塑性樹脂基板
10 超音波融着部
11 凹部
12 凹条
DESCRIPTION OF SYMBOLS 1 Thermoplastic resin substrate in which recess for microchannel and liquid chromatograph column is formed 2 Recess for liquid chromatograph column 3 Recess for filter paper installation 4 Recess for microchannel 5 Sample and Eluent inlet 6 Liquid outlet 7 Filler inlet for liquid chromatograph 8 Fixed portion 9 Thermoplastic resin substrate in which the concave portion of the fine channel and the column portion for liquid chromatograph is not formed 10 Ultrasonic fusion portion 11 Recessed portion 12 concave

Claims (4)

複数の熱可塑性樹脂基板が積層され、その間に、幅及び深さが0.1〜10000μmの微細流路及び/又は液体クロマトグラフ用カラム部が形成されているマイクロリアクターの製造方法であって、微細流路及び/又は液体クロマトグラフ用カラム部用の凹部が形成されている熱可塑性樹脂基板又はそれに積層される熱可塑性樹脂基板の少なくとも一方に、積層した際に微細流路及び/又は液体クロマトグラフ用カラム部の周囲を囲むように、底面幅0.01〜5mm、高さ0.001〜5mmの凸条の固定部が形成され、その上に底面幅0.01〜0.5mm、高さ0.01〜0.5mmの凸条の超音波融着部が形成されており、他方の熱可塑性樹脂基板に該固定部及び超音波融着部が嵌合されうる凹条が形成されており、上記凹条の深さは凸条の固定部と凸条の超音波融着部の高さの合計より浅く、且つ、両方の熱可塑性樹脂基板を積層し融着した際に、凸条の固定部の底面と凹部の表面が面一になるように形成されていると共に、両方の熱可塑性樹脂基板を積層した際に、固定部と凹条の間に0.01〜0.1mmの空隙が形成されるように、凹条の幅は凸状の固定部の幅より広くなされており、両方の熱可塑性樹脂基板を積層し、積算発振エネルギー200ws以下、発振時間5秒以下、熱可塑性樹脂基板の押さえ圧力0.1〜10kg/cm2 の条件で超音波融着することを特徴とするマイクロリアクターの製造方法。 A method of manufacturing a microreactor in which a plurality of thermoplastic resin substrates are laminated, and a microchannel and / or a liquid chromatograph column section having a width and depth of 0.1 to 10,000 μm are formed between the substrates. When laminated on at least one of the thermoplastic resin substrate on which the concave portion for the fine channel and / or the column portion for the liquid chromatograph is formed or the thermoplastic resin substrate laminated thereon, the fine channel and / or the liquid chromatograph are laminated. A convex fixed portion having a bottom width of 0.01 to 5 mm and a height of 0.001 to 5 mm is formed so as to surround the periphery of the graph column portion, and a bottom surface width of 0.01 to 0.5 mm and a high height is formed thereon. A convex ultrasonic fusion part having a thickness of 0.01 to 0.5 mm is formed, and a concave line in which the fixing part and the ultrasonic fusion part can be fitted is formed on the other thermoplastic resin substrate. And the depth of the recess Is shallower than the sum of the height of the fixed portion of the ridge and the ultrasonic fusion portion of the ridge, and when both thermoplastic resin substrates are laminated and fused, the bottom of the fixed portion of the ridge and the concave portion The surface is formed so as to be flush with each other, and when both thermoplastic resin substrates are laminated, a gap of 0.01 to 0.1 mm is formed between the fixing portion and the recess, The width of the concave line is wider than the width of the convex fixing part. Both the thermoplastic resin substrates are laminated, the accumulated oscillation energy is 200 ws or less, the oscillation time is 5 seconds or less, and the pressing pressure of the thermoplastic resin substrate is 0.1. A method for producing a microreactor, wherein ultrasonic fusion is performed under a condition of 10 kg / cm 2 . 凸条の固定部の断面形状が矩形又は台形であり、凸条の超音波融着部の断面形状が、略二等辺三角形、略正三角形又は略直角三角形である、又は凸条の固定部と凸条の超音波融着部の断面形状が一体として、略二等辺三角形、略正三角形又は略直角三角形であることを特徴とする請求項1記載のマイクロリアクターの製造方法。 The cross-sectional shape of the fixed portion of the ridge is a rectangle or a trapezoid, and the cross-sectional shape of the ultrasonic fused portion of the ridge is a substantially isosceles triangle, a substantially equilateral triangle, or a substantially right triangle, or a fixed portion of the ridge 2. The method of manufacturing a microreactor according to claim 1, wherein the ultrasonic welded portions of the ridges are integrally formed into a substantially isosceles triangle, a regular regular triangle, or a substantially right triangle. 積層時に、微細流路及び/又は液体クロマトグラフ用カラム部と、凸条の固定部の底面端部との間隔が0.05〜2mmであることを特徴とする請求項1又は2記載のマイクロリアクターの製造方法。 3. The micro of claim 1, wherein a distance between the fine channel and / or the liquid chromatograph column and the bottom end of the fixed portion of the ridge is 0.05 to 2 mm at the time of stacking. Reactor manufacturing method. 凸条の超音波融着部の屈曲部の曲率半径が0.01〜1.0mmであることを特徴とする請求項1、2又は3項記載のマイクロリアクターの製造方法。 4. The method of manufacturing a microreactor according to claim 1 , wherein the radius of curvature of the bent portion of the ultrasonic welded portion of the ridge is 0.01 to 1.0 mm .
JP2005017444A 2005-01-25 2005-01-25 Manufacturing method of microreactor Expired - Fee Related JP4540491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017444A JP4540491B2 (en) 2005-01-25 2005-01-25 Manufacturing method of microreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017444A JP4540491B2 (en) 2005-01-25 2005-01-25 Manufacturing method of microreactor

Publications (2)

Publication Number Publication Date
JP2006204983A JP2006204983A (en) 2006-08-10
JP4540491B2 true JP4540491B2 (en) 2010-09-08

Family

ID=36962370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017444A Expired - Fee Related JP4540491B2 (en) 2005-01-25 2005-01-25 Manufacturing method of microreactor

Country Status (1)

Country Link
JP (1) JP4540491B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224431A (en) * 2007-03-13 2008-09-25 Konica Minolta Opto Inc Method of manufacturing microchip, and microchip
JP5208826B2 (en) * 2009-03-23 2013-06-12 株式会社東芝 Fine channel device
JP2011161578A (en) * 2010-02-10 2011-08-25 Fujifilm Corp Joining method, and method for manufacturing microchannel device
JP2011185765A (en) * 2010-03-09 2011-09-22 Konica Minolta Holdings Inc Chip for biochemical reaction and manufacturing method of the same
JP5471989B2 (en) * 2010-09-08 2014-04-16 コニカミノルタ株式会社 Biochemical reaction chip and manufacturing method thereof
JP5933518B2 (en) 2013-12-26 2016-06-08 富士フイルム株式会社 Bonding method and manufacturing method of microchannel device
WO2023053709A1 (en) * 2021-09-30 2023-04-06 京セラ株式会社 Flow channel device and separation processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
JP2003181257A (en) * 2001-12-18 2003-07-02 Ntt Advanced Technology Corp Cell substrate having fine flow passage and method of producing the same
JP2003260739A (en) * 2002-03-08 2003-09-16 Kyowa Sangyo Kk Bound article and method for binding bound article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
JP2003181257A (en) * 2001-12-18 2003-07-02 Ntt Advanced Technology Corp Cell substrate having fine flow passage and method of producing the same
JP2003260739A (en) * 2002-03-08 2003-09-16 Kyowa Sangyo Kk Bound article and method for binding bound article

Also Published As

Publication number Publication date
JP2006204983A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4540491B2 (en) Manufacturing method of microreactor
EP2851121B1 (en) Devices for and methods of forming microchannels or microfluid reservoirs
US6935772B2 (en) Fluidic mixer in microfluidic system
KR100572207B1 (en) Bonding method of plastic microchip
WO2015152401A1 (en) Hollow fiber membrane sheet-like object, method of manufacturing hollow fiber membrane sheet-like object, hollow fiber membrane sheet laminate, method of manufacturing hollow fiber membrane sheet laminate, hollow fiber membrane module and method of manufacturing hollow fiber membrane module
WO2004008142A1 (en) Analytical chip, analytical chip unit, analyzing apparatus, method of analysis using the apparatus, and method of producing the analytical chip
CA2931711C (en) A method for laser welding a disposable test-unit
JP6589865B2 (en) Fluid device, fluid control method, inspection device, inspection method, and fluid device manufacturing method
US20140311910A1 (en) Microchip and method of manufacturing microchip
JP5933518B2 (en) Bonding method and manufacturing method of microchannel device
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2009095800A (en) Fine passage structure and its manufacturing method
CN102422164A (en) Microchip
US9295989B2 (en) Channel device
JP2008216121A (en) Method for manufacturing microchip
CN202191912U (en) Diaphragm movable polymer microfluidic chip
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
JP2005224688A (en) Method for manufacturing microreactor chip
US20120266985A1 (en) Microchip and Method of Manufacturing the Same
KR20110075448A (en) A method for manufacturing a microfluidic device and a microfluidic divice manufactured using the same method
CN102319593B (en) Cytosis polymer microfluidic chip and preparation method thereof
JP2005241456A (en) Liquid chromatograph for microreactors and microreactor using it
JP2006112836A (en) Microreactor
EP3544790B1 (en) Ultrasonic welding of a microfluidic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R151 Written notification of patent or utility model registration

Ref document number: 4540491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees