JPH10293054A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JPH10293054A
JPH10293054A JP9103162A JP10316297A JPH10293054A JP H10293054 A JPH10293054 A JP H10293054A JP 9103162 A JP9103162 A JP 9103162A JP 10316297 A JP10316297 A JP 10316297A JP H10293054 A JPH10293054 A JP H10293054A
Authority
JP
Japan
Prior art keywords
flow rate
flow
small
measurement area
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9103162A
Other languages
Japanese (ja)
Other versions
JP3192989B2 (en
Inventor
Kazumitsu Nukui
一光 温井
Hideo Kato
秀男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP10316297A priority Critical patent/JP3192989B2/en
Publication of JPH10293054A publication Critical patent/JPH10293054A/en
Application granted granted Critical
Publication of JP3192989B2 publication Critical patent/JP3192989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flowmeter for accurately measuring the fluid flow rate of, for example, a gas within a wide flop-rate range. SOLUTION: A measurement region 15 for a small flow rate and a measurement region 16 for a large flow rate are provided in a channel 13 of a pipe 10. A rectification strainer 14 as a rectification member for rectifying the flow of a gas 20 is provided at the measurement region 15 for a small flow rate. The straightening strainer 14 is divided into a plurality of small channels 14A with a smaller sectional area than the channel 13 of the measurement region 16 for a large flow rate by a partition wall, and the gas 20 flows through a plurality of small channels 14A. In the measurement region 15 for a small flow rate, flow-rate sensors 15a and 15b for a small flow rate being provided on the wall surface of the pipe 10 output a signal according to the flow rate of the flow-rate sensor 15 for a small flow rate being provided on the wall surface of the pipe 10. At the measurement region 16 for a large flow rate, the flow-rate sensors 16a and 16b for a large flow rate output a signal according to the flow rate of the gas 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス等の流体の流
量を測定するための流量計に係り、特に広い流量範囲で
正確に流量を測定することができるようにした流量計に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter for measuring a flow rate of a fluid such as a gas, and more particularly to a flow meter capable of accurately measuring a flow rate in a wide flow rate range.

【0002】[0002]

【従来の技術】図5は従来の流量計の具体的な構成を表
すもので、1つの流速センサ1を配管2内の流体流路の
中央部に配設し、流量演算部3において、流速センサ1
によって得られた流路中央部の流速に配管2の断面積を
乗算して流量を算出し、この流量を表示部4に表示する
ようになっている。ここで、流速センサによる流量測定
の精度を高く維持するためには、流速センサ1が流体の
最も安定した流れの中に配置される必要がある。
2. Description of the Related Art FIG. 5 shows a specific structure of a conventional flow meter. One flow rate sensor 1 is disposed at the center of a fluid flow path in a pipe 2, and a flow rate calculating section 3 controls a flow rate. Sensor 1
Is multiplied by the cross-sectional area of the pipe 2 to calculate the flow rate, and the flow rate is displayed on the display unit 4. Here, in order to maintain high accuracy of the flow rate measurement by the flow rate sensor, the flow rate sensor 1 needs to be arranged in the most stable flow of the fluid.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
流量計においては、配管2中で、流量によっては偏流が
発生するために流速センサ1の取り付け位置の決定が困
難であるという問題があった。また、流速センサ1を偏
流の少ない流量範囲に限定して設置する必要があり、そ
のため流量の測定範囲が狭くなり、広い流量範囲で精度
良くガス流量を測定できないという問題があった。
However, in the conventional flowmeter, there is a problem that it is difficult to determine the mounting position of the flow velocity sensor 1 because a drift occurs in the pipe 2 depending on the flow rate. In addition, it is necessary to install the flow velocity sensor 1 only in a flow rate range with a small deviation, so that the measurement range of the flow rate becomes narrow, and there is a problem that the gas flow rate cannot be measured accurately in a wide flow rate range.

【0004】ところで、家庭用のガスメータとして、通
過するガスの流量を計測する機能の他に、マイクロコン
ピュータを搭載して安全機能を付加したものが実用化さ
れており、例えば所定量以上のガス流量を検出した場合
や所定のガス流量を所定時間以上検出した場合に、ガス
遮断弁を駆動してガス流路を遮断させるようになってい
る。これらの機能により配管中の漏洩や、不自然なガス
の流出などを検出して、事故を未然に防止し、安全性を
保障するものであり、このような機能が正確に作動する
ためには、広い流量範囲でのガス流量の正確な測定が望
まれる。
[0004] As a household gas meter, in addition to the function of measuring the flow rate of gas passing therethrough, one equipped with a microcomputer and added with a safety function has been put into practical use. When the pressure is detected or when a predetermined gas flow rate is detected for a predetermined time or more, the gas shutoff valve is driven to shut off the gas flow path. These functions detect leaks in pipes and unnatural gas leaks, prevent accidents before they occur, and ensure safety.To ensure that such functions operate correctly, Therefore, accurate measurement of the gas flow rate in a wide flow rate range is desired.

【0005】本発明はかかる問題点に鑑みてなされたも
ので、その目的は、広い流量範囲で正確なガス等の流体
流量を測定することができる流量計を提供することにあ
る。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a flow meter capable of accurately measuring the flow rate of a fluid such as gas in a wide flow rate range.

【0006】[0006]

【課題を解決するための手段】請求項1記載の流量計
は、流体が通過する流路を有すると共に、流路の長手方
向にそって小流量用計測領域および大流量用計測領域が
設けられた配管と、この配管の流路内の小流量用計測領
域に設けられると共に流路よりも断面積の小さな複数の
小流路を形成する整流部材と、大流量用計測領域におけ
る配管の内壁面に設けられると共に、大流量用計測領域
を通過する流体の流速に応じた信号を出力する第1の流
速センサと、大流量用計測領域における配管の内壁面に
設けられると共に、整流部材により形成された小流路を
通過する流体の流速に応じた信号を出力する第2の流速
センサと、流量に応じて、第1の流速センサの出力信号
と第2の流速センサの出力信号の少なくとも一方に基づ
いて流量を算出する流量演算手段とを備えている。
A flow meter according to the present invention has a flow path through which a fluid passes, and a measurement area for a small flow rate and a measurement area for a large flow rate are provided along the longitudinal direction of the flow path. Pipe, a rectifying member provided in the small flow rate measurement area in the flow path of the pipe and forming a plurality of small flow paths having a smaller cross-sectional area than the flow path, and an inner wall surface of the pipe in the large flow rate measurement area And a first flow rate sensor that outputs a signal corresponding to the flow velocity of the fluid passing through the large flow rate measurement area, and a first flow rate sensor that is provided on the inner wall surface of the pipe in the large flow rate measurement area and formed by a rectifying member. A second flow rate sensor that outputs a signal corresponding to the flow rate of the fluid passing through the small flow path; and at least one of an output signal of the first flow rate sensor and an output signal of the second flow rate sensor according to the flow rate. Calculate flow based on And a quantity calculation means.

【0007】この流量計では、大流量用計測領域におい
て、第1の流速センサからこの領域を通過する流体の流
速に応じた信号が出力される。一方、小流量用計測領域
において、第2の流速センサから整流部材により形成さ
れた小流路を通過する流体の流速に応じた信号が出力さ
れる。流量演算手段では、流量に応じて、第1の流速セ
ンサの出力信号と第2の流速センサの出力信号の少なく
とも一方に基づいて流量が算出される。
In this flowmeter, in the large flow rate measurement area, a signal corresponding to the flow velocity of the fluid passing through this area is output from the first flow rate sensor. On the other hand, in the small flow rate measurement region, a signal corresponding to the flow rate of the fluid passing through the small flow path formed by the rectifying member is output from the second flow rate sensor. The flow rate calculating means calculates the flow rate based on at least one of the output signal of the first flow rate sensor and the output signal of the second flow rate sensor according to the flow rate.

【0008】請求項2記載の流量計は、請求項1記載の
ものにおいて、第2の流速センサが配管の内壁面に小流
路に臨む位置に複数設けられると共に、これら複数の第
2の流速センサの出力信号より小流量用計測領域におけ
る流速の平均値を算出して流量演算手段に出力する小流
量用計測領域の平均流速演算手段を更に備える構成とし
たものである。
According to a second aspect of the present invention, there is provided a flow meter according to the first aspect, wherein a plurality of second flow rate sensors are provided on the inner wall surface of the pipe at positions facing the small flow paths. An average flow velocity in the small flow rate measurement area is calculated based on the output signal of the sensor, and the average flow velocity in the small flow rate measurement area is output to the flow rate calculation means.

【0009】この流量計では、複数の第2の流速センサ
の出力信号より小流量用計測領域における流速の平均値
が算出され、流量演算手段では、この平均流速値に基づ
いて流量を演算する。
In this flow meter, the average value of the flow velocity in the measurement area for small flow rate is calculated from the output signals of the plurality of second flow rate sensors, and the flow rate calculation means calculates the flow rate based on the average flow rate value.

【0010】請求項3記載の流量計は、請求項2記載の
ものにおいて、第1の流速センサが配管の内壁面に小流
路に臨む位置に複数設けられると共に、これら複数の第
1の流速センサの出力信号より大流量用計測領域におけ
る流速の平均値を算出して流量演算手段に出力する大流
量用計測領域の平均流速演算手段を更に備えるように構
成したものである。
According to a third aspect of the present invention, there is provided a flow meter according to the second aspect, wherein a plurality of first flow rate sensors are provided on the inner wall surface of the pipe at positions facing the small flow paths. The apparatus is further provided with an average flow velocity calculating means in the large flow rate measurement area which calculates an average value of the flow velocity in the large flow rate measurement area from the output signal of the sensor and outputs the average value to the flow rate calculation means.

【0011】この流量計では、複数の第1の流速センサ
の出力信号より大流量用計測領域における流速の平均値
が算出され、流量演算手段では、この平均流速値に基づ
いて大流量用計測領域における流量を演算する。
In this flow meter, the average value of the flow velocity in the large flow rate measurement area is calculated from the output signals of the plurality of first flow velocity sensors, and the flow rate calculating means calculates the large flow rate measurement area based on the average flow velocity value. Is calculated.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1は本発明の一実施の形態に係る流量計
の構成を表す断面図であり、図2は図1のA−A線の矢
視方向の断面構造を表している。本実施の形態に係る流
量計は、ガスメータとして使用されるものである。この
流量計10Aは、ガス20を受け入れる入口部11とガ
ス20を排出する出口部12とを有する配管10を備え
ている。配管10内の流路13の径は例えば50mmで
ある。流路13内にはその長手方向にそって小流量用計
測領域15および大流量用計測領域16が設けられてい
る。小流量用計測領域15にはガス20の流れを整える
整流部材としての整流ストレーナ14が設けられてい
る。
FIG. 1 is a sectional view showing a configuration of a flow meter according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. The flow meter according to the present embodiment is used as a gas meter. The flow meter 10A includes a pipe 10 having an inlet 11 for receiving the gas 20 and an outlet 12 for discharging the gas 20. The diameter of the flow path 13 in the pipe 10 is, for example, 50 mm. A measurement area 15 for a small flow rate and a measurement area 16 for a large flow rate are provided in the flow path 13 along the longitudinal direction. A rectification strainer 14 as a rectification member for adjusting the flow of the gas 20 is provided in the small flow rate measurement area 15.

【0014】整流ストレーナ14は、図2に示したよう
に、仕切壁により大流量用計測領域16の流路13より
も小さな断面積を有する複数の小流路14Aに分割され
ており、これら分割された小流路14Aをガス20が流
れるようになっている。この小流路14Aに対応して配
管10には小流量用流速センサ挿入部17a,17bが
互いに対向する位置(図では上下位置)に設けられ、こ
れら小流量用流速センサ挿入部17a,17bに小流量
用流速センサ15a,15bが取り付けられている。す
なわち、小流量用流速センサ15a,15bの検出部が
整流ストレーナ14により形成された複数の小流路14
Aのうち最も壁面に近い小流路14Aの中央部に臨む状
態となっている。なお、整流ストレーナ14の上流側お
よび下流側には例えば#100メッシュ程度の金網19
a,19bが設けられている。
As shown in FIG. 2, the rectifying strainer 14 is divided by a partition wall into a plurality of small flow paths 14A having a smaller cross-sectional area than the flow path 13 in the large flow rate measurement area 16. The gas 20 flows through the small channel 14A. Corresponding to the small flow path 14A, small flow velocity sensor insertion portions 17a and 17b are provided in the pipe 10 at positions facing each other (up and down positions in the figure). Small flow rate sensors 15a and 15b are attached. That is, the detection units of the small flow rate sensors 15a and 15b are formed by a plurality of small flow paths 14 formed by the rectifying strainers 14.
A faces the center of the small flow path 14A closest to the wall surface. The upstream and downstream sides of the straightening strainer 14 are, for example, a wire mesh 19 of about # 100 mesh.
a and 19b are provided.

【0015】大流量用計測領域16においても、配管1
0には大流量用流速センサ挿入部18a,18bが互い
に対向する位置(図では上下位置)に設けられ、これら
大流量用流速センサ挿入部18a,18bに大流量用流
速センサ16a,16bが取り付けられている。
In the measurement area 16 for large flow, the pipe 1
At 0, large flow velocity sensor insertion sections 18a and 18b are provided at positions facing each other (up and down positions in the figure), and large flow velocity sensor sections 16a and 16b are attached to these large flow velocity sensor insertion sections 18a and 18b. Have been.

【0016】図3(a),(b)は上記整流ストレーナ
14の有無による流速分布の違いを説明するためのもの
であり、図3(a)は本実施の形態のように整流ストレ
ーナ14が設置された場合の流速分布30、図3(b)
は整流ストレーナがない流路13における流速分布31
をそれぞれ表すものである。一般的に、流速分布は各流
路の中心部が最も速く、壁面に近くになるにつれて遅く
なる。そのため、図3(b)のように整流ストレーナ1
4がない場合には、壁面に取り付けられた小流量用流速
センサ15a,15bと流速分布31のピーク部(すな
わち、流路13の中央部)との間に隔たりがあり、小流
量用流速センサ15a,15bでは流速分布31のうち
流速の比較的遅い部分の流速を計測することとなる。こ
れに対して、本実施の形態では、整流ストレーナ14に
より複数の小流路14Aが形成されており、各小流路1
4A毎に流速分布30がある。そのため流速分布30の
ピーク部(すなわち、小流路14Aの中央部)と配管1
0の壁面との距離が短く、壁面に取り付けた小流量用流
速センサ15a,15bの検出部が流速分布30のピー
ク部に対応する位置にあるため、計測感度は高くなって
いる。
FIGS. 3A and 3B are for explaining the difference in the flow velocity distribution depending on the presence or absence of the rectifying strainer 14. FIG. 3A shows the rectifying strainer 14 as in this embodiment. Flow velocity distribution 30 when installed, FIG. 3 (b)
Is the flow velocity distribution 31 in the channel 13 without the rectifying strainer.
Respectively. Generally, the flow velocity distribution is the fastest at the center of each flow path and becomes slower as it approaches the wall. Therefore, as shown in FIG.
When the flow rate sensor 4 is not provided, there is a gap between the small flow rate sensors 15a and 15b mounted on the wall surface and the peak portion of the flow rate distribution 31 (that is, the center of the flow path 13). In 15a and 15b, the flow velocity of a relatively low flow velocity part in the flow velocity distribution 31 is measured. On the other hand, in the present embodiment, a plurality of small channels 14A are formed by the rectifying strainer 14, and each small channel 1A is formed.
There is a flow velocity distribution 30 every 4A. Therefore, the peak portion of the flow velocity distribution 30 (that is, the central portion of the small flow path 14A) and the pipe 1
The measurement sensitivity is high because the distance from the zero wall surface is short and the detection units of the small flow rate sensors 15a and 15b attached to the wall surface are located at the positions corresponding to the peaks of the flow velocity distribution 30.

【0017】なお、小流量用流速センサ15a,15b
および大流量用流速センサ16a,16bは、図示しな
いが、発熱部とこの発熱部の上流側および下流側に配設
された2つの温度センサを有し、2つの温度センサによ
って検出される温度の差を一定に保つために必要な発熱
部に対する供給電力から流速に対応する流量を求めた
り、一定電流または一定電力で発熱部を加熱し、2つの
温度センサによって検出される温度の差から流量を求め
ることができるようになっている。
The small flow rate sensors 15a, 15b
Although not shown, the large flow velocity sensors 16a and 16b have a heat generating portion and two temperature sensors disposed on the upstream and downstream sides of the heat generating portion, and have a temperature detected by the two temperature sensors. The flow rate corresponding to the flow velocity is obtained from the power supplied to the heat generating section necessary to keep the difference constant, or the heat generating section is heated with a constant current or constant power, and the flow rate is calculated from the difference between the temperatures detected by the two temperature sensors. You can ask for it.

【0018】図4は本実施の形態に係る流量計10Aの
回路部分の構成を示すブロック図である。流量計10A
は、小流量用流速センサ15a,15bの各出力信号に
基づいて整流ストレーナ14により形成された小流路1
4A内の流速の平均値を算出する平均流速演算部41
と、大流量用流速センサ16a,16bの各出力信号に
基づいて大流量用計測領域16における流速の平均値を
算出する平均流速演算部42と、流量に応じて、平均流
速演算部41の出力と平均流速演算部42の出力の一方
を選択して出力する信号切換部43と、この信号切換部
43の出力に基づいて流量および積算流量を表示する表
示部45と、流量演算部44によって算出された流量お
よび積算流量を外部に出力するための外部出力端子46
とを備えている。信号切換部43は、流量演算部44に
よって算出された流量が予め設定された小流量域にある
ときは平均流速演算部41の出力を流量演算部44に出
力し、流量演算部44によって算出された流量が予め設
定された大流量域にあるときは平均流速演算部42の出
力を流量演算部44に出力するようになっている。流量
演算部44は、流量が予め設定された小流量域にあると
きには平均流速演算部41の出力である流速の平均値に
整流ストレーナ14内の小流路14Aに対応した配管形
状係数を乗算して流量を算出し、流量が予め設定された
大流量域にあるときには平均流速演算部42の出力であ
る流速の平均値に整流ストレーナ14の下流の流路13
に対応した配管形状係数を乗算して流量を算出するよう
になっている。
FIG. 4 is a block diagram showing a configuration of a circuit portion of the flow meter 10A according to the present embodiment. Flow meter 10A
Is a small flow path 1 formed by the rectifying strainer 14 based on each output signal of the small flow rate flow rate sensors 15a and 15b.
Average flow velocity calculating unit 41 for calculating the average value of the flow velocity in 4A
An average flow velocity calculator 42 for calculating an average value of the flow velocity in the large flow measurement area 16 based on the output signals of the large flow velocity sensors 16a and 16b, and an output of the average flow velocity calculator 41 according to the flow rate. And a signal switching unit 43 for selecting and outputting one of the outputs of the average flow velocity calculating unit 42, a display unit 45 for displaying the flow rate and the integrated flow rate based on the output of the signal switching unit 43, and a flow rate calculating unit 44. Output terminal 46 for outputting the measured flow rate and the integrated flow rate to the outside
And When the flow rate calculated by the flow rate calculation section 44 is within the preset small flow rate range, the signal switching section 43 outputs the output of the average flow rate calculation section 41 to the flow rate calculation section 44 and is calculated by the flow rate calculation section 44. When the flow rate is in a preset large flow rate range, the output of the average flow velocity calculation section 42 is output to the flow rate calculation section 44. When the flow rate is in a predetermined small flow rate range, the flow rate calculation unit 44 multiplies the average value of the flow velocity output from the average flow velocity calculation unit 41 by a pipe shape coefficient corresponding to the small flow path 14A in the rectification strainer 14. When the flow rate is in a preset large flow rate range, the flow rate 13 is output to the average value of the flow rate, which is the output of the average flow rate calculation unit 42, in the flow path 13 downstream of the rectifying strainer 14.
The flow rate is calculated by multiplying by the pipe shape coefficient corresponding to.

【0019】なお、小流量域と大流量域とを一部重複さ
せて、流量が増加する場合には流量が重複領域の上限値
に達したときに平均流速演算部41の出力から平均流速
演算部42の出力へ切り換え、流量が減少する場合には
流量が重複領域の下限値に達したときに平均流速演算部
42の出力から平均流速演算部41の出力へ切り換えて
流量を算出するようにしても良い。平均流速演算部4
1,42、信号切換部43および流量演算部44は、例
えばマイクロコンピュータによって構成することができ
る。
When the flow rate increases by partially overlapping the small flow rate area and the large flow rate area, when the flow rate reaches the upper limit of the overlapping area, the average flow rate calculation unit 41 calculates the average flow rate. The output is switched to the output of the section 42, and when the flow rate decreases, the flow rate is calculated by switching from the output of the average flow rate calculating section 42 to the output of the average flow rate calculating section 41 when the flow rate reaches the lower limit value of the overlapping area. May be. Average flow velocity calculator 4
The reference numerals 1 and 42, the signal switching unit 43, and the flow rate calculation unit 44 can be constituted by, for example, a microcomputer.

【0020】次に、本実施の形態に係る流量計10Aの
作用について説明する。
Next, the operation of the flow meter 10A according to the present embodiment will be described.

【0021】入口部11から取り入れられたガス20
は、まず、小流量用計測領域15において、整流ストレ
ーナ14内の複数の小流路14Aそれぞれを通過する。
その際、流路13の壁面に設けられた小流量用流速セン
サ15a,15bが小流路14Aを通過するガス20の
流速に応じた信号を出力する。小流量用計測領域15を
通過したガス20は、大流量用計測領域16を通過して
出口部12より排出される。その際、大流量用流速セン
サ16a,16bが大流量用計測領域16を通過するガ
ス20の流速に応じた信号を出力する。
The gas 20 introduced from the inlet 11
First, in the small flow rate measurement area 15, each of the small flow paths 14 </ b> A in the straightening strainer 14 passes.
At this time, the small flow velocity sensors 15a and 15b provided on the wall surface of the flow path 13 output a signal corresponding to the flow velocity of the gas 20 passing through the small flow path 14A. The gas 20 that has passed through the small flow rate measurement area 15 passes through the large flow rate measurement area 16 and is discharged from the outlet 12. At this time, the large flow rate sensors 16a and 16b output a signal corresponding to the flow rate of the gas 20 passing through the large flow rate measurement region 16.

【0022】平均流速演算部41は、整流ストレーナ1
4内の小流路14Aにおける小流量用流速センサ15
a,15bの各出力信号に基づいて小流路14A内にお
ける流速の平均値を算出し、平均流速演算部42は、大
流量用計測領域16における大流量用流速センサ16
a,16bの各出力信号に基づいて大流量用計測領域1
6における流速の平均値を算出する。信号切換部43
は、流量演算部44によって算出された流量が予め設定
された小流量域にあるときには平均流速演算部41の出
力を流量演算部44に出力し、流量演算部44によって
算出された流量が予め設定された大流量域にあるときに
は平均流速演算部42の出力を流量演算部44に出力す
る。流量演算部44は、流量が予め設定された小流量域
にあるときは平均流速演算部41の出力である流速の平
均値に基づいて流量および積算流量を算出し、流量が予
め設定された大流量域にあるときには平均流速演算部4
2の出力である流速の平均値に基づいて流量および積算
流量を算出する。流量演算部44によって算出された積
算流量は表示部45によって表示される。なお、小流量
域と大流量域を一部重複させて、重複領域では流量演算
部44、平均流速演算部41の出力である流速の平均値
に基づいて算出される流量と平均流速演算部42の出力
である流速の平均値に基づいて算出される流量との平均
値を求め、この平均値を計測された流量としても良い。
The average flow velocity calculating section 41 includes a rectifying strainer 1
Flow rate sensor 15 for small flow rate in small flow path 14A in
The average value of the flow velocity in the small flow path 14A is calculated based on the output signals a and 15b.
a, a large flow rate measurement area 1 based on the output signals of 16b
The average value of the flow velocity in 6 is calculated. Signal switching unit 43
Outputs the output of the average flow velocity calculating section 41 to the flow rate calculating section 44 when the flow rate calculated by the flow rate calculating section 44 is in the preset small flow rate range, and the flow rate calculated by the flow rate calculating section 44 is set in advance. When the current flow rate is in the large flow rate range, the output of the average flow velocity calculation section 42 is output to the flow rate calculation section 44. When the flow rate is within a predetermined small flow rate range, the flow rate calculation unit 44 calculates the flow rate and the integrated flow rate based on the average value of the flow velocity output from the average flow velocity calculation unit 41, and sets the flow rate to a predetermined large flow rate. When in the flow rate range, the average flow velocity calculation unit 4
The flow rate and the integrated flow rate are calculated based on the average value of the flow velocity which is the output of 2. The integrated flow rate calculated by the flow rate calculation unit 44 is displayed on the display unit 45. The small flow rate region and the large flow rate region are partially overlapped, and in the overlap region, the flow rate calculated based on the average value of the flow velocity output from the flow rate calculation unit 44 and the average flow rate calculation unit 41 and the average flow rate calculation unit 42 An average value with the flow rate calculated based on the average value of the flow velocity, which is the output of, may be obtained, and this average value may be used as the measured flow rate.

【0023】本実施の形態では、小流量用流速センサ1
5a,15bを配管10の平面に取り付けると共に、小
流量用流速センサ15a,15bをそれぞれ整流ストレ
ーナ14により分割された小流路14Aに臨ませ、小流
量用流速センサ15a,15bの検出部が小流路14A
内の中心部に位置するようにしたので、ガス20の流れ
の乱れの影響を受けず、正確で感度の高い計測を行うこ
とができる。また、本実施の形態では、小流量用流速セ
ンサ15a,15bおよび大流量用流速センサ16a,
16bを配管10に直接取り付けることができるので、
平均流速演算部41,42および流量演算部44が含ま
れる計測装置本体との間の結線を容易にすることができ
る。また、小流量用流速センサ15a,15bおよび大
流量用流速センサ16a,16bの異常時には流路13
全体を分解せずに、保守を行うことができる。
In this embodiment, the flow rate sensor 1 for a small flow rate is used.
5a and 15b are attached to the plane of the pipe 10, and the flow rate sensors 15a and 15b for small flow rate face the small flow path 14A divided by the rectifying strainer 14, respectively, and the detection units of the flow rate sensors 15a and 15b for small flow rate are small. Channel 14A
Because it is located at the center of the inside, accurate and highly sensitive measurement can be performed without being affected by the disturbance of the flow of the gas 20. In the present embodiment, the flow rate sensors 15a and 15b for small flow rate and the flow rate sensors 16a and 16a for large flow rate
Since 16b can be directly attached to the pipe 10,
The connection between the measurement device main body including the average flow velocity calculation units 41 and 42 and the flow rate calculation unit 44 can be facilitated. When the flow rate sensors 15a and 15b for small flow rate and the flow rate sensors 16a and 16b for large flow rate are abnormal, the flow path 13
Maintenance can be performed without disassembling the whole.

【0024】以上実施の形態を挙げて本発明を説明した
が、本発明は上記実施の形態に限定されるものではな
く、種々変形可能である。例えば、上記実施の形態にお
いては、2つの小流量用流速センサ15a,15bおよ
び2つの大流量用流速センサ16a,16bを設けるよ
うにしたが、これらの数は任意である。但し、各流速セ
ンサを複数設けた場合には、1の流速センサに異常が発
生した場合でも他の流速センサで計測を行うことができ
るため、信頼性上、各流速センサの数は2以上とするこ
とが望ましい。
Although the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment, and can be variously modified. For example, in the above embodiment, two small flow rate flow sensors 15a and 15b and two large flow rate flow sensors 16a and 16b are provided, but these numbers are arbitrary. However, when a plurality of flow velocity sensors are provided, even if an abnormality occurs in one flow velocity sensor, measurement can be performed by another flow velocity sensor. Therefore, in terms of reliability, the number of each flow velocity sensor is two or more. It is desirable to do.

【0025】また、大流量用計測領域16を上流側に、
小流量用計測領域15を下流側に形成しても良い。更
に、流路13の断面形状は円形に限らず、半円、楕円、
四角等の形状であっても良い。また、流速センサとして
は、発熱部と2つの温度センサを有するものに限らず、
例えば、1つの発熱部を有し、この発熱部の温度(抵
抗)を一定に保つために必要な発熱部に対する供給電力
から流速を求めたり、一定電流または一定電力で発熱部
を加熱し、発熱部の温度(抵抗)から流速を求めるもの
でも良い。また、本発明は、ガス以外の気体、および気
体のみならず液体の流量を計測する流量計にも適用する
ことが可能である。
Also, the large flow rate measurement region 16 is located on the upstream side,
The measurement area 15 for small flow rates may be formed on the downstream side. Further, the cross-sectional shape of the flow path 13 is not limited to a circle, but may be a semicircle, an ellipse,
The shape may be a square or the like. Further, the flow velocity sensor is not limited to the one having the heat generating portion and the two temperature sensors,
For example, it has one heat-generating part, determines the flow velocity from the power supplied to the heat-generating part necessary to keep the temperature (resistance) of the heat-generating part constant, or heats the heat-generating part with a constant current or constant power to generate heat. The flow rate may be obtained from the temperature (resistance) of the section. Further, the present invention can be applied to a flow meter that measures the flow rate of not only gas but also gas and liquid as well as gas.

【0026】[0026]

【発明の効果】以上説明したように請求項1記載の流量
計によれば、小流量用計測領域において、整流部材によ
って複数の小流路を形成すると共に、この小流路に臨む
ように配管の壁面に対して第2の流速センサを設けるよ
うにしたので、小流量用計測領域において、流体の偏流
の影響を受けることなく高精度な流量測定を行うことが
できるという効果を奏する。更に、第2の流速センサを
偏流の少ない流量範囲に限定して設置する必要がないた
め、流量の測定範囲が拡大されるという効果を奏する。
また、第2の流速センサを配管の壁面に取り付けるよう
にしたので、取り付け作業および第2の流速センサの異
常時の対応が容易になるという効果を奏する。
As described above, according to the flowmeter of the first aspect, in the small flow rate measurement area, a plurality of small flow paths are formed by the rectifying member, and the piping is arranged so as to face the small flow paths. Since the second flow velocity sensor is provided on the wall surface of, the flow rate can be measured with high accuracy without being affected by the drift of the fluid in the small flow rate measurement area. Further, since it is not necessary to install the second flow rate sensor in a flow rate range with a small drift, the measurement range of the flow rate is expanded.
In addition, since the second flow rate sensor is mounted on the wall surface of the pipe, there is an effect that the mounting operation and the response to the abnormality of the second flow rate sensor are facilitated.

