JP2006208404A - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP2006208404A
JP2006208404A JP2006129540A JP2006129540A JP2006208404A JP 2006208404 A JP2006208404 A JP 2006208404A JP 2006129540 A JP2006129540 A JP 2006129540A JP 2006129540 A JP2006129540 A JP 2006129540A JP 2006208404 A JP2006208404 A JP 2006208404A
Authority
JP
Japan
Prior art keywords
flow path
flow
pressure loss
basic
dividing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006129540A
Other languages
Japanese (ja)
Other versions
JP4719075B2 (en
Inventor
Kiyoshi Oda
清志 小田
Kazuhiro Ushijima
一博 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006129540A priority Critical patent/JP4719075B2/en
Publication of JP2006208404A publication Critical patent/JP2006208404A/en
Application granted granted Critical
Publication of JP4719075B2 publication Critical patent/JP4719075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flowmeter improved in measuring accuracy by enhancing a flow straightening effect without increasing pressure loss. <P>SOLUTION: In this flow meter, a pressure loss member 13a made of a wire gauge, which causes uniform pressure loss to the whole sectional area of a basic passage 20A is closely arranged in the downstream end of a plurality of divided passages formed by equally dividing the basic passage 20A. According to this, the flow in the passage is effectively straightened as the pressure loss remains sufficiently minimized. The number of divided passages is increased by adjusting the number of straightening vanes 12A, whereby the flowmeter can respond to a large flow rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は流量計に関し、特に、ガスメータ等に利用されて、圧力損失を増大させることなく整流効果を高めて、測定精度を向上させた流量計に関する。   The present invention relates to a flow meter, and more particularly, to a flow meter that is used in a gas meter or the like to enhance a rectifying effect without increasing pressure loss and improve measurement accuracy.

従来、流路内において流量センサが取りつけられている付近の流体の流れを乱れがない整流状態にするのに、その流路内に整流板や整流格子を挿入する方法が広く知られている。この方法によると、大きな圧力損失を発生させずにある程度の整流効果も得られるが、上流側に大きな流れの偏りがある場合、この偏りが残ったまま整流板や整流格子を通過してしまうという欠点がある。このような偏りを消すため、整流したい流路の上流側にメッシュ等を配置する方法も広く知られているが、この方法では逆に流路内の流れに乱れを発生させたり、圧力損失を増大させたりするという欠点がある。   2. Description of the Related Art Conventionally, a method of inserting a rectifying plate or a rectifying grid into a flow path is widely known in order to bring the flow of a fluid in the vicinity of a flow sensor in the flow path into a rectified state without disturbance. According to this method, a certain amount of rectification effect can be obtained without generating a large pressure loss, but if there is a large flow deviation on the upstream side, it will pass through the rectification plate or rectification grid with this deviation remaining. There are drawbacks. In order to eliminate such a bias, a method of arranging a mesh or the like on the upstream side of the flow path to be rectified is also widely known, but this method conversely generates a turbulence in the flow in the flow path or reduces pressure loss. There is a drawback of increasing.

そこで、これらの欠点を補完するために、流路内に整流板や整流格子を挿入すると共に、その上流側にメッシュ等を配置するという方法がある。   Therefore, in order to compensate for these drawbacks, there is a method in which a rectifying plate or a rectifying grid is inserted into the flow path and a mesh or the like is disposed on the upstream side thereof.

この方法によると、上流側の流れの偏りの影響を受けにくく、かつある程度の整流効果を得ることも可能であることがわかっているが、そのためにはメッシュ番数を細かくする等、圧力損失を大きくしなければならないという問題が発生する。   According to this method, it is known that it is difficult to be affected by the upstream flow bias, and that it is possible to obtain a certain amount of rectification effect. To that end, however, pressure loss is reduced by reducing the mesh number. The problem arises that it must be enlarged.

よって本発明は、上述した現状に鑑み、圧力損失を増大させることなく整流効果を高めて、測定精度を向上させた流量計を提供することを課題としている。   Therefore, in view of the present situation described above, an object of the present invention is to provide a flowmeter that improves the rectification effect without increasing the pressure loss and improves the measurement accuracy.

上記課題を解決するためになされた請求項1記載の流量計は、被測定流体が流れ、断面形状が一定である基本流路に設けられ、前記被測定流体の流れと平行方向に所定長さだけ延び、前記基本流路を等分割して、複数の分割流路を形成する流路分割部材と、前記流路分割部材の下流側に前記流路分割部材の端部に密接されて配置され前記基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材と、前記分割流路のうちの少なくともひとつに、測定面が暴露するように配置された流量センサとを含むことを特徴とする。   The flowmeter according to claim 1, which has been made to solve the above problem, is provided in a basic flow path in which a fluid to be measured flows and has a constant cross-sectional shape, and has a predetermined length in a direction parallel to the flow of the fluid to be measured. A flow path dividing member that extends only and divides the basic flow path equally to form a plurality of divided flow paths, and is arranged in close contact with the end of the flow path dividing member on the downstream side of the flow path dividing member A pressure loss member made of a wire mesh that causes a uniform pressure loss over the entire cross-section of the basic flow path, and a flow rate sensor disposed so that a measurement surface is exposed to at least one of the divided flow paths. It is characterized by that.

