JP7419855B2 - Flow rate measurement device, flow rate measurement method, and flow rate measurement program - Google Patents

Flow rate measurement device, flow rate measurement method, and flow rate measurement program Download PDF

Info

Publication number
JP7419855B2
JP7419855B2 JP2020020720A JP2020020720A JP7419855B2 JP 7419855 B2 JP7419855 B2 JP 7419855B2 JP 2020020720 A JP2020020720 A JP 2020020720A JP 2020020720 A JP2020020720 A JP 2020020720A JP 7419855 B2 JP7419855 B2 JP 7419855B2
Authority
JP
Japan
Prior art keywords
flow rate
measured
section
fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020020720A
Other languages
Japanese (ja)
Other versions
JP2021127992A (en
Inventor
宜暁 鈴村
克行 山本
憲一 半田
秀之 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2020020720A priority Critical patent/JP7419855B2/en
Priority to CN202110047077.4A priority patent/CN113252124A/en
Priority to DE102021100802.6A priority patent/DE102021100802A1/en
Publication of JP2021127992A publication Critical patent/JP2021127992A/en
Application granted granted Critical
Publication of JP7419855B2 publication Critical patent/JP7419855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、流量測定装置、流量の測定方法及び流量測定プログラムに関する。 The present invention relates to a flow rate measuring device, a flow rate measuring method, and a flow rate measuring program.

従来、加熱部および温度検出部を備え、測定対象流体の流量を測定する流量測定装置が提案されている。例えば、測定対象流体の物性変化による出力特性の変化を低減させるため、測定対象流体の物性値を検出するための物性値検出部を備える流量測定装置も提案されている(特許文献1)。具体的には、マイクロヒータとサーモパイルとの温度差を検出することにより熱伝導率(熱拡散定数)を求め、センサによって測定された流量を熱伝導率に基づいて補正する。 2. Description of the Related Art Conventionally, a flow rate measuring device has been proposed that includes a heating section and a temperature detecting section and measures the flow rate of a fluid to be measured. For example, in order to reduce changes in output characteristics due to changes in physical properties of the fluid to be measured, a flow rate measuring device has been proposed that includes a physical property value detection section for detecting physical property values of the fluid to be measured (Patent Document 1). Specifically, thermal conductivity (thermal diffusion constant) is determined by detecting the temperature difference between the microheater and the thermopile, and the flow rate measured by the sensor is corrected based on the thermal conductivity.

さらに、熱拡散率が異なる測定対象流体について、流量の測定の精度を向上させるために、測定対象流体の流れ方向と直交する方向に並んで配置された物質検出用のマイクロヒータとサーモパイルを準備し、マイクロヒータの温度を2段階に変化させた前後において、測定対象流体の温度の差を検出する流量測定装置が提案されている。この技術においては、マイクロヒータの温度を2段階に変化させた前後における測定対象流体の温度の差により特性値を取得し、取得した特性値を用いて測定対象流体の流量を補正する(特許文献2)。 Furthermore, in order to improve the accuracy of flow rate measurement for fluids to be measured that have different thermal diffusivities, we prepared microheaters and thermopiles for detecting substances that were arranged in parallel in a direction perpendicular to the flow direction of the fluid to be measured. , a flow rate measuring device has been proposed that detects a difference in temperature of a fluid to be measured before and after changing the temperature of a microheater in two stages. In this technology, a characteristic value is acquired based on the difference in temperature of the fluid to be measured before and after changing the temperature of the microheater in two stages, and the flow rate of the fluid to be measured is corrected using the acquired characteristic value (Patent Document 2).

特開2012-233776号公報Japanese Patent Application Publication No. 2012-233776 特開2017-129470号公報Japanese Patent Application Publication No. 2017-129470

しかしながら、測定対象の流体の種類が増加した場合には、マイクロヒータの温度を2段階に変化させた前後における、サーモパイルにより検出された測定対象流体の温度の差により、測定対象流体の特性値を取得しただけでは、充分に精度よく、測定対象の流体の物性を識別することが困難であり、熱拡散率が異なる測定対象流体について、流量の測定の精度を充分に向上させることが困難な場合があった。 However, when the types of fluids to be measured increase, the characteristic values of the fluid to be measured may be changed due to the difference in temperature of the fluid to be measured detected by the thermopile before and after changing the temperature of the microheater in two stages. In cases where it is difficult to identify the physical properties of the fluid to be measured with sufficient accuracy just by acquiring the information, and it is difficult to sufficiently improve the accuracy of flow measurement for fluids to be measured with different thermal diffusivities. was there.

本発明は、上記のような問題に鑑みてなされたものであり、熱拡散率が異なる測定対象流体について、流量の測定の精度をさらに向上させることを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to further improve the accuracy of flow rate measurement for fluids to be measured having different thermal diffusivities.

本発明に係る流量測定装置は、主流路を流れる測定対象流体の流量を検出するための流量検出部と、測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有し、測定対象流体の特性値を取得するための特性値取得部と、前記特性値取得部によって取得された測定対象流体の特性値を用いて、前記流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部とを備え、前記加熱部および前記温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されており、前記特性値取得部は、前記加熱部の温度を変化させた前後における、前記温度検出部により検出された前記測定対象流体の温度の比により、前記特性値を取得する。 The flow rate measuring device according to the present invention includes a flow rate detection section for detecting the flow rate of a fluid to be measured flowing through a main channel, a heating section for heating the fluid to be measured, and a temperature detection section for detecting the temperature of the fluid to be measured. and a characteristic value acquisition unit for acquiring characteristic values of the fluid to be measured, and a characteristic value of the fluid to be measured acquired by the characteristic value acquisition unit, based on the detection signal output from the flow rate detection unit. a flow rate correction section that corrects the flow rate of the fluid to be measured calculated by the method, the heating section and the temperature detection section are arranged side by side in a direction perpendicular to the flow direction of the fluid to be measured, and the characteristic value The acquisition unit acquires the characteristic value based on a ratio of temperatures of the fluid to be measured detected by the temperature detection unit before and after changing the temperature of the heating unit.

加熱部の温度を変化させた前後における、温度検出部により検出された測定対象流体の温度の比により取得した特性値を用いれば、測定対象流体の熱伝導率や比熱、粘度によっ
て変わる熱拡散率に応じた補正を行うことができる。したがって、熱拡散率が異なる測定対象流体について、流量の測定の精度を向上させることができる。
By using the characteristic value obtained from the ratio of the temperature of the fluid to be measured detected by the temperature detection unit before and after changing the temperature of the heating part, it is possible to calculate the thermal diffusivity that changes depending on the thermal conductivity, specific heat, and viscosity of the fluid to be measured. Corrections can be made accordingly. Therefore, it is possible to improve the accuracy of flow rate measurement for fluids to be measured having different thermal diffusivities.

また、本発明においては、前記特性値取得部は、前記加熱部の温度を変化させた前後における、前記温度検出部により検出された前記測定対象流体の温度の差及び比により、前記特性値を取得するようにしてもよい。 Further, in the present invention, the characteristic value acquisition section obtains the characteristic value based on the difference and ratio of the temperature of the fluid to be measured detected by the temperature detection section before and after changing the temperature of the heating section. You may also obtain it.

ここで、熱拡散率が異なる測定対象流体の中には、加熱部の温度を変化させた前後における、温度検出部により検出された測定対象流体の温度の差によって精度よく物性を反映できる流体と、加熱部の温度を変化させた前後における、温度検出部により検出された測定対象流体の温度の比によって精度よく物性を反映できる流体とが存在し得る。よって、本発明において、特性値取得部は、前記加熱部の温度を変化させた前後における、前記温度検出部により検出された前記測定対象流体の温度の差及び比により、前記特性値を取得するようにすれば、より精度よく、熱拡散率が異なる測定対象流体の物性を反映した特性値を得ることが可能である。 Here, among the fluids to be measured that have different thermal diffusivities, there are fluids whose physical properties can be accurately reflected by the difference in temperature of the fluid to be measured detected by the temperature detection section before and after changing the temperature of the heating section. There may be a fluid whose physical properties can be accurately reflected by the ratio of the temperature of the fluid to be measured detected by the temperature detection section before and after changing the temperature of the heating section. Therefore, in the present invention, the characteristic value acquisition section acquires the characteristic value based on the difference and ratio of the temperature of the fluid to be measured detected by the temperature detection section before and after changing the temperature of the heating section. By doing so, it is possible to more accurately obtain characteristic values that reflect the physical properties of the fluids to be measured having different thermal diffusivities.

また、特性値は、加熱部の温度を変化させた前後における、温度検出部により検出された測定対象流体の温度の差および/または比に、所定の係数を乗じた値であり、流量補正部は、流量検出部から出力された検出信号に、特性値を乗じることで、測定対象流体の流量を補正するようにしてもよい。具体的には、このような値を特性値として用いることができる。 In addition, the characteristic value is a value obtained by multiplying the difference and/or ratio of the temperature of the fluid to be measured detected by the temperature detection unit before and after changing the temperature of the heating unit by a predetermined coefficient. Alternatively, the flow rate of the fluid to be measured may be corrected by multiplying the detection signal output from the flow rate detection section by a characteristic value. Specifically, such a value can be used as a characteristic value.

また、一端が主流路内に開口した第1流入口に連通し、且つ、他端が主流路内に開口した第1流出口に連通することで主流路から分流されるとともに、特性値取得部の前記温度検出部が配置された特性値検出流路を有する副流路部をさらに備え、流量検出部は、特性値検出流路とは異なる位置に配置されるようにしてもよい。副流路部を設けることで、主流路の大きさや流量にかかわらず、流量を測定できる装置を提供することができる。また、流量検出部や特性値取得部の前記温度検出部へのダストの侵入を抑制できる。 In addition, one end communicates with a first inlet opened into the main flow path, and the other end communicates with a first outflow port opened into the main flow path, so that the flow is separated from the main flow path, and the characteristic value acquisition unit It is also possible to further include a sub-flow path section having a characteristic value detection flow path in which the temperature detection section is arranged, and the flow rate detection section may be arranged at a different position from the characteristic value detection flow path. By providing the sub-flow path section, it is possible to provide a device that can measure the flow rate regardless of the size and flow rate of the main flow path. Further, it is possible to suppress dust from entering the temperature detection section of the flow rate detection section and the characteristic value acquisition section.

また、特性値取得部の前記温度検出部および流量検出部は、主流路または、副流路部を構成する部材に脱着可能に設けられた流量検出部材に設けられるようにしてもよい。このようにすれば、様々な流量や形状の主流路部2に対して取り付け可能な部品を提供することができ、コストを低減できる。 Further, the temperature detection section and the flow rate detection section of the characteristic value acquisition section may be provided in a flow rate detection member that is removably attached to a member that constitutes the main flow channel or the sub flow channel section. In this way, it is possible to provide components that can be attached to the main flow passage section 2 having various flow rates and shapes, and it is possible to reduce costs.

また、副流路部は、流量検出部が配置された流量検出流路と、一端が主流路内に開口した第1流入口に連通し、且つ、他端が主流路内に開口した第1流出口に連通することで副流路部から分流された第一副流路部と、一端が第一副流路部に開口した第2流入口に連通し、且つ、他端が第一副流路部内に開口した第2流出口に連通することで第一副流路部から分流された第二副流路部とを有し、流量検出流路及び特性値検出流路はともに、一端が第二副流路部に開口した第3流入口に連通し、且つ、他端が第二副流路部内に開口した第3流出口に連通することで第二副流路部からさらに分流されることで形成されるようにしてもよい。このように3段階の分流構造を採用すれば、流量検出部や特性値取得部の前記温度検出部へのダストの侵入量をさらに低減することができる。 The auxiliary flow path portion communicates with the flow rate detection flow path in which the flow rate detection portion is disposed, and a first inlet port having one end opened into the main flow path, and a first inflow port having the other end opened into the main flow path. A first auxiliary flow path section that is separated from the auxiliary flow path section by communicating with the outflow port, and a second inflow port that has one end opened to the first sub flow path section, and the other end that is connected to the first sub flow path section. It has a second sub-flow path separated from the first sub-flow path by communicating with a second outlet opened in the flow path, and both the flow rate detection flow path and the characteristic value detection flow path have one end. The flow is further divided from the second sub-flow path by communicating with the third inlet opening in the second sub-flow path and having the other end communicating with the third outflow opening in the second sub-flow path. It may also be formed by By employing the three-stage flow dividing structure in this manner, it is possible to further reduce the amount of dust entering the temperature detection section of the flow rate detection section and the characteristic value acquisition section.

また、副流路部は、流量検出部が配置された流量検出流路をさらに有しており、流量検出流路は、一端が第1流入口に連通し、且つ、他端が第1流出口に連通しており、第1流入口から流入した測定対象流体を、特性値検出流路および流量検出流路に分流させるようにしてもよい。具体的な分流構造としては、このような構成を採用することもできる。 Further, the sub-channel section further includes a flow rate detection channel in which a flow rate detection section is disposed, and one end of the flow rate detection channel communicates with the first inlet, and the other end communicates with the first flow port. The fluid to be measured, which is in communication with the outlet and flows in from the first inlet, may be divided into the characteristic value detection channel and the flow rate detection channel. As a specific flow dividing structure, such a configuration can also be adopted.

また、副流路部は、流量検出部が配置された流量検出流路をさらに有しており、特性値
検出流路は、流量検出流路内に設けられており、流量検出流路内を流れる測定対象流体の一部を特性値検出流路に流入させるようにしてもよい。具体的な分流構造としては、このような構成を採用することもできる。
Further, the sub flow path section further includes a flow rate detection flow path in which a flow rate detection section is arranged, and the characteristic value detection flow path is provided within the flow rate detection flow path. A part of the flowing fluid to be measured may be caused to flow into the characteristic value detection channel. As a specific flow dividing structure, such a configuration can also be adopted.

また、副流路部は、流量検出部が配置された流量検出流路をさらに有しており、流量検出流路は、一端が主流路内に開口した第4流入口に連通し、且つ、他端が主流路内に開口した第4流出口に連通するようにしてもよい。具体的な分流構造としては、このような構成を採用することもできる。 Further, the sub flow path section further includes a flow rate detection flow path in which a flow rate detection section is disposed, and the flow rate detection flow path communicates with a fourth inlet having one end opened into the main flow path, and The other end may communicate with a fourth outlet opening into the main flow path. As a specific flow dividing structure, such a configuration can also be adopted.

また、流量検出部は、主流路に配置されるようにしてもよい。このように、流量検出部が主流路の流体を測定対象とする構成にしてもよい。 Further, the flow rate detection section may be arranged in the main flow path. In this way, the flow rate detection section may be configured to measure the fluid in the main channel.

また、加熱部は、当該加熱部の長手方向が測定対象流体の流れ方向に沿って配置されるようにしてもよい。このようにすれば、加熱部は、測定対象流体の流れ方向に亘って広範囲に測定対象流体を加熱することが可能となる。 Further, the heating section may be arranged such that the longitudinal direction of the heating section is along the flow direction of the fluid to be measured. In this way, the heating section can heat the fluid to be measured over a wide range in the flow direction of the fluid to be measured.

また、温度検出部は、当該温度検出部の長手方向が測定対象流体の流れ方向に沿って配置されるようにしてもよい。このようにすれば、温度検出部は、測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。 Further, the temperature detection section may be arranged such that the longitudinal direction of the temperature detection section is along the flow direction of the fluid to be measured. In this way, the temperature detection section can detect the temperature over a wide range in the flow direction of the fluid to be measured.

また、副流路部は、流量検出部が配置された流量検出流路をさらに有しており、流量検出流路と特性値検出流路は、副流路部または該副流路部から分流された流路に、回路基板を測定対象流体の流れ方向に平行に配置して副流路部または該副流路部を分流することで形成され、流量検出部及び特性値取得部の前記温度検出部は、それぞれ、回路基板上の一面と、反対面に設けられるようにしてもよい。具体的な分流構造としては、このような構成を採用することもできる。 Further, the sub-channel section further includes a flow rate detection channel in which a flow rate detection section is disposed, and the flow rate detection channel and the characteristic value detection channel are arranged in the sub-channel section or branched from the sub-channel section. The temperature of the flow rate detection unit and the characteristic value acquisition unit is The detection units may be provided on one side and the opposite side of the circuit board, respectively. As a specific flow dividing structure, such a configuration can also be adopted.

なお、課題を解決するための手段に記載の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。また、課題を解決するための手段に示した流量測定装置の内容は、方法又はプロセッサやマイクロコントローラ等に実行させるプログラムとして提供することができる。 Note that the contents described in the means for solving the problems can be combined as much as possible without departing from the problems and technical idea of the present invention. Moreover, the contents of the flow rate measuring device shown in the means for solving the problems can be provided as a method or a program to be executed by a processor, a microcontroller, or the like.

熱拡散率が異なる測定対象流体について、流量の測定の精度を向上させることができる。 The accuracy of flow rate measurement can be improved for fluids to be measured that have different thermal diffusivities.

流量測定装置の装置構成を示す斜視図である。It is a perspective view showing the device configuration of a flow rate measuring device. 流量測定装置の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of the flow rate measuring device. 流量測定装置の横断面図である。FIG. 3 is a cross-sectional view of the flow rate measuring device. 流量検出部及び物性値取得部に用いられるセンサ素子の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a sensor element used in a flow rate detection section and a physical property value acquisition section. センサ素子の仕組みを説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the mechanism of a sensor element. 流量検出部の概略構成を示す上面図である。FIG. 2 is a top view showing a schematic configuration of a flow rate detection section. 物性値取得部の概略構成を示す上面図である。FIG. 3 is a top view showing a schematic configuration of a physical property value acquisition section. 流量測定装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of the flow rate measuring device. 流量測定処理の一例を示す処理フロー図である。FIG. 2 is a processing flow diagram showing an example of flow rate measurement processing. 特性値取得処理の一例を示す処理フロー図である。FIG. 3 is a processing flow diagram showing an example of characteristic value acquisition processing. 縦軸にセンサ感度比、横軸に熱伝導率を示すグラフである。It is a graph showing sensor sensitivity ratio on the vertical axis and thermal conductivity on the horizontal axis. 縦軸にセンサ感度比、横軸にΔTを示すグラフである。It is a graph showing sensor sensitivity ratio on the vertical axis and ΔT on the horizontal axis. 流量測定装置を示す図である。It is a figure showing a flow rate measuring device. 副流路部を示す斜視図である。FIG. 3 is a perspective view showing a sub-channel section. 物性値検出部および流量検出部の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a physical property value detection section and a flow rate detection section. 物性値検出用流路および流量検出用流路に分流する測定対象流体の流量を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the flow rate of a fluid to be measured that is divided into a physical property value detection flow path and a flow rate detection flow path. 副流路部の上面に形成された、物性値検出用流路および流量検出用流路の変形例を示す上面図である。FIG. 7 is a top view showing a modification of the physical property value detection channel and the flow rate detection channel formed on the upper surface of the sub-channel section. 物性値検出部の変形例の概略構成を示す上面図である。It is a top view which shows the schematic structure of the modification of a physical property value detection part. 流量測定装置を示す斜視図である。It is a perspective view showing a flow rate measuring device. 流量測定装置の他の例を示す図である。It is a figure showing other examples of a flow rate measuring device. 流量測定装置の他の例を示す図である。It is a figure showing other examples of a flow rate measuring device. 他の変形例に係る多段分流型の一例を示す図である。It is a figure which shows an example of the multistage separation type|mold based on another modification. 他の変形例を説明するための断面図である。It is a sectional view for explaining another modification.

〔適用例〕
以下、本発明の適用例について図面を用いて説明する。本発明は、図8のブロック図で示されるような、流量測定装置1に適用される。図8において流量測定装置1は、流量検出部11と、物性値検出部12と、制御部13とを備えている。流量検出部11及び物性値検出部12は、図4に示されるような、マイクロヒータ101により形成する加熱部とサーモパイル102が形成する温度検出部とを含む、いわゆる熱式のフローセンサ100により構成される。流量検出部11は、流量検出部内第1温度検出部111と、流量検出部内第2温度検出部112とを備える。物性値検出部12は、物性値検出部内第1温度検出部121と、物性値検出部内第2温度検出部122と、物性値検出部内加熱部123とを備える。
[Application example]
Application examples of the present invention will be described below with reference to the drawings. The present invention is applied to a flow rate measuring device 1 as shown in the block diagram of FIG. In FIG. 8, the flow rate measuring device 1 includes a flow rate detection section 11, a physical property value detection section 12, and a control section 13. The flow rate detection section 11 and the physical property value detection section 12 are configured by a so-called thermal flow sensor 100 including a heating section formed by a microheater 101 and a temperature detection section formed by a thermopile 102, as shown in FIG. be done. The flow rate detection unit 11 includes a first temperature detection unit 111 within the flow rate detection unit and a second temperature detection unit 112 within the flow rate detection unit. The physical property value detection section 12 includes a first temperature detection section 121 within the physical property value detection section, a second temperature detection section 122 within the physical property value detection section, and a heating section 123 within the physical property value detection section.

流量検出部11は、流量を示す値を制御部13に出力する。物性値検出部12は、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122から出力された温度検出信号を流量算出部133に出力する。より詳細には、制御部13による制御によって物性値検出部内加熱部123の温度が2段階に変更され、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122は、物性値検出部内加熱部123の温度変化の前後における出力値を求め、制御部13に出力する。 The flow rate detection unit 11 outputs a value indicating the flow rate to the control unit 13. The physical property value detection section 12 outputs the temperature detection signals output from the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section to the flow rate calculation section 133 . More specifically, the temperature of the heating section 123 in the physical property value detecting section is changed in two stages by the control by the control section 13, and the first temperature detecting section 121 in the physical property value detecting section and the second temperature detecting section 122 in the physical property value detecting section, Output values before and after the temperature change of the heating section 123 in the physical property value detection section are determined and outputted to the control section 13 .

また、制御部13は、補正処理部131と、特性値算出部132と、流量算出部133とを含む。流量算出部133は、流量検出部11の検出値に基づいて測定対象流体の流量を算出する。特性値算出部132は、物性値検出部12の検出値に基づいて特性値を算出する。具体的には、特性値算出部132は、前述のように物性値検出部12の物性値検出部内加熱部123であるマイクロヒータ101の温度を変化させ、変化の前後において物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122としてのサーモパイル102が検出した測定対象流体の温度の比に所定の係数を乗じて特性値を算出する。補正処理部131は、特性値を用いて、流量算出部133が算出した流量を補正する。これにより、マイクロヒータの温度を2段階に変化させた前後における、サーモパイルにより検出された測定対象流体の温度の差により、測定対象流体の特性値を取得しただけでは、充分に精度よく、測定対象の流体の物性を識別することが困難な場合であっても、熱拡散率が異なる測定対象流体についての流量測定の精度を充分に向上させることが可能となる。 Further, the control unit 13 includes a correction processing unit 131, a characteristic value calculation unit 132, and a flow rate calculation unit 133. The flow rate calculation unit 133 calculates the flow rate of the fluid to be measured based on the detected value of the flow rate detection unit 11. The characteristic value calculation unit 132 calculates characteristic values based on the detection values of the physical property value detection unit 12. Specifically, the characteristic value calculation section 132 changes the temperature of the micro-heater 101, which is the heating section 123 in the physical property value detection section of the physical property value detection section 12, as described above, and changes the temperature of the first heating section in the physical property value detection section before and after the change. A characteristic value is calculated by multiplying the ratio of the temperature of the fluid to be measured detected by the temperature detecting section 121 and the temperature of the fluid to be measured detected by the thermopile 102 as the second temperature detecting section 122 in the physical property value detecting section. The correction processing unit 131 corrects the flow rate calculated by the flow rate calculation unit 133 using the characteristic value. As a result, it is not possible to simply obtain the characteristic values of the fluid to be measured based on the difference in temperature of the fluid to be measured detected by the thermopile before and after changing the temperature of the microheater in two stages. Even if it is difficult to identify the physical properties of fluids, it is possible to sufficiently improve the accuracy of flow rate measurement for fluids to be measured that have different thermal diffusivities.

〔実施例〕
以下、本発明の実施形態に係る流量測定装置について、図面を用いて説明する。なお、以下に示す実施形態は、流量測定装置の一例であり、本発明に係る流量測定装置は、以下
の構成には限定されない。
〔Example〕
DESCRIPTION OF THE PREFERRED EMBODIMENTS A flow rate measuring device according to an embodiment of the present invention will be described below with reference to the drawings. Note that the embodiment shown below is an example of a flow rate measuring device, and the flow rate measuring device according to the present invention is not limited to the following configuration.

<装置構成>
図1は、本実施形態に係る流量測定装置の装置構成を示す斜視図である。図2は、流量測定装置の縦断面図である。図3は、流量測定装置の横断面図である。流量測定装置は、例えばガスメータや燃焼機器、自動車等の内燃機関、燃料電池に組み込まれ、流路を通過する気体の量を測定する。なお、図1の破線の矢印は、流体の流れる方向を例示している。図1~図3に示すように、本実施形態では、流量測定装置1は主流路部2の内部に設けられる。また、流量測定装置1は、流量検出部11と、物性値検出部(「温度検出部」とも呼ぶ)12と、制御部13とを備える。流量検出部11及び物性値検出部12は、マイクロヒータが形成する加熱部とサーモパイルが形成する温度検出部とを含む、いわゆる熱式のフローセンサである。
<Device configuration>
FIG. 1 is a perspective view showing the configuration of a flow rate measuring device according to this embodiment. FIG. 2 is a longitudinal sectional view of the flow rate measuring device. FIG. 3 is a cross-sectional view of the flow rate measuring device. A flow rate measuring device is incorporated into, for example, a gas meter, a combustion device, an internal combustion engine of an automobile, or a fuel cell, and measures the amount of gas passing through a flow path. Note that the broken line arrow in FIG. 1 indicates the direction in which the fluid flows. As shown in FIGS. 1 to 3, in this embodiment, the flow rate measuring device 1 is provided inside the main flow path section 2. As shown in FIGS. The flow rate measurement device 1 also includes a flow rate detection section 11, a physical property value detection section (also referred to as a "temperature detection section") 12, and a control section 13. The flow rate detection section 11 and the physical property value detection section 12 are so-called thermal flow sensors that include a heating section formed by a microheater and a temperature detection section formed by a thermopile.