【0027】特に、請求項2記載の流量計によれば、第
2の流速センサを複数個設置して、それぞれの流速セン
サの出力の平均値を測定結果としているため、測定精度
が向上すると共に1の第2の流速センサに異常が発生し
た時には、異常が発生していない他の第2の流速センサ
により流量の測定を行うことができるため、信頼性が向
上するという効果を奏する。
In particular, according to the flow meter of the present invention, since a plurality of second flow velocity sensors are installed and the average value of the output of each flow velocity sensor is used as the measurement result, the measurement accuracy is improved and When an abnormality occurs in one of the second flow velocity sensors, the flow rate can be measured by another second flow velocity sensor in which no abnormality has occurred, so that there is an effect that reliability is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る流量計の概略構成
を表す縦断面図である。
FIG. 1 is a longitudinal sectional view illustrating a schematic configuration of a flow meter according to an embodiment of the present invention.

【図2】図1の整流ストレーナを説明するためのA−A
線の矢視方向の断面図である。
FIG. 2 is AA for explaining the straightening strainer of FIG. 1;
It is sectional drawing of the direction of the arrow of a line.

【図3】本発明の基本原理を説明するための図であり、
同図(a)は流量計内に整流ストレーナを取り付けた場
合の流路内の流速分布、同図(b)は流量計内に整流ス
トレーナを取り付けていない場合の流路内の流速分布を
それぞれ表す図である。
FIG. 3 is a diagram for explaining a basic principle of the present invention;
FIG. 4A shows the flow velocity distribution in the flow path when the flow straightening strainer is installed in the flow meter, and FIG. 4B shows the flow velocity distribution in the flow path when the flow straightening strainer is not installed in the flow meter. FIG.

【図4】図1の流量計の回路構成を表すブロック図であ
る。
FIG. 4 is a block diagram illustrating a circuit configuration of the flow meter of FIG.

【図5】従来の流量計の構成を表す断面図である。FIG. 5 is a cross-sectional view illustrating a configuration of a conventional flow meter.

【符号の説明】[Explanation of symbols]

10A 流量計 10 配管 11 入口部 12 出口部 13 流路 14 整流ストレーナ(整流部材) 14A 小流路 15 小流量用計測領域 15a,15b 小流量用流速センサ(第2の流速セン
サ) 16 大流量用計測領域 16a,16b 大流量用流速センサ(第1の流速セン
サ) 17a,17b 小流量用流速センサ挿入部 18a,18b 大流量用流速センサ挿入部 19a,19b 金網 20 ガス
Reference Signs List 10A flow meter 10 piping 11 inlet 12 outlet 13 flow path 14 rectifying strainer (rectifying member) 14A small flow path 15 measurement area for small flow rate 15a, 15b flow rate sensor for small flow rate (second flow rate sensor) 16 for large flow rate Measurement area 16a, 16b Flow rate sensor for large flow rate (first flow rate sensor) 17a, 17b Flow rate sensor insertion section for small flow rate 18a, 18b Flow rate sensor insertion section for large flow rate 19a, 19b Wire mesh 20 Gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流体が通過する流路を有すると共に、前
記流路の長手方向にそって小流量用計測領域および大流
量用計測領域が設けられた配管と、 この配管の流路内の小流量用計測領域に設けられると共
に前記流路よりも断面積の小さな複数の小流路を形成す
る整流部材と、 大流量用計測領域における配管の内壁面に設けられると
共に、大流量用計測領域を通過する流体の流速に応じた
信号を出力する第1の流速センサと、 大流量用計測領域における配管の内壁面に設けられると
共に、前記整流部材により形成された小流路を通過する
流体の流速に応じた信号を出力する第2の流速センサ
と、 流量に応じて、前記第1の流速センサの出力信号と前記
第2の流速センサの出力信号の少なくとも一方に基づい
て流量を算出する流量演算手段とを備えたことを特徴と
する流量計。
1. A pipe having a flow path through which a fluid passes and provided with a small flow rate measurement area and a large flow rate measurement area along a longitudinal direction of the flow path; A rectifying member provided in the flow rate measurement area and forming a plurality of small flow paths having a smaller cross-sectional area than the flow path, and provided on the inner wall surface of the pipe in the large flow rate measurement area, and a large flow rate measurement area A first flow rate sensor that outputs a signal corresponding to the flow rate of the passing fluid, and a flow rate of the fluid that is provided on the inner wall surface of the pipe in the large flow rate measurement area and passes through the small flow path formed by the rectifying member. A second flow rate sensor that outputs a signal corresponding to the flow rate, and a flow rate calculation that calculates a flow rate based on at least one of the output signal of the first flow rate sensor and the output signal of the second flow rate sensor in accordance with the flow rate Means Flowmeter and said that there were pictures.
【請求項2】 前記第2の流速センサは前記配管の内壁
面に小流路に臨む位置に複数設けられると共に、これら
複数の第2の流速センサの出力信号より小流量用計測領
域における流速の平均値を算出して前記流量演算手段に
出力する小流量用計測領域の平均流速演算手段を更に備
えたことを特徴とする請求項1記載の流量計。
2. A plurality of second flow rate sensors are provided on the inner wall surface of the pipe at positions facing small flow paths, and the output signals of the plurality of second flow rate sensors determine the flow rate in a small flow rate measurement area. 2. The flowmeter according to claim 1, further comprising an average flow velocity calculating means of a small flow rate measurement area for calculating an average value and outputting the calculated average value to the flow rate calculating means.
【請求項3】 前記第1の流速センサは前記配管の内壁
面に小流路に臨む位置に複数設けられると共に、これら
複数の第1の流速センサの出力信号より大流量用計測領
域における流速の平均値を算出して前記流量演算手段に
出力する大流量用計測領域の平均流速演算手段を更に備
えたことを特徴とする請求項2記載の流量計。
3. A plurality of the first flow rate sensors are provided at positions facing the small flow path on the inner wall surface of the pipe, and the output signals of the plurality of first flow rate sensors determine the flow rate in the large flow rate measurement area. 3. The flowmeter according to claim 2, further comprising an average flow velocity calculating means for calculating a large flow rate in the measurement area for a large flow rate which calculates an average value and outputs the calculated average value to the flow rate calculating means.
JP10316297A 1997-04-21 1997-04-21 Flowmeter Expired - Fee Related JP3192989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316297A JP3192989B2 (en) 1997-04-21 1997-04-21 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316297A JP3192989B2 (en) 1997-04-21 1997-04-21 Flowmeter

