JP3659935B2 - Rectifier, rectifier tube and flow meter provided with the same - Google Patents

Rectifier, rectifier tube and flow meter provided with the same Download PDF

Info

Publication number
JP3659935B2
JP3659935B2 JP2002177958A JP2002177958A JP3659935B2 JP 3659935 B2 JP3659935 B2 JP 3659935B2 JP 2002177958 A JP2002177958 A JP 2002177958A JP 2002177958 A JP2002177958 A JP 2002177958A JP 3659935 B2 JP3659935 B2 JP 3659935B2
Authority
JP
Japan
Prior art keywords
rectifier
flow
tube
flow tube
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002177958A
Other languages
Japanese (ja)
Other versions
JP2004019844A (en
Inventor
健一 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2002177958A priority Critical patent/JP3659935B2/en
Publication of JP2004019844A publication Critical patent/JP2004019844A/en
Application granted granted Critical
Publication of JP3659935B2 publication Critical patent/JP3659935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、整流器、及びそれを備えた整流管及び流量計に関する。
【0002】
【従来の技術】
流管内の流体を整流する整流器は、流管内の被測定流体を測定するための様々な流量計に、流管内でより確かな流速又は流量分布を実現するために用いられている。また、流管内に整流管として具備して、流体を整流することもある。
【0003】
整流器は、従来からハニカムを使用したもの、多孔板などがよく知られているが、穴が多く開いているものは圧力損失は低いが整流効果が低く、逆に穴の少ないものはその形状によっては整流効果が期待できるが圧力損失が大きい。
【0004】
このため、従来の整流器では、その整流効果を得るために配管を長くする必要がある。また、整流器を流量計の計測部の上流側に適用する際には、整流器と計測部との間の配管を長くするか、整流器による圧力損失を別途求めたりする必要があり、構造の複雑さやコスト高を招いていた。
【0005】
【発明が解決しようとする課題】
本発明は、上述のごとき実状に鑑みてなされたものであり、圧力損失が低く且つ配管を長くする必要も無く、流体を安定した流れ、すなわち流管内の代表位置において流管の平均流速又は平均流量をもつ流れに整えることが可能な、整流器及びそれを備えた整流管を提供することをその目的とする。
【0006】
本発明は、配管を長くする必要も無く、流速又は流量測定時にそれ自体による圧力損失を別途計算する必要もなく、流体を安定した流れ、すなわち流管内の代表位置において流管の平均流速又は平均流量をもつ流れに整えることが可能な、整流器を用いた流量計を提供することを他の目的とする。
【0007】
【課題を解決するための手段】
本発明は、以下の各技術手段により上述の課題を解決する。
第1の技術手段は、流管内に配設し該流管内を流れる流体を整流するための整流器において、上流側から流れてくる流体のうち前記流管の中央部に位置する流体を前記流管の内周壁側に絞るための障害部であって、前記流管と同心の円形断面をもつ形状の障害部と、該障害部の下流側に続く柱体部であって、該障害部と同心で且つ該障害部の径方向断面より小さい断面をもつ柱状の中間部と、該中間部の下流側に続く柱体部であって、前記障害部と同心で且つ前記流管の内径に合う径をもつ円柱状の流出部とからなり、該流出部は、前記障害部により前記流管内周壁側に絞られ、前記中間部の側面を流れた流体を、下流側に流出させるための複数の孔をもち、各孔のうち複数の孔は、その流入部分の一部分又は全部が、流れ正面から見て前記障害部の径内であって前記中間部の径外に相当する位置にあることを特徴としたものである。
【0008】
第2の技術手段は、第1の技術手段において、前記複数の孔は、前記流出部の同心円の円周上に均等に配列された複数の円孔であることを特徴としたものである。
【0009】
第3の技術手段は、第1又は第2の技術手段において、前記流出部は、該流出部の下流側に、上流側の流管と下流側の流管に一体に狭持するための、該下流側流管と同径をもつ円柱空間を形成していることを特徴としたものである。
【0010】
第4の技術手段は、第1乃至第3のいずれか1記載の整流器と、該整流器の流出部に合う径をもち該整流器を流路に配設した整流管本体とを備えた整流管であって、当該整流管は、当該整流管の上流側に配設された、前記整流管本体の流路の内径より小さい内径をもつ上流側流管から流れてくる流体を、前記整流器で整流するよう配設されたものであることを特徴としたものである。
【0011】
第5の技術手段は、流量計において、第1乃至第3のいずれか1記載の整流器を、流速又は流量計測部の上流に配設したことを特徴としたものである。
【0012】
【発明の実施の形態】
図1は、本発明の一実施形態に係る整流器の構成例を示す図で、図1(A)は整流器を流体流出側からみた正面図、図1(B)は整流器の流れ方向の断面図、図1(C)は整流器を流体流入側からみた正面図である。
本発明の一実施形態に係る整流器10は、流管内を流れる流体を整流することを目的として、流管内に配設されるべきものであり、特に上流側の管径が下流側の管径に対して小さい場合に有用なものである。整流器10は後述する障害部11,中間部12,流出部13が一体として構成されたことを特徴とするが、その製造に当たっては各部11,12,13のいずれか又は全部を別々に成形して接着剤などで接合することで製造してもよいし、最初から一体に成形し削り加工を施して製造してもよい。また、整流器10の材質には特に制限はないが、流体の特性や設定耐久年数など、その用途に合わせて金属,樹脂などを選択すればよい。