図4は、流量検出部及び物性値取得部に用いられるセンサ素子の一例を示す斜視図である。また、図5は、センサ素子の仕組みを説明するための断面図である。センサ素子100は、マイクロヒータ(加熱部)101と、マイクロヒータ101を挟んで両側に設けられたサーモパイル(温度検出部)102とを備える。これらの上下には絶縁薄膜が形成され、シリコン基台上に設けられている。また、マイクロヒータ101及びサーモパイル102の下方のシリコン基台には、キャビティ(空洞)が設けられている。マイクロヒータ101は、例えばポリシリコンで形成された抵抗体である。図5は、破線の楕円によって、マイクロヒータ101が発熱した場合の温度分布を模式的に示している。なお、破線が太いほど温度が高いものとする。空気の流れがない場合、図5の上段(1)に示すようにマイクロヒータ101の両側の温度分布はほぼ均等になる。一方、例えば図5の下段(2)において破線の矢印で示す方向に空気が流れた場合、周囲の空気が移動するため、マイクロヒータ101の風上側よりも風下側の方が、温度は高くなる。センサ素子は、このようなヒータ熱の分布の偏りを利用して、流量を示す値を出力する。 FIG. 4 is a perspective view showing an example of a sensor element used in the flow rate detection section and the physical property value acquisition section. Moreover, FIG. 5 is a sectional view for explaining the mechanism of the sensor element. The sensor element 100 includes a microheater (heating section) 101 and thermopiles (temperature detection sections) 102 provided on both sides of the microheater 101. Insulating thin films are formed above and below these, and are provided on a silicon base. Furthermore, a cavity is provided in the silicon base below the microheater 101 and the thermopile 102. Microheater 101 is a resistor made of polysilicon, for example. FIG. 5 schematically shows the temperature distribution when the micro-heater 101 generates heat using a broken-line ellipse. Note that the thicker the broken line, the higher the temperature. When there is no air flow, the temperature distribution on both sides of the microheater 101 is approximately equal, as shown in the upper part (1) of FIG. On the other hand, if air flows in the direction indicated by the dashed arrow in the lower row (2) of FIG. 5, for example, the temperature will be higher on the leeward side of the micro heater 101 than on the windward side because the surrounding air moves. . The sensor element utilizes this uneven distribution of heater heat to output a value indicating the flow rate.

また、図1の制御部13は、マイクロコントローラ等の演算装置によって形成され、流量検出部11の出力に基づいて流量を算出したり、物性値検出部12の出力に基づいて所定の特性値を算出したり、特性値を用いて流量を補正したりする。 The control unit 13 in FIG. 1 is formed by a calculation device such as a microcontroller, and calculates the flow rate based on the output of the flow rate detection unit 11 and calculates a predetermined characteristic value based on the output of the physical property value detection unit 12. Calculate or correct flow rate using characteristic values.

<流量検出部及び物性値取得部> <Flow rate detection section and physical property value acquisition section>

図6は、図1に示した流量検出部11の概略構成を示す上面図であり、図7は、図1に示した物性値検出部12の概略構成を示す上面図である。 6 is a top view showing a schematic configuration of the flow rate detection section 11 shown in FIG. 1, and FIG. 7 is a top view showing a schematic structure of the physical property value detection section 12 shown in FIG. 1.

図6に示すように、流量検出部11は、測定対象流体の温度を検出する第1サーモパイル(流量検出部内第1温度検出部)111および第2サーモパイル(流量検出部内第2温度検出部)112と、測定対象流体を加熱するマイクロヒータ113とを備えている。マイクロヒータ113と、流量検出部内第1温度検出部111および流量検出部内第2温度検出部112とは、流量検出部11内において、測定対象流体の流れ方向Pに沿って並んで配置されている。また、マイクロヒータ113、流量検出部内第1温度検出部111、および流量検出部内第2温度検出部112の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Pと直交する。 As shown in FIG. 6, the flow rate detection unit 11 includes a first thermopile (first temperature detection unit in the flow rate detection unit) 111 and a second thermopile (second temperature detection unit in the flow rate detection unit) 112 that detect the temperature of the fluid to be measured. and a microheater 113 that heats the fluid to be measured. The micro-heater 113, the first temperature detection section 111 in the flow rate detection section, and the second temperature detection section 112 in the flow rate detection section are arranged side by side in the flow rate detection section 11 along the flow direction P of the fluid to be measured. . Furthermore, the shapes of the micro-heater 113, the first temperature detection section 111 in the flow rate detection section, and the second temperature detection section 112 in the flow rate detection section are each approximately rectangular in plan view, and the longitudinal direction of each is in the flow direction of the fluid to be measured. Orthogonal to P.

流量検出部内第1温度検出部111および流量検出部内第2温度検出部112は、マイクロヒータ113の上流側に流量検出部内第1温度検出部111が配置され、下流側に流量検出部内第2温度検出部112が配置されて、マイクロヒータ113を挟んで対称な位置の温度を検出する。 The first temperature detection section 111 within the flow rate detection section and the second temperature detection section 112 within the flow rate detection section are arranged such that the first temperature detection section 111 within the flow rate detection section is disposed upstream of the micro heater 113, and the second temperature detection section within the flow rate detection section is arranged downstream of the micro heater 113. A detection unit 112 is arranged to detect temperatures at symmetrical positions with the microheater 113 in between.

流量測定装置1では、物性値検出部12および流量検出部11に、実質的に同一構造のセンサが用いられており、測定対象流体の流れ方向に対する配置角度を90°異ならせて配置されている。これにより、同一構造のセンサを物性値検出部12または流量検出部11として機能させることが可能となるため、流量測定装置1の製造コストを低減することができる。 In the flow rate measurement device 1, sensors having substantially the same structure are used in the physical property value detection unit 12 and the flow rate detection unit 11, and are arranged at different angles of 90 degrees with respect to the flow direction of the fluid to be measured. . This allows sensors with the same structure to function as the physical property value detection section 12 or the flow rate detection section 11, so that the manufacturing cost of the flow rate measurement device 1 can be reduced.

一方、図7に示すように、物性値検出部12は、測定対象流体の温度を検出する第1サーモパイル(物性値検出部内第1温度検出部)121および第2サーモパイル(物性値検出部内第2温度検出部)122と、測定対象流体を加熱するマイクロヒータ(物性値検出部内加熱部)123とを備えている。物性値検出部内加熱部123と、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122とは、物性値検出部12内において、測定対象流体の流れ方向Qと直交する方向に並んで配置されている。また、物性値検出部内加熱部123、物性値検出部内第1温度検出部121、および物性値検出部内第2温度検出部122の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Qに沿っている。また、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122は、物性値検出部内加熱部123を挟んで左右対称に配置されており、物性値検出部内加熱部123の両側の対称な位置の温度を検出する。 On the other hand, as shown in FIG. 7, the physical property value detection unit 12 includes a first thermopile (first temperature detection unit in the physical property value detection unit) 121 and a second thermopile (second temperature detection unit in the physical property value detection unit) that detect the temperature of the fluid to be measured. The micro-heater (heating section within the physical property value detection section) 123 heats the fluid to be measured. The heating unit 123 in the physical property value detection unit, the first temperature detection unit 121 in the physical property value detection unit, and the second temperature detection unit 122 in the physical property value detection unit are perpendicular to the flow direction Q of the fluid to be measured in the physical property value detection unit 12. They are arranged in the same direction. In addition, the shapes of the heating section 123 in the physical property value detection section, the first temperature detection section 121 in the physical property value detection section, and the second temperature detection section 122 in the physical property value detection section are each approximately rectangular in plan view, and the longitudinal direction of each is approximately rectangular in plan view. It is along the flow direction Q of the fluid to be measured. Further, the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section are arranged symmetrically with the heating section 123 in the physical property value detection section sandwiched therebetween. Detect the temperature at symmetrical positions on both sides of the

ここで、測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化は、測定対象流体の流れ方向の温度分布の変化に比べて小さい。このため、物性値検出部内第1温度検出部121と、物性値検出部内加熱部123と、物性値検出部内第2温度検出部122とを、この順で測定対象流体の流れ方向と直交する方向に並べて配置することにより、温度分布の変化による物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Here, since the temperature distribution is biased toward the downstream side due to the flow of the fluid to be measured, the change in the temperature distribution in the direction perpendicular to the flow direction is smaller than the change in the temperature distribution in the flow direction of the fluid to be measured. Therefore, the first temperature detection section 121 in the physical property value detection section, the heating section 123 in the physical property value detection section, and the second temperature detection section 122 in the physical property value detection section are arranged in this order in a direction perpendicular to the flow direction of the fluid to be measured. By arranging them side by side, it is possible to reduce changes in the output characteristics of the first temperature detection section 121 within the physical property value detection section and the second temperature detection section 122 within the physical property value detection section due to changes in temperature distribution. Therefore, the influence of changes in temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property value detection section 12 can be improved.

また、物性値検出部内加熱部123の長手方向が測定対象流体の流れ方向に沿って配置されているため、物性値検出部内加熱部123は測定対象流体の流れ方向に亘って広範囲に測定対象流体を加熱することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 In addition, since the longitudinal direction of the heating section 123 in the physical property value detection section is arranged along the flow direction of the fluid to be measured, the heating section 123 in the physical property detection section can cover a wide range of the fluid to be measured in the flow direction of the fluid to be measured. It becomes possible to heat the Therefore, even if the temperature distribution is biased toward the downstream side due to the flow of the fluid to be measured, changes in the output characteristics of the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section are prevented. can be reduced. Therefore, it is possible to reduce the influence of changes in temperature distribution due to the flow of the fluid to be measured, reduce the influence of changes in temperature distribution due to the flow of the fluid to be measured, and improve detection accuracy by the physical property value detection unit 12. .

さらに、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122の長手方向が測定対象流体の流れ方向に沿って配置されているため、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122は測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Furthermore, since the longitudinal direction of the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section is arranged along the flow direction of the fluid to be measured, the first temperature detection section in the physical property value detection section The section 121 and the second temperature detecting section 122 in the physical property value detecting section can detect temperature over a wide range in the flow direction of the fluid to be measured. Therefore, even if the temperature distribution is biased toward the downstream side due to the flow of the fluid to be measured, changes in the output characteristics of the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section are prevented. can be reduced. Therefore, the influence of changes in temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property value detection section 12 can be improved.

<機能構成>
図8は、流量測定装置の機能構成を示すブロック図である。流量測定装置1は、流量検出部11と、物性値検出部12と、制御部13とを備えている。流量検出部11は、流量検出部内第1温度検出部111と、流量検出部内第2温度検出部112とを備える。物性
値検出部12は、物性値検出部内第1温度検出部121と、物性値検出部内第2温度検出部122と、物性値検出部内加熱部123とを備える。
<Functional configuration>
FIG. 8 is a block diagram showing the functional configuration of the flow rate measuring device. The flow rate measurement device 1 includes a flow rate detection section 11, a physical property value detection section 12, and a control section 13. The flow rate detection unit 11 includes a first temperature detection unit 111 within the flow rate detection unit and a second temperature detection unit 112 within the flow rate detection unit. The physical property value detection section 12 includes a first temperature detection section 121 within the physical property value detection section, a second temperature detection section 122 within the physical property value detection section, and a heating section 123 within the physical property value detection section.