請求項1記載の発明によれば、基本流路20を等分割して形成した複数の分割流路の下流側端部に、基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材13を密接させて配置することにより、圧力損失を十分に小さくしたまま、流路内の整流が効果的に行われる。   According to the first aspect of the present invention, a wire mesh that causes an equal pressure loss across the entire cross-section of the basic channel at the downstream end of the plurality of divided channels formed by equally dividing the basic channel 20. By arranging the pressure loss member 13 made of in close contact with each other, rectification in the flow path is effectively performed while the pressure loss is sufficiently small.

上記課題を解決するためになされた請求項2記載の流量計は、被測定流体が流れ、断面形状が一定である基本流路に設けられ、前記被測定流体の流れと平行方向に所定長さだけ延び、前記基本流路を等分割して、複数の分割流路を形成する流路分割部材と、前記流路分割部材の下流側に前記流路分割部材の端部に密接されて配置され前記基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材と、前記圧損部材の配置場所付近の下流側に測定面が暴露するように配置されているマイクロフローセンサとを含むことを特徴とする。   The flowmeter according to claim 2, which has been made to solve the above problem, is provided in a basic flow path in which a fluid to be measured flows and has a constant cross-sectional shape, and has a predetermined length in a direction parallel to the flow of the fluid to be measured. A flow path dividing member that extends only and divides the basic flow path equally to form a plurality of divided flow paths, and is arranged in close contact with the end of the flow path dividing member on the downstream side of the flow path dividing member A pressure loss member made of a wire mesh that causes a uniform pressure loss over the entire cross-section of the basic flow path, and a microflow sensor arranged so that the measurement surface is exposed to the downstream side in the vicinity of the location of the pressure loss member. It is characterized by including.

請求項2記載の発明によれば、基本流路20を等分割して形成した複数の分割流路の下流側端部に、基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材13を密接させて配置するとともに、圧損部材13の配置場所付近の下流側にマイクロフローセンサ11Aを配置することにより、圧力損失を十分に小さくしたまま、より整流効果の高い箇所での流量測定が可能になる。   According to the second aspect of the present invention, a wire mesh that causes an equal pressure loss to the entire cross section of the basic flow path at the downstream end portions of the plurality of divided flow paths formed by equally dividing the basic flow path 20. The pressure loss member 13 is arranged in close contact, and the microflow sensor 11A is arranged on the downstream side in the vicinity of the location where the pressure loss member 13 is arranged, so that the pressure loss can be kept sufficiently small while the rectifying effect is higher. It is possible to measure the flow rate.

以上説明したように、請求項1記載の発明によれば、基本流路20を等分割して形成した複数の分割流路の下流側端部に、基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材13を密接させて配置することにより、圧力損失を十分に小さくしたまま、流路内の整流を効果的に行うことができる。この結果、安定して精度のよい流量計測ができるようになる。   As described above, according to the first aspect of the present invention, the downstream end portion of the plurality of divided channels formed by equally dividing the basic channel 20 is equivalent to the entire cross-section of the basic channel. By disposing the pressure loss member 13 made of a wire mesh that causes pressure loss in close contact, the flow path can be effectively rectified while the pressure loss is sufficiently reduced. As a result, the flow rate can be measured stably and accurately.

請求項2記載の発明によれば、基本流路20を等分割して形成した複数の分割流路の下流側端部に、基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材13を密接させて配置するとともに、圧損部材13の配置場所付近の下流側にマイクロフローセンサ11Aを配置することにより、圧力損失を十分に小さくしたまま、より整流効果の高い箇所での流量測定が可能になる効果がある。   According to the second aspect of the present invention, a wire mesh that causes an equal pressure loss to the entire cross section of the basic flow path at the downstream end portions of the plurality of divided flow paths formed by equally dividing the basic flow path 20. The pressure loss member 13 is arranged in close contact, and the microflow sensor 11A is arranged on the downstream side in the vicinity of the location where the pressure loss member 13 is arranged, so that the pressure loss can be kept sufficiently small while the rectifying effect is higher. It is possible to measure the flow rate.

以下、本発明の実施の形態を図1〜図4に基づいて説明する。
まず、本発明の流量計の適用例について説明する。図1は、本発明の流量計の適用例を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
First, application examples of the flowmeter of the present invention will be described. FIG. 1 is an explanatory view showing an application example of the flowmeter of the present invention.

図1に示すように、本実施形態の流量計1は、基本的に、流量センサ11、整流板12及び圧損部材13を含んで構成される。この構成に関しては、図2〜図5で後述する。   As shown in FIG. 1, the flow meter 1 of the present embodiment basically includes a flow sensor 11, a rectifying plate 12, and a pressure loss member 13. This configuration will be described later with reference to FIGS.

この流量計1は、例えばガスメータ100に適用されて、その流路2に設置される。このガスメータ100はガス供給源側である上流側配管101A及びガス消費源側である下流側配管102Aの間に接続される。この上流側配管101A及び下流側配管102Aは所定の間隔を有して、ガスメータ100の流入口101及び流出口102がそれぞれ連結される。   This flow meter 1 is applied to, for example, a gas meter 100 and installed in the flow path 2 thereof. The gas meter 100 is connected between an upstream pipe 101A on the gas supply source side and a downstream pipe 102A on the gas consumption source side. The upstream pipe 101A and the downstream pipe 102A have a predetermined interval, and the inlet 101 and the outlet 102 of the gas meter 100 are connected to each other.

流入口101から流入したガスは、ガスメータ100内部の流路2を通過し、流出口102に流出していく。この流路2の一部には上記流量計1の流量センサ11が取り付けられ、ここでのガス流がこの流量センサ11によって計測される。この近辺は、例えば、円形、正方形或いは矩形断面をした細長い直方体形状をしている。   The gas flowing in from the inflow port 101 passes through the flow path 2 inside the gas meter 100 and flows out to the outflow port 102. A flow sensor 11 of the flow meter 1 is attached to a part of the flow path 2, and the gas flow here is measured by the flow sensor 11. This vicinity has, for example, an elongated rectangular parallelepiped shape having a circular, square, or rectangular cross section.

流量センサ11としては、例えば、マイクロフローセンサや超音波ソナーが用いられる。この流量センサ11による検出信号は、制御部3に供給されてディジタル信号に変換される。制御部3は、このディジタル信号を基にして、流路2を流れるガスの瞬時的な流速を求め、これに流路2の断面積及びその構造に依存する係数を乗じて、流路2内を流れるガスの瞬時流量を求める。更に、制御部3は上記瞬時流量を所定の周期でサンプリングし、このサンプリング周期に基づいて、ガス配管内を流れるガスの積算流量を求めて、表示部4に表示させる。   As the flow sensor 11, for example, a micro flow sensor or an ultrasonic sonar is used. The detection signal from the flow sensor 11 is supplied to the control unit 3 and converted into a digital signal. Based on this digital signal, the control unit 3 obtains the instantaneous flow velocity of the gas flowing through the flow path 2 and multiplies it by a cross-sectional area of the flow path 2 and a coefficient depending on the structure thereof. Find the instantaneous flow rate of the gas flowing through Further, the control unit 3 samples the instantaneous flow rate at a predetermined cycle, and based on the sampling cycle, obtains an integrated flow rate of the gas flowing in the gas pipe and displays it on the display unit 4.

また、流路2を通過するガス流は、圧力センサ及び遮断弁装置5の圧力センサ装置によって、ガス圧が計測されている。このガス圧計測値は、制御部3に供給される。制御部3は、このガス圧及び上述したガス流量を監視しており、異常値を検知した場合には、圧力センサ及び遮断弁装置5の遮断弁を閉制御して流路2を流れるガスを遮断する。また異常時に制御部3は、上記表示部4に異常であることを警報表示させるようにしてもよい。   The gas pressure passing through the flow path 2 is measured by the pressure sensor and the pressure sensor device of the shut-off valve device 5. This gas pressure measurement value is supplied to the control unit 3. The control unit 3 monitors the gas pressure and the gas flow rate described above. When an abnormal value is detected, the control unit 3 controls the pressure sensor and the shutoff valve of the shutoff valve device 5 to close the gas flowing through the flow path 2. Cut off. In addition, the control unit 3 may display an alarm on the display unit 4 when there is an abnormality.

また、制御部3には、上記異常状態を解除された後のリセット操作をするためのリセットボタン及び各種の設定用スイッチ等を含むスイッチ6が接続されている。なお、7はガスメータ100の各部に所定の駆動電源を供給する電源であり、例えば、CR電池が用いられる。   The control unit 3 is connected to a switch 6 including a reset button and various setting switches for performing a reset operation after the abnormal state is released. In addition, 7 is a power supply which supplies a predetermined drive power supply to each part of the gas meter 100, for example, a CR battery is used.

次に、図2〜図5を用いて、本発明の流量計のいくつかの実施形態について説明する。図2(A)〜(C)は、本発明の流量計の第1実施形態を示す概略断面図である。図3(A)〜(C)は、本発明の流量計の第2実施形態を示す概略断面図である。図4(A)〜(C)は、本発明の流量計の第3実施形態を示す概略断面図である。図5(A)〜(C)は、本発明の流量計の第4実施形態を示す概略断面図である。なお、各図(B)及び(C)はそれぞれ、流路分割部材を含む基本流路を矢印で示す上流側及び下流側からみたものである。   Next, several embodiments of the flowmeter of the present invention will be described with reference to FIGS. 2A to 2C are schematic cross-sectional views illustrating a first embodiment of the flowmeter of the present invention. FIGS. 3A to 3C are schematic cross-sectional views showing a second embodiment of the flowmeter of the present invention. 4A to 4C are schematic cross-sectional views showing a third embodiment of the flowmeter of the present invention. 5A to 5C are schematic cross-sectional views showing a fourth embodiment of the flow meter of the present invention. Each of FIGS. (B) and (C) shows the basic flow path including the flow path dividing member as viewed from the upstream side and the downstream side indicated by arrows.

図2(A)〜(C)に示す第1実施形態においては、基本流路20は、矩形断面を有する矩形基本流路20Aである。この矩形基本流路20Aには、例えば、流量センサ11としてのマイクロフローセンサ11Aにより、ここを流れる流体の流速が測定される。そして、この矩形形状は、所定の長さにわたり一定である。   In the first embodiment shown in FIGS. 2A to 2C, the basic flow path 20 is a rectangular basic flow path 20A having a rectangular cross section. In the rectangular basic flow path 20A, for example, a microflow sensor 11A as the flow sensor 11 measures the flow velocity of the fluid flowing therethrough. This rectangular shape is constant over a predetermined length.

この矩形基本流路20Aには、被測定流体の流れと平行方向に所定長さだけ延び、矩形基本流路20Aを等分割して、複数の分割流路を形成する流路分割部材12としての複数の整流板12Aが配設されている。複数の整流板12Aは、矩形基本流路20Aの天井面及び床面に平行に、均等間隔に配設された複数、この例では6枚の整流板12Aで構成される。各整流板12Aは共に同等部材及び同等形状、例えば、耐熱性プラスティック製の長方形薄板で構成されている。   The rectangular basic flow path 20A extends as a predetermined length in a direction parallel to the flow of the fluid to be measured, and the rectangular basic flow path 20A is equally divided to form a plurality of divided flow paths. A plurality of rectifying plates 12A are provided. The plurality of rectifying plates 12A are composed of a plurality of, in this example, six rectifying plates 12A arranged at equal intervals in parallel to the ceiling surface and floor surface of the rectangular basic flow path 20A. Each rectifying plate 12A is composed of an equivalent member and an equivalent shape, for example, a rectangular thin plate made of heat-resistant plastic.

そして、この整流板12Aの下流側端部に密接させて生じさせる圧損部材13としての長方形メッシュ13Aが配置されている。長方形メッシュ13Aは、金属製の細長い針金を網の目状に編んで構成されている。そして、ひとつひとつの網の目は共に、正方形状の同一形状をしてメッシュ面を形成している。この長方形メッシュ13Aは、この矩形基本流路20Aの断面に対して、単位面積あたりの流速に対してどの箇所に対しても同等の圧力損失、すなわち、基本流路の断面全域に対して均等の圧力損失を発生させ、この圧力損失は流速に対して単調増加するものとする。   And the rectangular mesh 13A as the pressure-loss member 13 made close to the downstream edge part of this baffle plate 12A is arrange | positioned. The rectangular mesh 13A is configured by knitting a metal elongated wire into a mesh shape. Each mesh has a square shape and forms a mesh surface. This rectangular mesh 13A has an equal pressure loss at any location with respect to the flow velocity per unit area with respect to the cross section of the rectangular basic flow path 20A, that is, equal to the entire cross section of the basic flow path. A pressure loss is generated, and this pressure loss increases monotonously with the flow velocity.

流量センサ4としては、例えば、公知のマイクロフローセンサ11Aが使用される。このマイクロフローセンサは、シリコンチップ上にヒータを挟んで所定の間隔を持って上流側に及び下流側に温度センサが配置された測定面を有する。このようなマイクロフローセンサでは、ヒータにより発せられた熱が、上記矩形基本流路20Aを通過するガスを媒体として、上記上流側に及び下流側の温度センサの付近に伝わると、この伝わった熱に応じた温度に応じた起電力が各温度センサに発生する。この発生した起電力の差が、基本流路20を流れる流速に対応する熱起電力信号として、上記制御部3に出力される。この熱起電力信号はアナログ値であるので、制御部3でディジタル信号に変換される。このマイクロフローセンサ11Aの測定面は、分割流路のうちの少なくともひとつに暴露するように配置されている。   As the flow sensor 4, for example, a known micro flow sensor 11A is used. This microflow sensor has a measurement surface on which a temperature sensor is arranged on the upstream side and the downstream side with a predetermined interval across a heater on a silicon chip. In such a microflow sensor, when the heat generated by the heater is transmitted to the upstream side and the vicinity of the temperature sensor on the downstream side using the gas passing through the rectangular basic flow path 20A as a medium, the transferred heat is transmitted. An electromotive force corresponding to the temperature is generated in each temperature sensor. The generated electromotive force difference is output to the control unit 3 as a thermoelectromotive force signal corresponding to the flow velocity flowing through the basic flow path 20. Since this thermoelectromotive force signal is an analog value, the control unit 3 converts it into a digital signal. The measurement surface of the microflow sensor 11A is disposed so as to be exposed to at least one of the divided flow paths.

このようなマイクロフローセンサ11Aは、流量センサ4は、図に示すように分割流路の途中で測定面が暴露するように配置されている。また、マイクロフローセンサ11Aは、長方形メッシュ13Aの配置場所付近の下流側、すなわち、矩形基本流路20Aの出口付近に、その測定面が暴露するように配置してもよい(図3参照)。なお、流量センサ11としては、上記マイクロフローセンサ11Aの他、公知のサーモパイル型のものを用いることが好ましいが、狭い範囲の流速を計測できるものであればこれ以外のものであってもよい。   In such a microflow sensor 11A, the flow rate sensor 4 is arranged so that the measurement surface is exposed in the middle of the divided flow path as shown in the figure. Alternatively, the microflow sensor 11A may be arranged so that its measurement surface is exposed downstream of the rectangular mesh 13A in the vicinity of the arrangement position, that is, near the outlet of the rectangular basic flow path 20A (see FIG. 3). In addition to the micro flow sensor 11A, a known thermopile type is preferably used as the flow sensor 11, but any other sensor may be used as long as it can measure a narrow flow rate.

図3(A)〜(C)に示す第2実施形態においては、上記第1実施形態の整流板12Aの替わりに、流路分割部材12として整流格子12Bが用いられる。整流格子12Bは、整流板12Aと同様の材質の耐熱性プラスティック製の複数の長方形薄板が、直行するように格子状に組み合わされて構成される。この整流格子12Bによる分割流露は共に等しい略正方形状断面をしている。   In the second embodiment shown in FIGS. 3A to 3C, a rectifying grid 12B is used as the flow path dividing member 12 instead of the rectifying plate 12A of the first embodiment. The rectifying grid 12B is configured by combining a plurality of rectangular thin plates made of heat-resistant plastic made of the same material as the rectifying plate 12A so as to be orthogonal. Both of the split flow dew by this rectifying grid 12B have the same substantially square cross section.