【0013】
障害部11は、流管の径(整流器設置位置での流管径)より小径で、且つ流管と同心の円形断面をもつ体をなしている。以下の説明では、障害部11を、流管と同心で流れに垂直な平面をもつ円柱状(円盤状も含む)の体をなしているものとして例示する。ただし、障害部11は後で図示するように流れに垂直な平面をもたなくてもよい。障害部11はこの形状により、上流側(図中、矢視の方向)から流れてくる流体のうち流管の中央部に位置する流体をその内周壁側に絞ることが可能となっている。
【0014】
また、中間部12は、障害部11の下流側に続く柱体部であって、障害部11と同心(中心が同じ)で且つ障害部11の径方向断面より小さい断面をもつ柱状の体をなしている。障害部11の径方向断面とは障害部11における流れ方向と垂直な断面であり、中間部12の断面は少なくとも障害部11の最大径をもつ位置での径方向断面より小さいものとする。また、中間部12の形状は、角柱状でも円柱状でもよいが、特に角柱状の場合には後述する孔14の配置を考慮して設計すべきである。以下の説明では、中間部12を、障害部11の径より小さい径をもつ円柱状の体をもつものとして例示する。
【0015】
流出部13は中間部12の下流側に続く柱体部であって、障害部11と同心で且つ流管の内径に合う径をもつ円柱状の体をなしている。ここで流管の内径に合う径とは、隙間無く(後述の孔14以外から流体が流出しないように)接続可能な径を指し、例えば流管にそのまま組み込むのであればその流管の内径と略同じ径のことである。なお、2つの流管をこの整流器10により継続させる場合の構成は図2を参照して後述する。流出部13はさらに、障害部11により流管内周壁側に絞られ、中間部12の側面を流れた流体を、下流側に流出させるための複数の孔(貫通孔)14を有するものとする。この複数の孔14は、少なくとも、流れ正面から見て障害部11の径内であって中間部12の径外に相当する位置に、流体を流出させる空間(14aで示す部分に相当)をもつものとする。すなわち、各孔14のうち複数の孔は、その流入部分の一部分(例えば14aで示す部分に相当)又は全部が、流出部13の前記位置にあるものとする。要するに障害部11により陰となる部分からも流体が流出するようにすればよい。これは、中間部12の径を小さくしたことと共に、孔14の総断面積をできる限り多くすることを目的としている。なお、図1においては、障害部11,中間部12,流出部13の直径/高さを、夫々R1/L1,R2/L2,R3/L3、貫通孔の直径をR4−R5で表している。貫通孔14の直径R4−R5はその高さL3により決定してもよい。
【0016】
複数の孔14は、整流効果を鑑みると図1で示すように、流出部13の同心円の円周上に均等に配列された複数の円孔であるようにすることが好ましい。図1ではこの配列の例として45度ステップで円孔14を均等に配置している。また、孔14の数も圧力損失をより少なくするために、より多くすることが望ましい。なお、各孔14は図1のような断面をもつ孔及びその配列に限らず、角柱状の孔とするなど、様々な形状及びその配列を実験して最適なものがあればそれを選択すればよい。
【0017】
図2は、本発明の一実施形態に係る整流器の他の構成例を示す図で、図2(A),(B)はそれぞれ別の整流器を流体流出側からみた正面図である。ただし、図2においては、図1(B)のごとき流れ方向の断面図、図1(C)のごとき流体流入側からみた正面図を省略している。図1で説明した実施形態に係る整流器は、図2(A)で示すような断面形状の異なった孔141,142を備えてもよく、また、図2(B)で示すようにさらに多数の孔143,144を備えてもよい。なお、図2(B)においては、孔143はその断面が障害部11の径内に相当する位置に形成され、孔144はその断面が障害部11の径外に相当する位置に形成された例を示している。また、以降で説明する各実施形態の整流器に図2で示すような形状をもつ孔やその他の形状をもつ孔を適用してもよく、さらにはそれらの配置も整流器の断面中心に対する点対称であれば整流効果が期待できる。
【0018】
図3は、本発明の他の実施形態に係る整流器の構成例を示す図で、図3(A)は整流器を流体流出側からみた正面図、図3(B)は整流器の流れ方向の断面図、図3(C)は整流器を流体流入側からみた正面図である。
本発明の他の実施形態に係る整流器10は、その流出部13において、流出部13の下流側に円柱空間15を形成しているものとする。円柱空間15は、上流側の流管と下流側の流管に一体に狭持するために設けられる空間で、下流側流管と同径とする。この円柱空間15により削られた流出部13の下流側は、下流側流管と一体に接続可能となる。また、このとき整流効果を鑑みて、流れ正面から見て、複数の孔14の一番流管外壁側に該当する空間(流体が流出する部分)の境界が円柱空間15の直径の範囲内に入っている必要がある。なお、図3においては複数の孔14の上述の外側境界を円柱空間15の直径上と一致させた例を示している。なお、円柱空間15によりできたドーナツ状の部分はスペーサなどにより代用できるため図1で説明したような形態も採用できる。また、図3中、L4は円柱空間15の高さを示しており、この例での孔14の高さはL3−L4となる。
【0019】
図4は、本発明の他の実施形態に係る整流器の構成例を示す図で、整流器の流れ方向の断面図である。
本発明の他の実施形態として、整流器10における角部を削り丸みをもたせるようにしてもよい。図4においては障害部11の側面部11aを、中間部12の、流出部13との境界部12a及び障害部11との境界部12bを、丸めた例を示している。なお、多孔14における流入口に丸みをもたせてもよいが、孔14の高さとの兼ね合いを鑑みて流れがうまく整うようにする必要がある。
【0020】
図5は、本発明の一実施形態に係る、整流器を備えた流量計の構成例を示す図で、図4の整流器を熱式質量流量計の検出センサの上流に配設した構成例を示す図である。
本発明の一実施形態に係る流量計は、上述した各実施形態の整流器を流速又は流量計測部の上流に配設して、適切な計測結果を導き出すようにしたものである。図5においては、流量計の例として熱式質量流量計1を挙げて説明するが、その他の種類の流量計においても適用可能であることは言及するまでもない。
【0021】
本構成例に係る熱式質量流量計1は、流管20の流路20′中に配設された感温センサ(温度センサ)25と、その下流側に配設された加熱感温センサ26とを有する流量計測部の上流側に、整流器10を備えるものとする。なお、ここでは図4を参照して説明した整流器を採用した例を示している。整流器10は、流管20にその内径を同じくして埋め込まれた流管22と流管23との間に管壁が一体になるように接合されており、流管21において矢視の方向から流れ込んだ流体を障害部11で流管22の内壁側に押しやり、流出部13の貫通孔14から流出させる。整流器10により整えられた流れを、感温センサ25の温度を基準として加熱感温センサ26で計測し、質量流量を演算することが可能となる。換言すると、この整流器10により、流体を安定した流れ、すなわち流管20内の代表位置において流管20の平均流速又は平均流量をもつ流れに整えることが可能となる。なお、整流器10の上流側の流管21の径が下流側の流管20の径に対して小さい場合には、図示のように、障害部11の流れに垂直な平面の円の径R1は、整流器10の上流側の管(流管21)の径をDとすると、Dと略同じかDより大きく設定しておくことが好ましい。
【0022】
加熱感温センサ26は温度センサと加熱センサの機能を備えており、感温センサ25で検出された温度に基づいて流量計測を行う。すなわち熱式質量流量計1の流量計測部では、感温センサ25と加熱感温センサ26との温度差を一定(例えば+30℃)になるように、加熱感温センサ26を加熱する(電流を流す)ことで質量流量を計測する。被測定流体が流れたとき、加熱感温センサ26は冷やされるので、感温センサ25との温度差を一定に制御するために、さらに電流を流すが、この時に加熱感温センサ26に流れる電流が質量流量に比例することを利用して、質量流量が検出される。
【0023】
また、図5に示すように整流器10の上流側及び/又は下流側に、メッシュ状のフィルタや多孔板等24を配設するようにしてもよい。このフィルタ等は更なる整流効果を得るためのものでも、単にセンサ25,26を異物から保護するためのものでもよい。なお、図5中、27は流量演算部を、28は流量演算部27で演算した質量流量を表示する表示装置(各種測定モードなどを設定する機能を備えてもよい)を、29は電源やその他演算係数などを供給するためのケーブル接続部を、夫々示している。
【0024】
図6は、本発明の一実施形態に係る、整流器を備えた整流管の構成例を示す図で、上述した整流器を管内に配設した整流管を、それより小径の配管の間に狭持したときの様子を示す概略図である。
本発明の一実施形態に係る整流管30は、上述した各実施形態の整流器10と、整流器10の流出部13に合う径をもち、整流器10を流路に配設した整流管本体31とを備えた整流管であり、配管の途中に組み込み、旋廻流や偏流を効率よく(圧力損失も殆どなく短い配管で)排除するためのものである。整流管30は、整流管30の上流側に配設された、整流管本体31の流路の内径より小さい内径をもつ上流側流管41から流れてくる流体を、整流器10で整流するよう配設されたものである。この整流管30は、流量計の前段の配管に組み込むことでその機能をより適切に利用することができる。
【0025】
本構成例に係る整流管30は、上流側流管としての配管41と下流側流管としての配管42との間に狭持されるよう配設されている。配管41,配管42は、夫々、上流側流管のフランジ41a,下流側流管のフランジ42aによって、整流管本体31の流路の上流側流入部32,下流側流出部33と接合されている。ここではフランジ接続を図示したが、ネジ込み等であってもよい。図6においては、整流管30の例として、テーパ部34をその下流側にもつ整流管本体31の流路を挙げて説明するが、テーパ部34は流路を配管42の内径に合わせるために(径の段差を埋めるために)設けた部分であり、例えば円弧状の形状をもつようにしてもよい。なお、下流側の配管42として整流管本体31の流路(整流器10の設置部分の流路)よりも小径の流管を例示したが、テーパ部34等を設けず同径の流管を採用しても、その効果は得られる。なお、ここでは、障害部11として、流れに垂直な平面をもたず、流れ方向の断面形状を弓形に形成した側面部11bをもつ例を示している。また、流路内にフィルタ35を設けることで整流管30の効果は向上する。
【0026】
【発明の効果】
本発明によれば、配管を長くする必要も無く、流体を安定した流れに整えることが可能となる。すなわち、本発明によれば、より短い配管長で、配管の影響がなく、少ない圧力損失で、流管内の流体を整流することが可能となる。また、本発明によれば、この整流器を用いた流量計において、流速又は流量測定時に整流器自体による圧力損失を別途計算する必要もなく、流管内の流速又は流量を流管内の所定の位置で代表させて測定することが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る整流器の構成例を示す図である。
【図2】 本発明の一実施形態に係る整流器の他の構成例を示す図である。
【図3】 本発明の他の実施形態に係る整流器の構成例を示す図である。
【図4】 本発明の他の実施形態に係る整流器の構成例を示す図である。
【図5】 本発明の一実施形態に係る、整流器を備えた流量計の構成例を示す図である。
【図6】 本発明の一実施形態に係る、整流器を備えた整流管の構成例を示す図である。
【符号の説明】
1…熱式質量流量計、10…整流器、11…障害部、11a,11b…障害部の側面部、12…中間部、12a…中間部の流出部との境界部、12b…中間部の障害部との境界部、13…流出部、14,141,142,143,144…孔(貫通孔)、15…円柱空間、20,21,22,23…流管、20′…流路、24,35…フィルタ、25…感温センサ、26…加熱感温センサ、27…流量演算部、28…表示装置、29…ケーブル接続部、30…整流管、31…整流管本体、32…整流管の流入部、33…整流管の流出部、34…テーパ部、41…上流側流管、41a…上流側流管フランジ、42…下流側流管、42a…下流側流管フランジ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rectifier, and a rectifier tube and a flow meter including the rectifier.
[0002]
[Prior art]
Rectifiers that rectify the fluid in the flow tube are used in various flow meters for measuring the fluid to be measured in the flow tube to achieve a more reliable flow velocity or flow distribution in the flow tube. Further, the fluid may be rectified by providing as a rectifying tube in the flow tube.
[0003]
Conventionally, rectifiers that use honeycombs, perforated plates, etc. are well known, but those with many holes have low pressure loss but low rectification effect, while those with few holes depend on their shape. Can expect a rectifying effect, but has a large pressure loss.
[0004]
For this reason, in the conventional rectifier, in order to obtain the rectification effect, it is necessary to lengthen the piping. In addition, when applying a rectifier upstream of the flow meter measurement section, it is necessary to lengthen the piping between the rectifier and the measurement section, or to separately determine the pressure loss due to the rectifier, Incurred high costs.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the actual situation as described above, and has a low pressure loss and no need to lengthen the pipe, so that the flow of the fluid is stable, that is, the average flow velocity or average of the flow pipe at the representative position in the flow pipe. It is an object of the present invention to provide a rectifier and a rectifier tube including the rectifier that can be adjusted to a flow having a flow rate.
[0006]
The present invention eliminates the need for lengthening the piping, and does not require separate calculation of the pressure loss due to itself when measuring the flow velocity or flow rate, and allows the fluid to flow stably, i.e., the average flow velocity or average of the flow tube at representative positions in the flow tube. Another object is to provide a flowmeter using a rectifier that can be adjusted to a flow having a flow rate.
[0007]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems by the following technical means.
The first technical means is a rectifier for rectifying the fluid flowing in the flow tube arranged in the flow tube, and among the fluid flowing from the upstream side, the fluid located at the center of the flow tube is the flow tube An obstacle part for constricting to the inner peripheral wall side, the obstacle part having a circular cross section concentric with the flow tube, and a column body part downstream of the obstacle part, and concentric with the obstacle part And a columnar intermediate portion having a cross section smaller than the radial cross section of the obstruction portion, and a column body portion downstream of the intermediate portion, the diameter being concentric with the obstruction portion and matching the inner diameter of the flow tube A plurality of holes for allowing the fluid flowing on the side surface of the intermediate portion to flow out to the downstream side. The plurality of holes of the holes have a part or all of the inflow portion as viewed from the front of the flow. Is obtained is characterized in that a diameter of the harm portion at a position corresponding to a radially outward of the intermediate portion.
[0008]
According to a second technical means, in the first technical means, the plurality of holes are a plurality of circular holes arranged evenly on a concentric circle of the outflow portion.
[0009]
The third technical means is the first or second technical means, wherein the outflow portion is sandwiched between the upstream flow tube and the downstream flow tube integrally on the downstream side of the outflow portion. A cylindrical space having the same diameter as that of the downstream side flow pipe is formed.
[0010]
A fourth technical means is a rectifier tube comprising the rectifier according to any one of the first to third aspects, and a rectifier main body having a diameter matching the outflow portion of the rectifier and having the rectifier disposed in a flow path. The rectifier pipe rectifies the fluid flowing from the upstream flow pipe having an inner diameter smaller than the inner diameter of the flow path of the rectifier pipe body, which is disposed on the upstream side of the rectifier pipe, by the rectifier. It is characterized by being arranged in such a manner.
[0011]
According to a fifth technical means, in the flow meter, the rectifier according to any one of the first to third is arranged upstream of the flow velocity or flow rate measuring unit.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are diagrams illustrating a configuration example of a rectifier according to an embodiment of the present invention. FIG. 1A is a front view of the rectifier as viewed from the fluid outflow side, and FIG. 1B is a cross-sectional view in the flow direction of the rectifier. FIG. 1C is a front view of the rectifier as seen from the fluid inflow side.
The rectifier 10 according to one embodiment of the present invention should be disposed in the flow tube for the purpose of rectifying the fluid flowing in the flow tube, and in particular, the upstream pipe diameter is set to the downstream pipe diameter. On the other hand, it is useful when it is small. The rectifier 10 is characterized in that an obstacle part 11, an intermediate part 12, and an outflow part 13 which will be described later are integrally formed. In the manufacture thereof, any or all of the parts 11, 12, and 13 are separately molded. It may be manufactured by bonding with an adhesive or the like, or may be manufactured by integrally molding from the beginning and performing a cutting process. Further, the material of the rectifier 10 is not particularly limited, but a metal, a resin, or the like may be selected in accordance with the use such as the characteristics of the fluid and the set durability.