Publications (2)

Publication Number Publication Date
JPH10293054A true JPH10293054A (en) 1998-11-04
JP3192989B2 JP3192989B2 (en) 2001-07-30

Family

ID=14346819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316297A Expired - Fee Related JP3192989B2 (en) 1997-04-21 1997-04-21 Flowmeter

Country Status (1)

Country Link
JP (1) JP3192989B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148091A (en) * 2000-11-08 2002-05-22 Tokyo Gas Co Ltd Gas meter
JP2004093175A (en) * 2002-08-29 2004-03-25 Tokyo Gas Co Ltd Thermal type flowmeter
GB2402971A (en) * 2003-06-18 2004-12-22 Visteon Global Tech Inc Flow conditioning device for i.c. engine air intake
JP2006208404A (en) * 2006-05-08 2006-08-10 Yazaki Corp Flowmeter
JP2021144002A (en) * 2020-03-13 2021-09-24 オムロン株式会社 Flow measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148091A (en) * 2000-11-08 2002-05-22 Tokyo Gas Co Ltd Gas meter
JP2004093175A (en) * 2002-08-29 2004-03-25 Tokyo Gas Co Ltd Thermal type flowmeter
GB2402971A (en) * 2003-06-18 2004-12-22 Visteon Global Tech Inc Flow conditioning device for i.c. engine air intake
US6920784B2 (en) 2003-06-18 2005-07-26 Visteon Global Technologies, Inc. Flow conditioning device
JP2006208404A (en) * 2006-05-08 2006-08-10 Yazaki Corp Flowmeter
JP4719075B2 (en) * 2006-05-08 2011-07-06 矢崎総業株式会社 Flowmeter
JP2021144002A (en) * 2020-03-13 2021-09-24 オムロン株式会社 Flow measurement device

Also Published As

Publication number Publication date
JP3192989B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
US6446503B1 (en) Flow velocity measuring apparatus and methods using sensors for measuring larger and smaller flow quantities
US8069734B2 (en) Multi-vortex flowmeter integrating pressure gauge
KR100419360B1 (en) Thermal flow meter
JP3192989B2 (en) Flowmeter
JP4719075B2 (en) Flowmeter
US6904810B2 (en) Purge type vortex flowmeter
JP2003185477A (en) Flowmeter
JP3069265B2 (en) Gas safety equipment
JP3408341B2 (en) Flow meter
JP3398251B2 (en) Flowmeter
JPH11173896A (en) Flowmeter
JP2007333461A (en) Multi vortex flowmeter using volume flow as switching point
JP2001194193A (en) Flow meter
JPH11258022A (en) Gas meter
JP3383572B2 (en) Flowmeter
JP3192912B2 (en) Flowmeter
JPH04339218A (en) Thermal flowmeter
JP2000035349A (en) Flowmeter
JP3705689B2 (en) Flow meter and gas meter
JP3537060B2 (en) Liquid flow meter
JPH11190648A (en) Flow meter and gas meter
JP6034937B1 (en) Sensor unit for vortex flowmeter and vortex flowmeter
JPH11201854A (en) Gas leak detecting apparatus
JPH09329478A (en) Thermal type flow meter having straightening cover
JPS5973727A (en) Flow rate measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees