JPH07294467A - Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device - Google Patents

Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device

Info

Publication number
JPH07294467A
JPH07294467A JP8319594A JP8319594A JPH07294467A JP H07294467 A JPH07294467 A JP H07294467A JP 8319594 A JP8319594 A JP 8319594A JP 8319594 A JP8319594 A JP 8319594A JP H07294467 A JPH07294467 A JP H07294467A
Authority
JP
Japan
Prior art keywords
mixed gas
measuring
composition
sensor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8319594A
Other languages
Japanese (ja)
Inventor
Fujitaka Taguchi
藤孝 田口
Minoru Seto
実 瀬戸
Hiroshi Aoki
浩 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP8319594A priority Critical patent/JPH07294467A/en
Publication of JPH07294467A publication Critical patent/JPH07294467A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously measure the composition of mixed gas whose component is known by a simple device. CONSTITUTION:A measuring pipe 2 is arranged in mixed gas supply piping 1 so as to cross a mixed gas flow, and a mixed gas inflow port 9 is arranged in the measuring pipe, and an outflow port 10 is arranged in a position separated from the inflow port, and heating elements and temperature sensing elements are alternately arranged in plural rows in the mixed gas flowing direction (f) on an inner wall reaching the outflow port from the inflow port, and a sensor part is constituted, and a part of mixed gas flowing in the supply piping is flowed in the measuring pipe from the inflow port, and is passed through the sensor part, and after a temperature rise in the mixed gas when a constant quantity of heat is added by the heating elements in the sensor part is measured by the upstream side and downstream side temperature sensing elements on plural temperature levels corresponding to the respective heating elements, it is flowed out of the outflow port, and is joined to a main flow of the mixed gas in the supply piping. A measured value by such measurement is substituted in a linear algebraic expression disclosed in a bulletin of a Patent Disclosure Heisei 4-776655 issue, and the composition is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は都市ガス等のように成分
の種類が既知である混合ガスの組成比を連続的に測定す
るための方法及びにこれに使用する測定管に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously measuring the composition ratio of a mixed gas, such as city gas, whose components are known, and a measuring tube used for the method.

【0002】[0002]

【従来の技術】例えば都市ガスにおいては熱量監視また
は制御を行うために、供給用配管を流れている混合ガス
の組成の測定が必要であり、従来の組成測定方法として
は次のような方法が一般的である。 混合ガスの一部を供給用配管から取り出してプロセ
スガスクロ装置に導き、各成分をカラムで分離して測定
する間欠的な測定方法。 混合ガスの一部を供給用配管から取り出して赤外線
分析装置に導き、各成分毎の赤外線の吸収波長の違いに
より測定する連続的な測定方法。 またにおける装置を用いずに連続的な測定を行え
るようにする試みとして、特開平4−77655号公報
に示される方法がある。この方法は、混合ガスの成分の
種類が既知の場合に適用する方法であり、各成分の数に
対応して異ならせた温度毎に混合ガスの定圧比熱又はそ
の対応量(即ち、一定の熱量を加えた場合の混合ガスの
上、下流側の温度差)を測定し、定圧比熱又はその対応
量と組成との対応関係を表す線形代数式を解いて組成を
連続的に算出する方法である。このような組成の算出を
容易に行えるようにするために、この方法では、各温度
毎の測定ユニットを複数直列に接続して測定経路を構成
することにより、夫々の測定ユニットを流れる流量と、
各発熱体に加える熱量を一定にしている。
2. Description of the Related Art For example, in the case of city gas, it is necessary to measure the composition of the mixed gas flowing through the supply pipe in order to monitor or control the amount of heat. The conventional method for measuring the composition is as follows. It is common. An intermittent measurement method in which a part of the mixed gas is taken out from the supply pipe and introduced into the process gas chromatography device, and each component is separated by a column for measurement. A continuous measurement method in which a part of the mixed gas is taken out from the supply pipe and introduced into an infrared analyzer to measure the difference in the infrared absorption wavelength of each component. Further, as an attempt to perform continuous measurement without using the apparatus in JP-A-4-77655, there is a method disclosed in JP-A-4-77655. This method is a method to be applied when the types of components of the mixed gas are known, and the constant pressure specific heat of the mixed gas or its corresponding amount (that is, a constant amount of heat) for each temperature that is changed corresponding to the number of each component. Is a method of continuously calculating the composition by measuring the temperature difference on the upstream side and the downstream side of the mixed gas in the case of adding, and solving a linear algebraic expression representing the correspondence relationship between the constant pressure specific heat or its corresponding amount and the composition. In order to facilitate the calculation of such a composition, in this method, by connecting a plurality of measurement units for each temperature in series to configure a measurement path, and the flow rate through each measurement unit,
The amount of heat applied to each heating element is constant.