[0013]
The obstruction part 11 has a diameter smaller than the diameter of the flow tube (flow tube diameter at the rectifier installation position) and has a circular cross section concentric with the flow tube. In the following description, the obstacle portion 11 is exemplified as a cylindrical body (including a disk shape) having a plane concentric with the flow tube and perpendicular to the flow. However, the obstacle 11 does not have to have a plane perpendicular to the flow as shown later. With this shape, the obstacle 11 can restrict the fluid located in the center of the flow tube from the upstream side (in the direction of the arrow in the figure) to the inner peripheral wall.
[0014]
Further, the intermediate portion 12 is a columnar body portion downstream from the obstacle portion 11, and is a columnar body that is concentric with the obstacle portion 11 (the center is the same) and has a cross section smaller than the radial section of the obstacle portion 11. There is no. The cross section in the radial direction of the obstacle portion 11 is a cross section perpendicular to the flow direction in the obstacle portion 11, and the cross section of the intermediate portion 12 is at least smaller than the radial cross section at the position having the maximum diameter of the obstacle portion 11. The shape of the intermediate portion 12 may be prismatic or cylindrical, but particularly in the case of a prismatic shape, it should be designed in consideration of the arrangement of the holes 14 described later. In the following description, the intermediate portion 12 is illustrated as having a cylindrical body having a diameter smaller than that of the obstacle portion 11.
[0015]
The outflow portion 13 is a columnar body portion that follows the downstream side of the intermediate portion 12, and forms a cylindrical body that is concentric with the obstacle portion 11 and has a diameter that matches the inner diameter of the flow tube. Here, the diameter that matches the inner diameter of the flow tube refers to a diameter that can be connected without a gap (so that fluid does not flow out from other than holes 14 described later). It is about the same diameter. In addition, the structure in the case of continuing two flow tubes with this rectifier 10 is later mentioned with reference to FIG. The outflow part 13 is further restricted by the obstacle part 11 to the inner peripheral wall side of the flow tube, and has a plurality of holes (through holes) 14 for allowing the fluid flowing through the side surface of the intermediate part 12 to flow out downstream. The plurality of holes 14 have a space (corresponding to a portion indicated by 14a) for allowing fluid to flow out at least at a position within the diameter of the obstacle 11 and outside the diameter of the intermediate portion 12 when viewed from the front of the flow. Shall. In other words, it is assumed that a plurality of holes in each hole 14 have a part (for example, a part indicated by 14 a) or all of the inflow part at the position of the outflow part 13. In short, it is only necessary that the fluid flows out from the shadowed portion by the obstacle 11. This is intended to reduce the diameter of the intermediate portion 12 and increase the total cross-sectional area of the hole 14 as much as possible. In FIG. 1, the diameter / height of the obstacle part 11, the intermediate part 12, and the outflow part 13 are respectively R 1 / L 1 , R 2 / L 2 , R 3 / L 3 , and the diameter of the through hole is R It is represented by 4 -R 5. The diameter R 4 -R 5 of the through hole 14 may be determined by its height L 3 .
[0016]
Considering the rectifying effect, the plurality of holes 14 are preferably a plurality of circular holes arranged evenly on the concentric circumference of the outflow portion 13 as shown in FIG. In FIG. 1, as an example of this arrangement, the circular holes 14 are evenly arranged in 45 degree steps. Also, it is desirable to increase the number of holes 14 in order to reduce pressure loss. Each hole 14 is not limited to a hole having a cross-section as shown in FIG. 1 and its arrangement, but may be selected if there is an optimum one by experimenting with various shapes and arrangements such as a prismatic hole. That's fine.
[0017]
FIG. 2 is a diagram showing another configuration example of the rectifier according to the embodiment of the present invention, and FIGS. 2A and 2B are front views of different rectifiers as seen from the fluid outflow side. However, in FIG. 2, a sectional view in the flow direction as shown in FIG. 1B and a front view as seen from the fluid inflow side as shown in FIG. 1C are omitted. The rectifier according to the embodiment described in FIG. 1 may include holes 14 1 and 14 2 having different cross-sectional shapes as shown in FIG. 2 (A), and further, as shown in FIG. 2 (B). A large number of holes 14 3 , 14 4 may be provided. In FIG. 2B, the hole 14 3 is formed at a position where the cross section corresponds to the inside of the obstacle portion 11, and the hole 14 4 is formed at a position where the cross section corresponds to outside the diameter of the obstacle portion 11. An example is shown. In addition, holes having shapes as shown in FIG. 2 and holes having other shapes may be applied to the rectifiers of the embodiments described below, and their arrangement is also point-symmetric with respect to the cross-sectional center of the rectifier. If there is, the rectification effect can be expected.
[0018]
3A and 3B are diagrams showing a configuration example of a rectifier according to another embodiment of the present invention. FIG. 3A is a front view of the rectifier as seen from the fluid outflow side, and FIG. 3B is a cross-sectional view in the flow direction of the rectifier. FIG. 3C is a front view of the rectifier as seen from the fluid inflow side.
The rectifier 10 which concerns on other embodiment of this invention shall form the cylindrical space 15 in the outflow part 13 in the downstream of the outflow part 13 in the outflow part 13. As shown in FIG. The cylindrical space 15 is a space provided so as to be sandwiched between the upstream flow tube and the downstream flow tube, and has the same diameter as the downstream flow tube. The downstream side of the outflow portion 13 cut by the cylindrical space 15 can be connected integrally with the downstream flow tube. At this time, in view of the rectifying effect, the boundary of the space (portion where the fluid flows out) corresponding to the outermost wall side of the plurality of holes 14 is within the diameter range of the cylindrical space 15 when viewed from the front of the flow. Must be in. FIG. 3 shows an example in which the above-described outer boundaries of the plurality of holes 14 are made to coincide with the diameter of the cylindrical space 15. In addition, since the donut-shaped part made of the cylindrical space 15 can be substituted by a spacer or the like, the form described with reference to FIG. 1 can also be adopted. Further, in FIG. 3, L 4 indicates the height of the cylindrical space 15, and the height of the hole 14 in this example is L 3 -L 4 .
[0019]
FIG. 4 is a diagram showing a configuration example of a rectifier according to another embodiment of the present invention, and is a cross-sectional view in the flow direction of the rectifier.
As another embodiment of the present invention, the corners of the rectifier 10 may be cut and rounded. 4 shows an example in which the side surface portion 11a of the obstacle portion 11 is rounded, and the boundary portion 12a of the intermediate portion 12 with the outflow portion 13 and the boundary portion 12b with the obstacle portion 11 are rounded. In addition, although the inflow port in the porous 14 may be rounded, it is necessary to make the flow well arranged in view of the balance with the height of the hole 14.
[0020]
FIG. 5 is a diagram showing a configuration example of a flow meter provided with a rectifier according to an embodiment of the present invention, and shows a configuration example in which the rectifier of FIG. 4 is arranged upstream of a detection sensor of a thermal mass flow meter. FIG.
In the flow meter according to an embodiment of the present invention, the rectifier according to each embodiment described above is arranged upstream of the flow velocity or flow rate measurement unit so as to derive an appropriate measurement result. In FIG. 5, the thermal mass flow meter 1 is described as an example of the flow meter, but it is needless to mention that it can be applied to other types of flow meters.
[0021]
The thermal mass flowmeter 1 according to this configuration example includes a temperature sensor (temperature sensor) 25 disposed in the flow path 20 ′ of the flow tube 20 and a heating temperature sensor 26 disposed downstream thereof. It is assumed that the rectifier 10 is provided on the upstream side of the flow rate measurement unit having In addition, the example which employ | adopted the rectifier demonstrated with reference to FIG. 4 is shown here. The rectifier 10 is joined so that a tube wall is integrated between a flow tube 22 and a flow tube 23 embedded in the flow tube 20 with the same inner diameter. The fluid that has flowed in is pushed to the inner wall side of the flow tube 22 by the obstruction part 11 and flows out from the through hole 14 of the outflow part 13. The flow adjusted by the rectifier 10 is measured by the heating temperature sensor 26 based on the temperature of the temperature sensor 25, and the mass flow rate can be calculated. In other words, the rectifier 10 makes it possible to arrange the fluid into a stable flow, that is, a flow having an average flow velocity or average flow rate of the flow tube 20 at a representative position in the flow tube 20. When the diameter of the flow tube 21 on the upstream side of the rectifier 10 is smaller than the diameter of the flow tube 20 on the downstream side, as shown in the figure, the diameter R 1 of a plane circle perpendicular to the flow of the obstacle portion 11 is shown. Is preferably set to be substantially the same as D or larger than D, where D is the diameter of the upstream pipe (flow pipe 21) of the rectifier 10.
[0022]
The heating temperature sensor 26 has functions of a temperature sensor and a heating sensor, and performs flow rate measurement based on the temperature detected by the temperature sensor 25. That is, the flow rate measurement unit of the thermal mass flow meter 1 heats the heating temperature sensor 26 so that the temperature difference between the temperature sensor 25 and the heating temperature sensor 26 is constant (for example, + 30 ° C.) Flow) to measure the mass flow rate. When the fluid to be measured flows, the heating temperature sensor 26 is cooled. Therefore, in order to control the temperature difference with the temperature sensor 25 to a constant level, a further current flows. At this time, the current flowing to the heating temperature sensor 26 The mass flow rate is detected using the fact that is proportional to the mass flow rate.
[0023]
In addition, as shown in FIG. 5, a mesh-like filter, a porous plate, or the like 24 may be disposed on the upstream side and / or the downstream side of the rectifier 10. This filter or the like may be for obtaining a further rectifying effect or simply for protecting the sensors 25 and 26 from foreign substances. In FIG. 5, 27 is a flow rate calculation unit, 28 is a display device that displays the mass flow rate calculated by the flow rate calculation unit 27 (may have a function for setting various measurement modes), 29 is a power source, Other cable connections for supplying other calculation coefficients are shown.
[0024]
FIG. 6 is a diagram showing a configuration example of a rectifier pipe provided with a rectifier according to an embodiment of the present invention, in which the rectifier pipe in which the rectifier described above is arranged is sandwiched between pipes having a smaller diameter. It is the schematic which shows a mode when doing.
A rectifier tube 30 according to an embodiment of the present invention includes the rectifier 10 of each embodiment described above and a rectifier tube body 31 having a diameter that matches the outflow portion 13 of the rectifier 10 and having the rectifier 10 disposed in a flow path. This rectifier pipe is installed in the middle of a pipe to efficiently eliminate swirling flow and drift (with short pressure loss and almost no pipe). The rectifying pipe 30 is arranged so as to rectify the fluid flowing from the upstream flow pipe 41 having an inner diameter smaller than the inner diameter of the flow path of the rectifying pipe main body 31 disposed on the upstream side of the rectifying pipe 30 by the rectifier 10. It was established. The function of the rectifying pipe 30 can be used more appropriately by incorporating it in the piping at the front stage of the flow meter.
[0025]
The rectifying pipe 30 according to this configuration example is disposed so as to be sandwiched between a pipe 41 as an upstream flow pipe and a pipe 42 as a downstream flow pipe. The pipe 41 and the pipe 42 are joined to the upstream inflow part 32 and the downstream outflow part 33 of the flow path of the rectifying pipe main body 31 by the flange 41a of the upstream flow pipe and the flange 42a of the downstream flow pipe, respectively. . Although the flange connection is illustrated here, it may be screwed or the like. In FIG. 6, as an example of the rectifying pipe 30, the flow path of the rectifying pipe main body 31 having the tapered portion 34 on the downstream side will be described, but the tapered portion 34 is used to adjust the flow path to the inner diameter of the pipe 42. It is a portion provided (in order to fill a step in diameter), and may have, for example, an arc shape. Although the flow pipe having a smaller diameter than the flow path of the rectifying pipe main body 31 (the flow path of the installation portion of the rectifier 10) is illustrated as the downstream pipe 42, a flow pipe having the same diameter is adopted without providing the tapered portion 34 or the like. Even so, the effect is obtained. Here, an example is shown in which the obstacle portion 11 has a side surface portion 11b that does not have a plane perpendicular to the flow and has a cross-sectional shape in the flow direction formed in an arcuate shape. Moreover, the effect of the rectifying pipe 30 is improved by providing the filter 35 in the flow path.
[0026]
【The invention's effect】
According to the present invention, it is not necessary to lengthen the piping, and the fluid can be adjusted to a stable flow. That is, according to the present invention, it is possible to rectify the fluid in the flow pipe with a shorter pipe length, no influence of the pipe, and with a small pressure loss. Further, according to the present invention, in the flowmeter using this rectifier, there is no need to separately calculate the pressure loss due to the rectifier itself at the time of measuring the flow velocity or flow rate, and the flow velocity or flow rate in the flow tube is represented by a predetermined position in the flow tube. Can be measured.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a rectifier according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating another configuration example of the rectifier according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration example of a rectifier according to another embodiment of the present invention.
FIG. 4 is a diagram illustrating a configuration example of a rectifier according to another embodiment of the present invention.
FIG. 5 is a diagram illustrating a configuration example of a flow meter including a rectifier according to an embodiment of the present invention.
FIG. 6 is a diagram illustrating a configuration example of a rectifier tube including a rectifier according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thermal mass flowmeter, 10 ... Rectifier, 11 ... Obstacle part, 11a, 11b ... Side part of obstruction part, 12 ... Intermediate part, 12a ... Boundary part with outflow part of intermediate part, 12b ... Obstacle of intermediate part 13 ... Outflow part, 14, 14 1 , 14 2 , 14 3 , 14 4 ... hole (through hole), 15 ... cylindrical space, 20, 21, 22, 23 ... flow tube, 20 '... Flow path, 24, 35 ... filter, 25 ... temperature sensor, 26 ... heating temperature sensor, 27 ... flow rate calculation unit, 28 ... display device, 29 ... cable connection unit, 30 ... rectifier tube, 31 ... rectifier tube body, 32: Inlet part of rectifying pipe, 33 ... Outlet part of rectifying pipe, 34 ... Tapered part, 41 ... Upstream side pipe, 41a ... Upstream side pipe flange, 42 ... Downstream side pipe, 42a ... Downstream side pipe flange .

Claims (5)

流管内に配設し該流管内を流れる流体を整流するための整流器において、
上流側から流れてくる流体のうち前記流管の中央部に位置する流体を前記流管の内周壁側に絞るための障害部であって、前記流管と同心の円形断面をもつ形状の障害部と、
該障害部の下流側に続く柱体部であって、該障害部と同心で且つ該障害部の径方向断面より小さい断面をもつ柱状の中間部と、
該中間部の下流側に続く柱体部であって、前記障害部と同心で且つ前記流管の内径に合う径をもつ円柱状の流出部とからなり、
該流出部は、前記障害部により前記流管内周壁側に絞られ、前記中間部の側面を流れた流体を、下流側に流出させるための複数の孔をもち、
各孔のうち複数の孔は、その流入部分の一部分又は全部が、流れ正面から見て前記障害部の径内であって前記中間部の径外に相当する位置にあることを特徴とする整流器。
In a rectifier arranged in a flow tube and rectifying a fluid flowing in the flow tube,
An obstacle having a circular cross section concentric with the flow tube, for restricting a fluid located in a central portion of the flow tube from the upstream side to the inner peripheral wall side of the flow tube. And
A column body portion downstream of the obstacle portion, a columnar intermediate portion concentric with the obstacle portion and having a cross section smaller than a radial cross section of the obstacle portion;
A column body part downstream from the intermediate part, and comprising a cylindrical outflow part concentric with the obstacle part and having a diameter matching the inner diameter of the flow tube;
The outflow portion is narrowed to the inner peripheral wall side of the flow tube by the obstruction portion, and has a plurality of holes for flowing out the fluid flowing on the side surface of the intermediate portion to the downstream side,
The plurality of holes among the holes have a rectifier in which a part or all of the inflow portion is located within the diameter of the obstruction portion when viewed from the front of the flow and corresponds to the outside of the intermediate portion. .