他の構成要件は、上記第1実施形態と同様であるが、但し、この実施形態においては、マイクロフローセンサ11Aは、長方形メッシュ13Aの配置場所付近の下流側、すなわち、矩形基本流路20Aの出口付近に、その測定面が暴露するように配置されている。もちろん、図2で示したように、分割流路の途中で測定面が暴露するように配置されてもよい。   The other constituent elements are the same as those in the first embodiment, except that in this embodiment, the microflow sensor 11A is located downstream of the rectangular mesh 13A, that is, the rectangular basic flow path 20A. In the vicinity of the outlet, the measurement surface is arranged to be exposed. Of course, as shown in FIG. 2, it may be arranged so that the measurement surface is exposed in the middle of the divided flow path.

上述したように、第1及び第2実施形態によれば、基本流路20(矩形基本流路20A)が均等に分割された分割流路では、流路分割部材12(整流板12A又は整流格子12B)及び圧損部材13(長方形メッシュ13A)により、基本流路20の流れが偏りなく、かつ乱れがないように整流されているので、流量センサ11(マイクロフローセンサ11A等)により、安定した平均流速が測定される。この結果、基本流路20全体の流量を安定して精度よく測定できるようになる。特に、第1及び第2実施形態によれば、整流板12A及び整流格子12Bを構成する薄板の数を調整することによって、分割経路を増やすことにより、容易に大流量にも対応できる効果がある。   As described above, according to the first and second embodiments, in the divided flow path in which the basic flow path 20 (rectangular basic flow path 20A) is divided equally, the flow path dividing member 12 (the rectifying plate 12A or the rectifying grid). 12B) and the pressure loss member 13 (rectangular mesh 13A), the flow of the basic flow path 20 is rectified so as not to be biased and turbulent. The flow rate is measured. As a result, the flow rate of the entire basic channel 20 can be measured stably and accurately. In particular, according to the first and second embodiments, by adjusting the number of thin plates constituting the rectifying plate 12A and the rectifying grid 12B, it is possible to easily cope with a large flow rate by increasing the division path. .

図4(A)〜(C)に示す第3実施形態においては、基本流路20は、円形断面を有する円筒基本流路20Bである。この円筒基本流路20Bには、例えば、流量センサ11としての超音波ソナー11Bにより、ここを流れる流体の流速が測定される。そして、この円筒形状は、所定の長さにわたり一定である。   In the third embodiment shown in FIGS. 4A to 4C, the basic flow path 20 is a cylindrical basic flow path 20B having a circular cross section. For example, an ultrasonic sonar 11B as the flow rate sensor 11 measures the flow velocity of the fluid flowing through the cylindrical basic flow path 20B. This cylindrical shape is constant over a predetermined length.

この矩形基本流路20Aには、被測定流体の流れと平行方向に所定長さだけ延び、基本流路20を等分割して、複数の分割流路を形成する流路分割部材12としての多角柱ハニカム構造体12Cが設けられている。この例では、多角柱ハニカム構造体12Cは耐熱性プラスティック製薄板で仕切られた正六角柱ハニカム構造体であり、この構造体の外周部は円筒基本流路20Bの内壁と形状的に整合しないので、耐熱性プラスティックで補填されている。また、分流経路である複数の正六角柱ハニカムは、すべて同形状である。これらにより、複数の分流経路に確実に流体が均等に流れる。   This rectangular basic flow path 20A extends in a predetermined length in a direction parallel to the flow of the fluid to be measured, and the basic flow path 20 is equally divided to form a plurality of flow path dividing members 12 that form a plurality of divided flow paths. A prismatic honeycomb structure 12C is provided. In this example, the polygonal columnar honeycomb structure 12C is a regular hexagonal columnar honeycomb structure partitioned by a heat-resistant plastic thin plate, and the outer peripheral portion of the structure does not conform to the shape of the inner wall of the cylindrical basic flow path 20B. Filled with heat-resistant plastic. Further, the plurality of regular hexagonal honeycombs which are the diversion paths all have the same shape. These ensure that the fluid flows evenly through the plurality of diversion paths.

そして、この多角柱ハニカム構造体12Cの下流側端部に密接させて生じさせる圧損部材13としての円形メッシュ13Bが配置されている。円形メッシュ13Bは、金属製の細長い針金を網の目状に編んで構成されている。そして、ひとつひとつの網の目は共に、正方形状の同一形状をしてメッシュ面を形成している。これは、図2で示した長方形メッシュ13Aを円形に加工することによっても得られる。この円形メッシュ13Bも、上記長方形メッシュ13Aと同様、この円筒基本流路20Bの断面に対して、単位面積あたりの流速に対してどの箇所に対しても同等の圧力損失を発生させ、この圧力損失は流速に対して単調増加するものとする。   And the circular mesh 13B as the pressure loss member 13 produced in close contact with the downstream end of the polygonal column honeycomb structure 12C is disposed. The circular mesh 13B is configured by knitting a metal elongated wire into a mesh shape. Each mesh has a square shape and forms a mesh surface. This can also be obtained by processing the rectangular mesh 13A shown in FIG. 2 into a circle. Similarly to the rectangular mesh 13A, the circular mesh 13B generates an equivalent pressure loss at any location with respect to the flow rate per unit area with respect to the cross section of the cylindrical basic flow path 20B. Is assumed to increase monotonically with flow velocity.

流量センサ4としては、例えば、公知の超音波ソナー11Bが使用される。ここでは、一対の超音波ソナー11Bの検出素子はそれぞれ、複数の分割流路のうちの少なくともひとつの分割流路の入口付近及び出口付近に検出素子が暴露するように配置されている。このような一対の超音波ソナー11Bの超音波信号到達時間を利用して、この分割流路を通過する流体の流速が測定される。この超音波信号到達時間は、制御部3によって基本流路20全体の平均流速、或いは流量に換算される。なお、流量センサ11としては、上記のような形状の分割流路に対する設置の容易性から超音波ソナー11Bを用いることが好ましいが、狭い範囲の流速を計測できるものであればこれ以外のものであってもよい。   As the flow sensor 4, for example, a known ultrasonic sonar 11B is used. Here, the detection elements of the pair of ultrasonic sonars 11B are arranged so that the detection elements are exposed in the vicinity of the inlet and the outlet of at least one of the divided flow paths. Using the ultrasonic signal arrival time of the pair of ultrasonic sonars 11B, the flow velocity of the fluid passing through the divided flow path is measured. This ultrasonic signal arrival time is converted into an average flow velocity or flow rate of the entire basic flow path 20 by the control unit 3. As the flow rate sensor 11, it is preferable to use an ultrasonic sonar 11B for ease of installation with respect to the divided flow path as described above. However, any other type can be used as long as it can measure a narrow flow rate. There may be.

図5(A)〜(C)に示す第4実施形態においては、上記第2実施形態の整流板12Aの替わりに、流路分割部材12として円筒ハニカム構造体12Dが用いられる。この円筒ハニカム構造体12Dは、耐熱性プラスティック製の複数の円管が束ねられて構成される。複数の円管はすべて同形状であり、それぞれ分流経路を構成している。この構造体12Dの外周部は円筒基本流路20Bの内壁と形状的に整合しないので、耐熱性プラスティックで補填されている。また、各分流経路間も同様に補填されている。これにより、複数の分流経路に流体が均等に流れるようになる。他の構成要件は、図4で示した第3実施形態とと同様であるので、ここでは説明を省略する。   In the fourth embodiment shown in FIGS. 5A to 5C, a cylindrical honeycomb structure 12D is used as the flow path dividing member 12 instead of the rectifying plate 12A of the second embodiment. This cylindrical honeycomb structure 12D is configured by bundling a plurality of circular tubes made of heat-resistant plastic. The plurality of circular pipes all have the same shape, and each form a shunt path. Since the outer peripheral portion of the structural body 12D does not conform in shape to the inner wall of the cylindrical basic flow path 20B, it is supplemented with heat-resistant plastic. In addition, the respective shunt paths are similarly compensated. As a result, the fluid flows evenly through the plurality of diversion paths. Other structural requirements are the same as those of the third embodiment shown in FIG.

上述したように、第3及び第4実施形態によれば、基本流路20(円筒基本流路20B)が均等に分割された分割流路では、流路分割部材12(多角柱ハニカム構造体12C又は円筒ハニカム構造体12D)及び圧損部材13(円形メッシュ13B)により、基本流路20の流れが偏りなく、かつ乱れがないように整流されているので、流量センサ11(超音波ソナー11B等)により、安定した平均流速が測定される。この結果、基本流路20全体の流量を安定して精度よく測定できるようになる。特に、第3及び第4実施形態によれば、分割流路の入口付近及び出口付近に流量センサ11としての一対の超音波ソナー11Bを配置することにより、より流量検出精度を高めることができる効果がある。また、円筒基本流路20Bにも容易に適用可能なので、流用計測の適用範囲も広がる。例えば、ガスメータ内部のみならず、広く流通している断面円形のガス配管にも容易に適用可能になる効果がある。   As described above, according to the third and fourth embodiments, in the divided flow channel in which the basic flow channel 20 (cylindrical basic flow channel 20B) is divided equally, the flow channel dividing member 12 (polygonal honeycomb structure 12C). Alternatively, the flow rate sensor 11 (ultrasonic sonar 11B, etc.) is flown by the cylindrical honeycomb structure 12D) and the pressure loss member 13 (circular mesh 13B) so that the flow of the basic flow path 20 is not biased and turbulent. To measure a stable average flow rate. As a result, the flow rate of the entire basic channel 20 can be measured stably and accurately. In particular, according to the third and fourth embodiments, by arranging the pair of ultrasonic sonars 11B as the flow rate sensor 11 in the vicinity of the inlet and the outlet of the divided flow path, the flow detection accuracy can be further improved. There is. Moreover, since it can be easily applied to the cylindrical basic flow path 20B, the applicable range of diversion measurement is expanded. For example, there is an effect that it can be easily applied not only to the inside of the gas meter but also to a gas pipe having a circular cross section that is widely distributed.

なお、上記図2〜図5で示した各例における圧損部材13の圧力損失は、従来のように流路分割部材12の上流側に配置した時の圧損部材13の半分にしても、十分な整流効果があることが実験により確かめられた。また、圧損部材13の替わりに、圧損部材13の半分の圧力損失を有する2つの圧損部材を流路分割部材12の上流側及び下流側にそれぞれ分散させて配置すると、より効果的である。但し、この場合、下流側では圧損部材を流路分割部材12に密接させ、上流側では圧損部材を流路分割部材12からやや上流側に離しておくことが望ましい。参考のために、図6及び図7において、バラツキにおける整流板とメッシュの距離の関係及びバラツキにおける下流側メッシュ有無の影響をそれぞれ示す。図中、横軸は流量、縦軸はバラツキを示している。   The pressure loss of the pressure loss member 13 in each of the examples shown in FIGS. 2 to 5 is sufficient even if the pressure loss member 13 is half that of the pressure loss member 13 when arranged upstream of the flow path dividing member 12 as in the prior art. Experiments have confirmed that there is a rectifying effect. Further, it is more effective to disperse and dispose two pressure loss members having a pressure loss half that of the pressure loss member 13 on the upstream side and the downstream side of the flow path dividing member 12 instead of the pressure loss member 13. However, in this case, it is desirable that the pressure loss member is in close contact with the flow path dividing member 12 on the downstream side, and the pressure loss member is separated slightly upstream from the flow path dividing member 12 on the upstream side. For reference, FIGS. 6 and 7 show the relationship between the distance between the current plate and the mesh in the variation and the influence of the presence or absence of the downstream mesh in the variation, respectively. In the figure, the horizontal axis indicates the flow rate, and the vertical axis indicates the variation.

以上のように本実施形態によると、基本流路20を等分割して形成した複数の分割流路の下流側端部に、基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材13を密接させて配置することにより、圧力損失を十分に小さくしたまま、流路内の整流を効果的に行うことができる。この結果、安定して精度のよい流量計測ができるようになる。   As described above, according to the present embodiment, the wire mesh that causes an equal pressure loss to the entire cross-section of the basic channel at the downstream end of the plurality of divided channels formed by equally dividing the basic channel 20. By arranging the pressure-loss member 13 made of in close contact with each other, it is possible to effectively rectify the flow path while keeping the pressure loss sufficiently small. As a result, the flow rate can be measured stably and accurately.

本発明の流量計の適用例を示す説明図である。It is explanatory drawing which shows the example of application of the flowmeter of this invention. 図2(A)〜(C)は、本発明の流量計の第1実施形態を示す概略断面図である。2A to 2C are schematic cross-sectional views illustrating a first embodiment of the flowmeter of the present invention. 図3(A)〜(C)は、本発明の流量計の第2実施形態を示す概略断面図である。FIGS. 3A to 3C are schematic cross-sectional views showing a second embodiment of the flowmeter of the present invention. 図4(A)〜(C)は、本発明の流量計の第3実施形態を示す概略断面図である。4A to 4C are schematic cross-sectional views showing a third embodiment of the flowmeter of the present invention. 図5(A)〜(C)は、本発明の流量計の第4実施形態を示す概略断面図である。5A to 5C are schematic cross-sectional views showing a fourth embodiment of the flow meter of the present invention. バラツキにおける整流板とメッシュの距離の関係を示すグラフである。It is a graph which shows the relationship between the baffle plate and the distance of a mesh in variation. バラツキにおける下流側メッシュ有無の影響を示すグラフである。It is a graph which shows the influence of the downstream mesh presence in dispersion.

符号の説明Explanation of symbols

1 ガスメータ
2 流路
3 制御部
4 表示部
5 圧力センサ及び遮断弁装置
6 スイッチ
7 電源
11 流量センサ
11A マイクロフローセンサ(流量センサ)
11B 超音波ソナー(流量センサ)
12 流路分割部材
12A 整流板(流路分割部材)
12B 整流格子(流路分割部材)
12C 多角柱ハニカム構造体(流路分割部材)
12D 円筒ハニカム構造体(流路分割部材)
13 圧損部材
13A 長方形メッシュ(圧損部材)
13B 円形メッシュ(圧損部材)
20 基本流路
20A 矩形基本流路(基本流路)
20B 円筒基本流路(基本流路)
101 流入口
102 流出口
DESCRIPTION OF SYMBOLS 1 Gas meter 2 Flow path 3 Control part 4 Display part 5 Pressure sensor and shut-off valve apparatus 6 Switch 7 Power supply 11 Flow sensor 11A Micro flow sensor (flow sensor)
11B ultrasonic sonar (flow sensor)
12 Flow path dividing member 12A Current plate (flow path dividing member)
12B Rectification grid (channel dividing member)
12C Polygonal honeycomb structure (channel dividing member)
12D Cylindrical honeycomb structure (channel dividing member)
13 Pressure loss member 13A Rectangular mesh (pressure loss member)
13B Circular mesh (pressure loss member)
20 Basic channel 20A Rectangular basic channel (Basic channel)
20B Cylindrical basic channel (basic channel)
101 Inlet 102 Outlet

Claims (2)

被測定流体が流れ、断面形状が一定である基本流路に設けられ、前記被測定流体の流れと平行方向に所定長さだけ延び、前記基本流路を等分割して、複数の分割流路を形成する流路分割部材と、
前記流路分割部材の下流側に前記流路分割部材の端部に密接されて配置され前記基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材と、
前記分割流路のうちの少なくともひとつに、測定面が暴露するように配置された流量センサと、
を含むことを特徴とする流量計。
Provided in a basic flow path in which a fluid to be measured flows and has a constant cross-sectional shape, extends by a predetermined length in a direction parallel to the flow of the fluid to be measured, divides the basic flow path equally, and a plurality of divided flow paths A flow path dividing member that forms
A pressure loss member made of a metal mesh that is arranged in close contact with the end of the flow path dividing member on the downstream side of the flow path dividing member and generates an equal pressure loss over the entire cross section of the basic flow path;
A flow sensor arranged to expose the measurement surface to at least one of the divided flow paths;
A flow meter characterized by including.
被測定流体が流れ、断面形状が一定である基本流路に設けられ、前記被測定流体の流れと平行方向に所定長さだけ延び、前記基本流路を等分割して、複数の分割流路を形成する流路分割部材と、
前記流路分割部材の下流側に前記流路分割部材の端部に密接されて配置され前記基本流路の断面全域に対して均等の圧力損失を生じさせる金網からなる圧損部材と、
前記圧損部材の配置場所付近の下流側に測定面が暴露するように配置されているマイクロフローセンサと、
を含むことを特徴とする流量計。
Provided in a basic flow path in which a fluid to be measured flows and has a constant cross-sectional shape, extends by a predetermined length in a direction parallel to the flow of the fluid to be measured, divides the basic flow path equally, and a plurality of divided flow paths A flow path dividing member that forms
A pressure loss member made of a metal mesh that is arranged in close contact with the end of the flow path dividing member on the downstream side of the flow path dividing member and generates an equal pressure loss over the entire cross section of the basic flow path;
A microflow sensor arranged so that the measurement surface is exposed to the downstream side in the vicinity of the place where the pressure loss member is arranged;
A flow meter characterized by including.
JP2006129540A 2006-05-08 2006-05-08 Flowmeter Expired - Lifetime JP4719075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129540A JP4719075B2 (en) 2006-05-08 2006-05-08 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129540A JP4719075B2 (en) 2006-05-08 2006-05-08 Flowmeter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001389496A Division JP2003185477A (en) 2001-12-21 2001-12-21 Flowmeter

Publications (2)

Publication Number Publication Date
JP2006208404A true JP2006208404A (en) 2006-08-10
JP4719075B2 JP4719075B2 (en) 2011-07-06

Family

ID=36965383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129540A Expired - Lifetime JP4719075B2 (en) 2006-05-08 2006-05-08 Flowmeter

Country Status (1)

Country Link
JP (1) JP4719075B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114027B1 (en) * 2009-11-11 2012-03-14 현대엔지니어링 주식회사 Stabiligation device of emulsion
DE102010055115A1 (en) 2010-11-16 2012-05-16 Hydrometer Gmbh Flow sensor for insertion into a measuring section
CN107218981A (en) * 2017-05-16 2017-09-29 湖北锐意自控系统有限公司 A kind of gas flow surveying instrument and method based on ultrasonic wave by-pass flow principle
US10493506B2 (en) * 2016-08-31 2019-12-03 Jejin Engineering Co., Ltd. Inhalation device for local ventilation system
EP4191208A4 (en) * 2020-07-30 2024-01-17 Panasonic Ip Man Co Ltd Physical quantity measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174836U (en) * 1984-04-28 1985-11-19 株式会社エステック flow rate detection device
JPH10293054A (en) * 1997-04-21 1998-11-04 Tokyo Gas Co Ltd Flowmeter
JPH11173896A (en) * 1997-12-15 1999-07-02 Tokyo Gas Co Ltd Flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174836U (en) * 1984-04-28 1985-11-19 株式会社エステック flow rate detection device
JPH10293054A (en) * 1997-04-21 1998-11-04 Tokyo Gas Co Ltd Flowmeter
JPH11173896A (en) * 1997-12-15 1999-07-02 Tokyo Gas Co Ltd Flowmeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114027B1 (en) * 2009-11-11 2012-03-14 현대엔지니어링 주식회사 Stabiligation device of emulsion
DE102010055115A1 (en) 2010-11-16 2012-05-16 Hydrometer Gmbh Flow sensor for insertion into a measuring section
DE102010055115B4 (en) 2010-11-16 2018-07-19 Diehl Metering Gmbh Flow sensor for insertion into a measuring section
US10493506B2 (en) * 2016-08-31 2019-12-03 Jejin Engineering Co., Ltd. Inhalation device for local ventilation system
CN107218981A (en) * 2017-05-16 2017-09-29 湖北锐意自控系统有限公司 A kind of gas flow surveying instrument and method based on ultrasonic wave by-pass flow principle
EP4191208A4 (en) * 2020-07-30 2024-01-17 Panasonic Ip Man Co Ltd Physical quantity measurement device

Also Published As

Publication number Publication date
JP4719075B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US7454984B1 (en) Flow meter for measuring a flow rate of a flow of a fluid
US6446503B1 (en) Flow velocity measuring apparatus and methods using sensors for measuring larger and smaller flow quantities
JP4719075B2 (en) Flowmeter
US20050039809A1 (en) Flow sensor with integrated delta P flow restrictor
JPH02263117A (en) Flowmeter
JP2007333460A (en) Manometer integration type multi-vortex flowmeter
TW200806963A (en) Flow sensor
JP4158980B2 (en) Multi vortex flowmeter
JP2003185477A (en) Flowmeter
JP6108768B2 (en) Ultrasonic gas meter
WO2004025226A1 (en) Straightening device
JP2008232943A (en) Ultrasonic gas meter
Maré et al. Experimental analysis of mixed convection in inclined tubes
JP2001133307A (en) Inflow and outflow symmetric flowmeter
JP3192989B2 (en) Flowmeter
TW200300491A (en) Purge type vortex flowmeter
JP3659935B2 (en) Rectifier, rectifier tube and flow meter provided with the same
JP2001194193A (en) Flow meter
JPH11173896A (en) Flowmeter
JP2011080822A (en) Flowmeter, joint of flowmeter, flow control device and method for manufacturing flowmeter
JP2002228508A (en) Flow measuring instrument
JP5847607B2 (en) Flow control device
JPH07294467A (en) Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device
JP2001241979A (en) Gas safety device
JP3383572B2 (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090123

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R150 Certificate of patent or registration of utility model

Ref document number: 4719075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250