【0003】[0003]

【発明が解決しようとする課題】の方法は、上述した
ように間欠的な測定方法であって、例えば2分間程度の
周期でしか測定を行うことができず、連続的な測定がで
きない。、の方法では、混合ガスの一部をサンプル
ガスとして供給用配管から取り出して測定するので、サ
ンプリングに伴う時間遅れが生じ、またサンプルガス分
の製品ロスが生じる。そこで本発明は、の方法を、よ
り具体的、合理的に適用することにより、、の上述
した課題を解決することを目的とするものである。
The method of the invention is an intermittent measuring method as described above, and the measuring can be performed only in a cycle of, for example, about 2 minutes, and cannot be continuously measured. In the method (1), since a part of the mixed gas is taken out from the supply pipe as the sample gas and measured, a time delay occurs due to sampling, and a product loss corresponding to the sample gas occurs. Then, this invention aims at solving the above-mentioned subject of by applying the method of more concretely and rationally.

【0004】[0004]

【課題を解決するための手段】上述した目的を達成する
ために、まず本発明では、混合ガスの供給用配管に、混
合ガスの流れを横断するように測定管を設置し、測定管
には混合ガスの流入口を設けると共に、流入口から離れ
た位置に流出口を設け、そして流入口から流出口に至る
内壁には、発熱体と測温体を混合ガスの流れ方向に交互
に複数列設してセンサ部を構成し、供給用配管を流れる
混合ガスの一部を流入口から測定管内に流入させてセン
サ部を通過させ、センサ部において発熱体により一定の
熱量を加えた場合の混合ガスの温度上昇を、各発熱体に
対応する複数の温度レベルにおいて上流側と下流側の測
温体で測定した後、流出口から流出させて供給用配管の
混合ガスの主な流れに合流させる組成連続測定方法を提
案する。
In order to achieve the above-mentioned object, first, in the present invention, a measuring pipe is installed in a mixed gas supply pipe so as to traverse the flow of the mixed gas. An inlet for mixed gas is provided, an outlet is provided at a position distant from the inlet, and a plurality of heating elements and temperature measuring elements are alternately arranged in a row in the flow direction of the mixed gas on the inner wall extending from the inlet to the outlet. A part of the mixed gas flowing through the supply pipe flows into the measuring pipe from the inlet to pass through the sensor part, and a certain amount of heat is added by the heating element in the sensor part. After measuring the temperature rise of the gas with the temperature measuring elements on the upstream side and the downstream side at a plurality of temperature levels corresponding to each heating element, let it flow out from the outlet and join with the main flow of the mixed gas in the supply pipe. A composition continuous measurement method is proposed.

【0005】そして本発明では、上記構成において、発
熱体と測温体は複数列構成し、夫々の列で算出される組
成を統計的に処理して組成を算出することを提案する。
In the present invention, it is proposed that the heating element and the temperature measuring element are arranged in a plurality of rows in the above construction, and the composition calculated in each row is statistically processed to calculate the composition.

【0006】また本発明では、上記構成において、測定
管の流入口から流出口に至る内壁に、発熱体と測温体か
ら成る熱線式流量センサを設けることを提案する。
Further, in the present invention, in the above structure, it is proposed to provide a hot wire type flow sensor including a heating element and a temperature measuring element on the inner wall of the measuring tube from the inlet to the outlet.

【0007】そして本発明では、これらの構成におい
て、発熱体と測温体を橋架構造の薄膜抵抗により構成す
ることを提案する。
In the present invention, it is proposed that the heating element and the temperature measuring element are constituted by a thin film resistor having a bridge structure in these configurations.

【0008】また本発明では、管体の先端の横方向に第
1の開口部を設けると共に、この第1の開口部から適宜
離れた個所で、前記第1の開口部の背面側から横側まで
の適宜位置の横方向に第2の開口部を設けた鞘管と、該
鞘管内の前記開口部間に嵌合するセンサ管とから構成
し、センサ管の内壁には、発熱体と測温体を軸方向に交
互に複数列設してセンサ部を構成して成る組成連続測定
管を提案する。
Further, according to the present invention, the first opening is provided in the lateral direction of the tip of the tubular body, and at a position appropriately separated from the first opening, the first opening is laterally located from the back side of the first opening. To a sensor tube fitted between the openings in the sheath tube and a second opening portion in a lateral direction at an appropriate position up to the heating element. We propose a continuous composition measuring tube, which is composed of a plurality of hot bodies arranged alternately in the axial direction to form a sensor unit.

【0009】また本発明では、上記測定管を、混合ガス
の流れを横断するように、混合ガスの供給用配管に設置
して成り、この際、第1の開口部を混合ガスの上流側に
向けて設置した構成の組成連続測定管を提案する。
Further, according to the present invention, the measuring pipe is installed in a mixed gas supply pipe so as to traverse the mixed gas flow. At this time, the first opening is provided on the upstream side of the mixed gas. We propose a composition continuous measuring tube with a structure installed toward the end.

【0010】[0010]

【作用】混合ガスの流れを横断するように供給用配管に
設置した測定管には、流れの上流側の流入口から混合ガ
スの一部が流入し、センサ部を通過した後、混合ガスの
流れの下流側の流出口から流出して再び供給用配管内の
混合ガスの主な流れに合流する。
[Function] A part of the mixed gas flows into the measuring pipe installed in the supply pipe so as to traverse the mixed gas flow from the inlet on the upstream side of the flow, and after passing through the sensor section, It flows out of the outlet on the downstream side of the flow and joins again with the main flow of the mixed gas in the supply pipe.

【0011】混合ガスがセンサ部を通過する際、発熱体
により一定の熱量を加えた場合の混合ガスの温度上昇
を、各発熱体の上流側と下流側の測温体により複数温度
レベルにおいて測定し、これらの上、下流側の温度差と
組成との対応関係を示す複数の線形代数式を解くことに
より組成を連続的に算出する。
When the mixed gas passes through the sensor section, the temperature rise of the mixed gas when a certain amount of heat is applied by the heating elements is measured at a plurality of temperature levels by the temperature measuring elements upstream and downstream of each heating element. Then, the composition is continuously calculated by solving a plurality of linear algebraic expressions showing the correspondence between the temperature difference on the upstream side and the composition.

【0012】この組成の算出に必要なセンサ部における
混合ガスの流量は、供給用配管における流量から推定し
ても良いし、測定管に流量センサを構成して流量の測定
を行うこともできる。
The flow rate of the mixed gas in the sensor section necessary for calculating the composition may be estimated from the flow rate in the supply pipe, or the flow rate may be measured by forming a flow sensor in the measuring pipe.

【0013】[0013]

【実施例】次に本発明の実施例を図について説明する。
図1は本発明の構成と動作を概念的に表したもので、符
号1は都市ガス等の混合ガスを供給する供給用配管であ
る。符号2は測定管であり、この測定管2は図中矢印で
示した混合ガスの流れを横断するように供給用配管1に
設置している。即ち、符号3は供給用配管に設置した取
付管であり、この取付管3の端部にフランジ部4を設け
ており、測定管2に設けたフランジ部5をフランジ部4
と蓋板6により挾持して固定することにより測定管2を
設置する構成としている。この他、測定管2の設置機構
は、分析機器のセンサやサンプリング管を配管に設置す
るための従来からの適宜の設置機構、例えば、この設置
機構の例としては、仕切弁を取付管に設けて測定管を挿
入できるようにし、供給用配管の圧力を低下させること
なく測定管の交換が可能な様にしたリトラクター機構等
を利用することができる。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 conceptually shows the configuration and operation of the present invention. Reference numeral 1 is a supply pipe for supplying a mixed gas such as city gas. Reference numeral 2 is a measuring pipe, and the measuring pipe 2 is installed in the supply pipe 1 so as to cross the flow of the mixed gas indicated by the arrow in the figure. That is, reference numeral 3 is a mounting pipe installed in the supply pipe, a flange portion 4 is provided at an end of the mounting pipe 3, and the flange portion 5 provided in the measuring pipe 2 is replaced with the flange portion 4.
The measuring tube 2 is installed by being held and fixed by the cover plate 6. In addition to this, the installation mechanism of the measurement tube 2 is an appropriate conventional installation mechanism for installing a sensor of an analytical instrument or a sampling tube in a pipe, for example, a sluice valve is provided in the installation pipe as an example of this installation mechanism. It is possible to use a retractor mechanism or the like in which the measuring tube can be inserted by inserting the measuring tube into the measuring tube so that the measuring tube can be replaced without lowering the pressure of the supply tube.

【0014】測定管2は、図2に拡大して示すように、
鞘管7と、この中に嵌合するセンサ管8とから構成して
いる。図2において鞘管7は、缶体の先端の横方向に第
1の開口部9を設けると共に、この第1の開口部9から
離れた個所で、この第1の開口部9の背面側に第2の開
口部10を設けている。そして鞘管7内には第1の開口
部9と第2の開口部10間にセンサ管8を嵌合してお
り、また鞘管7の基端側には上述したフランジ部5を形
成すると共に、蓋11を気密的に螺合する構成としてい
る。
The measuring tube 2, as shown enlarged in FIG.
It is composed of a sheath tube 7 and a sensor tube 8 fitted therein. In FIG. 2, the sheath tube 7 is provided with a first opening 9 in the lateral direction of the tip of the can body, and at a position apart from the first opening 9 on the back side of the first opening 9. A second opening 10 is provided. The sensor tube 8 is fitted in the sheath tube 7 between the first opening 9 and the second opening 10, and the above-mentioned flange portion 5 is formed on the proximal end side of the sheath tube 7. At the same time, the lid 11 is airtightly screwed.

【0015】そしてこの測定管2は、図1に示すよう
に、また図2中に矢印で混合ガスの流れを示すように、
第1の開口部9を混合ガスの流入口、第2の開口部10
を混合ガスの流出口とするように供給用配管1に設置し
ている。即ち、第1の開口部9を供給用配管1内の混合
ガスの流れの上流方向に設置している。
The measuring tube 2 is, as shown in FIG. 1 and as shown by the arrow in FIG. 2 the flow of the mixed gas,
The first opening 9 is used as a mixed gas inlet, and the second opening 10 is used.
Is installed in the supply pipe 1 so as to serve as a mixed gas outlet. That is, the first opening 9 is installed in the upstream direction of the flow of the mixed gas in the supply pipe 1.

