WO2019064819A1 - Flow rate measurement device - Google Patents

Flow rate measurement device Download PDF

Info

Publication number
WO2019064819A1
WO2019064819A1 PCT/JP2018/026185 JP2018026185W WO2019064819A1 WO 2019064819 A1 WO2019064819 A1 WO 2019064819A1 JP 2018026185 W JP2018026185 W JP 2018026185W WO 2019064819 A1 WO2019064819 A1 WO 2019064819A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow
detection unit
physical property
unit
Prior art date
Application number
PCT/JP2018/026185
Other languages
French (fr)
Japanese (ja)
Inventor
克行 山本
憲一 半田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019064819A1 publication Critical patent/WO2019064819A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Definitions

  • the present invention relates to a flow rate measuring device.
  • a measuring device which includes a heater and a sensor and calculates the flow velocity or flow rate of the fluid by the sensor detecting a temperature distribution changing with the flow of the fluid.
  • Patent Document 1 a member having a minimal cross-section flow path having a smaller cross section than the cross section of the flow path at a position where the flow rate sensor is provided on the wall surface of the flow path where the fluid to be measured flows has been proposed (for example, Patent Document 1). According to the present technology, by providing the perforated plate, the influence of the pulsation can be reduced.
  • the measurement accuracy of the flow rate can be improved by shortening the sampling interval of the sensor.
  • shortening the sampling interval increases the number of measurements per hour and also increases the power consumption of the sensor.
  • the pressure drop allowed for the sensor may be limited. That is, if the pressure loss increases, for example, there is a risk that the fluid can not be supplied to the device connected to the end of the pipe. In such applications, it has been difficult to reduce the effects of minor fluctuations in the flow rate solely by structural measures such as providing a perforated plate in the flow path.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the power consumption while maintaining the measurement accuracy while suppressing the increase in pressure loss in the flow rate measuring device.
  • the flow rate measurement device is based on a flow rate detection unit that detects a value corresponding to the flow rate of the measurement target fluid flowing through the main flow path at a determined measurement timing, and a value corresponding to the flow rate detected by the flow rate detection unit. Change the measurement timing based on the period of the detected change when the periodic change of the flow is detected based on the flow calculated by the flow calculating unit and the flow calculating unit that calculates the flow of the fluid to be measured And a measurement interval changing unit.
  • the measurement interval change unit may detect a change in the value of the flow rate calculated by the flow rate calculation unit, and may detect a periodic change using the change.
  • any measurement value can be used as a reference for detecting periodicity from the value of flow rate. That is, periodic changes can be detected based on the regularity of timing when any value is measured.
  • the measurement interval changing unit may change the measurement timing to intermittently detect a value according to the flow rate based on the detected change cycle. If a value corresponding to the flow rate is intermittently detected based on the cycle of the detected change, even if the flow rate fluctuates within one cycle, sampling can be performed without bias, and the measured flow rate Accuracy can be maintained.
  • each of the detection of values according to the flow rate performed intermittently may be started at intervals of integral multiples of the cycle of the detected change. In this way, sampling can be performed without bias on the basis of the cycle of change in flow rate, and the accuracy of the measured flow rate can be maintained.
  • the contents described in the means for solving the problems can be combined as much as possible without departing from the problems and technical ideas of the present invention. Further, the contents of the flow rate measuring device shown in the means for solving the problems can be provided as a program to be executed by an arithmetic device such as a method or processor or a medium for storing the program.
  • FIG. 1 is an exploded perspective view showing an example of a flow rate measuring device 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the flow rate measuring device 1.
  • the flow rate measuring device 1 is incorporated in, for example, a gas meter, a combustion device, an internal combustion engine such as a car, a fuel cell, other industrial devices such as a medical device, and a built-in device to measure the amount of fluid passing through the flow path.
  • the dashed arrows in FIG. 1 and FIG. 2 illustrate the flow direction of the fluid.
  • the flow rate measuring device 1 includes the main flow passage portion 2, the sub flow passage portion 3, the seal 4, the circuit board 5, and the cover 6. As shown in FIGS. 1 and 2, in the present embodiment, the flow rate measuring device 1 has a sub flow passage portion 3 branched from the main flow passage portion 2. Further, the flow rate measuring device 1 includes the flow rate detecting unit 11 and the physical property value detecting unit 12 in the sub flow passage unit 3.
  • the flow rate detection unit 11 and the physical property value detection unit 12 are thermal flow sensors including a heating unit formed by a microheater and a temperature detection unit formed by a thermopile. In the present embodiment, the physical property value detection unit 12 is used to detect the temperature of the fluid. Further, in the present embodiment, the calculated flow rate is corrected based on the physical property value, but the flow rate measuring device 1 may not include the physical property value detection unit 12.
  • the main flow passage portion 2 is a tubular member in which a flow passage of a fluid to be measured (hereinafter also referred to as a main flow passage) penetrates in the longitudinal direction.
  • a flow passage of a fluid to be measured hereinafter also referred to as a main flow passage
  • an inlet (first inlet) 34A is formed on the upstream side with respect to the flow direction of the fluid to be measured on the inner circumferential surface of the main flow passage 2 and the outlet (downstream)
  • a first outlet 35A is formed.
  • the axial length of the main flow passage 2 is about 50 mm
  • the diameter of the inner circumferential surface (inner diameter of the main flow passage 2) is about 20 mm
  • the outer diameter of the main flow passage 2 is about 24 mm, It is not limited to such an example.
  • an orifice 21 is provided between the inlet 34A and the outlet 35A.
  • the orifice 21 is a resistor whose inner diameter is smaller in the main flow passage 2 than in the front and rear thereof, and the amount of fluid flowing into the sub flow passage 3 can be adjusted by the size of the orifice 21.
  • the sub flow passage portion 3 which is a portion including the sub flow passage branched from the main flow passage, is provided vertically above the main flow passage portion 2. Further, the sub-flow path in the sub-flow path portion 3 includes the inflow flow path 34, the physical property value detection flow path 32, the flow rate detection flow path 33, and the outflow flow path 35.
  • the inflow channel 34 communicates with the inflow port 34 A branching from the main flow channel 2, the outflow channel 35 communicates with the flow outlet 35 A merging with the main flow channel 2, and the sub flow channel 3 A part of the fluid flowing through the main flow passage 2 branches and flows.
  • the inflow channel 34 is a flow channel for allowing the fluid to be measured flowing in the main channel portion 2 to flow into the physical property value detection channel 32 and the flow rate detection channel 33.
  • the inflow channel 34 is formed along the direction perpendicular to the flow direction of the fluid in the main channel portion 2, one end communicates with the inflow port 34A, and the other end is the physical property value detection channel 32 and the flow rate detection It communicates with the flow path 33.
  • a part of the fluid to be measured flowing through the main flow channel 2 is further divided into the physical property value detection flow channel 32 and the flow rate detection flow channel 33 via the inflow flow channel 34.
  • the amount of fluid corresponding to the amount of fluid flowing through the main flow passage 2 flows into the physical property value detection flow passage 32 and the flow rate detection flow passage 33. Therefore, for example, the flow rate detection unit 11 can detect a value corresponding to the amount of fluid flowing through the main flow passage unit 2.
  • the physical property value detection flow path 32 is formed vertically above the main flow path portion 2 and extends in a direction parallel to the main flow path portion 2, and the cross section viewed from the upper side is substantially U-shaped. Flow path.
  • the physical property value detection channel 12 for detecting the physical property value of the fluid to be measured is disposed inside the physical property value detection channel 32.
  • One end of the physical property value detection flow path 32 communicates with the inflow port 34A via the inflow flow path 34, and the other end communicates with the outflow port 35A via the outflow flow path 35.
  • the flow rate detection flow path 33 is also a flow path extending in a direction parallel to the flow direction of the fluid in the main flow path portion 2 and having a substantially U-shaped cross section viewed from the upper side.
  • a flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is disposed inside. Further, one end of the flow rate detection flow path 33 is in communication with the inflow port 34 A via the inflow flow path 34, and the other end is in communication with the outflow port 35 A via the outflow flow path 35.
  • the physical property detection unit 12 and the flow rate detection unit 11 are mounted on the circuit board 5 respectively.
  • the circuit board 5 covers the upper part of the physical property value detection flow path 32 and the flow rate detection flow path 33 with the upper part opened, and the physical property value detection unit 12 is positioned in the physical property value detection flow path 32.
  • the flow rate detection unit 11 is disposed in the flow path 33.
  • the outflow flow channel 35 is a flow channel for causing the measurement target fluid that has passed through the physical property value detection flow channel 32 and the flow rate detection flow channel 33 to flow out to the main flow channel portion 2.
  • the outflow channel 35 is formed along a direction perpendicular to the main channel portion 2, one end communicates with the outlet 35A, and the other end is connected to the physical property value detection channel 32 and the flow rate detection channel 33. It is in communication.
  • the fluid to be measured that has passed through the physical property value detection flow path 32 and the flow rate detection flow path 33 flows out to the main flow path portion 2 through the outflow flow path 35.
  • the physical property detection unit 12 and the flow rate detection unit 11 are configured to divide the measurement target fluid introduced from one inflow port 34A into the physical property value detection flow path 32 and the flow rate detection flow path 33, Physical property values and flow rates can be detected based on the fluid to be measured, which has almost the same conditions such as temperature and density.
  • the circuit board 5 is disposed, and the circuit board 5 is fixed to the sub flow path portion 3 by the cover 6. The airtightness inside the road 3 is secured.
  • FIG. 3 is a plan view of the sub flow passage 3 shown in FIG.
  • one end of the physical property value detection flow channel 32 communicates with the inflow flow channel 34, and the other end communicates with the outflow flow channel 35.
  • one end of the flow rate detection flow path 33 communicates with the inflow flow path 34, and the other end communicates with the outflow flow path 35.
  • arrows P and Q schematically represent the ratio of the flow rate of the fluid to be measured divided into the physical property value detection flow path 32 and the flow rate detection flow path 33.
  • the cross-sectional areas of the physical property value detection flow path 32 and the flow rate detection flow path 33 are determined such that the amount of fluid divided is P to Q.
  • the amount of fluid actually flowing through the physical property value detection flow path 32 and the flow rate detection flow path 33 fluctuates according to the flow rate of the fluid to be measured flowing through the main flow path portion 2.
  • the amount of fluid flowing through the flow channel 32 is a value within the detection range of the physical property value detection unit 12
  • the amount of fluid flowing through the flow rate detection channel 33 is a value within the detection range of the flow detection unit 11
  • the size of the sub flow path portion 3 with respect to the main flow path portion 2, the size of the orifice 21, and the widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are respectively set.
  • the widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are examples, and the present invention is not limited to the example shown in FIG.
  • the flow rate measuring device 1 it is possible to individually control the flow rates of the fluid to be measured divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 by adjusting the respective widths. is there. Therefore, the flow rate of the fluid to be measured flowing through the physical property value detection flow path 32 is controlled according to the detection range of the physical property value detection unit 12, and the flow rate detection flow path 33 flows according to the detection range of the flow rate detection unit 11. The flow rate of the fluid to be measured can be controlled.
  • the physical property value detection flow path 32 and the flow rate detection flow path 33 are not limited to the configuration formed in a substantially U-shape in top view. That is, the physical property value detection flow path 32 and the flow rate detection flow path 33 have a width (cross sectional area) in which the flow rate of the fluid to be measured passing through the physical property value detection flow path 32 and the flow rate detection flow path 33 can be controlled. If set, other shapes may be adopted.
  • the shape of the space in which the physical property value detection unit 12 and the flow rate detection unit 11 are arranged is substantially square in top view It is not limited.
  • the shapes of the physical property value detection flow path 32 and the flow rate detection flow path 33 may be any shape as long as the physical property value detection unit 12 or the flow rate detection unit 11 can be disposed. It can be determined according to the shape or the like.
  • the width of the physical property value detection flow path 32 is made equal to the width of the physical property value detection section 12. It is also good. That is, in this case, the portion extending in the longitudinal direction of the physical property value detection channel 32 has a substantially constant width. The same applies to the flow rate detection flow path 33.
  • the amount of fluid flowing through the physical property value detection flow passage 32 and the flow rate detection flow passage 33 is smaller than the amount of fluid flowing through the main flow passage portion 2, but the amount of fluid flowing through the main flow passage portion 2 It changes according to.
  • the flow rate measuring device 1 is disposed in the main flow path portion 2, it is necessary to increase the scale of the flow rate detection portion 11 and the physical property value detection portion 12 according to the amount of fluid flowing through the main flow path portion 2.
  • the flow rate of the fluid can be measured by the flow detection unit 11 with small scale and the physical property detection unit 12 with a small scale.
  • the cross sectional area of the physical property value detection flow path 32 is smaller than the cross sectional area of the flow rate detection flow path 33, and as represented by the sizes of arrows P and Q in FIG.
  • the amount of fluid flowing through the flow passage 33 is smaller than the amount of fluid flowing through the flow rate detection channel 33.
  • FIG. 4 is a perspective view showing an example of a sensor element used in the flow rate detection unit and the physical property value detection unit.
  • FIG. 5 is a cross-sectional view for explaining the mechanism of the sensor element.
  • the sensor element 100 includes a microheater (heating unit) 101 and thermopiles (temperature detection units) 102 provided symmetrically with the microheater 101 interposed therebetween. That is, the micro-heaters 101 and the thermopile 102 are arranged in line in a predetermined direction. As shown in FIG. 5, the insulating thin film 103 is formed on the upper and lower sides of these, and the micro heater 101, the thermopile 102 and the insulating thin film 103 are provided on the silicon base 104.
  • a cavity (cavity) 105 formed by etching or the like is provided in the microheater 101 and the silicon base 104 below the thermopile 102.
  • the micro heater 101 is, for example, a resistor formed of polysilicon.
  • a broken line ellipse schematically shows a temperature distribution when the micro heater 101 generates heat. The thicker the broken line, the higher the temperature. When there is no air flow, the temperature distribution around the micro heater 101 becomes substantially even as shown in the upper part (1) of FIG. On the other hand, for example, when the air flows in the direction indicated by the broken line arrow in the lower part (2) of FIG. 5, the surrounding air moves, so the temperature is higher on the leeward side than the windward side of the micro heater 101 .
  • the sensor element outputs a value indicating the flow rate by utilizing such a bias of the heater heat distribution.
  • the output voltage ⁇ V of the sensor element is expressed, for example, by the following equation (1).
  • Th is the temperature of the microheater 101 (temperature at the end of the thermopile 102 on the side of the microheater 101), and Ta is the lower temperature of the temperature of the end of the thermopile 102 far from the microheater 101 (FIG. 5)
  • Vf is an average value of flow velocity
  • a and b are predetermined constants.
  • the circuit board 5 of the flow rate measuring device 1 includes a control unit (not shown) realized by an IC (Integrated Circuit) or the like, and calculates the flow rate based on the output of the flow rate detecting unit 11. Alternatively, a predetermined characteristic value may be calculated based on the output of the physical property value detection unit 12, and the flow rate may be corrected using the characteristic value.
  • a control unit not shown
  • IC Integrated Circuit
  • FIG. 6 is a plan view showing a schematic configuration of the flow rate detection unit 11 shown in FIG. 1
  • FIG. 7 is a plan view showing a schematic configuration of the physical property value detection unit 12 shown in FIG.
  • the physical property value detection flow path 32 and the flow rate detection flow path 33 have different widths, and the physical property value detection unit 12 of the physical property value detection flow path 32 is disposed.
  • the width of the flow path is narrower than the width of the flow path in which the flow rate detection unit 11 of the flow rate detection flow path 33 is disposed.
  • the flow rates of the fluid to be measured divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 are individually controlled.
  • the flow rate detection unit 11 detects the temperature of the fluid to be measured, the first thermopile (temperature detection unit) 111 and the second thermopile (temperature detection unit) 112, and the micro heater heating the fluid to be measured (Also referred to as "heating unit") 113.
  • the heating unit 113, the temperature detection unit 111, and the temperature detection unit 112 are arranged in the flow rate detection unit 11 along the flow direction P of the fluid to be measured.
  • the shapes of the heating unit 113, the temperature detection unit 111, and the temperature detection unit 112 are substantially rectangular in plan view, respectively, and their longitudinal directions are orthogonal to the flow direction P of the fluid to be measured.
  • the temperature detection unit 112 is disposed on the upstream side of the heating unit 113, and the temperature detection unit 111 is disposed on the downstream side. To detect.
  • the sensor element 100 having substantially the same structure is used for the physical property value detection unit 12 and the flow rate detection unit 11, and the arrangement angle with respect to the flow direction of the fluid to be measured Above, they are placed 90 degrees apart. Thereby, the sensor of the same structure can be functioned as the physical property value detection part 12 or the flow volume detection part 11, and the manufacturing cost of the flow volume measurement apparatus 1 can be reduced.
  • the physical property detection unit 12 detects the temperature of the fluid to be measured, the first thermopile (also referred to as “temperature detection unit”) 121 and the second thermopile (also referred to as “temperature detection unit”) And a micro heater (also referred to as a "heating unit”) 123 for heating the fluid to be measured.
  • the heating unit 123, the temperature detection unit 121, and the temperature detection unit 122 are arranged in the physical property detection unit 12 in a direction orthogonal to the flow direction Q of the fluid to be measured.
  • the shapes of the heating unit 123, the temperature detection unit 121, and the temperature detection unit 122 are substantially rectangular in plan view, respectively, and the longitudinal direction of each is along the flow direction Q of the fluid to be measured. Further, the temperature detection unit 121 and the temperature detection unit 122 are disposed symmetrically on both sides of the heating unit 123, and detect temperatures at symmetrical positions on both sides of the heating unit 123. Therefore, the measurement values of the temperature detection unit 121 and the temperature detection unit 122 are substantially the same, and an average value may be adopted, or any one value may be adopted.
  • the change in the temperature distribution in the direction orthogonal to the flow direction is smaller than the change in the temperature distribution in the flow direction of the fluid to be measured. Therefore, by arranging the temperature detection unit 121, the heating unit 123, and the temperature detection unit 122 in this order in the direction orthogonal to the flow direction of the fluid to be measured, the temperature detection unit 121 based on the change in temperature distribution is obtained. And, the change of the output characteristic of the temperature detection unit 122 can be reduced. Therefore, the detection accuracy of the physical property value detection unit 12 can be improved by reducing the influence of the change in temperature distribution due to the flow of the fluid to be measured.
  • the heating unit 123 can heat the measurement target fluid over a wide range of the flow direction of the measurement target fluid. . Therefore, even if the temperature distribution is biased downstream due to the flow of the fluid to be measured, it is possible to reduce the change in the output characteristics of the temperature detection unit 121 and the temperature detection unit 122. Similarly, in the case of measuring the fluid temperature, it is possible to reduce the error in the measurement value caused by the flow velocity.
  • the fluid temperature may be determined by subtracting the temperature increase due to heating by the heating unit 123 from the temperatures detected by the temperature detection unit 121 and the temperature detection unit 122, or the heating unit 123 does not perform heating. It may be detected in the state. According to the physical property value detection unit 12, it is possible to suppress the influence of the change of the temperature distribution due to the flow of the fluid to be measured, and to improve the detection accuracy of the physical property value and the fluid temperature.
  • the temperature detection unit 121 and the temperature detection unit 122 can widely cover the flow direction of the fluid to be measured Temperature can be detected. Therefore, even if the temperature distribution is biased downstream due to the flow of the fluid to be measured, it is possible to reduce the change in the output characteristics of the temperature detection unit 121 and the temperature detection unit 122. Therefore, the detection accuracy of the physical property value detection unit 12 can be improved by reducing the influence of the change in temperature distribution due to the flow of the fluid to be measured.
  • FIG. 8 is a block diagram showing an example of a functional configuration of the circuit board 5 provided in the flow rate measuring device 1.
  • the flow rate measuring device 1 includes a flow rate detecting unit 11, a physical property value detecting unit 12, and a control unit 13.
  • the flow rate detection unit 11 includes a temperature detection unit 111 and a temperature detection unit 112.
  • the physical property value detection unit 12 includes a temperature detection unit 121 and a temperature detection unit 122.
  • the heating unit 113 shown in FIG. 6 and the heating unit 123 shown in FIG. 7 are not shown.
  • the control unit 13 includes a detection value acquisition unit 131, a characteristic value calculation unit 132, a flow rate calculation unit 133, and a measurement parameter change unit 134.
  • the flow rate detection unit 11 detects a value indicating the flow rate of the fluid to be measured based on the temperature detection signals output from the temperature detection unit 111 and the temperature detection unit 112. For example, the flow rate detection unit 11 calculates the difference between the temperature detection signal output from the temperature detection unit 111 and the temperature detection signal output from the temperature detection unit 112, and indicates the flow rate of the fluid to be measured based on the difference. Ask for Then, the flow rate detection unit 11 outputs a value indicating the flow rate to the control unit 13.
  • the physical property value detection unit 12 outputs the temperature detection signal output from the temperature detection unit 121 to the characteristic value calculation unit 132.
  • the physical property detection unit 12 may obtain an average value of the temperature detection signals output from the temperature detection unit 121 and the temperature detection unit 122, and output the average value to the characteristic value calculation unit 132.
  • the temperature detection signal may be acquired using one of the temperature detection unit 121 and the temperature detection unit 122.
  • the detection value acquisition unit 131 acquires a detection value corresponding to the flow rate of the fluid output by the flow rate detection unit 11 at a predetermined measurement interval.
  • the characteristic value calculation unit 132 calculates the characteristic value based on the detection value of at least one of the temperature detection unit 121 and the temperature detection unit 122 of the physical property value detection unit 12.
  • the characteristic value calculation unit 132 changes the temperature of the micro heater of the physical property value detection unit 12 and calculates the characteristic value by multiplying the difference of the temperature of the fluid to be measured detected by the thermopile before and after the change by a predetermined coefficient. You may do so.
  • the flow rate calculation unit 133 calculates the flow rate based on the detection value acquired by the detection value acquisition unit 131.
  • the flow rate calculation unit 133 may correct the flow rate by further using the characteristic value calculated by the physical property value detection unit 12. Further, the measurement parameter changing unit 134 changes the setting to a measurement parameter such as a measurement interval calculated based on the measurement result. For example, based on the flow rate calculated by the flow rate calculation unit 133, the measurement parameter change unit 134 changes the interval at which the detection value acquisition unit 131 obtains the detection value.
  • FIG. 9 is a process flow diagram showing an example of the flow rate measurement process.
  • measurement parameters such as a measurement interval (sampling interval) of the flow rate detection unit 11 are periodically corrected. That is, the measurement parameter changing unit 134 of the circuit board 5 determines whether it is time to detect the frequency (FIG. 9: S1). In this step, when the predetermined period has elapsed since the previous correction, the measurement parameter changing unit 134 determines that it is the timing to detect the frequency.
  • the measurement parameter changing unit 134 causes the detection value acquisition unit 131 to acquire the detection value by high-speed sampling at a shorter measurement interval than usual (S2) .
  • the measurement interval is shortened in order to detect changes in flow rate in more detail. That is, the detection value acquisition unit 131 acquires detection values corresponding to the flow rate of the fluid to be measured based on the temperature detection signals of the temperature detection unit 111 and the temperature detection unit 112 at short measurement intervals. Specifically, the flow rate detection unit 11 outputs the temperature detection signal output from the temperature detection unit 111 and the temperature detection signal output from the temperature detection unit 112. Further, the detection value acquisition unit 131 calculates the difference between the two temperature detection signals. Also, the flow rate calculation unit 133 calculates the flow rate based on the detected value. The flow rate calculation unit 133 may correct the flow rate based on the characteristic value.
  • the measurement parameter changing unit 134 calculates the frequency or the period of the change of the flow rate based on the calculated flow rate (S2). In this step, regularity such as periodicity is detected from the change in the calculated flow rate, and the number of repetitions per unit time or the time taken for the repetition is determined.
  • FIG. 10 is a diagram schematically showing temporal change in flow rate per unit time when pulsation occurs in change in flow rate.
  • the vertical axis represents the flow rate per hour (L / h), and the horizontal axis represents time (s).
  • pulsation occurs in the flow rate at a frequency of about 20 Hz. Such pulsations and fluctuations may occur, for example, due to the structure of piping in which the flow rate measuring device is installed.
  • the circles in FIG. 10 indicate sampling timings.
  • a judgment criterion such as whether a value below a predetermined value regularly appears for a flow rate at a certain point in time, or at least one of a local maximum and a local minimum regularly appears, etc.
  • the periodicity of the change in flow rate is detected to determine the frequency. In cyclicity detection, is approximately the same value as the flow rate value calculated at a certain time point calculated periodically based on the flow rate value calculated based on the detection value obtained by the above-mentioned high-speed sampling to decide. Further, the maximum value or the minimum value may be detected and used for the determination using the latest predetermined number of flow rate values.
  • the frequency can be determined by detecting the value of the flow rate at a certain point initially detected and the increase or decrease of the flow rate over time. That is, as shown in the section where the both ends are arrows in FIG. 10, the same value as a certain flow calculated in the section where the flow tends to increase is similarly repeatedly calculated in the section where the flow tends to increase The frequency can be counted by determining that one period is between the values. At this time, even if the value is calculated in the section in which the flow rate tends to decrease, it can be determined that the period is not a break.
  • the local maximum value or the local minimum value may be detected, and the frequency may be counted by determining the period between the local maximum value or the local minimum value as one cycle.
  • a peak value with a slope of zero representing an increase or decrease in the flow rate appearing after a section where the flow rate tends to increase is judged as a maximum value or a slope appears after a section where the flow rate tends to decrease
  • the peak value of is judged as the minimum value.
  • not only the waveform as shown in FIG. 10, but also a complicated waveform shape may appear periodically.
  • the periodicity is It may be determined that there is. At this time, for example, a moving average of the calculated flow rate may be used.
  • the measurement parameter changing unit 134 detects the periodicity using the change in the value of the flow rate.
  • the measurement parameter changing unit 134 changes the measurement parameter (measurement interval etc.) based on the periodicity (S5). It is assumed that the measurement is performed at predetermined intervals, for example, every several cycles, with a period of one cycle. That is, in this step, the measurement parameter changing unit 134 sets, for example, an interval of an integral multiple of the detected period to the start point of each measurement performed intermittently. Also, the duration of measurement is set so as to continue the measurement of the flow rate for a period of one cycle. The period may be continued not for one cycle but for an integral multiple of the cycle.
  • the measurement interval in each period may be performed at a speed lower than that of sampling performed at high speed to detect periodicity in S2, for example.
  • the measurement interval in each period may be set short, for example, when the rate of change of the flow rate changes significantly in a short period of time.
  • the detection value acquisition unit 131 and the flow rate calculation unit 133 measure the flow rate with the set measurement parameter (measurement interval etc.) (S6). In this step, measurement is started at the measurement interval set in S5. In addition, measurement is performed continuously at the predetermined sampling rate and the measurement period set in S5. That is, measurement is intermittently performed based on the cycle of change in flow rate to be measured, and the flow rate in the period in which measurement is not performed is complemented on the basis of the flow rate in the preceding and subsequent periods to obtain the entire flow rate.
  • the flow rate measuring device 1 repeats the flow rate measuring process as described above.
  • ⁇ Effect> According to the flow rate measuring device 1, when pulsation or fluctuation occurs in the fluid to be measured, power consumption can be reduced while maintaining the accuracy of the measurement. That is, since the measurement interval is set based on the change period of the flow rate, it is possible to suppress the bias of the sampling target and maintain the measurement accuracy. In addition, by performing measurement intermittently based on the cycle of change in flow rate, power consumption can be suppressed more than when sampling is continued.
  • FIG. 11 is a view schematically showing the relationship between the temperature of the micro heater 101 of the sensor element 100 shown in FIG. 4 and the like and the measurement timing.
  • the vertical axis represents the temperature of the micro heater 101
  • the horizontal axis represents the passage of time.
  • the flow rate measuring apparatus 1 uses the sensor element 100 including the micro heater 101, and heats the micro heater 101 based on the control of the detection value acquisition unit 131 of the control unit 13 when measuring the flow rate. Therefore, by reducing the number of times of measurement, the consumption of power due to the heating of the micro heater 101 can be suppressed.
  • the flow rate measuring device 1 may correct the value of the flow rate based on the characteristic value. By further performing the correction based on the characteristic value, the value of the flow rate can be appropriately corrected for various fluids to be measured, but this correction is not necessarily required.
  • correction based on characteristic values of physical properties will be described.
  • the sensor sensitivity ratio is a ratio of a sensor output value in the case of flowing a predetermined gas to a sensor output value in the case of flowing the gas serving as a reference, and is a characteristic value representing a thermal diffusivity.
  • the flow rate calculation unit 133 calculates the corrected flow rate using the following equation (3).
  • Output after correction output of flow rate calculation unit ⁇ ⁇ (3)
  • the thermal diffusivity of the fluid to be measured can be detected by using the amount of change in temperature ( ⁇ T) detected by the heat pile when the temperature of the heater is changed.
  • the flow rate output by the thermal flow sensor has a correlation with the thermal diffusivity, and the flow rate correction process according to the present embodiment enables appropriate correction for any gas. Therefore, the measurement accuracy of the flow rate can be improved with respect to the measurement target fluid having different thermal diffusivities.
  • FIG. 12 is a graph showing the sensor sensitivity ratio on the vertical axis and the thermal conductivity on the horizontal axis.
  • gas groups having different physical property values other than the thermal conductivity such as mixed gases having different compositions
  • sensor sensitivity ratio should be used for correction. That is, in the method of performing correction using one set of the heating temperature of the microheater and the detection temperature of the thermopile, correction is performed based on two or more reference gases belonging to a predetermined gas group, but for a plurality of gas groups It was not possible to make corrections properly.
  • FIG. 13 is a graph showing the sensor sensitivity ratio on the vertical axis and ⁇ T on the horizontal axis.
  • the sensor sensitivity ratio and ⁇ T are approximated to a straight line even for the gas shown in FIG. 12 in which the sensor sensitivity ratio and the thermal conductivity are not approximated to a straight line. Therefore, in the present embodiment, the correction can be performed also on the gas group whose thermal diffusivity is unknown.
  • the detection of the fluid temperature and the detection of the physical property value by the physical property value detection unit 12 can improve the temperature compensation accuracy without increasing the number of parts.
  • the sensor element 100 having the same structure is used in common as the physical property value detection unit 12 and the flow rate detection unit 11, the types of parts can be reduced and the manufacturing cost of the flow measurement device 1 can be reduced.
  • ⁇ Modification of sub-channel portion> 14A to 14D show deformation of the physical property value detection flow path 32 and the flow rate detection flow path 33 formed between the inflow flow path 34 and the outflow flow path 35 on the upper surface of the sub flow path portion 3. It is a top view which shows an example.
  • the physical property value detection flow path 32 may be formed in a straight line, and the flow rate detection flow path 33 may be formed in a substantially U-shape.
  • the direction in which the fluid to be measured flows into the flow rate detection channel 33 is orthogonal to the direction in which the fluid to be measured flows into the physical property value detection channel 32.
  • the physical property value detection flow path 32 may be formed as described above. That is, the flow direction of the fluid to be measured, and the predetermined direction in which the temperature detection unit 121, the heating unit 123, and the temperature detection unit 122 are arranged on the physical property value detection unit 12 disposed in the physical property value detection channel 32; Arranged vertically.
  • the sensor element 100 of the physical property value detection unit 12 and the sensor element 100 of the flow rate detection unit 11 are arranged in a direction rotated 90 degrees in plan view with respect to the flow direction of the fluid to be measured.
  • the arrangement direction of the sensor element 100 of the physical property value detection unit 12 and the sensor element 100 of the flow rate detection unit 11 may be matched it can. Therefore, in the manufacturing process of the flow rate measuring device 1, the process of mounting the physical property value detecting unit 12 and the flow rate detecting unit 11 on the circuit board 5 can be simplified.
  • FIGS. 15A to 15C Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 15A to 15C.
  • the corresponding reference numeral is attached and the description thereof is omitted.
  • the flow rate detecting unit is disposed in the main flow path.
  • FIG. 15A is a perspective view showing a flow rate measuring device 1a according to the present modification.
  • FIG. 15B is a cross-sectional view showing the flow rate measuring device 1a shown in FIG. 15A.
  • FIG. 15C is a top view showing the sub flow passage 3a shown in FIG. 15A.
  • an opening 37A is formed between the inlet 34A and the outlet 35A on the inner peripheral surface of the main flow passage 2a.
  • a flow path 37a for detecting a flow rate in which the flow rate detector 11 is disposed is formed in the sub flow path 3a, and the flow path 37a for detecting flow rate communicates with the opening 37A. Therefore, the fluid to be measured flowing through the main flow passage 2a flows into the flow rate detection flow passage 37a via the opening 37A, and the flow rate detection unit 11 detects the flow rate.
  • By controlling and adjusting the size of the opening 37A it is possible to control the flow rate of the measurement target fluid flowing from the main flow passage 2a into the flow rate detection flow passage 37a.
  • the sub-passage portion 3a is composed of the inflow channel 34, the physical property value detection channel 32, and the outflow channel 35, and the physical property value detection channel 32 extends in the longitudinal direction.
  • the flow path has a physical property value detection flow path 32 in which a physical property value detection unit 12 for detecting the physical property value of the fluid to be measured is disposed.
  • the physical property value detection unit 12 is disposed in the sub flow passage 3a, and the flow rate detection unit 11 is disposed in the main flow passage 2a. For this reason, even with the flow rate measuring device 1a, it is possible to control the flow rate according to the detection range of the physical property value detection unit 12. Therefore, the temperature and physical property value of the fluid to be measured can be detected with high accuracy also in this modification.
  • the flow rate detection unit 11 and the physical property value detection unit 12 may be arranged in reverse. Even with such a configuration, since the value corresponding to the temperature of the fluid is directly detected, the influence of the difference between the fluid temperature and the ambient temperature can be reduced.
  • ⁇ Modification 2 of flow rate measuring device> Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 16A and 16B.
  • the corresponding reference numeral is attached and the description thereof is omitted.
  • the flow rate measuring device according to the present modification differs from the above-described flow rate measuring device in that it has two independent sub flow paths.
  • FIG. 16A is a perspective view showing a flow rate measuring device 1b according to the present embodiment
  • FIG. 16B is a top view showing the sub flow passage portion 3 shown in FIG. 16A.
  • the sub flow passage 3b is formed with two sub flow passages on the inside and the upper surface thereof.
  • the first sub-passage is composed of the inflow channel 34b, the physical property value detection channel 32b, and the outflow channel 35b, and the physical property value detection channel 32b extends in the longitudinal direction.
  • a physical property value detection unit 12 for detecting physical property values of the fluid to be measured is disposed in the extending flow path.
  • the second sub-passage portion is composed of the inflow passage 34B, the flow rate detection passage 33B, and the outflow passage 35B, and the flow rate detection passage 33B extends in the longitudinal direction.
  • a flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is disposed in the flow path.
  • the sub flow path portion 3 b has two independent sub flow paths, and the physical property value detection portion 12 is disposed in the first sub flow path portion. Are disposed in the second sub flow passage. For this reason, according to the flow rate measuring device 1b, it is possible to individually control the flow rates according to the detection ranges of the physical property value detecting unit 12 and the flow rate detecting unit 11. Therefore, the temperature and physical property value of the fluid to be measured can be detected with high accuracy also in this modification.
  • ⁇ Modification 3 of flow rate measuring device> Another modified example of the flow rate measuring device according to the present invention will be described based on FIGS. 17A to 17C.
  • the corresponding reference numeral is attached and the description thereof is omitted.
  • the flow rate measuring device according to the present modification differs from the flow rate measuring device described above in that the physical property value detecting flow path is formed in the flow rate detecting flow path.
  • FIG. 17A is a perspective view showing a flow rate measuring device 1c according to the present embodiment.
  • FIG. 17B is a perspective view showing the sub flow passage portion 3c shown in FIG. 17A.
  • FIG. 17C is a top view showing the sub flow passage portion 3c shown in FIG. 17A.
  • the sub flow path portion 3c includes the inflow path 34, the physical property value detection flow path 32c, the flow rate detection flow path 33c, and the outflow And a flow path 35.
  • the physical property value detection flow path 32c is formed in the flow rate detection flow path 33c, and the flow rate detection unit 11 is disposed upstream with respect to the flow direction of the fluid to be measured.
  • the physical property value detection unit 12 is disposed on the side.
  • the physical property value detection flow path 32 c is separated from the flow rate detection flow path 33 c by the flow rate control member 40 for controlling the flow rate of the fluid to be measured, and the physical property value detection unit 12 is a flow rate control member 40. It is located inside.
  • the flow rate control member 40 is a member for controlling the flow rate of the fluid to be measured which passes through the physical property value detection unit 12 of the physical property value detection flow path 32c, and is composed of a first side wall 40a and a second side wall 40b. It is done.
  • Each of the first side wall portion 40a and the second side wall portion 40b is a substantially U-shaped plate-like member, and is disposed with a predetermined interval in a state where the respective end portions are opposed to each other. Therefore, by controlling the distance between the first side wall 40a and the second side wall 40b, the flow rate of the fluid to be measured passing through the flow rate control member 40, that is, the physical property value detection flow path 32c, is adjusted. Can.
  • the sub flow path portion 3c includes the flow rate control member 40, and the physical property value detection flow path 32c is provided inside the flow rate control member 40. It is possible to provide the physical property value detection flow path 32c at any position of the above. Further, by providing the flow rate control member 40, the flow rate of the fluid to be measured passing through the physical property value detection flow path 32c can be easily controlled.
  • the flow rates according to the detection ranges of the physical property value detection unit 12 and the flow rate detection unit 11 are individually It is possible to control. Therefore, the temperature and physical property value of the fluid to be measured can be detected with high accuracy also in this modification.
  • FIGS. 18A to 18C Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 18A to 18C.
  • the corresponding reference numeral is attached and the description thereof is omitted.
  • the flow rate measuring apparatus according to the present modification differs from the flow rate measuring apparatus described above in that the physical property value detecting unit 12 is not provided, and the flow rate detecting unit 11 is provided in the main flow path.
  • FIG. 18A is a perspective view showing a flow rate measuring device 1d according to the present modification.
  • FIG. 18B is a cross-sectional view cut along a plane passing through the center of the cross section of the flow rate measurement device 1 d and the center of the flow rate detection unit 11.
  • FIG. 18C is a cross-sectional view of the main flow path cut along a plane perpendicular to the fluid flow direction.
  • a flow rate detection flow path 33d which is an opening capable of accommodating the flow rate detection unit 11, is provided on the side surface of the main flow passage portion 2.
  • the circuit board 5 (shown in FIG. 18B) is connected from the outside of the main flow passage portion 2 so as to cover the flow rate detection flow path 32d.
  • the flow rate detection unit 11 mounted on the circuit board 5 is disposed in the flow rate detection flow path 33 d.
  • the flow rate detection flow path 33 d according to the present modification is not divided from the main flow path portion 2, and the flow rate detection portion 11 is provided in the main flow path portion 2.
  • the flow rate detection unit 11 in such a flow rate measurement device 1d, it is possible to detect a value according to the amount of fluid flowing in the main flow passage portion 2.
  • the physical property value detection unit 12 may also be provided in the main flow channel section 2, but even if the physical property value detection unit 12 is not provided as in this modification, pulsation or fluctuation occurs in the fluid to be measured. If so, power consumption can be reduced while maintaining measurement accuracy.
  • ⁇ Modification 5 of flow rate measuring device> Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 19A and 19B.
  • symbol is attached
  • the flow rate measuring apparatus according to the present modification does not include the physical property value detecting unit 12 and the flow rate detecting unit 11 is provided in the flow rate detecting flow passage branched from the main flow passage 2. It is different from the measuring device.
  • FIG. 19A is a perspective view showing a flow rate measuring device 1e according to the present modification.
  • FIG. 19B is a cross-sectional view showing the flow rate measuring device 1 e shown in FIG. 19A.
  • the sub-flow path unit 3e includes the inflow path 34, the flow rate detection path 33e, and the outflow flow path 35. .
  • a flow rate detection flow passage 33c branched from the main flow passage portion 2 is formed, and the flow rate detection unit 11 is disposed in the flow rate detection flow passage 33c.
  • the flow rate detection unit 11 in such a flow rate measurement device 1d, it is possible to detect a value according to the amount of fluid flowing in the main flow passage portion 2.
  • the physical property value detection unit 12 may also be provided in the main flow channel section 2, but even if the physical property value detection unit 12 is not provided as in this modification, pulsation or fluctuation occurs in the fluid to be measured. If so, power consumption can be reduced while maintaining measurement accuracy.
  • FIG. 20 is a functional block diagram showing an example in which a host device 9 different from the circuit board 5 is provided with the measurement parameter changing unit 134, such as a gas meter for installing the flow rate measuring device 1, for example. Also in FIG. 20, the members corresponding to those of the embodiment are denoted by the corresponding reference numerals, and the description thereof will be omitted.
  • the circuit board 5 and the host device 9 are connected by signal lines or wirelessly.
  • the measurement parameter changing unit 134 is realized by a processor such as a microcontroller included in the host device 9 and performs the same processing as that of the embodiment.
  • the host apparatus 9 shall be called the "flow measuring device" which concerns on this invention. Even with such a configuration, when pulsation or fluctuation occurs in the fluid to be measured, the power consumption can be reduced while maintaining the accuracy of the measurement.
  • FIG. 21 is a top view showing a schematic configuration of a modification of the physical property value detection unit 12 shown in FIG.
  • the temperature detection unit 122 may be omitted, and the physical property detection unit 12 a may be configured by the heating unit 123 and the temperature detection unit 121. That is, even if the heating unit 123 and the temperature detection unit 121 are arranged in a direction perpendicular to the flow direction of the fluid to be measured, the temperature detection unit 121 can detect the fluid temperature and the physical property value of the fluid. .
  • the flow rate measuring method executed by the flow rate measuring device 1 may be provided as a program to be executed by an arithmetic device such as a processor or a medium storing the program.
  • Flow rate measuring device 11 Flow rate detection unit 111: Temperature detection unit 112: Temperature detection unit 113: Heating unit 12: Physical property value detection unit 121: Temperature detection unit 122: Temperature detection unit 123: Heating unit 13: Control unit 131: Detected value acquisition unit 132: Characteristic value calculation unit 133: Flow calculation unit 134: Measurement parameter change unit 2: Main flow passage 21: Orifice 3: Secondary flow passage 32: Physical property value detection flow channel 33: Flow flow detection flow channel 34: Inflow flow path 35: Outflow flow path 40: Flow control member 4: Seal 5: Circuit board 6: Cover 100: Sensor element 101: Micro heater 102: Thermopile 103: Insulating thin film 104: Silicon base 105: Cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Provided is a flow rate measurement device wherein measurement precision is maintained and power consumption is reduced, while suppressing an increase in pressure loss. The flow rate measurement device comprises: a flow rate detection unit that detects a value corresponding to the flow rate of a fluid to be measured flowing through a main flow path at a prescribed measurement timing; a flow rate calculation unit that calculates the flow rate of the fluid to be measured on the basis of the value corresponding to the flow rate detected by the flow rate detection unit; and a measurement interval changing unit that, if any periodic change in the flow rate is detected on the basis of the flow rate calculated by the flow rate calculation unit, changes the measurement timing on the basis of the detected period of the change.

Description

流量測定装置Flow measurement device
 本発明は、流量測定装置に関する。 The present invention relates to a flow rate measuring device.
 従来、ヒータおよびセンサを備え、流体の流れによって変化する温度分布をセンサが検知することにより、流体の流速又は流量を算出する測定装置が提案されていた。 Heretofore, there has been proposed a measuring device which includes a heater and a sensor and calculates the flow velocity or flow rate of the fluid by the sensor detecting a temperature distribution changing with the flow of the fluid.
 例えば、被測定流体が流れる流路の壁面に流量センサを設け、流量センサの下流側に流量センサが設けられた位置の流路の断面に比べて極小な断面を有する極小断面流路を有する部材を配設した流量測定装置が提案されている(例えば、特許文献1)。本技術によれば、有孔板を設けることにより、脈動の影響を低減させることができるとされている。 For example, a member having a minimal cross-section flow path having a smaller cross section than the cross section of the flow path at a position where the flow rate sensor is provided on the wall surface of the flow path where the fluid to be measured flows Has been proposed (for example, Patent Document 1). According to the present technology, by providing the perforated plate, the influence of the pulsation can be reduced.
国際公開第2004/090476号WO 2004/090476
 センサを利用した流量測定装置においては、センサのサンプリング間隔を短くすることで流量の測定精度を向上させることができる。しかしながら、サンプリング間隔を短くすることで、時間あたりの測定回数が増加するとともに、センサの消費電力も増加するという問題があった。 In a flow rate measuring device using a sensor, the measurement accuracy of the flow rate can be improved by shortening the sampling interval of the sensor. However, shortening the sampling interval increases the number of measurements per hour and also increases the power consumption of the sensor.
 また、例えばガスメータ等のように、センサの用途によっては、センサに許容される圧力損失が制限される場合がある。すなわち、圧力損失が増大すると、例えば配管の末端に接続された機器まで流体を供給できなくなるおそれがある。このような用途においては、流路に有孔板を設けるような構造的な対策のみによって流量の細かな変動の影響を低減させるのは困難であった。 Also, depending on the application of the sensor, such as, for example, a gas meter, the pressure drop allowed for the sensor may be limited. That is, if the pressure loss increases, for example, there is a risk that the fluid can not be supplied to the device connected to the end of the pipe. In such applications, it has been difficult to reduce the effects of minor fluctuations in the flow rate solely by structural measures such as providing a perforated plate in the flow path.
 本発明は、上記のような問題に鑑みてなされたものであり、流量測定装置において、圧力損失の増加を抑えつつ、測定精度を維持すると共に消費電力を低減することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to reduce the power consumption while maintaining the measurement accuracy while suppressing the increase in pressure loss in the flow rate measuring device.
 本発明に係る流量測定装置は、主流路を流れる測定対象流体の流量に応じた値を、定められた測定タイミングで検出する流量検出部と、流量検出部が検出した流量に応じた値に基づいて、測定対象流体の流量を算出する流量算出部と、流量算出部が算出した流量に基づいて流量の周期的な変化を検知した場合に、検知された変化の周期に基づいて測定タイミングを変更する測定間隔変更部とを備える。 The flow rate measurement device according to the present invention is based on a flow rate detection unit that detects a value corresponding to the flow rate of the measurement target fluid flowing through the main flow path at a determined measurement timing, and a value corresponding to the flow rate detected by the flow rate detection unit. Change the measurement timing based on the period of the detected change when the periodic change of the flow is detected based on the flow calculated by the flow calculating unit and the flow calculating unit that calculates the flow of the fluid to be measured And a measurement interval changing unit.
 流量の周期的な変化を検知した場合に、測定された周期に基づいて測定タイミングを変更することで、測定対象流体の流量に例えば脈動や揺らぎが生じた場合に、その周期的な変化に基づいて測定タイミングを変更することができる。したがって、流量に偏りが生じないように測定するタイミングを決定しつつ、時間当たりの測定回数を少なくして消費電力を低減させることができる。また、このような処理であれば、ソフトウェアにより処理することができるため、構造的な対策は必要なく、圧力損失を生じさせるおそれもない。 When a periodic change in the flow rate is detected, by changing the measurement timing based on the measured period, for example, when pulsation or fluctuation occurs in the flow rate of the fluid to be measured, based on the periodic change Measurement timing can be changed. Therefore, power consumption can be reduced by reducing the number of measurements per time while determining the timing of measurement so as not to cause a deviation in the flow rate. In addition, since such processing can be performed by software, no structural measures are necessary and there is no risk of pressure loss.
 また、測定間隔変更部は、流量算出部が算出した流量の値の変化を検出し、当該変化を用いて周期的な変化を検知するようにしてもよい。具体的には、流量の値から周期性を検知するための基準として、任意の測定値を用いることができる。すなわち、任意の値が測定されるタイミングの規則性に基づいて、周期的な変化を検知することができる。 Further, the measurement interval change unit may detect a change in the value of the flow rate calculated by the flow rate calculation unit, and may detect a periodic change using the change. Specifically, any measurement value can be used as a reference for detecting periodicity from the value of flow rate. That is, periodic changes can be detected based on the regularity of timing when any value is measured.
 また、測定間隔変更部は、検知された変化の周期に基づき断続的に流量に応じた値を検出させる測定タイミングに変更するようにしてもよい。検知された変化の周期に基づいて断続的に流量に応じた値を検出すれば、1つの周期内において流量が変動する場合であっても、偏りなくサンプリングすることができ、測定される流量の精度を維持することができる。 In addition, the measurement interval changing unit may change the measurement timing to intermittently detect a value according to the flow rate based on the detected change cycle. If a value corresponding to the flow rate is intermittently detected based on the cycle of the detected change, even if the flow rate fluctuates within one cycle, sampling can be performed without bias, and the measured flow rate Accuracy can be maintained.
 また、断続的に行われる流量に応じた値の検出の各々は、検知された変化の周期の整数倍の間隔で開始されるようにしてもよい。このようにすれば、流量の変化の周期を単位として偏りなくサンプリングすることができ、測定される流量の精度を維持することができる。 In addition, each of the detection of values according to the flow rate performed intermittently may be started at intervals of integral multiples of the cycle of the detected change. In this way, sampling can be performed without bias on the basis of the cycle of change in flow rate, and the accuracy of the measured flow rate can be maintained.
 なお、課題を解決するための手段に記載の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。また、課題を解決するための手段に示した流量測定装置の内容は、方法又はプロセッサ等の演算装置に実行させるプログラム、若しくはプログラムを格納する媒体として提供することができる。 The contents described in the means for solving the problems can be combined as much as possible without departing from the problems and technical ideas of the present invention. Further, the contents of the flow rate measuring device shown in the means for solving the problems can be provided as a program to be executed by an arithmetic device such as a method or processor or a medium for storing the program.
 流量測定装置において、圧力損失の増加を抑えつつ、測定精度を維持すると共に消費電力を低減することができる。 In the flow rate measuring device, while suppressing the increase in pressure loss, it is possible to maintain the measurement accuracy and reduce the power consumption.
流量測定装置の一例を示す分解斜視図である。It is an exploded perspective view showing an example of a flow rate measuring device. 流量測定装置の一例を示す断面図である。It is a sectional view showing an example of a flow rate measuring device. 副流路部を示す平面図である。It is a top view which shows a sub flow path part. センサ素子の一例を示す斜視図である。It is a perspective view showing an example of a sensor element. センサ素子の仕組みを説明するための断面図である。It is sectional drawing for demonstrating the structure of a sensor element. 流量検出部の概略構成を示す平面図である。It is a top view which shows schematic structure of a flow volume detection part. 物性値検出部の概略構成を示平面図である。It is a top view which shows schematic structure of a physical-property value detection part. 回路基板の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a circuit board. 流量測定処理の一例を示す処理フロー図である。It is a processing flow figure showing an example of flow rate measurement processing. 流量の変化に脈動が生じる場合の単位時間当たりの流量の時間的な変化を模式的に表す図である。It is a figure showing typically the time change of the flow rate per unit time in case a pulsation arises in change of a flow rate. センサ素子のマイクロヒータの温度と測定タイミングとの関係を模式的に示す図である。It is a figure which shows typically the relationship between the temperature of the micro heater of a sensor element, and measurement timing. 縦軸にセンサ感度比、横軸に熱伝導率を示すグラフである。It is a graph which shows sensor sensitivity ratio on a vertical axis | shaft, and thermal conductivity on a horizontal axis. 縦軸にセンサ感度比、横軸にΔTを示すグラフである。It is a graph which shows sensor sensitivity ratio on the vertical axis, and shows ΔT on the horizontal axis. 副流路部の変形例を示す図である。It is a figure which shows the modification of a sub flow path part. 副流路部の変形例を示す図である。It is a figure which shows the modification of a sub flow path part. 副流路部の変形例を示す図である。It is a figure which shows the modification of a sub flow path part. 副流路部の変形例を示す図である。It is a figure which shows the modification of a sub flow path part. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 流量測定装置の変形例を示す図である。It is a figure which shows the modification of a flow rate measuring apparatus. 回路基板及びホスト装置を含む変形例の機能構成を示すブロック図である。It is a block diagram showing functional composition of a modification including a circuit board and a host device. センサ素子の変形例を示す図である。It is a figure which shows the modification of a sensor element.
 以下、本発明の実施形態に係る流量測定装置について、図面を用いて説明する。なお、以下に示す実施形態は、流量測定装置の一例であり、本発明に係る流量測定装置は、以下の構成には限定されない。 Hereinafter, a flow rate measuring device according to an embodiment of the present invention will be described using the drawings. The embodiment described below is an example of a flow rate measuring device, and the flow rate measuring device according to the present invention is not limited to the following configuration.
<装置構成>
 図1は、本実施形態に係る流量測定装置1の一例を示す分解斜視図である。図2は、流量測定装置1の一例を示す断面図である。流量測定装置1は、例えばガスメータや燃焼機器、自動車等の内燃機関、燃料電池、その他医療等の産業機器、組込機器に組み込まれ、流路を通過する流体の量を測定する。なお、図1及び図2の破線の矢印は、流体の流れる方向を例示している。
<Device configuration>
FIG. 1 is an exploded perspective view showing an example of a flow rate measuring device 1 according to the present embodiment. FIG. 2 is a cross-sectional view showing an example of the flow rate measuring device 1. The flow rate measuring device 1 is incorporated in, for example, a gas meter, a combustion device, an internal combustion engine such as a car, a fuel cell, other industrial devices such as a medical device, and a built-in device to measure the amount of fluid passing through the flow path. The dashed arrows in FIG. 1 and FIG. 2 illustrate the flow direction of the fluid.
 また、図1に示すように、本実施形態に係る流量測定装置1は、主流路部2と、副流路部3と、シール4と、回路基板5と、カバー6とを備えている。図1及び図2に示すように、本実施形態では、流量測定装置1は主流路部2から分岐した副流路部3を有する。また、流量測定装置1は、流量検出部11と、物性値検出部12とを副流路部3に備える。流量検出部11及び物性値検出部12は、マイクロヒータによって形成される加熱部とサーモパイルによって形成される温度検出部とを含む熱式のフローセンサである。また、本実施形態では、物性値検出部12を利用して流体の温度を検出する。また、本実施形態では、算出される流量を物性値に基づいて補正するものとするが、流量測定装置1は、物性値検出部12を備えていなくてもよい。 Further, as shown in FIG. 1, the flow rate measuring device 1 according to the present embodiment includes the main flow passage portion 2, the sub flow passage portion 3, the seal 4, the circuit board 5, and the cover 6. As shown in FIGS. 1 and 2, in the present embodiment, the flow rate measuring device 1 has a sub flow passage portion 3 branched from the main flow passage portion 2. Further, the flow rate measuring device 1 includes the flow rate detecting unit 11 and the physical property value detecting unit 12 in the sub flow passage unit 3. The flow rate detection unit 11 and the physical property value detection unit 12 are thermal flow sensors including a heating unit formed by a microheater and a temperature detection unit formed by a thermopile. In the present embodiment, the physical property value detection unit 12 is used to detect the temperature of the fluid. Further, in the present embodiment, the calculated flow rate is corrected based on the physical property value, but the flow rate measuring device 1 may not include the physical property value detection unit 12.
 主流路部2は、測定対象である流体の流路(以下、主流路ともいう)が長手方向に貫通した管状の部材である。図2に示すように、主流路部2の内周面には、測定対象流体の流れ方向に対して、上流側に流入口(第1流入口)34Aが形成され、下流側に流出口(第1流出口)35Aが形成されている。例えば主流路部2の軸方向の長さは約50mmであり、内周面の直径(主流路部2の内径)は約20mmであり、主流路部2の外径は約24mmであるが、このような例には限定されない。また、主流路部2には、流入口34Aと流出口35Aとの間にオリフィス21が設けられている。オリフィス21は、主流路部2においてその前後よりも内径が小さくなった抵抗体であり、オリフィス21の大きさによって副流路部3へ流入する流体の量を調整することができる。 The main flow passage portion 2 is a tubular member in which a flow passage of a fluid to be measured (hereinafter also referred to as a main flow passage) penetrates in the longitudinal direction. As shown in FIG. 2, an inlet (first inlet) 34A is formed on the upstream side with respect to the flow direction of the fluid to be measured on the inner circumferential surface of the main flow passage 2 and the outlet (downstream) A first outlet 35A is formed. For example, the axial length of the main flow passage 2 is about 50 mm, the diameter of the inner circumferential surface (inner diameter of the main flow passage 2) is about 20 mm, and the outer diameter of the main flow passage 2 is about 24 mm, It is not limited to such an example. Further, in the main flow passage portion 2, an orifice 21 is provided between the inlet 34A and the outlet 35A. The orifice 21 is a resistor whose inner diameter is smaller in the main flow passage 2 than in the front and rear thereof, and the amount of fluid flowing into the sub flow passage 3 can be adjusted by the size of the orifice 21.
 図1及び図2においては、主流路から分岐した副流路を内部に含む部分である副流路部3は主流路部2の鉛直上方に設けられている。また、副流路部3内の副流路は、流入用流路34と、物性値検出用流路32と、流量検出用流路33と、流出用流路35とを含む。流入用流路34は、主流路部2から分岐する流入口34Aに通じ、流出用流路35は、主流路部2に合流する流出口35Aに通じており、副流路部3には、主流路部2を流れる流体の一部が分岐して流入する。 In FIG. 1 and FIG. 2, the sub flow passage portion 3, which is a portion including the sub flow passage branched from the main flow passage, is provided vertically above the main flow passage portion 2. Further, the sub-flow path in the sub-flow path portion 3 includes the inflow flow path 34, the physical property value detection flow path 32, the flow rate detection flow path 33, and the outflow flow path 35. The inflow channel 34 communicates with the inflow port 34 A branching from the main flow channel 2, the outflow channel 35 communicates with the flow outlet 35 A merging with the main flow channel 2, and the sub flow channel 3 A part of the fluid flowing through the main flow passage 2 branches and flows.
 流入用流路34は、主流路部2を流れる測定対象流体を流入させて、物性値検出用流路32および流量検出用流路33に分流させるための流路である。流入用流路34は、主流路部2における流体の流れ方向と垂直な方向に沿って形成されており、一端が流入口34Aに連通し、他端は物性値検出用流路32および流量検出用流路33に連通している。主流路部2を流れる測定対象流体の一部は、流入用流路34を介して、さらに物性値検出用流路32および流量検出用流路33に分流する。このような物性値検出用流路32及び流量検出用流路33には、主流路部2を流れる流体の量に応じた量の流体が流入する。したがって、例えば流量検出部11は、主流路部2を流れる流体の量に応じた値を検出することができる。 The inflow channel 34 is a flow channel for allowing the fluid to be measured flowing in the main channel portion 2 to flow into the physical property value detection channel 32 and the flow rate detection channel 33. The inflow channel 34 is formed along the direction perpendicular to the flow direction of the fluid in the main channel portion 2, one end communicates with the inflow port 34A, and the other end is the physical property value detection channel 32 and the flow rate detection It communicates with the flow path 33. A part of the fluid to be measured flowing through the main flow channel 2 is further divided into the physical property value detection flow channel 32 and the flow rate detection flow channel 33 via the inflow flow channel 34. The amount of fluid corresponding to the amount of fluid flowing through the main flow passage 2 flows into the physical property value detection flow passage 32 and the flow rate detection flow passage 33. Therefore, for example, the flow rate detection unit 11 can detect a value corresponding to the amount of fluid flowing through the main flow passage unit 2.
 図1に示すように、物性値検出用流路32は、主流路部2の鉛直上方に形成され、主流路部2と平行な方向に延在する、上側から見た断面が略コ字型の流路である。物性値検出用流路32は、その内部に、測定対象流体の物性値を検出するための物性値検出部12が配置されている。物性値検出用流路32の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。 As shown in FIG. 1, the physical property value detection flow path 32 is formed vertically above the main flow path portion 2 and extends in a direction parallel to the main flow path portion 2, and the cross section viewed from the upper side is substantially U-shaped. Flow path. The physical property value detection channel 12 for detecting the physical property value of the fluid to be measured is disposed inside the physical property value detection channel 32. One end of the physical property value detection flow path 32 communicates with the inflow port 34A via the inflow flow path 34, and the other end communicates with the outflow port 35A via the outflow flow path 35.
 流量検出用流路33も、主流路部2における流体の流れ方向と平行な方向に延在する、上側から見た断面が略コの字型の流路である。流量検出用流路33には、その内部に、測定対象流体の流量を検出するための流量検出部11が配置されている。また、流量検出用流路33の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。なお、物性値検出部12、流量検出部11は、それぞれ回路基板5上に実装される。そして、回路基板5は、上部が開いた物性値検出用流路32、流量検出用流路33の上部を覆うと共に、物性値検出用流路32に物性値検出部12が位置し、流量検出用流路33に流量検出部11が位置するように配置される。 The flow rate detection flow path 33 is also a flow path extending in a direction parallel to the flow direction of the fluid in the main flow path portion 2 and having a substantially U-shaped cross section viewed from the upper side. In the flow rate detection flow path 33, a flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is disposed inside. Further, one end of the flow rate detection flow path 33 is in communication with the inflow port 34 A via the inflow flow path 34, and the other end is in communication with the outflow port 35 A via the outflow flow path 35. The physical property detection unit 12 and the flow rate detection unit 11 are mounted on the circuit board 5 respectively. The circuit board 5 covers the upper part of the physical property value detection flow path 32 and the flow rate detection flow path 33 with the upper part opened, and the physical property value detection unit 12 is positioned in the physical property value detection flow path 32. The flow rate detection unit 11 is disposed in the flow path 33.
 流出用流路35は、物性値検出用流路32および流量検出用流路33を通過した測定対象流体を、主流路部2に流出させるための流路である。流出用流路35は、主流路部2と垂直な方向に沿って形成されており、一端が流出口35Aに連通し、他端は物性値検出用流路32および流量検出用流路33に連通している。物性値検出用流路32および流量検出用流路33を通過した測定対象流体は、流出用流路35を介して、主流路部2に流出する。 The outflow flow channel 35 is a flow channel for causing the measurement target fluid that has passed through the physical property value detection flow channel 32 and the flow rate detection flow channel 33 to flow out to the main flow channel portion 2. The outflow channel 35 is formed along a direction perpendicular to the main channel portion 2, one end communicates with the outlet 35A, and the other end is connected to the physical property value detection channel 32 and the flow rate detection channel 33. It is in communication. The fluid to be measured that has passed through the physical property value detection flow path 32 and the flow rate detection flow path 33 flows out to the main flow path portion 2 through the outflow flow path 35.
 このように、1つの流入口34Aから流入させた測定対象流体を、物性値検出用流路32および流量検出用流路33に分流させることで、物性値検出部12および流量検出部11は、それぞれ温度、密度などの条件がほぼ等しい測定対象流体に基づいて物性値や流量を検出することができる。 As described above, the physical property detection unit 12 and the flow rate detection unit 11 are configured to divide the measurement target fluid introduced from one inflow port 34A into the physical property value detection flow path 32 and the flow rate detection flow path 33, Physical property values and flow rates can be detected based on the fluid to be measured, which has almost the same conditions such as temperature and density.
 なお、流量測定装置1は、副流路部3にシール4を嵌め込んだ後、回路基板5が配置され、さらにカバー6によって回路基板5を副流路部3に固定することで、副流路部3の内部の気密性を確保している。 In the flow rate measuring apparatus 1, after the seal 4 is fitted in the sub flow path portion 3, the circuit board 5 is disposed, and the circuit board 5 is fixed to the sub flow path portion 3 by the cover 6. The airtightness inside the road 3 is secured.
 図3は、図1に示される副流路部3の平面図である。図3に示すように、物性値検出用流路32は、一端が流入用流路34に連通し、他端が流出用流路35に連通している。同様に、流量検出用流路33は、一端が流入用流路34に連通し、他端が流出用流路35に連通している。 FIG. 3 is a plan view of the sub flow passage 3 shown in FIG. As shown in FIG. 3, one end of the physical property value detection flow channel 32 communicates with the inflow flow channel 34, and the other end communicates with the outflow flow channel 35. Similarly, one end of the flow rate detection flow path 33 communicates with the inflow flow path 34, and the other end communicates with the outflow flow path 35.
 また、矢印P及びQは、物性値検出用流路32および流量検出用流路33に分流する測定対象流体の流量の比率を模式的に表している。本実施形態では、分流される流体の量がP対Qの割合になるように、物性値検出用流路32および流量検出用流路33の断面積が定められている。 Further, arrows P and Q schematically represent the ratio of the flow rate of the fluid to be measured divided into the physical property value detection flow path 32 and the flow rate detection flow path 33. In the present embodiment, the cross-sectional areas of the physical property value detection flow path 32 and the flow rate detection flow path 33 are determined such that the amount of fluid divided is P to Q.
 実際に物性値検出用流路32および流量検出用流路33を流れる流体の量は、主流路部2を流れる測定対象流体の流量に応じて変動するが、通常の使用態様において、物性値検出用流路32を流れる流体の量は物性値検出部12の検出レンジ内の値となり、流量検出用流路33を流れる流体の量は流量検出部11の検出レンジ内の値となるように、主流路部2に対する副流路部3の大きさやオリフィス21の大きさ、物性値検出用流路32および流量検出用流路33の幅がそれぞれ設定されている。なお、物性値検出用流路32及び流量検出用流路33の幅は例示であり、図3に示す例には限定されない。 The amount of fluid actually flowing through the physical property value detection flow path 32 and the flow rate detection flow path 33 fluctuates according to the flow rate of the fluid to be measured flowing through the main flow path portion 2. The amount of fluid flowing through the flow channel 32 is a value within the detection range of the physical property value detection unit 12, and the amount of fluid flowing through the flow rate detection channel 33 is a value within the detection range of the flow detection unit 11, The size of the sub flow path portion 3 with respect to the main flow path portion 2, the size of the orifice 21, and the widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are respectively set. The widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are examples, and the present invention is not limited to the example shown in FIG.
 このように、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流する測定対象流体の流量を、それぞれの幅を調整することで個別に制御することが可能である。このため、物性値検出部12の検出レンジに応じて物性値検出用流路32を流れる測定対象流体の流量を制御し、流量検出部11の検出レンジに応じて流量検出用流路33を流れる測定対象流体の流量を制御することができる。 As described above, in the flow rate measuring device 1, it is possible to individually control the flow rates of the fluid to be measured divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 by adjusting the respective widths. is there. Therefore, the flow rate of the fluid to be measured flowing through the physical property value detection flow path 32 is controlled according to the detection range of the physical property value detection unit 12, and the flow rate detection flow path 33 flows according to the detection range of the flow rate detection unit 11. The flow rate of the fluid to be measured can be controlled.
 物性値検出用流路32および流量検出用流路33は、何れも上面視において略コ字型に形成された構成には限定されない。すなわち、物性値検出用流路32および流量検出用流路33は、物性値検出用流路32および流量検出用流路33を通過する測定対象流体の流量が制御可能な幅(断面積)に設定されていれば、他の形状を採用するようにしてもよい。 The physical property value detection flow path 32 and the flow rate detection flow path 33 are not limited to the configuration formed in a substantially U-shape in top view. That is, the physical property value detection flow path 32 and the flow rate detection flow path 33 have a width (cross sectional area) in which the flow rate of the fluid to be measured passing through the physical property value detection flow path 32 and the flow rate detection flow path 33 can be controlled. If set, other shapes may be adopted.
 また、物性値検出用流路32および流量検出用流路33において物性値検出部12、流量検出部11が配置される空間の形状を上面視において略正方形にしているが、本発明はこれに限定されない。物性値検出用流路32および流量検出用流路33の形状は、物性値検出部12または流量検出部11が配置可能であればよく、配置される物性値検出部12および流量検出部11の形状等に応じて決定することができる。 Further, in the physical property value detection flow path 32 and the flow rate detection flow path 33, the shape of the space in which the physical property value detection unit 12 and the flow rate detection unit 11 are arranged is substantially square in top view It is not limited. The shapes of the physical property value detection flow path 32 and the flow rate detection flow path 33 may be any shape as long as the physical property value detection unit 12 or the flow rate detection unit 11 can be disposed. It can be determined according to the shape or the like.
 したがって、例えば、物性値検出用流路32の幅よりも、物性値検出部12のサイズが小さい場合には、物性値検出用流路32の幅を物性値検出部12の幅に一致させてもよい。すなわち、この場合は、物性値検出用流路32の長手方向に延在する部分は、幅がほぼ一定の形状になる。なお、流量検出用流路33についても同様である。 Therefore, for example, when the size of the physical property value detection unit 12 is smaller than the width of the physical property value detection flow path 32, the width of the physical property value detection flow path 32 is made equal to the width of the physical property value detection section 12. It is also good. That is, in this case, the portion extending in the longitudinal direction of the physical property value detection channel 32 has a substantially constant width. The same applies to the flow rate detection flow path 33.
 以上のように、物性値検出用流路32および流量検出用流路33を流れる流体の量は、主流路部2を流れる流体の量よりも少ないが、それぞれ主流路部2を流れる流体の量に応じて変化する。仮に流量測定装置1を主流路部2に配置する場合は、主流路部2を流れる流体の量に応じて流量検出部11および物性値検出部12の規模を大きくする必要が生じるが、本実施形態では主流路部2から分岐する副流路部3を設けることにより、規模の小さい流量検出部11および物性値検出部12によって流体の流量を測定できるようにしている。 As described above, the amount of fluid flowing through the physical property value detection flow passage 32 and the flow rate detection flow passage 33 is smaller than the amount of fluid flowing through the main flow passage portion 2, but the amount of fluid flowing through the main flow passage portion 2 It changes according to. In the case where the flow rate measuring device 1 is disposed in the main flow path portion 2, it is necessary to increase the scale of the flow rate detection portion 11 and the physical property value detection portion 12 according to the amount of fluid flowing through the main flow path portion 2. In the embodiment, by providing the sub flow passage 3 branched from the main flow passage 2, the flow rate of the fluid can be measured by the flow detection unit 11 with small scale and the physical property detection unit 12 with a small scale.
 また、物性値検出用流路32の断面積の方が流量検出用流路33の断面積よりも小さく、図3において矢印P及びQの大きさで表したように物性値検出用流路32を流れる流体の量の方が流量検出用流路33を流れる流体の量よりも少なくなっている。このように、流量検出部11を流れる流体の量よりも物性値検出部12を流れる流体の量の方が少なくすることにより、物性値検出部12が流体の物性値や温度を検出する際の流量の影響による誤差を小さくすることができる。 Further, the cross sectional area of the physical property value detection flow path 32 is smaller than the cross sectional area of the flow rate detection flow path 33, and as represented by the sizes of arrows P and Q in FIG. The amount of fluid flowing through the flow passage 33 is smaller than the amount of fluid flowing through the flow rate detection channel 33. Thus, when the amount of fluid flowing through the physical property value detection unit 12 is smaller than the amount of fluid flowing through the flow rate detection unit 11, the physical property value detection unit 12 detects the physical property value or temperature of the fluid. An error due to the influence of the flow rate can be reduced.
 図4は、流量検出部及び物性値検出部に用いられるセンサ素子の一例を示す斜視図である。また、図5は、センサ素子の仕組みを説明するための断面図である。センサ素子100は、マイクロヒータ(加熱部)101と、マイクロヒータ101を挟んで対称に設けられたサーモパイル(温度検出部)102とを備える。すなわち、マイクロヒータ101とサーモパイル102とは、所定の方向に並ぶように配置されている。これらの上下には、図5に示すように絶縁薄膜103が形成され、マイクロヒータ101、サーモパイル102及び絶縁薄膜103はシリコン基台104上に設けられている。また、マイクロヒータ101及びサーモパイル102の下方のシリコン基台104には、エッチング等により形成されるキャビティ(空洞)105が設けられている。マイクロヒータ101は、例えばポリシリコンで形成された抵抗である。図5においては、破線の楕円によって、マイクロヒータ101が発熱した場合の温度分布を模式的に示している。なお、破線が太いほど温度が高いことを示すものとする。空気の流れがない場合、図5の上段(1)に示すようにマイクロヒータ101の周囲の温度分布はほぼ均等になる。一方、例えば図5の下段(2)において破線の矢印で示す方向に空気が流れた場合、周囲の空気が移動するため、マイクロヒータ101の風上側よりも風下側の方が、温度は高くなる。センサ素子は、このようなヒータ熱の分布の偏りを利用して、流量を示す値を出力する。センサ素子の出力電圧ΔVは、例えば次のような式(1)で表される。
Figure JPOXMLDOC01-appb-I000001