前記複数の孔は、前記流出部の同心円の円周上に均等に配列された複数の円孔であることを特徴とする請求項1記載の整流器。2. The rectifier according to claim 1, wherein the plurality of holes are a plurality of circular holes arranged uniformly on a circumference of a concentric circle of the outflow portion. 前記流出部は、該流出部の下流側に、上流側の流管と下流側の流管に一体に狭持するための、該下流側流管と同径をもつ円柱空間を形成していることを特徴とする請求項1又は2記載の整流器。The outflow portion forms a cylindrical space having the same diameter as that of the downstream flow tube so as to be integrally sandwiched between the upstream flow tube and the downstream flow tube on the downstream side of the outflow portion. The rectifier according to claim 1 or 2, characterized by the above. 請求項1乃至3のいずれか1記載の整流器と、該整流器の流出部に合う径をもち該整流器を流路に配設した整流管本体とを備えた整流管であって、当該整流管は、当該整流管の上流側に配設された、前記整流管本体の流路の内径より小さい内径をもつ上流側流管から流れてくる流体を、前記整流器で整流するよう配設されたものであることを特徴とする整流管。A rectifier tube comprising: the rectifier according to any one of claims 1 to 3; and a rectifier tube body having a diameter matching the outflow portion of the rectifier and having the rectifier disposed in a flow path, The fluid flowing from the upstream flow pipe having an inner diameter smaller than the inner diameter of the flow passage of the rectifying pipe body, which is arranged upstream of the rectifying pipe, is rectified by the rectifier. A rectifier tube characterized by being. 請求項1乃至3のいずれか1記載の整流器を、流速又は流量計測部の上流に配設したことを特徴とする流量計。A flowmeter comprising the rectifier according to any one of claims 1 to 3 disposed upstream of a flow velocity or flow rate measurement unit.
JP2002177958A 2002-06-19 2002-06-19 Rectifier, rectifier tube and flow meter provided with the same Expired - Lifetime JP3659935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177958A JP3659935B2 (en) 2002-06-19 2002-06-19 Rectifier, rectifier tube and flow meter provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177958A JP3659935B2 (en) 2002-06-19 2002-06-19 Rectifier, rectifier tube and flow meter provided with the same

Publications (2)

Publication Number Publication Date
JP2004019844A JP2004019844A (en) 2004-01-22
JP3659935B2 true JP3659935B2 (en) 2005-06-15

Family

ID=31175820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177958A Expired - Lifetime JP3659935B2 (en) 2002-06-19 2002-06-19 Rectifier, rectifier tube and flow meter provided with the same

Country Status (1)

Country Link
JP (1) JP3659935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040715A (en) * 2013-08-20 2015-03-02 愛知時計電機株式会社 Pressure loss reduction structure, flowmeter, silencer and rectifier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218992A (en) * 2004-02-06 2005-08-18 Unitika Ltd Influent pipe with rectification mechanism
JP2009156430A (en) * 2007-12-27 2009-07-16 Toto Ltd Water supply device
JP4898723B2 (en) * 2008-03-06 2012-03-21 パナソニック株式会社 Multi-layer flow path member of ultrasonic fluid measuring device
JP5613724B2 (en) * 2012-06-20 2014-10-29 株式会社 丸 七 製 作 所 Rice mill and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040715A (en) * 2013-08-20 2015-03-02 愛知時計電機株式会社 Pressure loss reduction structure, flowmeter, silencer and rectifier

Also Published As

Publication number Publication date
JP2004019844A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP2997266B1 (en) Flow conditioner and method for optimization
KR101456469B1 (en) Micro flow sensor
JP2006523827A (en) Differential pressure means for gas meter structure with improved flow structure
JPH06194199A (en) Air flow rate meauring device
CN105067049A (en) Differential pressure type flow measuring device based on rotational flow principle and method
US11713986B2 (en) Throttling component and conditioning and flowrate measurement device
CN105358944B (en) Self aligned strut
JP2009524058A (en) A reduced-bore vortex flowmeter with a stepped inlet.
JP3659935B2 (en) Rectifier, rectifier tube and flow meter provided with the same
JP5815437B2 (en) Ultrasonic fluid measuring device
JP3100926B2 (en) Eddy current sensor with turbulent grid
JP2001133307A (en) Inflow and outflow symmetric flowmeter
JP2006208404A (en) Flowmeter
WO2013157990A1 (en) Ultrasonic flow meter
JP2003185477A (en) Flowmeter
JP3192989B2 (en) Flowmeter
JP4087687B2 (en) Flowmeter
JP2001194193A (en) Flow meter
JPS6237134Y2 (en)
JP2021517645A (en) Sensor configuration
JP3537060B2 (en) Liquid flow meter
JP2014515491A (en) Measuring device for measuring fluid flow rate
RU118744U1 (en) ULTRASONIC FLOW METER
JP3374371B2 (en) Gas leak detection device
US10866127B2 (en) Dual class ultrasonic gas meters and related flowtubes

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3659935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term