【0016】図3は測定管2の他の例を示すもので、こ
の測定管2の鞘管7は第1の開口部9から離れた個所
で、この第1の開口部9の横側に第2の開口部10を設
けており、そして図中の矢印で流れを示すように、第1
の開口部9を混合ガスの流入口、第2の開口部10を混
合ガスの流出口として供給用配管1に設置する構成とし
ている。尚、第2の開口部10は、これら図2と図3の
個所の間の適宜個所に設けることができるものである。
FIG. 3 shows another example of the measuring pipe 2. The sheath pipe 7 of the measuring pipe 2 is located at a position apart from the first opening 9 and on the side of the first opening 9. A second opening 10 is provided and, as indicated by the arrows in the figure, the first
The opening 9 is provided as an inlet for the mixed gas, and the second opening 10 is provided as an outlet for the mixed gas in the supply pipe 1. The second opening 10 can be provided at an appropriate place between the places shown in FIGS. 2 and 3.

【0017】図2、図3の鞘管7内には第1の開口部9
と第2の開口部10間にセンサ管8を嵌合しており、ま
た鞘管7の基端側には上述したフランジ部5を形成する
と共に、蓋11を気密的に螺合する構成としている。
A first opening 9 is provided in the sheath tube 7 shown in FIGS.
The sensor tube 8 is fitted between the second opening 10 and the second opening 10, and the above-mentioned flange 5 is formed on the proximal end side of the sheath tube 7, and the lid 11 is hermetically screwed together. There is.

【0018】図4は図3の測定管2を供給用配管に設置
した状態を概念的に示すもので、図中矢印fは供給用配
管内の混合ガスの流れの方向を示すものである。図に示
されるように流入口9は上流側において流れの方向fに
向いており、流出口10は下流側において流れの方向f
の側方に向いている。
FIG. 4 conceptually shows a state in which the measuring pipe 2 of FIG. 3 is installed in the supply pipe, and the arrow f in the drawing shows the direction of the flow of the mixed gas in the supply pipe. As shown in the figure, the inflow port 9 faces the flow direction f on the upstream side, and the outflow port 10 faces the flow direction f on the downstream side.
Facing to the side.

【0019】図4の例は、流入口9、流出口10のいず
れか一方側のみを流れの方向fに対して角度を成すよう
に向けているが、両方を流れの方向に対して角度を成す
ように向けて設置することもできる。
In the example of FIG. 4, only one of the inlet port 9 and the outlet port 10 is oriented so as to form an angle with respect to the flow direction f. You can also set it up to make it.

【0020】次に図5、図6の例はセンサ管8を拡大し
て示すもので、これらの図に示すように、センサ管8の
内壁には、組成の数に応じて5個のセンサユニット12
を装着して長さ方向に列設しており、この列は3列構成
している。
Next, the examples of FIGS. 5 and 6 show the sensor tube 8 in an enlarged manner. As shown in these figures, the inner wall of the sensor tube 8 has five sensors depending on the number of compositions. Unit 12
Are mounted and arranged in a row in the length direction, and this row is made up of three rows.

【0021】図7、図8はセンサユニット12の例を拡
大して示すもので、このセンサユニット12は半導体シ
リコン基板13を異方性エッチングして形成した橋架構
造の3列の薄膜抵抗14a,14b,14cを備えた構
成としている。この構造は、近来、熱線式流量センサの
一つとして実現されているもので、流量センサとしての
使用では、センサユニット12を所定内径の測定管内に
設置して、中央の薄膜抵抗14bを発熱体、その上流、
下流側の薄膜抵抗14a,14cを測温体として利用す
るものである。この構成において、発熱体としての薄膜
抵抗14bは、周囲の温度センサを組み込んだ制御回路
により、周囲温度よりも一定温度だけ高くなるように制
御して電流を流し、発熱させた状態において、測温体と
しての薄膜抵抗14a,14cにより上流、下流側の温
度を測定して、それらの温度差により流速を測定し、上
記測定管の断面積との積から流量を測定するものであ
る。
FIGS. 7 and 8 show an enlarged example of the sensor unit 12. The sensor unit 12 is formed by anisotropically etching the semiconductor silicon substrate 13 and has three columns of thin film resistors 14a, It is configured to include 14b and 14c. This structure has recently been realized as one of the hot-wire type flow rate sensors. For use as a flow rate sensor, the sensor unit 12 is installed in a measuring tube having a predetermined inner diameter, and the thin film resistor 14b at the center is used as a heating element. , Upstream of it,
The thin film resistors 14a and 14c on the downstream side are used as temperature measuring elements. In this configuration, the thin film resistor 14b as a heating element is controlled to have a temperature higher than the ambient temperature by a control circuit incorporating an ambient temperature sensor, and a current is applied to the thin film resistor 14b so that the temperature measurement is performed in a state where heat is generated. The upstream and downstream temperatures are measured by the thin film resistors 14a and 14c as the body, the flow velocity is measured by the temperature difference between them, and the flow rate is measured from the product of the cross-sectional area of the measuring tube.

【0022】このような熱線式流量センサとして利用さ
れている上記構成のセンサユニット12の薄膜抵抗14
a,14b,14cは本発明における発熱体と測温体と
して利用することができる。例えば図5に示すようにセ
ンサユニット12をセンサ管8の内壁に長さ方向に沿っ
て5個配列させて、流量センサとして利用している場合
に発熱体として動作させる中央の薄膜抵抗14bを発熱
体とし、上流、下流側の薄膜抵抗14a,14cを測温
体として構成している。この構成では隣接のセンサユニ
ット12の隣接する薄膜抵抗14c,14aはいずれも
測温体として動作させるため、上述した本発明の動作上
は、これらのいずれか一方を省略することができ、この
ような構成のセンサユニットを製作して利用することも
できる。尚、符号15は夫々のセンサユニット12の各
薄膜抵抗14への給電、信号用の電線を示すもので、こ
れらの電線15はセンサ管8に沿って適宜に設置するこ
とができる。そしてこの電線15は制御装置16に接続
し、制御装置16において各薄膜抵抗14への通電を制
御して、所定の信号を受信する。
The thin film resistor 14 of the sensor unit 12 having the above-mentioned structure which is used as such a hot wire type flow sensor.
a, 14b and 14c can be used as the heating element and the temperature measuring element in the present invention. For example, as shown in FIG. 5, five sensor units 12 are arranged on the inner wall of the sensor tube 8 along the length direction to generate heat in the central thin-film resistor 14b that operates as a heating element when used as a flow sensor. The thin film resistors 14a and 14c on the upstream and downstream sides are configured as temperature measuring bodies. In this configuration, since the adjacent thin film resistors 14c and 14a of the adjacent sensor unit 12 are both operated as a temperature measuring element, either one of them can be omitted in the operation of the present invention described above. It is also possible to manufacture and use a sensor unit having various configurations. Reference numeral 15 indicates electric wires for supplying electric power to each thin film resistor 14 of each sensor unit 12 and for signal, and these electric wires 15 can be appropriately installed along the sensor tube 8. The electric wire 15 is connected to the control device 16, and the control device 16 controls energization of each thin film resistor 14 to receive a predetermined signal.

【0023】以上の構成においてセンサユニット12を
内壁に列設したセンサ管8は、図2、図3に示すよう
に、鞘管7内の流入口9と流出口10間に装着し、蓋1
1を締めると共に、蓋11に電線15を通す連通口部分
をシール処理して測定管2を構成する。符号17は電線
シール部を示している。そしてこの測定管2を取付管3
から供給用配管1内に挿入し、鞘管7の流入口9を混合
ガスの流れの方向fに向けた状態で上述したように取り
付ける。
As shown in FIGS. 2 and 3, the sensor tube 8 in which the sensor units 12 are arranged on the inner wall in the above structure is mounted between the inflow port 9 and the outflow port 10 in the sheath tube 7, and the lid 1
The measurement tube 2 is constructed by tightening 1 and sealing the communication port portion through which the electric wire 15 is passed through the lid 11. Reference numeral 17 indicates an electric wire seal portion. Then, attach this measuring tube 2 to the mounting tube 3
Is inserted into the supply pipe 1 from above, and is attached as described above with the inlet 9 of the sheath pipe 7 being directed in the direction f of the flow of the mixed gas.

【0024】この状態においては、供給用配管1を流れ
る混合ガスの一部は、流入口9から測定管2内に流入
し、センサ管8内を流れた後、流出口10から測定管2
を出て、再び混合ガスの主な流れに合流する。
In this state, part of the mixed gas flowing through the supply pipe 1 flows into the measuring pipe 2 through the inflow port 9, flows through the sensor pipe 8, and then flows out through the outflow port 10 into the measuring pipe 2.
Exit and join the main flow of mixed gas again.

【0025】測定管2内に流入した混合ガスはセンサ管
8内を流れる際、図9に模式的に示すように、列設され
ているセンサユニット12を順次上流側から下流側に通
過する。この際、各センサユニット12では上流側の薄
膜抵抗14aにより混合ガスの入側の温度を測定すると
共に、中央側の薄膜抵抗14bにより所定の熱量を加え
て昇温し、次いで下流側の薄膜抵抗14cにより熱量を
加えた後の混合ガスの温度を測定する。混合ガスは各セ
ンサユニット12の発熱体としての薄膜抵抗14bを通
る際に次第に昇温され、下流側に行くに従って温度が高
くなる。このため、各センサユニット12では、異なっ
た温度レベルにおいて所定の熱量を加えた場合の混合ガ
スの上流、下流側の温度差を測定することができる。一
方、センサユニット12のいずれか、例えば最も下流側
のセンサユニット12fでは、薄膜抵抗14bを、その
温度が周囲の混合ガスの温度よりも一定温度だけ高くな
るように電流を制御し、この状態で上流、下流側の薄膜
抵抗14a,14cの温度差を測定することにより混合
ガスの流速を測定し、センサ管8の断面積との積から流
量を測定する。尚、上記周囲の混合ガスの温度は、上流
側に隣接するセンサユニット12の下流側の薄膜抵抗1
4cにより測定して、これを上記電流制御に利用するこ
とができる。
When the mixed gas flowing into the measuring pipe 2 flows in the sensor pipe 8, as shown schematically in FIG. 9, the sensor units 12 arranged in a row pass sequentially from the upstream side to the downstream side. At this time, in each sensor unit 12, the temperature on the inlet side of the mixed gas is measured by the thin film resistor 14a on the upstream side, and a predetermined amount of heat is added by the thin film resistor 14b on the center side to raise the temperature, and then the thin film resistor on the downstream side. 14c, the temperature of the mixed gas after adding heat is measured. The temperature of the mixed gas gradually rises as it passes through the thin film resistor 14b as a heating element of each sensor unit 12, and the temperature rises toward the downstream side. Therefore, each sensor unit 12 can measure the temperature difference between the upstream side and the downstream side of the mixed gas when a predetermined amount of heat is applied at different temperature levels. On the other hand, in one of the sensor units 12, for example, the most downstream sensor unit 12f, the thin film resistor 14b is controlled in current so that its temperature is higher than the temperature of the surrounding mixed gas by a certain temperature, and in this state The flow velocity of the mixed gas is measured by measuring the temperature difference between the upstream and downstream thin film resistors 14a and 14c, and the flow rate is measured from the product of the cross sectional area of the sensor tube 8. It should be noted that the temperature of the surrounding mixed gas is the same as that of the thin film resistor 1 on the downstream side of the sensor unit 12 adjacent to the upstream side.
4c, which can be used for the current control.

【0026】以上の測定により、混合ガスの各成分の数
に対応して異ならせた温度毎に、一定の熱量を加えた場
合の混合ガスの上流、下流側の温度差と、センサ管8を
通る混合ガスの流量を測定することができる。従って上
述した特開平4−77655号公報に記載されている手
法、即ち、成分の数に応じて異ならせた各温度において
混合ガスに一定量の熱量を付加して、この付加熱量によ
る上流、下流側の温度差を測定し、この各温度差と、混
合ガスの流量と、付加熱量と、各成分の上記各温度にお
ける既知の定圧比熱とから組成を導出する手法を用いる
ことができる。
From the above measurement, the temperature difference between the upstream side and the downstream side of the mixed gas when a certain amount of heat is added for each temperature which is changed corresponding to the number of each component of the mixed gas, and the sensor tube 8 are set. The flow rate of the mixed gas passing through can be measured. Therefore, the method described in the above-mentioned Japanese Patent Application Laid-Open No. 4-77655, that is, a certain amount of heat is added to the mixed gas at each temperature which is changed according to the number of components, and the upstream and downstream are caused by this additional heat A method of measuring the temperature difference on the side and deriving the composition from each temperature difference, the flow rate of the mixed gas, the amount of additional heat, and the known constant pressure specific heat of each component at each temperature can be used.

【0027】上記実施例においては、センサ管8の内壁
に5個のセンサユニット12から成る列を3列構成して
いるため、これらの列毎に以上の測定又は組成の導出を
行うことができる。このようにして測定又は導出した3
組の値を平均処理や多数決処理等の統計的処理を行って
組成を得ることにより、信頼度の高い出力を得ることが
できる。
In the above-mentioned embodiment, since three rows of five sensor units 12 are formed on the inner wall of the sensor tube 8, the above measurement or composition can be derived for each row. . 3 measured or derived in this way
A highly reliable output can be obtained by performing a statistical process such as an averaging process or a majority process on the values of the set to obtain the composition.

【0028】[0028]

【発明の効果】本発明は以上の通りであるので、以下に
示すような効果がある。 連続的に組成の測定を行える。 センサ管内を通して測定を行った混合ガスは供給配管
内の流れに戻すので、サンプル方式のように損失となる
サンプルガスが生じない。 サンプル方式においてサンプル管を通過する際に生じ
る時間遅れが生じない。 測定管は供給用配管内の混
合ガスの流れを横断する方向に設置すれば良いので、設
置が容易であり、例えば既存の配管のノズルを利用して
設置することができる。
As described above, the present invention has the following effects. The composition can be continuously measured. The mixed gas measured through the inside of the sensor pipe is returned to the flow inside the supply pipe, so that no sample gas that causes a loss is generated unlike the sample method. There is no time delay when passing through the sample tube in the sample system. Since the measuring pipe may be installed in a direction crossing the flow of the mixed gas in the supply pipe, the measuring pipe can be easily installed. For example, the nozzle of the existing pipe can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成と動作例を概念的に表した説明図
である。
FIG. 1 is an explanatory diagram conceptually showing a configuration and an operation example of the present invention.

【図2】図1の測定管部分を拡大して表した縦断面図で
ある。
FIG. 2 is a vertical cross-sectional view showing a measurement tube portion of FIG. 1 in an enlarged manner.

【図3】他の例の測定管部分を拡大して表した縦断面図
である。
FIG. 3 is a vertical cross-sectional view showing an enlarged measurement tube portion of another example.

【図4】図2の測定管を供給用配管に設置した状態を概
念的に示す断面図である。
FIG. 4 is a sectional view conceptually showing a state in which the measurement pipe of FIG. 2 is installed in a supply pipe.

【図5】図2のセンサ管部分を拡大して表した図6のY
−Y線部分に対応する縦断面図である。
5 is an enlarged view of the sensor tube portion of FIG. 2, Y in FIG. 6;
It is a longitudinal cross-sectional view corresponding to the -Y line portion.

【図6】図5のX−X線部分に対応する横断面図であ
る。
6 is a transverse cross-sectional view corresponding to a portion taken along line XX of FIG.

【図7】図5、図6のセンサ管の内壁に装着したセンサ
ユニットの拡大斜視図である。
FIG. 7 is an enlarged perspective view of a sensor unit mounted on the inner wall of the sensor tube of FIGS. 5 and 6.

【図8】図7のセンサユニットをガスの流れ方向に切断
して表した、図7のZ−Z線部分に対応する縦断面図で
ある。
8 is a vertical cross-sectional view corresponding to the ZZ line portion of FIG. 7, showing the sensor unit of FIG. 7 cut in the gas flow direction.

【図9】センサ管のセンサユニットの列の要素を模式的
に表した説明図である。
FIG. 9 is an explanatory diagram schematically showing elements in a row of sensor units of a sensor tube.

【符号の説明】[Explanation of symbols]

1 供給用配管 2 測定管 3 取付管 4、5 フランジ部 6 蓋板 7 鞘管 8 センサ管 9 開口部(流入口) 10 開口部(流出口) 11 蓋 12 センサユニット 13 シリコン基板 14(14a,14b,14c) 薄膜抵抗 15 電線 16 制御装置 17 電線シール部 f 混合ガスの流れの方向 1 Supply Pipe 2 Measuring Pipe 3 Mounting Pipe 4, 5 Flange Part 6 Lid Plate 7 Sheath Pipe 8 Sensor Pipe 9 Opening (Inlet) 10 Opening (Outlet) 11 Lid 12 Sensor Unit 13 Silicon Substrate 14 (14a, 14a, 14b, 14c) Thin film resistance 15 Electric wire 16 Control device 17 Electric wire seal part f Direction of mixed gas flow

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 混合ガスの供給用配管に、混合ガスの流
れを横断するように測定管を設置し、測定管には混合ガ
スの流入口を設けると共に、流入口から離れた位置に流
出口を設け、そして流入口から流出口に至る内壁には、
発熱体と測温体を混合ガスの流れ方向に交互に複数列設
してセンサ部を構成し、供給用配管を流れる混合ガスの
一部を流入口から測定管内に流入させてセンサ部を通過
させ、センサ部において発熱体により一定の熱量を加え
た場合の混合ガスの温度上昇を、各発熱体に対応する複
数の温度レベルにおいて上流側と下流側の測温体で測定
した後、流出口から流出させて供給用配管の混合ガスの
主な流れに合流させることを特徴とする成分が既知の混
合ガスの組成連続測定方法
1. A mixed gas supply pipe is provided with a measuring pipe so as to cross the mixed gas flow, the mixed gas inlet is provided in the measuring pipe, and an outlet is provided at a position apart from the inlet. And on the inner wall from the inlet to the outlet,
A plurality of heating elements and temperature measuring elements are alternately arranged in a row in the flow direction of the mixed gas to form the sensor unit, and a part of the mixed gas flowing through the supply pipe is made to flow from the inlet into the measuring pipe and passes through the sensor unit. Then, the temperature rise of the mixed gas when a certain amount of heat is applied by the heating element in the sensor part is measured by the temperature measuring elements on the upstream side and the downstream side at a plurality of temperature levels corresponding to each heating element, Method for continuously measuring the composition of a mixed gas of known composition, characterized in that the mixed gas is discharged from
【請求項2】 発熱体と測温体は複数列構成し、夫々の
列で算出される組成を統計的に処理して組成を算出する
ことを特徴とする請求項1記載の成分が既知の混合ガス
の組成連続測定方法
2. The composition according to claim 1, wherein the heating element and the temperature measuring element are configured in a plurality of rows, and the composition calculated in each row is statistically processed to calculate the composition. Method for continuous measurement of mixed gas composition
【請求項3】 測定管の流入口から流出口に至る内壁
に、発熱体と測温体から成る熱線式流量センサを設けた
ことを特徴とする請求項1記載の成分が既知の混合ガス
の組成連続測定方法
3. A hot-wire type flow sensor comprising a heating element and a temperature measuring element is provided on the inner wall of the measuring tube from the inlet to the outlet, and a mixed gas of known composition according to claim 1 is provided. Composition continuous measurement method
【請求項4】 発熱体と測温体は橋架構造の薄膜抵抗に
より構成したことを特徴とする請求項1、2又は3記載
の成分が既知の混合ガスの組成連続測定方法
4. The method for continuously measuring the composition of a mixed gas with known components according to claim 1, 2 or 3, wherein the heating element and the temperature measuring element are constituted by a thin film resistor having a bridge structure.
【請求項5】 管体の先端の横方向に第1の開口部を設
けると共に、この第1の開口部から適宜離れた個所で、
前記第1の開口部の背面側から横側までの適宜位置の横
方向に第2の開口部を設けた鞘管と、該鞘管内の前記開
口部間に嵌合するセンサ管とから構成し、センサ管の内
壁には、発熱体と測温体を軸方向に交互に複数列設して
センサ部を構成したことを特徴とする成分が既知の混合
ガスの組成連続測定用測定管
5. A first opening is provided in the lateral direction of the distal end of the tubular body, and at a position appropriately separated from the first opening,
It is composed of a sheath tube having a second opening in the lateral direction at an appropriate position from the back side to the side of the first opening, and a sensor tube fitted between the openings in the sheath tube. A measuring tube for continuously measuring the composition of a mixed gas whose components are known, characterized in that a plurality of heating elements and temperature measuring elements are alternately arranged in a row in the axial direction on the inner wall of the sensor tube to form a sensor section.
【請求項6】 請求項5の測定管を、混合ガスの流れを
横断するように、混合ガスの供給用配管に設置して成
り、この際、第1の開口部を混合ガスの上流側に向けて
設置することを特徴とする成分が既知の混合ガスの組成
連続測定装置
6. The measuring pipe according to claim 5, which is installed in a mixed gas supply pipe so as to cross the flow of the mixed gas, wherein the first opening is located upstream of the mixed gas. Device for continuously measuring the composition of a mixed gas of known composition characterized by being installed toward
JP8319594A 1994-04-21 1994-04-21 Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device Pending JPH07294467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8319594A JPH07294467A (en) 1994-04-21 1994-04-21 Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8319594A JPH07294467A (en) 1994-04-21 1994-04-21 Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device

