JP2011185765A - Chip for biochemical reaction and manufacturing method of the same - Google Patents

Chip for biochemical reaction and manufacturing method of the same Download PDF

Info

Publication number
JP2011185765A
JP2011185765A JP2010051728A JP2010051728A JP2011185765A JP 2011185765 A JP2011185765 A JP 2011185765A JP 2010051728 A JP2010051728 A JP 2010051728A JP 2010051728 A JP2010051728 A JP 2010051728A JP 2011185765 A JP2011185765 A JP 2011185765A
Authority
JP
Japan
Prior art keywords
resin substrate
flow path
biochemical reaction
antibody
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010051728A
Other languages
Japanese (ja)
Inventor
Takeshi Yanagihara
豪 柳原
Kenichi Miyata
謙一 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010051728A priority Critical patent/JP2011185765A/en
Publication of JP2011185765A publication Critical patent/JP2011185765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attach two resin substrates without impairing a bioactivity of an antibody in a flow path and changing an optical characteristic of a light receiving section. <P>SOLUTION: A chip is provided with the first resin substrate 1, and the second resin substrate 2 attached to the first resin substrate 1. The first resin substrate 1 is planar, and provided with the flow path 11 formed on a surface 1b attached to the second resin substrate 2. The second resin substrate 2 is provided at a position facing the flow path 11, and provided with a prism (an embodiment of the light receiving section) 21 for refracting a light L irradiated from the outside on a light receiving surface 21a, and guiding the light to the flow path 11. The second resin substrate 2 is provided with a pair of bonding widths 23 on both sides of the prism 21 in the x direction. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、2枚の樹脂基板を貼り付けて構成される生化学反応用チップ及びその作製方法に関するものである。   The present invention relates to a biochemical reaction chip constituted by attaching two resin substrates and a method for manufacturing the same.

近年、微細加工技術を利用して製造されたマイクロリアクターやマイクロアナリシスシステム等のマイクロ化された生化学反応用チップが知られている。このような生化学反応用チップは、内部に微細流路を備え、微細流路内で核酸やタンパク質等の分析及び合成等を行うことができ、微量化学物質の迅速な分析や医薬品のハイスループットスクリーニングへの応用が期待されている。生化学反応用チップをマイクロ化する利点としては、サンプルや試薬の使用量が軽減する、廃液の排出量が軽減する、省スペースで持ち運び可能である、及び安価である等が挙げられる。   In recent years, microbiochips for biochemical reaction such as microreactors and microanalysis systems manufactured using microfabrication technology are known. Such a chip for biochemical reaction has a micro flow channel inside, and can analyze and synthesize nucleic acids and proteins in the micro flow channel. Application to screening is expected. Advantages of using a microchip for biochemical reaction include reducing the amount of sample and reagent used, reducing the amount of waste liquid discharged, saving space, and being inexpensive.

生化学反応用チップは、微細流路が形成された基板と、微細流路を封止する基板との2枚の基板を貼り付けることで構成される。従来、生化学反応用チップの基板の材料としては、主にガラスが用いられてきた。しかしながら、生化学反応用チップをガラスで構成すると、大量生産ができずコストが嵩む。   The biochemical reaction chip is configured by attaching two substrates, a substrate on which a fine channel is formed and a substrate that seals the fine channel. Conventionally, glass has been mainly used as a material for a substrate of a chip for biochemical reaction. However, if the biochemical reaction chip is made of glass, mass production cannot be performed and the cost increases.

生化学反応用チップをプラスチックで構成した場合、ガラスの場合と同様、射出成形によって生化学反応用チップが製造される。射出成形では、金型内へ溶融した熱可塑性プラスチック材料が導入され、金型が冷却されて樹脂が硬化されて樹脂基板が製造される。そのため、効率よく大量の樹脂基板を製造することができ、生化学反応用チップを安価に提供することができる。これにより、生化学反応用チップを、使用後、使い捨てが可能なディスポーザルチップとして使用することができる。   When the biochemical reaction chip is made of plastic, the biochemical reaction chip is manufactured by injection molding as in the case of glass. In injection molding, a molten thermoplastic material is introduced into a mold, the mold is cooled, the resin is cured, and a resin substrate is manufactured. Therefore, a large amount of resin substrates can be produced efficiently, and biochemical reaction chips can be provided at low cost. Thereby, the chip | tip for biochemical reaction can be used as a disposable chip | tip which can be disposable after use.

その後、射出成形された2枚の樹脂基板は貼り付けられて生化学用反応チップが作製される。樹脂基板を貼り付ける手法としては、熱融着、レーザ溶着、UV接着剤等の手法が知られている。   Thereafter, the two injection-molded resin substrates are attached to produce a biochemical reaction chip. As a method for attaching the resin substrate, methods such as thermal fusion, laser welding, and UV adhesive are known.

例えば、特許文献1には、図6に示すように2枚以上の板状の樹脂基板の接合方法であって、少なくとも1枚の樹脂基板の接合面の一部に突起部3を形成し、接合の際に突起部3を変形させて両樹脂基板を貼り付ける手法が開示されている。   For example, Patent Document 1 discloses a method for joining two or more plate-shaped resin substrates as shown in FIG. 6, wherein the protrusion 3 is formed on a part of the joining surface of at least one resin substrate, A method is disclosed in which the protrusions 3 are deformed during bonding and the two resin substrates are attached.

特開2006−258508号公報JP 2006-258508 A

ところで、一方の樹脂基板に抗体を載置して両樹脂基板を当接させた後、熱、レーザ、又はUV光等を両樹脂基板に付与して生化学反応用チップを作製した場合、熱、レーザ、又はUV光等により抗体の生理活性が失活する虞がある。特に、流路の近傍に、熱、レーザ、又はUV光等を照射すると、抗体の生理活性が失活する可能性が極めて大きくなってしまう。そのため、流路の近傍に、熱、レーザ、又はUV光を照射することは好ましくない。   By the way, when an antibody is placed on one resin substrate and both resin substrates are brought into contact with each other, heat, laser, or UV light is applied to both resin substrates to produce a biochemical reaction chip. There is a possibility that the physiological activity of the antibody is deactivated by laser, UV light, or the like. In particular, if heat, laser, UV light, or the like is irradiated in the vicinity of the flow path, the possibility that the physiological activity of the antibody is deactivated becomes extremely large. For this reason, it is not preferable to irradiate heat, laser, or UV light in the vicinity of the flow path.

また、生化学反応用チップをSPFSセンサとして用いる場合、生化学反応用チップの受光部に、熱、レーザ、又はUV光が照射されると、受光部の光学特性に影響を及ぼしてしまうため好ましくない。一方、樹脂基板を貼り付けた後に流路内に抗体を流し込む手法も考えられるが、この手法では作製効率が悪くコスト嵩んでしまう。   In addition, when the biochemical reaction chip is used as an SPFS sensor, if the light receiving part of the biochemical reaction chip is irradiated with heat, laser, or UV light, the optical characteristics of the light receiving part are affected. Absent. On the other hand, a method of pouring the antibody into the flow path after attaching the resin substrate is also conceivable, but this method is inefficient in production and costly.

特許文献1では、流路2の外周の全域に設けられた突起部3に熱又はレーザを付与することで両樹脂基板が貼り合わされているため、熱又はレーザが流路内の抗体に伝わり、抗体の生理活性を失活させるという問題がある。また、特許文献1では、熱又はレーザが流路2の近傍に付与されるため、樹脂基板に歪みが発生し、樹脂基板の光学特性を変化させるという問題がある。また、特許文献1では、両樹脂基板が突起部3を介して局所的に貼り付けられるため、寸法精度の安定性確保が困難であるという問題がある。   In Patent Document 1, since both resin substrates are bonded to each other by applying heat or laser to the protrusion 3 provided on the entire outer periphery of the flow path 2, heat or laser is transmitted to the antibody in the flow path, There is a problem of deactivating the physiological activity of the antibody. Moreover, in patent document 1, since heat | fever or a laser is provided to the vicinity of the flow path 2, there exists a problem that distortion generate | occur | produces in a resin substrate and changes the optical characteristic of a resin substrate. Moreover, in patent document 1, since both the resin substrates are affixed locally via the projection part 3, there exists a problem that it is difficult to ensure the stability of dimensional accuracy.

本発明の目的は、流路内の抗体の生理活性を失活させることなく、かつ、受光部の光学的特性を変化させることなく、2枚の樹脂基板を貼り付けることができる生化学反応用チップ及びその作製方法を提供することである。   The object of the present invention is for biochemical reactions that can attach two resin substrates without deactivating the physiological activity of the antibody in the flow path and without changing the optical characteristics of the light receiving part. It is to provide a chip and a manufacturing method thereof.

(1)本発明の一局面による生化学反応用チップは、第1樹脂基板と、前記第1樹脂基板に貼り付けられる第2樹脂基板とを備える生化学反応用チップであって、前記第1樹脂基板は、前記第2樹脂基板との貼り付け面に形成された流路を備え、前記第2樹脂基板は、前記流路に対向する位置に設けられ、外部から照射された光を前記流路に導く受光部を備え、前記第1樹脂基板又は第2樹脂基板は、前記流路から離間する位置に配置され、他方の樹脂基板の貼り付け面に当接する接合代を備える。   (1) A biochemical reaction chip according to one aspect of the present invention is a biochemical reaction chip including a first resin substrate and a second resin substrate attached to the first resin substrate. The resin substrate includes a flow path formed on a surface to be bonded to the second resin substrate, and the second resin substrate is provided at a position facing the flow path to transmit light irradiated from the outside to the flow path. A light receiving portion that leads to a path is provided, and the first resin substrate or the second resin substrate is disposed at a position spaced apart from the flow path, and includes a joining margin that abuts against a bonding surface of the other resin substrate.

この構成によれば、第1樹脂基板の貼り付け面に流路が形成されているため、第1樹脂基板と第2樹脂基板とが貼り付けられると、流路は第2樹脂基板の貼り付け面によって封止される。そして、外部からの光を流路に導く受光部が流路と対向する位置に設けられている。   According to this configuration, since the flow path is formed on the attachment surface of the first resin substrate, when the first resin substrate and the second resin substrate are attached, the flow passage is attached to the second resin substrate. Sealed by the surface. And the light-receiving part which guides the light from the outside to a flow path is provided in the position facing a flow path.

ここで、第1樹脂基板又は第2樹脂基板には、流路から離間する位置に他方の基板の貼り付け面と当接する接合代が設けられている。そのため、流路内に抗体が収納されるように第1樹脂基板に第2樹脂基板を当接させた後、接合代に、熱、UV光、レーザ等の溶着エネルギーを付与して両樹脂基板を貼り付けても、溶着エネルギーが流路内の抗体に伝わることを防止することができる。その結果、第1及び第2樹脂基板の貼り付け時に流路内の抗体が失活することを防止することができる。   Here, the first resin substrate or the second resin substrate is provided with a bonding margin that comes into contact with the attachment surface of the other substrate at a position away from the flow path. Therefore, after the second resin substrate is brought into contact with the first resin substrate so that the antibody is accommodated in the flow path, welding energy such as heat, UV light, laser, etc. is applied to the bonding margin, and both resin substrates are provided. Even if it sticks, it can prevent that welding energy is transmitted to the antibody in a flow path. As a result, it is possible to prevent the antibodies in the flow path from being deactivated when the first and second resin substrates are attached.

更に、受光部は流路と対向する位置に設けられている。そのため、受光部に溶着エネルギーが付与されないように、接合代にのみ溶着エネルギーを付与して第1及び第2樹脂基板を貼り付けることができる。その結果、受光部の光学的特性を変化させることなく、第1及び第2樹脂基板を貼り付けることができる。   Furthermore, the light receiving part is provided at a position facing the flow path. Therefore, the first and second resin substrates can be attached by applying welding energy only to the joining margin so that the welding energy is not given to the light receiving portion. As a result, the first and second resin substrates can be attached without changing the optical characteristics of the light receiving unit.

(2)前記接合代は、前記第2樹脂基板において、前記受光部を挟んで一対設けられていることが好ましい。   (2) It is preferable that a pair of the bonding allowances is provided on the second resin substrate with the light receiving portion interposed therebetween.

この構成によれば、接合代は、第2樹脂基板に設けられ、受光部を挟んで一対存在している。そのため、第1及び第2樹脂基板を強固に貼り付けることができる。   According to this configuration, the bonding allowance is provided on the second resin substrate, and a pair exists with the light receiving portion interposed therebetween. Therefore, the first and second resin substrates can be firmly attached.

(3)前記接合代は、前記第1樹脂基板において、前記流路を挟んで一対設けられていることが好ましい。   (3) It is preferable that a pair of the bonding allowances is provided across the flow path in the first resin substrate.

この構成によれば、接合代は第1樹脂基板に設けられ、流路を挟んで一対設けられている。そのため、第1及び第2樹脂基板を強固に貼り付けることができる。   According to this configuration, the bonding allowance is provided on the first resin substrate, and a pair is provided with the flow path interposed therebetween. Therefore, the first and second resin substrates can be firmly attached.

(4)前記第1及び第2樹脂基板は、前記接合代に前記第1及び前記第2樹脂基板を溶着させるための溶着エネルギーを付与する溶着手法を用いて貼り付けられることが好ましい。   (4) It is preferable that the said 1st and 2nd resin substrate is affixed using the welding method which provides the welding energy for welding the said 1st and said 2nd resin substrate to the said joining margin.

この構成によれば、第1及び第2樹脂基板は、接合代に溶着エネルギーが付与されて貼り付けられる。ここで、接合代は、流路と離間する位置に設けられているため、この溶着エネルギーが流路内に収納された抗体に伝わることが防止され、抗体の失活を防止することができる。また、受光部も流路と対向する位置に設けられているため、この溶着エネルギーが受光部に伝わることを防止することができる。   According to this configuration, the first and second resin substrates are attached with welding energy applied to the joining margin. Here, since the joining margin is provided at a position separated from the flow path, it is possible to prevent the welding energy from being transmitted to the antibody housed in the flow path and to prevent the deactivation of the antibody. Moreover, since the light receiving part is also provided at a position facing the flow path, it is possible to prevent this welding energy from being transmitted to the light receiving part.

(5)前記溶着手法は、熱溶着、レーザ溶着、又はUV接着であることが好ましい。   (5) The welding method is preferably heat welding, laser welding, or UV bonding.

この構成によれば、熱溶着、レーザ溶着、又はUV溶着によって第1及び第2樹脂基板が貼り付けられるため、両樹脂基板を強固に貼り付けることができる。   According to this configuration, since the first and second resin substrates are attached by heat welding, laser welding, or UV welding, both resin substrates can be firmly attached.

(6)前記第2樹脂基板は、前記流路と対向する位置に抗体が固相化して固定されていることが好ましい。   (6) Preferably, the second resin substrate has an antibody immobilized thereon and fixed at a position facing the flow path.

この構成によれば、第2樹脂基板は、流路と対向する位置に抗体が固相化して固定されている。そのため、第1及び第2樹脂基板を貼り付けることで、流路内に抗体を収納することができる。また、抗体は固相化して固定されているため、抗体を強固に固定することができる。   According to this configuration, the second resin substrate has the antibody immobilized thereon and fixed at a position facing the flow path. Therefore, the antibody can be stored in the flow path by pasting the first and second resin substrates. In addition, since the antibody is immobilized in a solid phase, the antibody can be firmly fixed.

(7)前記生化学反応用チップは、表面プラズモン共鳴センサの検出素子に用いられることが好ましい。   (7) The biochemical reaction chip is preferably used as a detection element of a surface plasmon resonance sensor.

この構成によれば、表面プラズモン共鳴センサの検出素子として好ましい生化学反応用チップを提供することができる。   According to this configuration, a biochemical reaction chip preferable as a detection element of the surface plasmon resonance sensor can be provided.

(8)本発明の別の一局面による生化学反応用チップの作製方法は、第1樹脂基板と、前記第1樹脂基板に貼り付けられる第2樹脂基板とを備える生化学反応用チップの作製方法であって、前記第1樹脂基板は、前記第2樹脂基板との貼り付け面に形成された流路を備え、前記第2樹脂基板は、前記流路に対向して設けられ、外部から照射された光を前記流路に導く受光部を備え、前記第1樹脂基板又は第2樹脂基板は、前記流路から離間して配置され、他方の樹脂基板の貼り付け面に当接する接合代を備え、前記第2樹脂基板において、前記流路と対向する位置に抗体を固定するステップと、前記流路内に前記抗体が収納されるように前記第1樹脂基板と前記第2樹脂基板とを当接させるステップと、前記接合代に溶着エネルギーを付与して前記第1樹脂基板と前記第2樹脂基板とを接着するステップとを備える。   (8) A method for manufacturing a chip for biochemical reaction according to another aspect of the present invention is a method for manufacturing a chip for biochemical reaction comprising a first resin substrate and a second resin substrate attached to the first resin substrate. In the method, the first resin substrate includes a flow path formed on a bonding surface with the second resin substrate, and the second resin substrate is provided to face the flow path, and is externally provided. A light receiving portion that guides the irradiated light to the flow path, and the first resin substrate or the second resin substrate is disposed away from the flow path and is in contact with a bonding surface of the other resin substrate. A step of fixing an antibody at a position facing the flow path in the second resin substrate, and the first resin substrate and the second resin substrate so that the antibody is accommodated in the flow path. And a welding energy is applied to the joining margin. And a step of bonding the second resin substrate and the first resin substrate.

この構成によれば、流路と対向する位置に抗体が貼り付けられ、流路内に抗体が収納されるように第1及び第2樹脂基板が当接され、接合代に溶着エネルギーが付与されて第1及び第2樹脂基板が貼り付けられる。   According to this configuration, the antibody is attached to a position facing the flow path, the first and second resin substrates are brought into contact so that the antibody is accommodated in the flow path, and welding energy is given to the bonding allowance. Then, the first and second resin substrates are attached.

ここで、接合代は、受光部及び流路から離間した位置に設けられているため、接合代に溶着エネルギー付与してもこの溶着エネルギーが流路内の抗体及び受光部に付与されることを防止することができる。その結果、抗体の失活を防止することができ、かつ、受光部の光学特性の変化を防止することができる。   Here, since the joining margin is provided at a position separated from the light receiving portion and the flow path, even if the welding energy is applied to the joining margin, the welding energy is applied to the antibody and the light receiving portion in the flow path. Can be prevented. As a result, inactivation of the antibody can be prevented, and changes in the optical characteristics of the light receiving portion can be prevented.

(9)本発明の別の一局面による生化学反応用チップは、第1樹脂基板と、前記第1樹脂基板に貼り付けられる第2樹脂基板とを備える生化学反応用チップであって、前記第1樹脂基板は、前記第2樹脂基板との貼り付け面に形成された流路を備え、前記第2樹脂基板は、前記流路に対向する位置に設けられ、外部から照射された光を前記流路に導く受光部を備え、前記第1樹脂基板又は前記第2樹脂基板は、他方の樹脂基板との貼り付け面に溝が設けられている。   (9) A biochemical reaction chip according to another aspect of the present invention is a biochemical reaction chip including a first resin substrate and a second resin substrate attached to the first resin substrate, The first resin substrate includes a flow path formed on a surface to be bonded to the second resin substrate, and the second resin substrate is provided at a position facing the flow path, and receives light irradiated from the outside. A light receiving portion led to the flow path is provided, and the first resin substrate or the second resin substrate is provided with a groove on a surface to be bonded to the other resin substrate.

この構成によれば、第1樹脂基板又は第2樹脂基板は、他方の樹脂基板との貼り付け面に溝が設けられている。そのため、貼り付け面に溶着エネルギーを付与して第1及び第2樹脂基板を貼り付ける際に、この溝によって流路及び受光部に溶着エネルギーが伝達されることが防止され、流路内の抗体の失活を防止することができ、かつ、受光部の光学特性の変化を防止することができる。   According to this configuration, the first resin substrate or the second resin substrate is provided with the groove on the surface to be bonded to the other resin substrate. Therefore, when the first and second resin substrates are attached by applying welding energy to the attachment surface, the groove prevents the welding energy from being transmitted to the flow path and the light receiving portion, and the antibody in the flow path Can be prevented, and changes in the optical characteristics of the light receiving portion can be prevented.

(10)前記溝は接合代に設けることが好ましい。この構成によれば、溶着エネルギーが付与されることで接合代に発生した熱が、流路に伝達されることが防止され、抗体の失活を防止することができる。   (10) It is preferable to provide the groove in the joining allowance. According to this configuration, heat generated in the joining margin due to the application of welding energy is prevented from being transmitted to the flow path, and antibody deactivation can be prevented.

(11)前記第1樹脂基板は、流路の外周の全域に設けられた弾性部材を更に備えることが好ましい。   (11) It is preferable that the first resin substrate further includes an elastic member provided in the entire outer periphery of the flow path.

この構成によれば、流路に液体を流した場合に、この液体が流路から漏れることを防止することができる。   According to this configuration, when a liquid is caused to flow through the flow path, the liquid can be prevented from leaking from the flow path.

本発明によれば、流路内の抗体の生理活性を失活させることなく、かつ、受光部の光学的特性を変化させることなく、2枚の樹脂基板を貼り付けることができる   According to the present invention, two resin substrates can be attached without deactivating the physiological activity of the antibody in the flow path and without changing the optical characteristics of the light receiving unit.

本発明の実施の形態1によるチップの構成図を示している。1 is a block diagram of a chip according to a first embodiment of the present invention. 本発明の実施の形態1によるチップの比較例のチップの構成図を示している。1 is a block diagram of a chip of a comparative example of a chip according to Embodiment 1 of the present invention. 本発明の実施の形態2によるチップの構成図を示している。The block diagram of the chip | tip by Embodiment 2 of this invention is shown. 本発明の実施の形態3によるチップの構成図を示している。The block diagram of the chip | tip by Embodiment 3 of this invention is shown. 本発明の実施の形態4によるチップの断面構成図を示している。FIG. 6 shows a cross-sectional configuration diagram of a chip according to a fourth embodiment of the present invention. 従来のチップの構成図を示している。The block diagram of the conventional chip is shown.

(実施の形態1)
図1は、本発明の実施の形態1による生化学反応用チップの構成図を示し、(A)は(B)のA−A方向断面図であり、(B)は上面図である。なお、図1(A)において、xは左右方向を示し、zは高さ方向を示し、yは前後方向を示している。なお、これらのx,y,zの符号の関係は、他の図でも同一である。
(Embodiment 1)
1A and 1B are configuration diagrams of a biochemical reaction chip according to Embodiment 1 of the present invention, in which FIG. 1A is a cross-sectional view taken along the line AA of FIG. 1B, and FIG. In FIG. 1A, x indicates the left-right direction, z indicates the height direction, and y indicates the front-rear direction. The relationship of these x, y, and z symbols is the same in other drawings.

図1に示す生化学反応用チップ(以下、「チップ」と記述する。)は、例えば、表面プラズモン共鳴センサの検出素子として用いられる。表面プラズモン共鳴センサは、SPFS(Surface Plasmon-field enhanced Fluorescence Spectroscopy:表面プラズモン電界増強蛍光分光法)を利用したセンサである。   The biochemical reaction chip (hereinafter referred to as “chip”) shown in FIG. 1 is used, for example, as a detection element of a surface plasmon resonance sensor. The surface plasmon resonance sensor is a sensor using SPFS (Surface Plasmon-field enhanced Fluorescence Spectroscopy).

具体的には、プリズム21にp偏光の光Lを照射すると、プリズム21の上面21bに形成された金薄膜4で表面プラズモン共鳴が起こり、増強された電場が発生する。この電場が、抗体3により捕捉された蛍光染色された検出対象物を発光させる。そして、発光した光が光電子像倍管などのセンサで検出され、検出対象物が検出される。   Specifically, when the p-polarized light L is irradiated onto the prism 21, surface plasmon resonance occurs in the gold thin film 4 formed on the upper surface 21b of the prism 21, and an enhanced electric field is generated. This electric field causes the fluorescently stained detection target captured by the antibody 3 to emit light. The emitted light is detected by a sensor such as a photoelectron image multiplier, and a detection target is detected.

ここで、表面プラズモン共鳴により生じた電場は増強されているため、流路11に流れる検体中に僅かな量の検出物質しか含まれていない場合であっても、検出物質を検出することができる。   Here, since the electric field generated by the surface plasmon resonance is enhanced, the detection substance can be detected even when the sample flowing in the flow path 11 contains only a small amount of the detection substance. .

図1に示すように、チップは、第1樹脂基板1と、第1樹脂基板1に貼り付けられる第2樹脂基板2とを備えている。第1樹脂基板1は、平板状であり、第2樹脂基板2との貼り付け面1bに形成された流路11を備えている。流路11は、x方向を長手方向とする有底の溝であり、y方向に例えば3個で配列されている。なお、流路11の個数は3個に限定されず、1個、2個、4個、5個以上としてもよい。   As shown in FIG. 1, the chip includes a first resin substrate 1 and a second resin substrate 2 attached to the first resin substrate 1. The 1st resin substrate 1 is flat form, and is provided with the flow path 11 formed in the bonding surface 1b with the 2nd resin substrate 2. FIG. The flow paths 11 are bottomed grooves whose longitudinal direction is the x direction, and are arranged in three in the y direction, for example. The number of flow paths 11 is not limited to three, and may be one, two, four, five or more.

流路11の上面11aには一対の溝12が形成されている。溝12は、z方向を長手方向とし、一端が流路11の上面11aに連通し、他端が第1樹脂基板1の上面1aを連通している。そして、一方の溝12は、外部から流入される血液や体液等の検体を含む液体を流路11に導き、他方の溝12は流路11から液体を回収する。   A pair of grooves 12 are formed on the upper surface 11 a of the flow path 11. The groove 12 has a longitudinal direction in the z direction, one end communicates with the upper surface 11 a of the flow path 11, and the other end communicates with the upper surface 1 a of the first resin substrate 1. One groove 12 guides a liquid containing a specimen such as blood or body fluid flowing in from the outside to the flow path 11, and the other groove 12 collects the liquid from the flow path 11.

第2樹脂基板2は、流路11に対向する位置に設けられ、外部から照射された光Lを受光面21aで屈折させて流路11に導くプリズム(受光部の一例)21を備えている。ここで、プリズム21は、x−z平面の断面形状がz軸に対して左右対称な台形状であり、y方向を長手方向としている。そして、プリズム21の2枚の側面が光Lの受光面21aとなっている。また、プリズム21の上面21bは、第1樹脂基板1との貼り付け面2aとなり、かつ、流路11の下面となっている。なお、図1では、プリズム21のx−z断面の形状を台形状としたが、これに限定されず、三角形状としてもよい。   The second resin substrate 2 includes a prism (an example of a light receiving unit) 21 that is provided at a position facing the flow path 11 and refracts the light L emitted from the outside by the light receiving surface 21 a and guides the light L to the flow path 11. . Here, the prism 21 has a trapezoidal shape in which the cross-sectional shape of the xz plane is symmetrical with respect to the z axis, and the y direction is the longitudinal direction. The two side surfaces of the prism 21 serve as a light receiving surface 21a for the light L. Further, the upper surface 21 b of the prism 21 serves as a bonding surface 2 a to the first resin substrate 1 and serves as a lower surface of the flow path 11. In addition, in FIG. 1, although the shape of the xz cross section of the prism 21 was made trapezoidal, it is not limited to this, It is good also as a triangular shape.

プリズム21の上面21bには、金薄膜4が形成されている。金薄膜4のz方向の厚さである膜厚は、例えば100nmである。金薄膜4は例えばスパッタ法や蒸着法を用いてプリズム21の上面21bのほぼ全域に形成されている。   A gold thin film 4 is formed on the upper surface 21 b of the prism 21. The film thickness that is the thickness in the z direction of the gold thin film 4 is, for example, 100 nm. The gold thin film 4 is formed almost all over the upper surface 21b of the prism 21 by using, for example, a sputtering method or a vapor deposition method.

第2樹脂基板2は、x方向においてプリズム21を挟んで左右一対設けられ、プリズム21から離間して設けられた接合代23を備えている。接合代23の上面23bは第1樹脂基板1との貼り付け面2aとなっており、第1樹脂基板1の貼り付け面1bに当接する。また、接合代23は、y方向を長手方向とし、平板状であり、下面23aがx−y平面と平行である。また、接合代23は、プリズム21と一体形成されている。金薄膜4には、流路11内に収納されるようにパターニングされた抗体3が固相化して固定されている。   The second resin substrate 2 is provided with a pair of left and right sides sandwiching the prism 21 in the x direction, and includes a joining margin 23 provided away from the prism 21. An upper surface 23 b of the bonding allowance 23 is a bonding surface 2 a with the first resin substrate 1 and abuts on the bonding surface 1 b of the first resin substrate 1. Moreover, the joining margin 23 has a plate-like shape with the y direction as the longitudinal direction, and the lower surface 23a is parallel to the xy plane. The joint allowance 23 is formed integrally with the prism 21. An antibody 3 patterned so as to be housed in the flow path 11 is immobilized and fixed to the gold thin film 4.

なお、第1樹脂基板1及び第2樹脂基板2は、例えばCOP(シクロオレフィンポリマー)により構成され、射出成形によって製造される。本実施の形態では、COPとして、例えば日本ゼオン社製のZEONEXE48R(登録商標)が採用されている。ここで、第1樹脂基板1及び第2樹脂基板2は、金型に溶融した樹脂が導入された後、金型が冷却されて樹脂が硬化されて射出成形されて製造される。これにより図1に示す第2樹脂基板2が完成する。その後、射出成形された第1樹脂基板1は、微細加工によって溝12、流路11が形成され、図1に示す第1樹脂基板1が完成する。   In addition, the 1st resin substrate 1 and the 2nd resin substrate 2 are comprised, for example with COP (cycloolefin polymer), and are manufactured by injection molding. In the present embodiment, for example, ZEONEXE48R (registered trademark) manufactured by Nippon Zeon Co., Ltd. is employed as the COP. Here, the first resin substrate 1 and the second resin substrate 2 are manufactured by introducing a molten resin into a mold, then cooling the mold, curing the resin, and performing injection molding. Thereby, the second resin substrate 2 shown in FIG. 1 is completed. After that, the injection-molded first resin substrate 1 is formed with grooves 12 and flow paths 11 by fine processing, and the first resin substrate 1 shown in FIG. 1 is completed.

なお、第1樹脂基板1及び第2樹脂基板2の材料としては、COPに限定されず、熱可塑性プラスチックを採用してもよい。この場合も射出成形により第1樹脂基板1及び第2樹脂基板2を製造することができる。つまり、射出形成可能な樹脂であればどのような材料を第1及び第2樹脂基板1及び2の材料として採用してもよい。   In addition, as a material of the 1st resin substrate 1 and the 2nd resin substrate 2, it is not limited to COP, You may employ | adopt a thermoplastic plastic. Also in this case, the first resin substrate 1 and the second resin substrate 2 can be manufactured by injection molding. That is, any material that can be injection-molded may be used as the material for the first and second resin substrates 1 and 2.

次に、第1樹脂基板1及び第2樹脂基板2を貼り付けて、チップを作製する作製方法について説明する。   Next, a manufacturing method for manufacturing a chip by attaching the first resin substrate 1 and the second resin substrate 2 will be described.

まず、第2樹脂基板2の金薄膜4上に、抗体3が固定される。この場合、抗体3は流路11に収まるようにパターニングされて固相化されて金薄膜4上に固定される。固相化の手順は、まず、反応溶液を金薄膜4上に浸し、金薄膜4の表面に化学反応を生じさせ、下地層を形成する。次に、下地層を洗浄した後、下地層の上に抗体3を置き、化学反応により金薄膜4に抗体3を固定する。次に、抗体3が固定された金薄膜4を洗浄する。以上により、抗体3が金薄膜4に固定される。   First, the antibody 3 is fixed on the gold thin film 4 of the second resin substrate 2. In this case, the antibody 3 is patterned so as to be accommodated in the flow path 11, solidified, and fixed on the gold thin film 4. First, the reaction solution is immersed on the gold thin film 4 to cause a chemical reaction on the surface of the gold thin film 4 to form a base layer. Next, after washing the underlayer, the antibody 3 is placed on the underlayer, and the antibody 3 is fixed to the gold thin film 4 by a chemical reaction. Next, the gold thin film 4 on which the antibody 3 is fixed is washed. Thus, the antibody 3 is fixed to the gold thin film 4.

ここで、抗体3を固定する手法としては、物理的吸着法、化学的結合法、又は高分子担体法を採用してもよい。物理的吸着法は、抗体3と金薄膜4との間で生じる静電相互作用やファンデルワールスカ等の物理的相互作用により抗体3と金薄膜4とを吸着する手法である。   Here, as a method for immobilizing the antibody 3, a physical adsorption method, a chemical binding method, or a polymer carrier method may be employed. The physical adsorption method is a method in which the antibody 3 and the gold thin film 4 are adsorbed by electrostatic interaction generated between the antibody 3 and the gold thin film 4 or physical interaction such as van der Waalska.

化学的結合法は、抗体3を金薄膜4に化学的結合力で固定化させる手法である。この手法では、金メルカプチド結合によって抗体3を金薄膜4に固定化させる。   The chemical binding method is a method in which the antibody 3 is immobilized on the gold thin film 4 with a chemical binding force. In this method, the antibody 3 is immobilized on the gold thin film 4 by gold mercaptide binding.

高分子担体法は、金薄膜4上に高分子担体を、例えば金メルカプチド結合によって固定化し、この高分子担体に抗体3を結合させる手法である。   The polymer carrier method is a technique in which a polymer carrier is fixed on the gold thin film 4 by, for example, gold mercaptide bond, and the antibody 3 is bound to the polymer carrier.

但し、固相化した抗体3を金薄膜4に固定させる手法は、物理的吸着法、化学的結合法、又は高分子担体法よりも、抗体3を金薄膜4に強固に固定させることが可能であるため、この手法を採用することが好ましい。なお、抗体3はタンパク質の一種であり、本実施の形態では、抗体3以外のタンパク質を固相化して固定してもよい。   However, the method of fixing the immobilized antibody 3 to the gold thin film 4 can fix the antibody 3 to the gold thin film 4 more firmly than the physical adsorption method, the chemical bonding method, or the polymer carrier method. Therefore, it is preferable to adopt this method. The antibody 3 is a kind of protein. In the present embodiment, a protein other than the antibody 3 may be immobilized and immobilized.

次に、抗体3が流路11に収納されるように第1樹脂基板1の貼り付け面1bと第2樹脂基板2の貼り付け面2aとを当接させる。   Next, the attachment surface 1 b of the first resin substrate 1 and the attachment surface 2 a of the second resin substrate 2 are brought into contact with each other so that the antibody 3 is accommodated in the flow path 11.

次に、接合代23に第1及び第2樹脂基板1及び2を溶着させるための溶着エネルギーを付与する溶着手法を用いて接合代23が貼り付けられる。ここで、溶着手法としては、レーザ溶着を採用することができる。この場合、レーザEをz方向の下側から接合代23に向けて照射すると、接合代23は、局所的に加熱及び加圧され、上面23bが第1樹脂基板1の貼り付け面1bと溶着する。その結果、第1樹脂基板1と第2樹脂基板2とが貼り付けられる。なお、金薄膜4は、プリズム21の上面21bにのみ形成され、接合代23には形成されていない。そのため、接合代23にレーザを照射しても、金薄膜4にはレーザが照射されず、金薄膜4の保護が図られている。   Next, the joining allowance 23 is affixed using the welding technique which provides the joining energy 23 with the welding energy for making the 1st and 2nd resin substrates 1 and 2 weld. Here, laser welding can be employed as the welding technique. In this case, when the laser E is irradiated from the lower side of the z direction toward the bonding margin 23, the bonding margin 23 is locally heated and pressurized, and the upper surface 23b is welded to the bonding surface 1b of the first resin substrate 1. To do. As a result, the first resin substrate 1 and the second resin substrate 2 are attached. The gold thin film 4 is formed only on the upper surface 21 b of the prism 21 and is not formed on the bonding allowance 23. Therefore, even if the joining margin 23 is irradiated with a laser, the gold thin film 4 is not irradiated with the laser, and the gold thin film 4 is protected.

なお、溶着手法としては、レーザ溶着に限定されず、熱溶着、UV溶着、超音波溶着等の樹脂同士を接合することができる手法であれば、どのような手法を採用してもよい。   The welding technique is not limited to laser welding, and any technique may be adopted as long as it is a technique capable of joining resins such as thermal welding, UV welding, and ultrasonic welding.

次に、本チップの比較例のチップについて説明する。図2は、本発明の実施の形態1によるチップに対する比較例のチップの構成図を示し、(A)は(B)のA−A断面図であり、(B)は上面図である。   Next, a chip of a comparative example of this chip will be described. 2A and 2B are configuration diagrams of a comparative example chip with respect to the chip according to the first embodiment of the present invention, in which FIG. 2A is a cross-sectional view taken along the line AA in FIG.

図2に示す比較例のチップにおいて、第1樹脂基板1は、図1の第1樹脂基板1と同一構成であるため、説明を省略する。第2樹脂基板20は、全体が台形プリズムとなっている。つまり、第2樹脂基板20は、図1のチップのように接合代23が設けられていない。   In the chip of the comparative example shown in FIG. 2, the first resin substrate 1 has the same configuration as the first resin substrate 1 in FIG. The entire second resin substrate 20 is a trapezoidal prism. That is, the second resin substrate 20 is not provided with the bonding allowance 23 unlike the chip of FIG.

ここで、比較例のチップでは、流路11のx方向の左側と右側との領域D1に向けて下側からレーザEが照射されて第1樹脂基板1と第2樹脂基板20とが貼り付けられることになる。しかしながら、第2樹脂基板20の受光面20aは、領域D1に対向する位置に設けられている。したがって、領域D1に向けてレーザEを照射すると、このレーザEが受光面20aを通過して領域D1に侵入する。そのため、レーザEによって受光面20aに歪みが発生したり、第2樹脂基板20の屈折率が変化したりして、第2樹脂基板20の光学特性が変化する可能性がある。   Here, in the chip of the comparative example, the first resin substrate 1 and the second resin substrate 20 are attached by irradiating the laser E from the lower side toward the left and right regions D1 of the flow path 11 in the x direction. Will be. However, the light receiving surface 20a of the second resin substrate 20 is provided at a position facing the region D1. Therefore, when the laser E is irradiated toward the region D1, the laser E passes through the light receiving surface 20a and enters the region D1. For this reason, there is a possibility that the optical characteristics of the second resin substrate 20 change due to the laser E being distorted in the light receiving surface 20a or the refractive index of the second resin substrate 20 changing.

そして、第2樹脂基板20の光学特性が変化すると、比較例のチップを表面プラズモン共鳴センサの検出素子として用いた場合、光Lを照射した際に散乱光が多発して検出対象物を精度良く検出することができなくなる。   When the optical characteristics of the second resin substrate 20 change, when the chip of the comparative example is used as a detection element of the surface plasmon resonance sensor, scattered light is frequently generated when the light L is irradiated, and the detection target is accurately detected. It cannot be detected.

また、レーザEが受光面20aで屈折して流路11に収納された抗体3を照射する可能性もある。その結果、抗体3を失活させるおそれがある。   Further, there is a possibility that the laser E is refracted by the light receiving surface 20 a and irradiates the antibody 3 stored in the flow path 11. As a result, the antibody 3 may be deactivated.

一方、本チップでは、図1に示すようにx方向において流路11を挟んで接合代23が設けられている。そのため、接合代23にレーザEを付与しても、このレーザEがプリズム21には当たらないため、プリズム21の光学特性が変化することを防止することができる。更に、本チップでは、接合代23にレーザEが照射されるため、流路11に収納された抗体3にレーザEが照射されず、抗体3の失活を防止することができる。更に、接合代23は、上面23b及び下面23aがx−y平面と平行であるため、z方向の下側からレーザEが照射されても、レーザEを大きく屈折させて流路11へと導く可能性が低く、抗体3の失活を防止することができる。   On the other hand, in this chip, as shown in FIG. 1, a joining allowance 23 is provided with the flow path 11 in the x direction. Therefore, even if the laser E is applied to the joining allowance 23, the laser E does not strike the prism 21, so that the optical characteristics of the prism 21 can be prevented from changing. Furthermore, in this chip, since the laser E is irradiated to the joining allowance 23, the laser E is not irradiated to the antibody 3 accommodated in the flow path 11, and the deactivation of the antibody 3 can be prevented. Furthermore, since the upper surface 23b and the lower surface 23a of the bonding allowance 23 are parallel to the xy plane, even if the laser E is irradiated from the lower side in the z direction, the laser E is refracted greatly and guided to the flow path 11. The possibility is low, and inactivation of the antibody 3 can be prevented.

(実施の形態2)
次に、本発明の実施の形態2によるチップについて説明する。図3は、本発明の実施の形態2によるチップの構成図を示し、(A)は(B)のA−A断面図を示し、(B)は上面図を示している。本チップは、第2樹脂基板2に溝24を設けたことを特徴とする。なお、本実施の形態において、実施の形態1と同一のものは説明を省略する。
(Embodiment 2)
Next, a chip according to the second embodiment of the present invention will be described. 3A and 3B are configuration diagrams of a chip according to the second embodiment of the present invention. FIG. 3A is a cross-sectional view taken along line AA in FIG. 3B, and FIG. 3B is a top view. This chip is characterized in that a groove 24 is provided in the second resin substrate 2. In the present embodiment, the same elements as those in the first embodiment are not described.

図3に示すように、溝24は流路11を挟むようにして一対存在し、接合代23に設けられている。具体的には、溝24は、y方向を長手方向とする細長い形状を有し、接合代23の上面23bと下面23aとを連通させている。また、溝24のy方向の両端は、第1樹脂基板1の側面1cと連通していない。   As shown in FIG. 3, a pair of grooves 24 exist so as to sandwich the flow path 11, and are provided at the joining allowance 23. Specifically, the groove 24 has an elongated shape whose longitudinal direction is the y direction, and allows the upper surface 23b and the lower surface 23a of the joint allowance 23 to communicate with each other. Further, both ends of the groove 24 in the y direction do not communicate with the side surface 1 c of the first resin substrate 1.

したがって、接合代23にレーザEを照射した場合、接合代23で発生した熱は、溝24で遮られ、流路11に伝達されない。これにより、流路11内の抗体3の加熱が防止され、抗体3の失活を防止することができる。   Therefore, when the joining margin 23 is irradiated with the laser E, the heat generated at the joining margin 23 is blocked by the groove 24 and is not transmitted to the flow path 11. Thereby, the heating of the antibody 3 in the flow path 11 is prevented, and the inactivation of the antibody 3 can be prevented.

(実施の形態3)
図4は、本発明の実施の形態3によるチップの構成図を示し、(A)は(B)のA−A断面図を示し、(B)は上面図を示している。実施の形態3によるチップは、流路11に弾性部材13を取り付けたことを特徴としている。なお、本実施の形態において実施の形態1,2と同一のものは説明を省略する。
(Embodiment 3)
4A and 4B are configuration diagrams of a chip according to the third embodiment of the present invention. FIG. 4A is a cross-sectional view taken along line AA in FIG. 4B, and FIG. 4B is a top view. The chip according to the third embodiment is characterized in that an elastic member 13 is attached to the flow path 11. In the present embodiment, the same elements as those in the first and second embodiments are not described.

弾性部材13は、流路11の外周全体に沿って設けられ、断面が例えば円形であり、断面の直径が流路11のz方向の高さと同じ又は少し長い。よって、弾性部材13は、プリズム21の上面21bによってz方向の上側に押され、流路11の側壁を密閉し、流路11の側壁から液体が漏れることを防止することができる。つまり、弾性部材13は、パッキンとして機能する。ここで、弾性部材13としては、例えば、ゴムを採用することができる。   The elastic member 13 is provided along the entire outer periphery of the flow path 11 and has a circular cross section, for example, and the diameter of the cross section is the same as or slightly longer than the height of the flow path 11 in the z direction. Therefore, the elastic member 13 is pushed upward in the z direction by the upper surface 21 b of the prism 21 to seal the side wall of the flow path 11 and prevent liquid from leaking from the side wall of the flow path 11. That is, the elastic member 13 functions as a packing. Here, as the elastic member 13, rubber | gum can be employ | adopted, for example.

(実施の形態4)
図5は、本発明の実施の形態4によるチップの断面構成図を示している。実施の形態4によるチップは、第1樹脂基板1に接合代15を設けたことを特徴としている。なお、本実施の形態において、実施の形態1〜3と同一のものは説明を省略する。図5に示すように、接合代15は、x方向において流路11を挟むようにして左右一対設けられ、流路11から離間して設けられている。
(Embodiment 4)
FIG. 5 shows a sectional configuration diagram of a chip according to the fourth embodiment of the present invention. The chip according to the fourth embodiment is characterized in that a bonding margin 15 is provided on the first resin substrate 1. In the present embodiment, the same elements as those in the first to third embodiments are not described. As shown in FIG. 5, a pair of right and left joint margins 15 are provided so as to sandwich the flow path 11 in the x direction, and are provided apart from the flow path 11.

ここで、第1樹脂基板1において、接合代15以外の部位を本体部16と記述する。つまり、接合代15は、x方向において本体部16から左右に伸びた平板状の形状を有している。接合代15のz方向における高さは、本体部16のz方向における高さよりも低い。接合代15の下面15aは、本体部16の下面16aとは連なっており、第1樹脂基板1の貼り付け面1bを構成している。   Here, in the first resin substrate 1, a part other than the joining allowance 15 is described as a main body part 16. That is, the joint allowance 15 has a flat plate shape that extends from the main body 16 to the left and right in the x direction. The height of the joining margin 15 in the z direction is lower than the height of the main body portion 16 in the z direction. The lower surface 15 a of the bonding allowance 15 is continuous with the lower surface 16 a of the main body 16, and constitutes the bonding surface 1 b of the first resin substrate 1.

左側と右側との接合代15のそれぞれは、本体部16との境界付近に溝14が設けられている。溝14は、接合代15の上面15bと下面15aとを連通させる。これにより、レーザEが照射されることで接合代15に生じた熱が流路11に伝達されることが防止され、流路11内の抗体3の失活を防止することができる。   Each of the joint margins 15 between the left side and the right side is provided with a groove 14 in the vicinity of the boundary with the main body portion 16. The groove 14 allows the upper surface 15b and the lower surface 15a of the joining margin 15 to communicate with each other. Thereby, heat generated in the bonding allowance 15 due to irradiation with the laser E is prevented from being transmitted to the flow path 11, and inactivation of the antibody 3 in the flow path 11 can be prevented.

本体部16の下面16aには流路11が設けられている。流路11のx方向の長さは、本体部16のx方向の長さより少し短い。また、流路11は、実施の形態1〜3と同様、x方向を長手方向とし、y方向に3個配列されている。但し、これは一例であり、実施の形態1〜3と同様、流路11の個数を3個以外の個数にしてもよい。溝12は、本体部16の上面16bと流路11の上面とを連通させている。   A channel 11 is provided on the lower surface 16 a of the main body 16. The length of the flow path 11 in the x direction is slightly shorter than the length of the main body portion 16 in the x direction. Further, as in the first to third embodiments, three flow paths 11 are arranged in the y direction with the x direction as the longitudinal direction. However, this is only an example, and the number of flow paths 11 may be other than three as in the first to third embodiments. The groove 12 makes the upper surface 16 b of the main body portion 16 communicate with the upper surface of the flow path 11.

第2樹脂基板2は、y方向を長手方向とし、z−x平面の断面形状が三角形の形状を有し、全体がプリズム21となっている。プリズム21の2枚の側面は、受光面21aである。受光面21aは外部から照射された光Lを屈折させて流路11に導く。   The second resin substrate 2 has the y direction as a longitudinal direction, the z-x plane has a triangular cross-sectional shape, and is entirely a prism 21. Two side surfaces of the prism 21 are light receiving surfaces 21a. The light receiving surface 21 a refracts the light L emitted from the outside and guides it to the flow path 11.

左側の受光面21aは、第2樹脂基板2の貼り付け面2bの左端から伸び、右側の受光面21aは、貼り付け面2bの右端から伸びている。そのため、第2樹脂基板2において接合代15と対向する領域S1は、レーザEによって光学特性が変化する虞がある。   The left light receiving surface 21a extends from the left end of the bonding surface 2b of the second resin substrate 2, and the right light receiving surface 21a extends from the right end of the bonding surface 2b. Therefore, there is a possibility that the optical characteristics of the region S1 facing the bonding allowance 15 in the second resin substrate 2 may be changed by the laser E.

したがって、本チップでは、光Lを領域S1以外の第2樹脂基板2の中央部に照射することが好ましい。これにより、光学特性が変化した虞のある領域S1を避けて光Lが流路11へと導かれ、検出対象物を精度よく検出することができる。   Therefore, in this chip, it is preferable to irradiate the central portion of the second resin substrate 2 other than the region S1 with the light L. Thereby, the light L is guided to the flow path 11 while avoiding the region S1 in which the optical characteristics may change, and the detection target can be detected with high accuracy.

このように、第2樹脂基板2の中央部に光Lを照射して、流路11に光Lを導くには、第2樹脂基板2を屈折率が高い材料で構成すればよい。   Thus, in order to irradiate the light L to the central portion of the second resin substrate 2 and guide the light L to the flow path 11, the second resin substrate 2 may be made of a material having a high refractive index.

なお、図5では、プリズム21としてx−z平面の断面形状が三角形状のものを採用したが、これに限定されず、実施の形態1〜3と同様、x−z平面における断面形状が台形状のプリズム21を採用してもよい。但し、台形状のプリズム21では、受光面21aの領域が小さくなり、光Lを照射することができる領域が小さくなってしまう。したがって、本実施の形態では、台形状のプリズム21よりは三角形状のプリズム21を採用することが好ましい。   In FIG. 5, the prism 21 having a triangular cross-sectional shape in the xz plane is employed, but the invention is not limited to this, and the cross-sectional shape in the xz plane is a table as in the first to third embodiments. A prism 21 having a shape may be employed. However, in the trapezoidal prism 21, the area of the light receiving surface 21a becomes small, and the area where the light L can be irradiated becomes small. Therefore, in the present embodiment, it is preferable to employ the triangular prism 21 rather than the trapezoidal prism 21.

1 第1樹脂基板
2 第2樹脂基板
3 抗体
4 金薄膜
11 流路
12 溝
13 弾性部材
14 溝
15 接合代
21 プリズム
21a 受光面
23 接合代
E レーザ
L 光
DESCRIPTION OF SYMBOLS 1 1st resin substrate 2 2nd resin substrate 3 Antibody 4 Gold thin film 11 Channel 12 Groove 13 Elastic member 14 Groove 15 Joint margin 21 Prism 21a Light-receiving surface 23 Joint margin E Laser L Light

Claims (8)

第1樹脂基板と、前記第1樹脂基板に貼り付けられる第2樹脂基板とを備える生化学反応用チップであって、
前記第1樹脂基板は、前記第2樹脂基板との貼り付け面に形成された流路を備え、
前記第2樹脂基板は、前記流路に対向する位置に設けられ、外部から照射された光を前記流路に導く受光部を備え、
前記第1樹脂基板又は第2樹脂基板は、前記流路から離間する位置に配置され、他方の樹脂基板の貼り付け面に当接する接合代を備える生化学反応用チップ。
A biochemical reaction chip comprising a first resin substrate and a second resin substrate attached to the first resin substrate,
The first resin substrate includes a flow path formed on a bonding surface with the second resin substrate,
The second resin substrate is provided at a position facing the flow path, and includes a light receiving unit that guides light irradiated from the outside to the flow path,
The first resin substrate or the second resin substrate is a biochemical reaction chip provided with a joining margin that is disposed at a position away from the flow path and abuts against a bonding surface of the other resin substrate.
前記接合代は、前記第2樹脂基板において、前記受光部を挟んで一対設けられている請求項1記載の生化学反応用チップ。   The biochemical reaction chip according to claim 1, wherein a pair of the bonding allowances are provided on the second resin substrate with the light receiving portion interposed therebetween. 前記接合代は、前記第1樹脂基板において、前記流路を挟んで一対設けられている請求項1記載の生化学反応用チップ。   2. The biochemical reaction chip according to claim 1, wherein a pair of the bonding allowances are provided in the first resin substrate with the flow path interposed therebetween. 前記第1及び第2樹脂基板は、前記接合代に前記第1及び前記第2樹脂基板を溶着させるための溶着エネルギーを付与する溶着手法を用いて貼り付けられる請求項1〜3のいずれかに記載の生化学反応用チップ。   The said 1st and 2nd resin substrate is affixed using the welding technique which provides the welding energy for welding the said 1st and said 2nd resin substrate to the said joining margin. The chip for biochemical reaction as described. 前記溶着手法は、熱溶着、レーザ溶着、又はUV接着である請求項4記載の生化学反応用チップ。   The biochemical reaction chip according to claim 4, wherein the welding technique is thermal welding, laser welding, or UV bonding. 前記第2樹脂基板は、前記流路と対向する位置に抗体が固相化して固定されている請求項1〜5のいずれかに記載の生化学反応用チップ。   The biochemical reaction chip according to any one of claims 1 to 5, wherein the second resin substrate has an antibody immobilized thereon and fixed at a position facing the flow path. 表面プラズモン共鳴センサの検出素子に用いられる請求項1〜6のいずれかに記載の生化学反応用チップ。   The biochemical reaction chip according to claim 1, which is used as a detection element of a surface plasmon resonance sensor. 第1樹脂基板と、前記第1樹脂基板に貼り付けられる第2樹脂基板とを備える生化学反応用チップの作製方法であって、
前記第1樹脂基板は、前記第2樹脂基板との貼り付け面に形成された流路を備え、
前記第2樹脂基板は、前記流路に対向して設けられ、外部から照射された光を前記流路に導く受光部を備え、
前記第1樹脂基板又は第2樹脂基板は、前記流路から離間して配置され、他方の樹脂基板の貼り付け面に当接する接合代を備え、
前記第2樹脂基板において、前記流路と対向する位置に抗体を固定するステップと、
前記流路内に前記抗体が収納されるように前記第1樹脂基板と前記第2樹脂基板とを当接させるステップと、
前記接合代に溶着エネルギーを付与して前記第1樹脂基板と前記第2樹脂基板とを接着するステップとを備える生化学反応用チップの作製方法。
A method for producing a biochemical reaction chip comprising a first resin substrate and a second resin substrate attached to the first resin substrate,
The first resin substrate includes a flow path formed on a bonding surface with the second resin substrate,
The second resin substrate is provided to face the flow path, and includes a light receiving portion that guides light irradiated from the outside to the flow path,
The first resin substrate or the second resin substrate is disposed apart from the flow path, and includes a bonding margin that comes into contact with the bonding surface of the other resin substrate,
Fixing the antibody at a position facing the flow path in the second resin substrate;
Contacting the first resin substrate and the second resin substrate so that the antibody is accommodated in the flow path;
A method for producing a chip for biochemical reaction, comprising the step of applying welding energy to the joining margin and bonding the first resin substrate and the second resin substrate.
JP2010051728A 2010-03-09 2010-03-09 Chip for biochemical reaction and manufacturing method of the same Pending JP2011185765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051728A JP2011185765A (en) 2010-03-09 2010-03-09 Chip for biochemical reaction and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051728A JP2011185765A (en) 2010-03-09 2010-03-09 Chip for biochemical reaction and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2011185765A true JP2011185765A (en) 2011-09-22

Family

ID=44792242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051728A Pending JP2011185765A (en) 2010-03-09 2010-03-09 Chip for biochemical reaction and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2011185765A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207027A (en) * 2001-01-11 2002-07-26 Shimadzu Corp Method for manufacturing resin member having minute flow channel, member manufactured thereby and measuring instrument using the same
JP2005030906A (en) * 2003-07-11 2005-02-03 Mitsubishi Chemicals Corp Analytical chip and analyzing method
JP2006078414A (en) * 2004-09-13 2006-03-23 Alps Electric Co Ltd Plate for examination
JP2006142198A (en) * 2004-11-19 2006-06-08 Starlite Co Ltd Microchemical device and its production method
JP2006204983A (en) * 2005-01-25 2006-08-10 Sekisui Chem Co Ltd Method of manufacturing micro-reactor
JP2007078393A (en) * 2005-09-12 2007-03-29 Yamaha Corp Microchip
JP2007098237A (en) * 2005-10-03 2007-04-19 Hitachi Ltd Manufacturing apparatus for substance and chemical reactor equipped with it
JP2007120399A (en) * 2005-10-27 2007-05-17 Konica Minolta Medical & Graphic Inc Micro fluid chip and micro comprehensive analysis system
WO2008117651A1 (en) * 2007-03-26 2008-10-02 Konica Minolta Opto, Inc. Microchip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207027A (en) * 2001-01-11 2002-07-26 Shimadzu Corp Method for manufacturing resin member having minute flow channel, member manufactured thereby and measuring instrument using the same
JP2005030906A (en) * 2003-07-11 2005-02-03 Mitsubishi Chemicals Corp Analytical chip and analyzing method
JP2006078414A (en) * 2004-09-13 2006-03-23 Alps Electric Co Ltd Plate for examination
JP2006142198A (en) * 2004-11-19 2006-06-08 Starlite Co Ltd Microchemical device and its production method
JP2006204983A (en) * 2005-01-25 2006-08-10 Sekisui Chem Co Ltd Method of manufacturing micro-reactor
JP2007078393A (en) * 2005-09-12 2007-03-29 Yamaha Corp Microchip
JP2007098237A (en) * 2005-10-03 2007-04-19 Hitachi Ltd Manufacturing apparatus for substance and chemical reactor equipped with it
JP2007120399A (en) * 2005-10-27 2007-05-17 Konica Minolta Medical & Graphic Inc Micro fluid chip and micro comprehensive analysis system
WO2008117651A1 (en) * 2007-03-26 2008-10-02 Konica Minolta Opto, Inc. Microchip

Similar Documents

Publication Publication Date Title
JP5585138B2 (en) Channel tip and jig
KR101434707B1 (en) Bonding method of resin member
JP4969449B2 (en) Fluid container composed of two plates
JP4948033B2 (en) Microfluidic circuit manufacturing method and microfluidic circuit manufactured by the method
US20070141805A1 (en) Method for bonding plastic micro chip
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
JP2008518225A5 (en)
JP2004077305A (en) Detector
JP4367055B2 (en) Microchip substrate bonding method and microchip
JP5933518B2 (en) Bonding method and manufacturing method of microchannel device
JP5471989B2 (en) Biochemical reaction chip and manufacturing method thereof
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP2005077239A (en) Joining method of microchip substrates and microchip
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
US9079359B2 (en) Microchip and method of manufacturing the same
JP2008216121A (en) Method for manufacturing microchip
JP5182374B2 (en) Microchip and manufacturing method of microchip
JP2011185765A (en) Chip for biochemical reaction and manufacturing method of the same
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
JP2012093285A (en) Microchip
JP2009180577A (en) Microchip
US20130209329A1 (en) Microchip
JP2010145083A (en) Bonded article made of resin and method of manufacturing the same
WO2022201469A1 (en) Liquid handling device, liquid handling system and liquid handling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Effective date: 20130326

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130527

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105