なお、Thはマイクロヒータ101の温度(サーモパイル102におけるマイクロヒータ101側の端部の温度)、Taはサーモパイル102におけるマイクロヒータ101から遠い側の端部の温度のうち低い方の温度(図5の上段(1)では左側のサーモパイル102の左端の温度又は右側のサーモパイル102の右端の温度であり、図5の下段(2)では上流側の端部である左側のサーモパイル102の左端の温度)、Vfは流速の平均値、A及びbは所定の定数である。
FIG. 4 is a perspective view showing an example of a sensor element used in the flow rate detection unit and the physical property value detection unit. FIG. 5 is a cross-sectional view for explaining the mechanism of the sensor element. The sensor element 100 includes a microheater (heating unit) 101 and thermopiles (temperature detection units) 102 provided symmetrically with the microheater 101 interposed therebetween. That is, the micro-heaters 101 and the thermopile 102 are arranged in line in a predetermined direction. As shown in FIG. 5, the insulating thin film 103 is formed on the upper and lower sides of these, and the micro heater 101, the thermopile 102 and the insulating thin film 103 are provided on the silicon base 104. Further, a cavity (cavity) 105 formed by etching or the like is provided in the microheater 101 and the silicon base 104 below the thermopile 102. The micro heater 101 is, for example, a resistor formed of polysilicon. In FIG. 5, a broken line ellipse schematically shows a temperature distribution when the micro heater 101 generates heat. The thicker the broken line, the higher the temperature. When there is no air flow, the temperature distribution around the micro heater 101 becomes substantially even as shown in the upper part (1) of FIG. On the other hand, for example, when the air flows in the direction indicated by the broken line arrow in the lower part (2) of FIG. 5, the surrounding air moves, so the temperature is higher on the leeward side than the windward side of the micro heater 101 . The sensor element outputs a value indicating the flow rate by utilizing such a bias of the heater heat distribution. The output voltage ΔV of the sensor element is expressed, for example, by the following equation (1).
Figure JPOXMLDOC01-appb-I000001