Publications (1)

Publication Number Publication Date
JPH07294467A true JPH07294467A (en) 1995-11-10

Family

ID=13795553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8319594A Pending JPH07294467A (en) 1994-04-21 1994-04-21 Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device

Country Status (1)

Country Link
JP (1) JPH07294467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190835A (en) * 2009-02-20 2010-09-02 Yamatake Corp Fluid measurement apparatus
JP2010237005A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas physical property value measuring system, gas physical property value measuring method, heat value calculating formula forming system, heat value calculating formula forming method, heat value calculating system, and heat value calculating method
JP2012233859A (en) * 2011-05-09 2012-11-29 Azbil Corp Calorific power measuring system and calorific power measuring method
JP2013205108A (en) * 2012-03-27 2013-10-07 Azbil Corp Heating value measuring system, and heating value measuring method
WO2017014898A1 (en) * 2015-07-23 2017-01-26 Caterpillar Inc. System for sensing and controlling fuel gas constituent levels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190835A (en) * 2009-02-20 2010-09-02 Yamatake Corp Fluid measurement apparatus
JP2010237005A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas physical property value measuring system, gas physical property value measuring method, heat value calculating formula forming system, heat value calculating formula forming method, heat value calculating system, and heat value calculating method
JP2012233859A (en) * 2011-05-09 2012-11-29 Azbil Corp Calorific power measuring system and calorific power measuring method
JP2013205108A (en) * 2012-03-27 2013-10-07 Azbil Corp Heating value measuring system, and heating value measuring method
WO2017014898A1 (en) * 2015-07-23 2017-01-26 Caterpillar Inc. System for sensing and controlling fuel gas constituent levels
US9790883B2 (en) 2015-07-23 2017-10-17 Caterpillar Inc. System for sensing and controlling fuel gas constituent levels
CN107923328A (en) * 2015-07-23 2018-04-17 卡特彼勒公司 System for sensing and controlling fuel gas composition level
CN107923328B (en) * 2015-07-23 2021-05-07 卡特彼勒公司 System for sensing and controlling fuel gas constituent levels

Similar Documents

Publication Publication Date Title
US6446503B1 (en) Flow velocity measuring apparatus and methods using sensors for measuring larger and smaller flow quantities
JPH0464020A (en) Flowmeter
JP2005156570A (en) Device with thermal flowmeter used for internal combustion engine
JPH0643907B2 (en) Flowmeter
WO2005076095A1 (en) Mass flow control device
JP2001041789A (en) Constant temperature difference flowmeter
US3613448A (en) Fluid flow measuring apparatus
JPH07294467A (en) Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device
US5347876A (en) Gas flowmeter using thermal time-of-flight principle
JP2003185477A (en) Flowmeter
US20040244498A1 (en) Fluid flow meter with fluid flow sensor and oscillation sensor
TW580565B (en) Purge type vortex flowmeter
JP3818547B2 (en) Mass flow controller
WO2019064819A1 (en) Flow rate measurement device
JP3192989B2 (en) Flowmeter
CN210123295U (en) Flow rate measuring device
JP3273862B2 (en) Flowmeter
JPH11173896A (en) Flowmeter
JP3408341B2 (en) Flow meter
JP6034937B1 (en) Sensor unit for vortex flowmeter and vortex flowmeter
JP3530645B2 (en) Flow meter structure
US20050188761A1 (en) Device for detecting the flow of a fluid
JPH1164060A (en) Mass flow rate controller
JP3398251B2 (en) Flowmeter
JPS5819510A (en) Hot wire type airflow meter