Th is the temperature of the microheater 101 (temperature at the end of the thermopile 102 on the side of the microheater 101), and Ta is the lower temperature of the temperature of the end of the thermopile 102 far from the microheater 101 (FIG. 5) In the upper stage (1), it is the temperature of the left end of the thermopile 102 on the left or the temperature of the right end of the thermopile 102 on the right, and in the lower stage (2) of Fig. 5, the temperature of the left end of the thermopile 102 on the upstream side) Vf is an average value of flow velocity, and A and b are predetermined constants.
 また、流量測定装置1の回路基板5は、IC(Integrated Circuit)等により実現される制御部(図示せず)を備え、流量検出部11の出力に基づいて流量を算出する。また、物性値検出部12の出力に基づいて所定の特性値を算出し、特性値を用いて流量を補正してもよい。 The circuit board 5 of the flow rate measuring device 1 includes a control unit (not shown) realized by an IC (Integrated Circuit) or the like, and calculates the flow rate based on the output of the flow rate detecting unit 11. Alternatively, a predetermined characteristic value may be calculated based on the output of the physical property value detection unit 12, and the flow rate may be corrected using the characteristic value.
<流量検出部及び物性値検出部>
 図6は、図1に示した流量検出部11の概略構成を示す平面図であり、図7は、図1に示した物性値検出部12の概略構成を示す平面図である。流量測定装置1では、物性値検出用流路32と流量検出用流路33とは、流路の幅がそれぞれ異なっており、物性値検出用流路32の物性値検出部12が配置された流路の幅は、流量検出用流路33の流量検出部11が配置された流路の幅よりも狭くなっている。これにより、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流される測定対象流体の流量を、それぞれ個別に制御している。
<Flow rate detector and physical property value detector>
FIG. 6 is a plan view showing a schematic configuration of the flow rate detection unit 11 shown in FIG. 1, and FIG. 7 is a plan view showing a schematic configuration of the physical property value detection unit 12 shown in FIG. In the flow rate measuring device 1, the physical property value detection flow path 32 and the flow rate detection flow path 33 have different widths, and the physical property value detection unit 12 of the physical property value detection flow path 32 is disposed. The width of the flow path is narrower than the width of the flow path in which the flow rate detection unit 11 of the flow rate detection flow path 33 is disposed. Thus, in the flow rate measuring device 1, the flow rates of the fluid to be measured divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 are individually controlled.
 図6に示すように、流量検出部11は、測定対象流体の温度を検出する第1サーモパイル(温度検出部)111および第2サーモパイル(温度検出部)112と、測定対象流体を加熱するマイクロヒータ(「加熱部」とも呼ぶ)113とを備えている。加熱部113と、温度検出部111および温度検出部112とは、流量検出部11内において、測定対象流体の流れ方向Pに沿って並べて配置されている。また、加熱部113、温度検出部111、および温度検出部112の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Pと直交する。 As shown in FIG. 6, the flow rate detection unit 11 detects the temperature of the fluid to be measured, the first thermopile (temperature detection unit) 111 and the second thermopile (temperature detection unit) 112, and the micro heater heating the fluid to be measured (Also referred to as "heating unit") 113. The heating unit 113, the temperature detection unit 111, and the temperature detection unit 112 are arranged in the flow rate detection unit 11 along the flow direction P of the fluid to be measured. The shapes of the heating unit 113, the temperature detection unit 111, and the temperature detection unit 112 are substantially rectangular in plan view, respectively, and their longitudinal directions are orthogonal to the flow direction P of the fluid to be measured.
 温度検出部111および温度検出部112は、加熱部113の上流側に温度検出部112が配置され、下流側に温度検出部111が配置されて、加熱部113を挟んで対称な位置の温度を検出する。 In the temperature detection unit 111 and the temperature detection unit 112, the temperature detection unit 112 is disposed on the upstream side of the heating unit 113, and the temperature detection unit 111 is disposed on the downstream side. To detect.
 流量測定装置1では、物性値検出部12および流量検出部11に、実質的に同一構造のセンサ素子100が用いられており、測定対象流体の流れ方向に対する配置角度を、センサ素子100の平面視上、90度異ならせて配置されている。これにより、同一構造のセンサを物性値検出部12または流量検出部11として機能させることができ、流量測定装置1の製造コストを低減させることができる。 In the flow rate measuring device 1, the sensor element 100 having substantially the same structure is used for the physical property value detection unit 12 and the flow rate detection unit 11, and the arrangement angle with respect to the flow direction of the fluid to be measured Above, they are placed 90 degrees apart. Thereby, the sensor of the same structure can be functioned as the physical property value detection part 12 or the flow volume detection part 11, and the manufacturing cost of the flow volume measurement apparatus 1 can be reduced.
 一方、図7に示すように、物性値検出部12は、測定対象流体の温度を検出する第1サーモパイル(「温度検出部」とも呼ぶ)121および第2サーモパイル(「温度検出部」とも呼ぶ)122と、測定対象流体を加熱するマイクロヒータ(「加熱部」とも呼ぶ)123とを備えている。加熱部123と、温度検出部121および温度検出部122とは、物性値検出部12内において、測定対象流体の流れ方向Qと直交する方向に並んで配置されている。また、加熱部123、温度検出部121、および温度検出部122の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Qに沿っている。また、温度検出部121および温度検出部122は、加熱部123を挟んで左右対称に配置されており、加熱部123の両側の対称な位置の温度を検出する。したがって、温度検出部121および温度検出部122の測定値はほぼ同一であり、平均値を採用するようにしてもよいし、いずれか一方の値を採用するようにしてもよい。 On the other hand, as shown in FIG. 7, the physical property detection unit 12 detects the temperature of the fluid to be measured, the first thermopile (also referred to as "temperature detection unit") 121 and the second thermopile (also referred to as "temperature detection unit") And a micro heater (also referred to as a "heating unit") 123 for heating the fluid to be measured. The heating unit 123, the temperature detection unit 121, and the temperature detection unit 122 are arranged in the physical property detection unit 12 in a direction orthogonal to the flow direction Q of the fluid to be measured. The shapes of the heating unit 123, the temperature detection unit 121, and the temperature detection unit 122 are substantially rectangular in plan view, respectively, and the longitudinal direction of each is along the flow direction Q of the fluid to be measured. Further, the temperature detection unit 121 and the temperature detection unit 122 are disposed symmetrically on both sides of the heating unit 123, and detect temperatures at symmetrical positions on both sides of the heating unit 123. Therefore, the measurement values of the temperature detection unit 121 and the temperature detection unit 122 are substantially the same, and an average value may be adopted, or any one value may be adopted.
 ここで、測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化は、測定対象流体の流れ方向の温度分布の変化に比べて小さい。このため、温度検出部121と、加熱部123と、温度検出部122とを、この順で測定対象流体の流れ方向と直交する方向に並べて配置することにより、温度分布の変化による温度検出部121および温度検出部122の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Here, since the temperature distribution is biased to the downstream side by the flow of the fluid to be measured, the change in the temperature distribution in the direction orthogonal to the flow direction is smaller than the change in the temperature distribution in the flow direction of the fluid to be measured. Therefore, by arranging the temperature detection unit 121, the heating unit 123, and the temperature detection unit 122 in this order in the direction orthogonal to the flow direction of the fluid to be measured, the temperature detection unit 121 based on the change in temperature distribution is obtained. And, the change of the output characteristic of the temperature detection unit 122 can be reduced. Therefore, the detection accuracy of the physical property value detection unit 12 can be improved by reducing the influence of the change in temperature distribution due to the flow of the fluid to be measured.
 また、加熱部123の長手方向が測定対象流体の流れ方向に沿って配置されているため、加熱部123は測定対象流体の流れ方向の広範囲に亘って測定対象流体を加熱することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、温度検出部121および温度検出部122の出力特性の変化を低減することができる。同様に、流体温度を測定する場合においては、流速により生じる測定値の誤差を低減することができる。なお、流体温度は、温度検出部121および温度検出部122が検出した温度から、加熱部123による加熱での温度上昇分を減じて求めるようにしてもよいし、加熱部123が加熱を行わない状態で検出するようにしてもよい。物性値検出部12によれば、測定対象流体の流れによる温度分布の変化の影響を抑え、物性値及び流体温度の検出精度を向上させることができる。 In addition, since the longitudinal direction of the heating unit 123 is disposed along the flow direction of the measurement target fluid, the heating unit 123 can heat the measurement target fluid over a wide range of the flow direction of the measurement target fluid. . Therefore, even if the temperature distribution is biased downstream due to the flow of the fluid to be measured, it is possible to reduce the change in the output characteristics of the temperature detection unit 121 and the temperature detection unit 122. Similarly, in the case of measuring the fluid temperature, it is possible to reduce the error in the measurement value caused by the flow velocity. The fluid temperature may be determined by subtracting the temperature increase due to heating by the heating unit 123 from the temperatures detected by the temperature detection unit 121 and the temperature detection unit 122, or the heating unit 123 does not perform heating. It may be detected in the state. According to the physical property value detection unit 12, it is possible to suppress the influence of the change of the temperature distribution due to the flow of the fluid to be measured, and to improve the detection accuracy of the physical property value and the fluid temperature.
 さらに、温度検出部121および温度検出部122の長手方向が測定対象流体の流れ方向に沿って配置されているため、温度検出部121および温度検出部122は測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、温度検出部121および温度検出部122の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Furthermore, since the longitudinal direction of the temperature detection unit 121 and the temperature detection unit 122 is disposed along the flow direction of the fluid to be measured, the temperature detection unit 121 and the temperature detection unit 122 can widely cover the flow direction of the fluid to be measured Temperature can be detected. Therefore, even if the temperature distribution is biased downstream due to the flow of the fluid to be measured, it is possible to reduce the change in the output characteristics of the temperature detection unit 121 and the temperature detection unit 122. Therefore, the detection accuracy of the physical property value detection unit 12 can be improved by reducing the influence of the change in temperature distribution due to the flow of the fluid to be measured.
<機能構成>
 図8は、流量測定装置1が備える回路基板5の機能構成の一例を示すブロック図である。流量測定装置1は、流量検出部11と、物性値検出部12と、制御部13とを備えている。流量検出部11は、温度検出部111と、温度検出部112とを備える。物性値検出部12は、温度検出部121と、温度検出部122とを備える。なお、図6に示した加熱部113及び図7に示した加熱部123は、図示を省略している。また、制御部13は、検出値取得部131と、特性値算出部132と、流量算出部133と、測定パラメータ変更部134とを含む。
<Functional configuration>
FIG. 8 is a block diagram showing an example of a functional configuration of the circuit board 5 provided in the flow rate measuring device 1. The flow rate measuring device 1 includes a flow rate detecting unit 11, a physical property value detecting unit 12, and a control unit 13. The flow rate detection unit 11 includes a temperature detection unit 111 and a temperature detection unit 112. The physical property value detection unit 12 includes a temperature detection unit 121 and a temperature detection unit 122. The heating unit 113 shown in FIG. 6 and the heating unit 123 shown in FIG. 7 are not shown. Further, the control unit 13 includes a detection value acquisition unit 131, a characteristic value calculation unit 132, a flow rate calculation unit 133, and a measurement parameter change unit 134.
 流量検出部11は、温度検出部111および温度検出部112から出力された温度検出信号に基づいて、測定対象流体の流量を示す値を検出する。例えば、流量検出部11は、温度検出部111から出力された温度検出信号と温度検出部112から出力された温度検出信号との差分を算出し、差分に基づいて測定対象流体の流量を示す値を求める。そして、流量検出部11は、流量を示す値を制御部13に出力する。 The flow rate detection unit 11 detects a value indicating the flow rate of the fluid to be measured based on the temperature detection signals output from the temperature detection unit 111 and the temperature detection unit 112. For example, the flow rate detection unit 11 calculates the difference between the temperature detection signal output from the temperature detection unit 111 and the temperature detection signal output from the temperature detection unit 112, and indicates the flow rate of the fluid to be measured based on the difference. Ask for Then, the flow rate detection unit 11 outputs a value indicating the flow rate to the control unit 13.
 物性値検出部12は、温度検出部121から出力された温度検出信号を特性値算出部132に出力する。なお、物性値検出部12は、温度検出部121および温度検出部122から出力された温度検出信号の平均値を求め、特性値算出部132に出力するようにしてもよい。また、温度検出部121又は温度検出部122のいずれか一方を用いて温度検出信号を取得するようにしてもよい。 The physical property value detection unit 12 outputs the temperature detection signal output from the temperature detection unit 121 to the characteristic value calculation unit 132. The physical property detection unit 12 may obtain an average value of the temperature detection signals output from the temperature detection unit 121 and the temperature detection unit 122, and output the average value to the characteristic value calculation unit 132. In addition, the temperature detection signal may be acquired using one of the temperature detection unit 121 and the temperature detection unit 122.
 検出値取得部131は、所定の測定間隔で、流量検出部11が出力する流体の流量に応じた検出値を取得する。特性値算出部132は、物性値検出部12の温度検出部121及び温度検出部122の少なくともいずれかの検出値に基づいて特性値を算出する。なお、特性値算出部132は、物性値検出部12のマイクロヒータの温度を変化させ、変化の前後においてサーモパイルが検出した測定対象流体の温度の差に所定の係数を乗じて特性値を算出するようにしてもよい。また、流量算出部133は、検出値取得部131が取得した検出値に基づいて、流量を算出する。このとき、流量算出部133は、物性値検出部12が算出した特性値をさらに用いて流量を補正するようにしてもよい。また、測定パラメータ変更部134は、測定結果に基づいて算出される測定間隔等の測定パラメータに設定を変更する。例えば、測定パラメータ変更部134は、流量算出部133が算出した流量に基づいて、検出値取得部131が検出値を取得する間隔を変更する。 The detection value acquisition unit 131 acquires a detection value corresponding to the flow rate of the fluid output by the flow rate detection unit 11 at a predetermined measurement interval. The characteristic value calculation unit 132 calculates the characteristic value based on the detection value of at least one of the temperature detection unit 121 and the temperature detection unit 122 of the physical property value detection unit 12. The characteristic value calculation unit 132 changes the temperature of the micro heater of the physical property value detection unit 12 and calculates the characteristic value by multiplying the difference of the temperature of the fluid to be measured detected by the thermopile before and after the change by a predetermined coefficient. You may do so. Further, the flow rate calculation unit 133 calculates the flow rate based on the detection value acquired by the detection value acquisition unit 131. At this time, the flow rate calculation unit 133 may correct the flow rate by further using the characteristic value calculated by the physical property value detection unit 12. Further, the measurement parameter changing unit 134 changes the setting to a measurement parameter such as a measurement interval calculated based on the measurement result. For example, based on the flow rate calculated by the flow rate calculation unit 133, the measurement parameter change unit 134 changes the interval at which the detection value acquisition unit 131 obtains the detection value.
<流量測定処理>
 図9は、流量測定処理の一例を示す処理フロー図である。本実施形態では、例えば定期的に流量検出部11の測定間隔(サンプリング間隔)等の測定パラメータを修正する。すなわち、回路基板5の測定パラメータ変更部134は、周波数を検知するタイミングであるか判断する(図9:S1)。本ステップでは、前回の修正から所定期間が経過した場合、測定パラメータ変更部134は、周波数を検知するタイミングであると判断する。
<Flow measurement process>
FIG. 9 is a process flow diagram showing an example of the flow rate measurement process. In the present embodiment, for example, measurement parameters such as a measurement interval (sampling interval) of the flow rate detection unit 11 are periodically corrected. That is, the measurement parameter changing unit 134 of the circuit board 5 determines whether it is time to detect the frequency (FIG. 9: S1). In this step, when the predetermined period has elapsed since the previous correction, the measurement parameter changing unit 134 determines that it is the timing to detect the frequency.
 周波数を検知するタイミングであると判断された場合(S1:YES)、測定パラメータ変更部134は、検出値取得部131に、通常よりも測定間隔の短い高速サンプリングにより検出値を取得させる(S2)。本ステップでは、流量の変化をより詳細に検知するため、測定間隔を短くする。すなわち、検出値取得部131は、短い測定間隔で、温度検出部111及び温度検出部112の温度検出信号に基づく測定対象流体の流量に応じた検出値を取得する。具体的には、流量検出部11は、温度検出部111から出力された温度検出信号と温度検出部112から出力された温度検出信号とを出力する。また、検出値取得部131は、2つの温度検出信号の差分を算出する。また、流量算出部133は、検出値に基づいて流量を算出する。なお、流量算出部133は、特性値に基づいて流量を補正するようにしてもよい。 When it is determined that it is the timing to detect the frequency (S1: YES), the measurement parameter changing unit 134 causes the detection value acquisition unit 131 to acquire the detection value by high-speed sampling at a shorter measurement interval than usual (S2) . In this step, the measurement interval is shortened in order to detect changes in flow rate in more detail. That is, the detection value acquisition unit 131 acquires detection values corresponding to the flow rate of the fluid to be measured based on the temperature detection signals of the temperature detection unit 111 and the temperature detection unit 112 at short measurement intervals. Specifically, the flow rate detection unit 11 outputs the temperature detection signal output from the temperature detection unit 111 and the temperature detection signal output from the temperature detection unit 112. Further, the detection value acquisition unit 131 calculates the difference between the two temperature detection signals. Also, the flow rate calculation unit 133 calculates the flow rate based on the detected value. The flow rate calculation unit 133 may correct the flow rate based on the characteristic value.
 また、測定パラメータ変更部134は、算出された流量に基づいて、流量の変化の周波数又は周期を算出する(S2)。本ステップでは、算出された流量の変化から周期性のような規則性を検知し、単位時間あたりの繰り返しの数又は繰り返しにかかる時間を求める。 Further, the measurement parameter changing unit 134 calculates the frequency or the period of the change of the flow rate based on the calculated flow rate (S2). In this step, regularity such as periodicity is detected from the change in the calculated flow rate, and the number of repetitions per unit time or the time taken for the repetition is determined.
 図10は、流量の変化に脈動が生じる場合の単位時間当たりの流量の時間的な変化を模式的に表す図である。図10のグラフは、縦軸が1時間あたりの流量(L/h)を表し、横軸が時間(s)を表す。また、図10の例では、実線の曲線で示すように、20Hz程度の周波数で流量に脈動が生じている。このような脈動や揺らぎは、例えば流量測定装置が設置される配管の構造に起因して発生することがある。また、図10の丸印は、サンプリングのタイミングを示している。 FIG. 10 is a diagram schematically showing temporal change in flow rate per unit time when pulsation occurs in change in flow rate. In the graph of FIG. 10, the vertical axis represents the flow rate per hour (L / h), and the horizontal axis represents time (s). Further, in the example of FIG. 10, as indicated by a solid curve, pulsation occurs in the flow rate at a frequency of about 20 Hz. Such pulsations and fluctuations may occur, for example, due to the structure of piping in which the flow rate measuring device is installed. The circles in FIG. 10 indicate sampling timings.
 S2においては、例えばある時点における流量に対し誤差が所定値以下の値が規則的に出現するか、極大値及び極小値の少なくともいずれかが規則的に出現するか等の判断基準に基づいて、流量の変化の周期性を検知し、周波数を求める。周期性の検知は、上述した高速サンプリングにより取得された検出値に基づいて算出される流量の値に基づいて、ある時点に算出された流量の値とほぼ同じ値が周期的に算出されるか判断する。また、直近の所定数の流量の値を用いて、極大値や極小値を検出し、判断に用いるようにしてもよい。例えば、算出される流量の値が増加傾向にある期間と減少傾向にある期間とが、周期的に繰り返されるか判断するようにしてもよい。例えば、初期的に検出されたある時点における流量の値と、時間経過に伴う流量の増減とを検出し、周波数を求めることができる。すなわち、図10に両端が矢印の区間で示すように、流量が増加傾向にある区間において算出されたある流量とほぼ同じ値が、同様に流量が増加傾向にある区間において繰り返し算出される場合、当該値の間を1周期と判断して周波数を計数することができる。このとき、流量が減少傾向にある区間において当該値が算出されても、周期の区切れ目ではないと判断できる。同様に、極大値や極小値を検知し、極大値又は極小値の間を1周期と判断して周波数を計数するようにしてもよい。この場合は、例えば、流量が増加傾向にある区間の後に現れる、流量の増減を表す傾きがゼロのピーク値を極大値と判断したり、流量が減少傾向にある区間の後に現れる、傾きがゼロのピーク値を極小値と判断したりする。また、図10に示すような波形に限らず、複雑な波形形状が周期的に現れる場合もある。よって、所定の閾値以上の極大値の間、又は所定の閾値以下の極小値の間に、ある時点に測定された流量に対する誤差が所定値以下の値が所定回数出現する場合に、周期性があると判断するようにしてもよい。このとき、例えば算出される流量の移動平均を用いるようにしてもよい。総括すると、測定パラメータ変更部134は、流量の値の変化を用いて周期性を検知する。 In S2, for example, based on a judgment criterion such as whether a value below a predetermined value regularly appears for a flow rate at a certain point in time, or at least one of a local maximum and a local minimum regularly appears, etc. The periodicity of the change in flow rate is detected to determine the frequency. In cyclicity detection, is approximately the same value as the flow rate value calculated at a certain time point calculated periodically based on the flow rate value calculated based on the detection value obtained by the above-mentioned high-speed sampling to decide. Further, the maximum value or the minimum value may be detected and used for the determination using the latest predetermined number of flow rate values. For example, it may be determined whether the period in which the calculated flow rate value is increasing and the period in which the calculated flow value is decreasing are periodically repeated. For example, the frequency can be determined by detecting the value of the flow rate at a certain point initially detected and the increase or decrease of the flow rate over time. That is, as shown in the section where the both ends are arrows in FIG. 10, the same value as a certain flow calculated in the section where the flow tends to increase is similarly repeatedly calculated in the section where the flow tends to increase The frequency can be counted by determining that one period is between the values. At this time, even if the value is calculated in the section in which the flow rate tends to decrease, it can be determined that the period is not a break. Similarly, the local maximum value or the local minimum value may be detected, and the frequency may be counted by determining the period between the local maximum value or the local minimum value as one cycle. In this case, for example, a peak value with a slope of zero representing an increase or decrease in the flow rate appearing after a section where the flow rate tends to increase is judged as a maximum value or a slope appears after a section where the flow rate tends to decrease The peak value of is judged as the minimum value. Further, not only the waveform as shown in FIG. 10, but also a complicated waveform shape may appear periodically. Therefore, if the error with respect to the flow rate measured at a certain point appears between the maximum values above the predetermined threshold or between the minimum values below the predetermined threshold a predetermined number of times, the periodicity is It may be determined that there is. At this time, for example, a moving average of the calculated flow rate may be used. In summary, the measurement parameter changing unit 134 detects the periodicity using the change in the value of the flow rate.
 その後、前回周波数を検知する処理(S1~S3)を行ったときの測定周期(又は周波数)と、今回周波数を検知する処理を行ったときの測定周期(又は周波数)とが不一致であるか判断する(S4)。本ステップでは、前回においても今回においても周期性が検知された場合において、その周期が変化したか判断する。 Thereafter, it is determined whether or not the measurement cycle (or frequency) when the process (S1 to S3) for detecting the frequency last time is performed and the measurement cycle (or frequency) when the process for detecting the current frequency is performed do not match To do (S4). In this step, it is determined whether or not the cycle has changed when the periodicity is detected in the previous or current time.
 S4において前回の測定周期と一致しない(S4:YES)と判断された場合、測定パラメータ変更部134は、周期性に基づいて測定パラメータ(測定間隔等)を変更する(S5)。測定は、例えば数周期ごとに、1周期分の期間の流量を所定の間隔で行うものとする。すなわち、本ステップでは、測定パラメータ変更部134は、断続的に行われる測定の各々の始期が、例えば検知された周期の整数倍の間隔になるよう設定する。また、流量の測定を1周期分の期間継続するように、測定の継続期間を設定する。なお、1周期分でなく、周期の整数倍の期間継続するようにしてもよい。また、各期間における測定間隔は、例えばS2において周期性を検知するために高速で行ったサンプリングよりも低い速度で行うようにしてもよい。なお、各期間における測定間隔は、例えば流量の変化率が短期間で大きく変わる場合に短く設定するようにしてもよい。 If it is determined in S4 that the measurement parameter does not match the previous measurement cycle (S4: YES), the measurement parameter changing unit 134 changes the measurement parameter (measurement interval etc.) based on the periodicity (S5). It is assumed that the measurement is performed at predetermined intervals, for example, every several cycles, with a period of one cycle. That is, in this step, the measurement parameter changing unit 134 sets, for example, an interval of an integral multiple of the detected period to the start point of each measurement performed intermittently. Also, the duration of measurement is set so as to continue the measurement of the flow rate for a period of one cycle. The period may be continued not for one cycle but for an integral multiple of the cycle. In addition, the measurement interval in each period may be performed at a speed lower than that of sampling performed at high speed to detect periodicity in S2, for example. The measurement interval in each period may be set short, for example, when the rate of change of the flow rate changes significantly in a short period of time.
 そして、S5の後、S1において測定間隔を修正するタイミングではないと判断された場合(S1:NO)、又はS4において前回の測定周期と一致していると判断された場合(S4:NO)、検出値取得部131及び流量算出部133は、設定された測定パラメータ(測定間隔等)で流量を測定する(S6)。本ステップでは、S5において設定された測定間隔で測定を開始する。また、所定のサンプリングレートで、S5において設定された測定期間継続して測定を行う。すなわち、測定される流量の変化の周期に基づいて断続的に測定を行い、測定を行っていない期間の流量は前後の期間における流量に基づいて補完することで、全体の流量を求める。 Then, after S5, if it is determined that it is not the timing to correct the measurement interval in S1 (S1: NO), or if it is determined in S4 that it matches the previous measurement cycle (S4: NO), The detection value acquisition unit 131 and the flow rate calculation unit 133 measure the flow rate with the set measurement parameter (measurement interval etc.) (S6). In this step, measurement is started at the measurement interval set in S5. In addition, measurement is performed continuously at the predetermined sampling rate and the measurement period set in S5. That is, measurement is intermittently performed based on the cycle of change in flow rate to be measured, and the flow rate in the period in which measurement is not performed is complemented on the basis of the flow rate in the preceding and subsequent periods to obtain the entire flow rate.
 流量測定装置1は、以上のような流量測定処理を繰り返す。 The flow rate measuring device 1 repeats the flow rate measuring process as described above.
<効果>
 流量測定装置1によれば、測定対象流体に脈動や揺らぎが生じる場合に、測定の精度を維持しつつ消費電力を低減することができる。すなわち、流量の変化の周期に基づいて測定間隔を設定するため、サンプリング対象の偏りを抑え、測定の精度を維持することができる。また、流量の変化の周期に基づいて断続的に測定を行うことにより、サンプリングを継続する場合よりも消費電力を抑えることができる。
<Effect>
According to the flow rate measuring device 1, when pulsation or fluctuation occurs in the fluid to be measured, power consumption can be reduced while maintaining the accuracy of the measurement. That is, since the measurement interval is set based on the change period of the flow rate, it is possible to suppress the bias of the sampling target and maintain the measurement accuracy. In addition, by performing measurement intermittently based on the cycle of change in flow rate, power consumption can be suppressed more than when sampling is continued.
 図11は、図4等に示したセンサ素子100のマイクロヒータ101の温度と測定タイミングとの関係を模式的に示す図である。図11のグラフは、縦軸がマイクロヒータ101の温度を示し、横軸が時間の経過を示している。流量測定装置1は、マイクロヒータ101を備えるセンサ素子100を利用しており、流量の測定時には、例えば制御部13の検出値取得部131の制御に基づいてマイクロヒータ101を加熱する。従って、測定回数を減らすことにより、マイクロヒータ101の加熱による電力の消費を抑えることができる。 FIG. 11 is a view schematically showing the relationship between the temperature of the micro heater 101 of the sensor element 100 shown in FIG. 4 and the like and the measurement timing. In the graph of FIG. 11, the vertical axis represents the temperature of the micro heater 101, and the horizontal axis represents the passage of time. The flow rate measuring apparatus 1 uses the sensor element 100 including the micro heater 101, and heats the micro heater 101 based on the control of the detection value acquisition unit 131 of the control unit 13 when measuring the flow rate. Therefore, by reducing the number of times of measurement, the consumption of power due to the heating of the micro heater 101 can be suppressed.
(特性値に基づく補正)
 流量測定装置1は、流量の値を特性値に基づいて補正するようにしてもよい。特性値に基づく補正をさらに行うことにより、様々な測定対象流体について流量の値を適切に補正することができるが、必ずしも本補正を行う必要はない。次に、物性の特性値に基づく補正について説明する。特性値に基づく補正においては、センサ感度比を求める。センサ感度比とは、基準となる気体を流した場合のセンサ出力値に対する、所定の気体を流した場合のセンサ出力値の比であり、熱拡散率を表す特性値である。センサ感度比αは、下記の式(2)で求められる。
 α = β × ΔT   ・・・(2)なお、βは所定の係数である。また、ΔTは、加熱部123の温度変化の前後において温度検出部121及び温度検出部122により出力された検出値の差分である。
(Correction based on the characteristic value)
The flow rate measuring device 1 may correct the value of the flow rate based on the characteristic value. By further performing the correction based on the characteristic value, the value of the flow rate can be appropriately corrected for various fluids to be measured, but this correction is not necessarily required. Next, correction based on characteristic values of physical properties will be described. In the correction based on the characteristic value, a sensor sensitivity ratio is determined. The sensor sensitivity ratio is a ratio of a sensor output value in the case of flowing a predetermined gas to a sensor output value in the case of flowing the gas serving as a reference, and is a characteristic value representing a thermal diffusivity. The sensor sensitivity ratio α is obtained by the following equation (2).
α = β × ΔT (2) where β is a predetermined coefficient. Further, ΔT is a difference between detection values output by the temperature detection unit 121 and the temperature detection unit 122 before and after the temperature change of the heating unit 123.
 その後、流量算出部133は、下記の式(3)を用いて、補正後の流量を算出する。
 補正後の出力 = 流量算出部の出力 × α   ・・・(3)
Thereafter, the flow rate calculation unit 133 calculates the corrected flow rate using the following equation (3).
Output after correction = output of flow rate calculation unit × α (3)
 本実施形態では、ヒータの温度を変化させた際にヒートパイルで検出される温度の変化量(ΔT)を用いることで、測定対象流体の熱拡散率を検出することができるようになる。熱式のフローセンサが出力する流量は、熱拡散率と相関があり、本実施形態に係る流量の補正処理によれば、あらゆる気体について適切に補正できるようになる。したがって、熱拡散率が異なる測定対象流体に対し、流量の測定の精度を向上させることができる。 In the present embodiment, the thermal diffusivity of the fluid to be measured can be detected by using the amount of change in temperature (ΔT) detected by the heat pile when the temperature of the heater is changed. The flow rate output by the thermal flow sensor has a correlation with the thermal diffusivity, and the flow rate correction process according to the present embodiment enables appropriate correction for any gas. Therefore, the measurement accuracy of the flow rate can be improved with respect to the measurement target fluid having different thermal diffusivities.
 図12は、縦軸にセンサ感度比、横軸に熱伝導率を示すグラフである。ここで、図12に示すように、例えば組成の異なる混合ガスのように熱伝導率以外の物性値が異なる複数のガス群が存在する場合、物性値としてある熱伝導率が求められただけではいずれのセンサ感度比を用いて補正すればよいのか定まらない。すなわち、マイクロヒータの加熱温度とサーモパイルの検知温度とを1組用いて補正を行う手法では、所定のガス群に属する2以上の基準ガスに基づいて補正を行っていたところ、複数のガス群について適切に補正を行うことはできなかった。 FIG. 12 is a graph showing the sensor sensitivity ratio on the vertical axis and the thermal conductivity on the horizontal axis. Here, as shown in FIG. 12, for example, when there are a plurality of gas groups having different physical property values other than the thermal conductivity, such as mixed gases having different compositions, it is necessary to obtain the thermal conductivity as the physical property value. It is unclear which sensor sensitivity ratio should be used for correction. That is, in the method of performing correction using one set of the heating temperature of the microheater and the detection temperature of the thermopile, correction is performed based on two or more reference gases belonging to a predetermined gas group, but for a plurality of gas groups It was not possible to make corrections properly.
 図13は、縦軸にセンサ感度比、横軸にΔTを示すグラフである。図12に示した、センサ感度比と熱伝導率とが一直線に近似されないガスについても、センサ感度比とΔTとは一直線に近似される。したがって、本実施形態では熱拡散率が未知のガス群についても補正を行うことができる。 FIG. 13 is a graph showing the sensor sensitivity ratio on the vertical axis and ΔT on the horizontal axis. The sensor sensitivity ratio and ΔT are approximated to a straight line even for the gas shown in FIG. 12 in which the sensor sensitivity ratio and the thermal conductivity are not approximated to a straight line. Therefore, in the present embodiment, the correction can be performed also on the gas group whose thermal diffusivity is unknown.
 以上のように、物性値検出部12によって、流体温度の検出と物性値の検出とを行うことにより、部品の点数を増価させることなく、温度補償の精度を向上させることができる。また、同一構造のセンサ素子100を物性値検出部12及び流量検出部11として共通に用いるようにすれば、部品の種類を削減し、流量測定装置1の製造コストを低減させることができる。 As described above, the detection of the fluid temperature and the detection of the physical property value by the physical property value detection unit 12 can improve the temperature compensation accuracy without increasing the number of parts. In addition, if the sensor element 100 having the same structure is used in common as the physical property value detection unit 12 and the flow rate detection unit 11, the types of parts can be reduced and the manufacturing cost of the flow measurement device 1 can be reduced.
<副流路部の変形例>
 図14A~図14Dは、副流路部3の上面において流入用流路34と流出用流路35との間に形成される、物性値検出用流路32および流量検出用流路33の変形例を示す上面図である。例えば、図14Aに示すように、物性値検出用流路32を直線状に形成し、流量検出用流路33を略コ字型に形成してもよい。
<Modification of sub-channel portion>
14A to 14D show deformation of the physical property value detection flow path 32 and the flow rate detection flow path 33 formed between the inflow flow path 34 and the outflow flow path 35 on the upper surface of the sub flow path portion 3. It is a top view which shows an example. For example, as shown in FIG. 14A, the physical property value detection flow path 32 may be formed in a straight line, and the flow rate detection flow path 33 may be formed in a substantially U-shape.
 また、図14B~図14Dに示すように、流量検出用流路33に対して測定対象流体を流入させる方向と、物性値検出用流路32に対して測定対象流体を流入させる方向とが直交するように、物性値検出用流路32を形成してもよい。すなわち、測定対象流体が流れる方向と、物性値検出用流路32に配置された物性値検出部12上において温度検出部121、加熱部123、及び温度検出部122が並ぶ所定の方向とが、垂直になるように配置される。測定対象流体が流れる方向に対して、物性値検出部12のセンサ素子100と流量検出部11のセンサ素子100とは平面視上において90度回転させた向きで配置される。したがって、図14B~図14Dのように、測定対象流体が流れる方向を直交させる場合は、物性値検出部12のセンサ素子100及び流量検出部11のセンサ素子100の配置する向きを一致させることができる。したがって、流量測定装置1の製造過程において、回路基板5に物性値検出部12および流量検出部11を実装する工程を簡略化することができる。 Further, as shown in FIGS. 14B to 14D, the direction in which the fluid to be measured flows into the flow rate detection channel 33 is orthogonal to the direction in which the fluid to be measured flows into the physical property value detection channel 32. The physical property value detection flow path 32 may be formed as described above. That is, the flow direction of the fluid to be measured, and the predetermined direction in which the temperature detection unit 121, the heating unit 123, and the temperature detection unit 122 are arranged on the physical property value detection unit 12 disposed in the physical property value detection channel 32; Arranged vertically. The sensor element 100 of the physical property value detection unit 12 and the sensor element 100 of the flow rate detection unit 11 are arranged in a direction rotated 90 degrees in plan view with respect to the flow direction of the fluid to be measured. Therefore, as shown in FIGS. 14B to 14D, in the case where the flow direction of the fluid to be measured is orthogonalized, the arrangement direction of the sensor element 100 of the physical property value detection unit 12 and the sensor element 100 of the flow rate detection unit 11 may be matched it can. Therefore, in the manufacturing process of the flow rate measuring device 1, the process of mounting the physical property value detecting unit 12 and the flow rate detecting unit 11 on the circuit board 5 can be simplified.
<流量測定装置の変形例1>
 本発明に係る流量測定装置の他の変形例について、図15A~図15Cに基づいて説明する。なお、上述した実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。本変形例に係る流量測定装置は、流量検出部が主流路に配置される。
<Modification 1 of flow rate measuring device>
Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 15A to 15C. In addition, regarding the member corresponding to the embodiment described above, the corresponding reference numeral is attached and the description thereof is omitted. In the flow rate measuring device according to the present modification, the flow rate detecting unit is disposed in the main flow path.
 図15Aは、本変形例に係る流量測定装置1aを示す斜視図である。図15Bは、図15Aに示される流量測定装置1aを示す断面図である。図15Cは、図15Aに示される副流路部3aを示す上面図である。 FIG. 15A is a perspective view showing a flow rate measuring device 1a according to the present modification. FIG. 15B is a cross-sectional view showing the flow rate measuring device 1a shown in FIG. 15A. FIG. 15C is a top view showing the sub flow passage 3a shown in FIG. 15A.
 図15A~図15Cに示されるように、流量測定装置1aでは、主流路部2aの内周面の流入口34Aと流出口35Aとの間に、開口部37Aが形成されている。副流路部3aの内部には、流量検出部11が配置されたセル状の流量検出用流路37aが形成されており、流量検出用流路37aは開口部37Aに連通している。このため、流量検出用流路37aには、開口部37Aを介して主流路部2aを流れる測定対象流体が流入し、流量検出部11によってその流量が検出される。なお、開口部37Aの大きさを制御調整することによって、主流路部2aから流量検出用流路37aに流入する測定対象流体の流量を制御することができる。 As shown in FIGS. 15A to 15C, in the flow rate measuring device 1a, an opening 37A is formed between the inlet 34A and the outlet 35A on the inner peripheral surface of the main flow passage 2a. A flow path 37a for detecting a flow rate in which the flow rate detector 11 is disposed is formed in the sub flow path 3a, and the flow path 37a for detecting flow rate communicates with the opening 37A. Therefore, the fluid to be measured flowing through the main flow passage 2a flows into the flow rate detection flow passage 37a via the opening 37A, and the flow rate detection unit 11 detects the flow rate. By controlling and adjusting the size of the opening 37A, it is possible to control the flow rate of the measurement target fluid flowing from the main flow passage 2a into the flow rate detection flow passage 37a.
 副流路部3aは、流入用流路34と、物性値検出用流路32と、流出用流路35とから構成されており、物性値検出用流路32は、長手方向に延在する流路に、測定対象流体の物性値を検出するための物性値検出部12が配置された物性値検出用流路32を有している。 The sub-passage portion 3a is composed of the inflow channel 34, the physical property value detection channel 32, and the outflow channel 35, and the physical property value detection channel 32 extends in the longitudinal direction. The flow path has a physical property value detection flow path 32 in which a physical property value detection unit 12 for detecting the physical property value of the fluid to be measured is disposed.
 このように、流量測定装置1aでは、物性値検出部12が副流路部3aに配置され、流量検出部11が主流路部2aに配置されている。このため、流量測定装置1aでも、物性値検出部12の検出レンジに応じた流量に制御することが可能である。したがって、本変形例によっても、測定対象流体の温度や物性値を精度よく検出することができる。なお、本変形例において、流量検出部11と物性値検出部12とを逆に配置してもよい。このような構成であっても、流体の温度に応じた値を直接検出するため、流体温度と環境温度との差の影響を低減させることができる。 Thus, in the flow rate measurement device 1a, the physical property value detection unit 12 is disposed in the sub flow passage 3a, and the flow rate detection unit 11 is disposed in the main flow passage 2a. For this reason, even with the flow rate measuring device 1a, it is possible to control the flow rate according to the detection range of the physical property value detection unit 12. Therefore, the temperature and physical property value of the fluid to be measured can be detected with high accuracy also in this modification. In the present modification, the flow rate detection unit 11 and the physical property value detection unit 12 may be arranged in reverse. Even with such a configuration, since the value corresponding to the temperature of the fluid is directly detected, the influence of the difference between the fluid temperature and the ambient temperature can be reduced.
<流量測定装置の変形例2>
 本発明に係る流量測定装置の他の変形例について、図16A及び図16Bに基づいて説明する。なお、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。本変形例に係る流量測定装置は、独立した2つの副流路を有する点で、上述の流量測定装置とは異なっている。
<Modification 2 of flow rate measuring device>
Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 16A and 16B. In addition, regarding the member corresponding to the embodiment, the corresponding reference numeral is attached and the description thereof is omitted. The flow rate measuring device according to the present modification differs from the above-described flow rate measuring device in that it has two independent sub flow paths.
 図16Aは、本実施形態に係る流量測定装置1bを示す斜視図であり、図16Bは、図16Aに示される副流路部3を示す上面図である。図16Aおよび図16Bに示されるように、流量測定装置1bでは、副流路部3bは、その内部および上面に2つの副流路部が形成されている。 FIG. 16A is a perspective view showing a flow rate measuring device 1b according to the present embodiment, and FIG. 16B is a top view showing the sub flow passage portion 3 shown in FIG. 16A. As shown in FIGS. 16A and 16B, in the flow rate measuring device 1b, the sub flow passage 3b is formed with two sub flow passages on the inside and the upper surface thereof.
 第1の副流路部は、流入用流路34bと、物性値検出用流路32bと、流出用流路35bとから構成されており、物性値検出用流路32bには、長手方向に延在する流路に、測定対象流体の物性値を検出するための物性値検出部12が配置されている。 The first sub-passage is composed of the inflow channel 34b, the physical property value detection channel 32b, and the outflow channel 35b, and the physical property value detection channel 32b extends in the longitudinal direction. A physical property value detection unit 12 for detecting physical property values of the fluid to be measured is disposed in the extending flow path.
 第2の副流路部は、流入用流路34Bと、流量検出用流路33Bと、流出用流路35Bとから構成されており、流量検出用流路33Bには、長手方向に延在する流路に、測定対象流体の流量を検出するための流量検出部11が配置されている。 The second sub-passage portion is composed of the inflow passage 34B, the flow rate detection passage 33B, and the outflow passage 35B, and the flow rate detection passage 33B extends in the longitudinal direction. A flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is disposed in the flow path.
 このように、流量測定装置1bでは、副流路部3bが独立した2つの副流路を有しており、物性値検出部12が第1の副流路部に配置され、流量検出部11が第2の副流路部に配置されている。このため、流量測定装置1bによれば、物性値検出部12および流量検出部11の検出レンジに応じた流量を、個別に制御することが可能である。したがって、本変形例によっても、測定対象流体の温度や物性値を精度よく検出することができる。 As described above, in the flow rate measuring device 1 b, the sub flow path portion 3 b has two independent sub flow paths, and the physical property value detection portion 12 is disposed in the first sub flow path portion. Are disposed in the second sub flow passage. For this reason, according to the flow rate measuring device 1b, it is possible to individually control the flow rates according to the detection ranges of the physical property value detecting unit 12 and the flow rate detecting unit 11. Therefore, the temperature and physical property value of the fluid to be measured can be detected with high accuracy also in this modification.
<流量測定装置の変形例3>
 本発明に係る流量測定装置の他の変形例について、図17A~図17Cに基づいて説明する。なお、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。本変形例に係る流量測定装置は、物性値検出用流路が、流量検出用流路内に形成されている点で、上述の流量測定装置と異なっている。
<Modification 3 of flow rate measuring device>
Another modified example of the flow rate measuring device according to the present invention will be described based on FIGS. 17A to 17C. In addition, regarding the member corresponding to the embodiment, the corresponding reference numeral is attached and the description thereof is omitted. The flow rate measuring device according to the present modification differs from the flow rate measuring device described above in that the physical property value detecting flow path is formed in the flow rate detecting flow path.
 図17Aは、本実施形態に係る流量測定装置1cを示す斜視図である。図17Bは、図17Aに示される副流路部3cを示す斜視図である。図17Cは、図17Aに示される副流路部3cを示す上面図である。 FIG. 17A is a perspective view showing a flow rate measuring device 1c according to the present embodiment. FIG. 17B is a perspective view showing the sub flow passage portion 3c shown in FIG. 17A. FIG. 17C is a top view showing the sub flow passage portion 3c shown in FIG. 17A.
 図17A~図17Cに示されるように、流量測定装置1cでは、副流路部3cは、流入用流路34と、物性値検出用流路32cと、流量検出用流路33cと、流出用流路35とから構成されている。 As shown in FIGS. 17A to 17C, in the flow rate measuring device 1c, the sub flow path portion 3c includes the inflow path 34, the physical property value detection flow path 32c, the flow rate detection flow path 33c, and the outflow And a flow path 35.
 副流路部3cでは、物性値検出用流路32cが、流量検出用流路33c内に形成されており、測定対象流体の流れ方向に対して上流側に流量検出部11が配置され、下流側に物性値検出部12が配置されている。ここで、物性値検出用流路32cは、測定対象流体の流量を制御するための流量制御部材40によって、流量検出用流路33cと仕切られており、物性値検出部12は流量制御部材40の内部に配置されている。 In the sub flow path portion 3c, the physical property value detection flow path 32c is formed in the flow rate detection flow path 33c, and the flow rate detection unit 11 is disposed upstream with respect to the flow direction of the fluid to be measured. The physical property value detection unit 12 is disposed on the side. Here, the physical property value detection flow path 32 c is separated from the flow rate detection flow path 33 c by the flow rate control member 40 for controlling the flow rate of the fluid to be measured, and the physical property value detection unit 12 is a flow rate control member 40. It is located inside.
 流量制御部材40は、物性値検出用流路32cの物性値検出部12を通過する測定対象流体の流量を制御するための部材であり、第1側壁部40aと第2側壁部40bとから構成されている。第1側壁部40aおよび第2側壁部40bは何れも略コの字型の板状部材であり、それぞれの端部を対向させた状態で、所定の間隔をおいて配置されている。よって、第1側壁部40aと第2側壁部40bとの間隔を制御することによって、流量制御部材40の内部、すなわち、物性値検出用流路32cを通過する測定対象流体の流量を調整することができる。 The flow rate control member 40 is a member for controlling the flow rate of the fluid to be measured which passes through the physical property value detection unit 12 of the physical property value detection flow path 32c, and is composed of a first side wall 40a and a second side wall 40b. It is done. Each of the first side wall portion 40a and the second side wall portion 40b is a substantially U-shaped plate-like member, and is disposed with a predetermined interval in a state where the respective end portions are opposed to each other. Therefore, by controlling the distance between the first side wall 40a and the second side wall 40b, the flow rate of the fluid to be measured passing through the flow rate control member 40, that is, the physical property value detection flow path 32c, is adjusted. Can.
 このように、流量測定装置1cでは、副流路部3cが流量制御部材40を備え、流量制御部材40の内部に物性値検出用流路32cが設けられているため、副流路部3c内の任意の位置に物性値検出用流路32cを設けることが可能となる。また、流量制御部材40を備えることで、物性値検出用流路32cを通過する測定対象流体の流量を容易に制御することができる。 As described above, in the flow rate measuring device 1c, the sub flow path portion 3c includes the flow rate control member 40, and the physical property value detection flow path 32c is provided inside the flow rate control member 40. It is possible to provide the physical property value detection flow path 32c at any position of the above. Further, by providing the flow rate control member 40, the flow rate of the fluid to be measured passing through the physical property value detection flow path 32c can be easily controlled.
 このように、物性値検出用流路32cが、流量検出用流路33c内に形成されて構成であっても、物性値検出部12および流量検出部11の検出レンジに応じた流量を個別に制御することが可能である。したがって、本変形例によっても、測定対象流体の温度や物性値を精度よく検出することができる。 As described above, even if the physical property value detection flow path 32 c is formed in the flow rate detection flow path 33 c and configured, the flow rates according to the detection ranges of the physical property value detection unit 12 and the flow rate detection unit 11 are individually It is possible to control. Therefore, the temperature and physical property value of the fluid to be measured can be detected with high accuracy also in this modification.
<流量測定装置の変形例4>
 本発明に係る流量測定装置の他の変形例について、図18A~図18Cに基づいて説明する。なお、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。本変形例に係る流量測定装置は、物性値検出部12を備えておらず、主流路内に流量検出部11が設けられている点で、上述の流量測定装置と異なっている。
<Modification 4 of flow rate measuring device>
Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 18A to 18C. In addition, regarding the member corresponding to the embodiment, the corresponding reference numeral is attached and the description thereof is omitted. The flow rate measuring apparatus according to the present modification differs from the flow rate measuring apparatus described above in that the physical property value detecting unit 12 is not provided, and the flow rate detecting unit 11 is provided in the main flow path.
 図18Aは、本変形例に係る流量測定装置1dを示す斜視図である。図18Bは、流量測定装置1dの横断面の中央及び流量検出部11の中央を通る面で切断した断面図である。図18Cは、主流路を流体が流れる方向に垂直な面で切断した断面図である。 FIG. 18A is a perspective view showing a flow rate measuring device 1d according to the present modification. FIG. 18B is a cross-sectional view cut along a plane passing through the center of the cross section of the flow rate measurement device 1 d and the center of the flow rate detection unit 11. FIG. 18C is a cross-sectional view of the main flow path cut along a plane perpendicular to the fluid flow direction.
 図18A~図18Cに示すように、流量測定装置1dにおいては、主流路部2の側面に流量検出部11を収容することができる開口である流量検出用流路33dが設けられている。また、回路基板5(図18Bに図示)が、主流路部2の外側から流量検出用流路32dを覆うように接続される。このとき、回路基板5上に実装された流量検出部11が、流量検出用流路33d内に配置される。本変形例に係る流量検出用流路33dは、主流路部2から分流されたものではなく、流量検出部11は主流路部2内に設けられている。 As shown in FIGS. 18A to 18C, in the flow rate measurement device 1d, a flow rate detection flow path 33d, which is an opening capable of accommodating the flow rate detection unit 11, is provided on the side surface of the main flow passage portion 2. Further, the circuit board 5 (shown in FIG. 18B) is connected from the outside of the main flow passage portion 2 so as to cover the flow rate detection flow path 32d. At this time, the flow rate detection unit 11 mounted on the circuit board 5 is disposed in the flow rate detection flow path 33 d. The flow rate detection flow path 33 d according to the present modification is not divided from the main flow path portion 2, and the flow rate detection portion 11 is provided in the main flow path portion 2.
 このような流量測定装置1dにおける流量検出部11であっても、主流路部2内を流れる流体の量に応じた値を検出することができる。なお、さらに物性値検出部12も、主流路部2内に設けるようにしてもよいが、本変形例のように物性値検出部12を備えていなくても、測定対象流体に脈動や揺らぎが生じる場合に、測定の精度を維持しつつ消費電力を低減することができる。 Even with the flow rate detection unit 11 in such a flow rate measurement device 1d, it is possible to detect a value according to the amount of fluid flowing in the main flow passage portion 2. Furthermore, the physical property value detection unit 12 may also be provided in the main flow channel section 2, but even if the physical property value detection unit 12 is not provided as in this modification, pulsation or fluctuation occurs in the fluid to be measured. If so, power consumption can be reduced while maintaining measurement accuracy.
<流量測定装置の変形例5>
 本発明に係る流量測定装置の他の変形例について、図19A及び図19Bに基づいて説明する。なお、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。本変形例に係る流量測定装置は、物性値検出部12を備えておらず、主流路部2から分岐した流量検出用流路内に流量検出部11が設けられている点で、上述の流量測定装置と異なっている。
<Modification 5 of flow rate measuring device>
Another modification of the flow rate measuring device according to the present invention will be described based on FIGS. 19A and 19B. In addition, regarding the member corresponding to embodiment, the corresponding code | symbol is attached | subjected and the description is abbreviate | omitted. The flow rate measuring apparatus according to the present modification does not include the physical property value detecting unit 12 and the flow rate detecting unit 11 is provided in the flow rate detecting flow passage branched from the main flow passage 2. It is different from the measuring device.
 図19Aは、本変形例に係る流量測定装置1eを示す斜視図である。図19Bは、図19Aに示される流量測定装置1eを示す断面図である。 FIG. 19A is a perspective view showing a flow rate measuring device 1e according to the present modification. FIG. 19B is a cross-sectional view showing the flow rate measuring device 1 e shown in FIG. 19A.
 図19A及び図19Bに示されるように、流量測定装置1eでは、副流路部3eは、流入用流路34と、流量検出用流路33eと、流出用流路35とから構成されている。副流路部3eでは、主流路部2から分岐した流量検出用流路33cが形成されており、流量検出用流路33cに流量検出部11が配置されている。 As shown in FIGS. 19A and 19B, in the flow rate measuring device 1e, the sub-flow path unit 3e includes the inflow path 34, the flow rate detection path 33e, and the outflow flow path 35. . In the sub flow passage portion 3e, a flow rate detection flow passage 33c branched from the main flow passage portion 2 is formed, and the flow rate detection unit 11 is disposed in the flow rate detection flow passage 33c.
 このような流量測定装置1dにおける流量検出部11であっても、主流路部2内を流れる流体の量に応じた値を検出することができる。なお、さらに物性値検出部12も、主流路部2内に設けるようにしてもよいが、本変形例のように物性値検出部12を備えていなくても、測定対象流体に脈動や揺らぎが生じる場合に、測定の精度を維持しつつ消費電力を低減することができる。 Even with the flow rate detection unit 11 in such a flow rate measurement device 1d, it is possible to detect a value according to the amount of fluid flowing in the main flow passage portion 2. Furthermore, the physical property value detection unit 12 may also be provided in the main flow channel section 2, but even if the physical property value detection unit 12 is not provided as in this modification, pulsation or fluctuation occurs in the fluid to be measured. If so, power consumption can be reduced while maintaining measurement accuracy.
<流量測定装置の変形例6>
 測定パラメータの変更は、回路基板5が備える制御部13以外の装置が制御するようにしてもよい。図20は、例えば流量測定装置1を設置するガスメータ等のように回路基板5とは異なるホスト装置9が測定パラメータ変更部134を備える例を示す機能ブロック図である。図20においても、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。
<Modification 6 of flow rate measuring device>
The change of the measurement parameter may be controlled by a device other than the control unit 13 included in the circuit board 5. FIG. 20 is a functional block diagram showing an example in which a host device 9 different from the circuit board 5 is provided with the measurement parameter changing unit 134, such as a gas meter for installing the flow rate measuring device 1, for example. Also in FIG. 20, the members corresponding to those of the embodiment are denoted by the corresponding reference numerals, and the description thereof will be omitted.
 本変形例では、回路基板5とホスト装置9とは信号線又は無線で接続されているものとする。また、測定パラメータ変更部134は、ホスト装置9が備えるマイクロコントローラ等のプロセッサによって実現され、実施形態と同様の処理を行う。なお、本変形例では、ホスト装置9を含めて本発明に係る「流量測定装置」と呼ぶものとする。このような構成であっても、測定対象流体に脈動や揺らぎが生じる場合に、測定の精度を維持しつつ消費電力を低減することができる。 In this modification, the circuit board 5 and the host device 9 are connected by signal lines or wirelessly. The measurement parameter changing unit 134 is realized by a processor such as a microcontroller included in the host device 9 and performs the same processing as that of the embodiment. In addition, in this modification, the host apparatus 9 shall be called the "flow measuring device" which concerns on this invention. Even with such a configuration, when pulsation or fluctuation occurs in the fluid to be measured, the power consumption can be reduced while maintaining the accuracy of the measurement.
<センサ素子の変形例>
 図21は、図7に示される物性値検出部12の変形例の概略構成を示す上面図である。図19に示されるように、例えば温度検出部122を省略して、加熱部123と、温度検出部121とで、物性値検出部12aを構成してもよい。すなわち、加熱部123と温度検出部121とを、測定対象流体の流れ方向と直交する方向に並べて配置するようにしても、温度検出部121によって流体温度及び流体の物性値を検出することができる。
<Modification of sensor element>
FIG. 21 is a top view showing a schematic configuration of a modification of the physical property value detection unit 12 shown in FIG. As illustrated in FIG. 19, for example, the temperature detection unit 122 may be omitted, and the physical property detection unit 12 a may be configured by the heating unit 123 and the temperature detection unit 121. That is, even if the heating unit 123 and the temperature detection unit 121 are arranged in a direction perpendicular to the flow direction of the fluid to be measured, the temperature detection unit 121 can detect the fluid temperature and the physical property value of the fluid. .
 以上のような実施形態及び変形例の構成は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。また、流量測定装置1が実行する流量測定方法は、プロセッサ等の演算装置に実行させるプログラム、又はプログラムを格納する媒体として提供してもよい。 The configurations of the embodiments and the modifications as described above can be combined as much as possible without departing from the problems and technical ideas of the present invention. Further, the flow rate measuring method executed by the flow rate measuring device 1 may be provided as a program to be executed by an arithmetic device such as a processor or a medium storing the program.
1   :流量測定装置
11  :流量検出部
111 :温度検出部
112 :温度検出部
113 :加熱部
12  :物性値検出部
121 :温度検出部
122 :温度検出部
123 :加熱部
13  :制御部
131 :検出値取得部
132 :特性値算出部
133 :流量算出部
134 :測定パラメータ変更部
2   :主流路部
21  :オリフィス
3   :副流路部
32  :物性値検出用流路
33  :流量検出用流路
34  :流入用流路
35  :流出用流路
40  :流量制御部材
4   :シール
5   :回路基板
6   :カバー
100 :センサ素子
101 :マイクロヒータ
102 :サーモパイル
103 :絶縁薄膜
104 :シリコン基台
105 :キャビティ
1: Flow rate measuring device 11: Flow rate detection unit 111: Temperature detection unit 112: Temperature detection unit 113: Heating unit 12: Physical property value detection unit 121: Temperature detection unit 122: Temperature detection unit 123: Heating unit 13: Control unit 131: Detected value acquisition unit 132: Characteristic value calculation unit 133: Flow calculation unit 134: Measurement parameter change unit 2: Main flow passage 21: Orifice 3: Secondary flow passage 32: Physical property value detection flow channel 33: Flow flow detection flow channel 34: Inflow flow path 35: Outflow flow path 40: Flow control member 4: Seal 5: Circuit board 6: Cover 100: Sensor element 101: Micro heater 102: Thermopile 103: Insulating thin film 104: Silicon base 105: Cavity

Claims (4)

  1.  主流路を流れる測定対象流体の流量に応じた値を、定められた測定タイミングで検出する流量検出部と、
     前記流量検出部が検出した前記流量に応じた値に基づいて、前記測定対象流体の流量を算出する流量算出部と、
     前記流量算出部が算出した流量に基づいて流量の周期的な変化を検知した場合に、検知された周期的な変化に基づいて前記測定タイミングを変更する測定間隔変更部と、
     を備える流量測定装置。
    A flow rate detection unit that detects a value corresponding to the flow rate of the measurement target fluid flowing through the main flow path at a predetermined measurement timing;
    A flow rate calculation unit that calculates the flow rate of the fluid to be measured based on the value corresponding to the flow rate detected by the flow rate detection unit;
    A measurement interval change unit that changes the measurement timing based on the detected periodical change when the periodical change of the flowrate is detected based on the flow rate calculated by the flow rate calculator;
    Flow measurement device comprising:
  2.  前記測定間隔変更部は、前記流量算出部が算出した流量の値の変化を検出し、当該流量の値の変化を用いて前記周期的な変化を検知する
     請求項1に記載の流量測定装置。
    The flow rate measuring apparatus according to claim 1, wherein the measurement interval changing unit detects a change in the value of the flow rate calculated by the flow rate calculating unit, and detects the periodic change using a change in the value of the flow rate.
  3.  前記測定間隔変更部は、前記検知された変化の周期に基づき、断続的に前記流量に応じた値を検出させる測定タイミングに変更する
     請求項1又は2に記載の流量測定装置。
    The flow rate measuring device according to claim 1 or 2, wherein the measurement interval changing unit changes the measurement timing to intermittently detect a value according to the flow rate based on a cycle of the detected change.
  4.  断続的に行われる前記流量に応じた値の検出の各々は、前記検知された変化の周期の整数倍の間隔で開始される
     請求項3に記載の流量測定装置。
    The flow rate measuring device according to claim 3, wherein each of the detection of the value according to the flow rate performed intermittently is started at an interval of an integral multiple of a cycle of the detected change.
PCT/JP2018/026185 2017-09-29 2018-07-11 Flow rate measurement device WO2019064819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190844A JP7104502B2 (en) 2017-09-29 2017-09-29 Flow measuring device
JP2017-190844 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064819A1 true WO2019064819A1 (en) 2019-04-04

Family

ID=65902301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026185 WO2019064819A1 (en) 2017-09-29 2018-07-11 Flow rate measurement device

Country Status (2)

Country Link
JP (1) JP7104502B2 (en)
WO (1) WO2019064819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252124A (en) * 2020-02-10 2021-08-13 欧姆龙株式会社 Flow rate measurement device, flow rate measurement method, and flow rate measurement program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415412B2 (en) 2019-10-08 2024-01-17 オムロン株式会社 flow measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197303A (en) * 1997-01-16 1998-07-31 Matsushita Electric Ind Co Ltd Flowmeter
JP2004069530A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197303A (en) * 1997-01-16 1998-07-31 Matsushita Electric Ind Co Ltd Flowmeter
JP2004069530A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252124A (en) * 2020-02-10 2021-08-13 欧姆龙株式会社 Flow rate measurement device, flow rate measurement method, and flow rate measurement program

Also Published As

Publication number Publication date
JP7104502B2 (en) 2022-07-21
JP2019066276A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
EP3321646B1 (en) Flow rate measuring device, flow rate measuring method, and flow rate measuring program
JP5652315B2 (en) Flow measuring device
WO2018230478A1 (en) Flow measuring device
KR100791431B1 (en) Fluid-measuring device and fluid-measuring method
JP2010091320A (en) Mass flowmeter and mass flow controller
JP4355792B2 (en) Thermal flow meter
JP5450204B2 (en) Flowmeter
WO2019064819A1 (en) Flow rate measurement device
EP3153854B1 (en) Determination of volumetric flow rate of a gas in a gas flow
JP2014059191A (en) Thermal flowmeter
JP7419855B2 (en) Flow rate measurement device, flow rate measurement method, and flow rate measurement program
CN210123295U (en) Flow rate measuring device
CN111693105B (en) Flow rate measuring device
JP6680248B2 (en) Flow rate measuring device and flow rate measuring method
EP3683555A1 (en) Flow rate measurement device, gas meter provided with flow rate measurement device, and flow rate measurement device unit for gas meter
RU2309447C2 (en) Method of control of gas flow rate
WO2020080189A1 (en) Flow rate measuring device, and method for controlling flow rate measuring device
JP2021144005A (en) Flow rate measuring device, gas meter having flow rate measuring device, and flow rate measuring device unit for gas meter
JP2006030110A (en) Driving method and driving circuit for flow sensor
JP5522826B2 (en) Thermal flow meter
CN113518899A (en) Flow rate measuring device, gas meter provided with flow rate measuring device, and flow rate measuring device unit for gas meter
JPH1123335A (en) Detecting apparatus for flow rate
JPH0862008A (en) Thermal flow rate sensor
JP2007139674A (en) Flow measuring apparatus and fluid discrimination apparatus
JP2002286520A (en) Flow sensor and flow measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860319

Country of ref document: EP

Kind code of ref document: A1