流量検出部11は、流量検出部内第1温度検出部111および流量検出部内第2温度検出部112から出力された温度検出信号に基づいて、測定対象流体の流量を示す値を検出する。具体的には、流量検出部11は、流量検出部内第1温度検出部111から出力された温度検出信号と流量検出部内第2温度検出部112から出力された温度検出信号との差分を算出し、差分に基づいて測定対象流体の流量を示す値を求める。そして、流量検出部11は、流量を示す値を制御部13に出力する。 The flow rate detection unit 11 detects a value indicating the flow rate of the fluid to be measured based on the temperature detection signals output from the first temperature detection unit 111 in the flow rate detection unit and the second temperature detection unit 112 in the flow rate detection unit. Specifically, the flow rate detection unit 11 calculates the difference between the temperature detection signal output from the first temperature detection unit 111 within the flow rate detection unit and the temperature detection signal output from the second temperature detection unit 112 within the flow rate detection unit. , a value indicating the flow rate of the fluid to be measured is determined based on the difference. Then, the flow rate detection section 11 outputs a value indicating the flow rate to the control section 13.

物性値検出部12は、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122から出力された温度検出信号を流量算出部133に出力する。具体的には、物性値検出部12は、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122から出力された温度検出信号の平均値を求める。また、物性値検出部内加熱部123は、例えば制御部13による制御に応じて温度を変更する。これにより、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122は、物性値検出部内加熱部123の温度変化の前後における出力値を求めることができる。物性値検出部12は、取得した出力値を制御部13に出力する。 The physical property value detection section 12 outputs the temperature detection signals output from the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section to the flow rate calculation section 133 . Specifically, the physical property value detection unit 12 calculates the average value of the temperature detection signals output from the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical property value detection unit. Further, the heating section 123 within the physical property value detection section changes the temperature according to control by the control section 13, for example. Thereby, the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section can obtain the output values before and after the temperature change of the heating section 123 in the physical property value detection section. The physical property value detection section 12 outputs the acquired output value to the control section 13.

また、制御部13は、補正処理部131と、特性値算出部132と、流量算出部133とを含む。流量算出部133は、流量検出部11の検出値に基づいて測定対象流体の流量を算出する。特性値算出部132は、物性値検出部12の検出値に基づいて特性値を算出する。具体的には、特性値算出部132は、物性値検出部12のマイクロヒータの温度を変化させ、変化の前後においてサーモパイルが検出した測定対象流体の温度の比に所定の係数を乗じて特性値を算出する。補正処理部131は、特性値を用いて、流量算出部133が算出した流量を補正する。なお、物性値検出部12と特性値算出部132とを総称して特性値取得部とも呼ぶ。 Further, the control unit 13 includes a correction processing unit 131, a characteristic value calculation unit 132, and a flow rate calculation unit 133. The flow rate calculation unit 133 calculates the flow rate of the fluid to be measured based on the detected value of the flow rate detection unit 11. The characteristic value calculation unit 132 calculates characteristic values based on the detection values of the physical property value detection unit 12. Specifically, the characteristic value calculation unit 132 changes the temperature of the microheater of the physical property value detection unit 12, and calculates the characteristic value by multiplying the ratio of the temperature of the fluid to be measured detected by the thermopile before and after the change by a predetermined coefficient. Calculate. The correction processing unit 131 corrects the flow rate calculated by the flow rate calculation unit 133 using the characteristic value. Note that the physical property value detection section 12 and the characteristic value calculation section 132 are also collectively referred to as a characteristic value acquisition section.

<流量測定処理>
図9は、流量測定処理の一例を示す処理フロー図である。図9に示すように、流量検出部11は、流量検出部内第1温度検出部および流量検出部内第2温度検出部112から温度検出信号を出力し、流量算出部133は、2つの温度検出信号に基づいて測定対象流体の流量を算出する(図9:S1)。
<Flow rate measurement process>
FIG. 9 is a processing flow diagram showing an example of flow rate measurement processing. As shown in FIG. 9, the flow rate detection unit 11 outputs temperature detection signals from the first temperature detection unit within the flow rate detection unit and the second temperature detection unit within the flow rate detection unit 112, and the flow rate calculation unit 133 outputs two temperature detection signals. The flow rate of the fluid to be measured is calculated based on (FIG. 9: S1).

具体的には、流量検出部11は、流量検出部内第1温度検出部111から出力された温度検出信号と流量検出部内第2温度検出部112から出力された温度検出信号とを出力する。また、流量算出部133は、2つの温度検出信号の差分を算出し、差分に基づいて測定対象流体の流量を示す値を算出する。 Specifically, the flow rate detection unit 11 outputs a temperature detection signal outputted from the first temperature detection unit 111 in the flow rate detection unit and a temperature detection signal outputted from the second temperature detection unit 112 in the flow rate detection unit. Further, the flow rate calculation unit 133 calculates the difference between the two temperature detection signals, and calculates a value indicating the flow rate of the fluid to be measured based on the difference.

なお、流量検出部内第1温度検出部111および流量検出部内第2温度検出部112から出力された温度検出信号に基づいて測定対象流体の流量を算出する手法は、公知のものを用いることができる。流量検出部11は、算出した測定対象流体の流量を制御部13に出力する。 Note that a known method can be used to calculate the flow rate of the fluid to be measured based on the temperature detection signals output from the first temperature detection section 111 within the flow rate detection section and the second temperature detection section 112 within the flow rate detection section. . The flow rate detection unit 11 outputs the calculated flow rate of the fluid to be measured to the control unit 13.

また、物性値検出部12は、特性値取得処理を実行する(S2)。特性値取得処理の詳細は、図10を用いて説明する。 Further, the physical property value detection unit 12 executes characteristic value acquisition processing (S2). Details of the characteristic value acquisition process will be explained using FIG. 10.

図10は、特性値取得処理の一例を示す処理フロー図である。制御部13の特性値算出部132は、物性値検出部12の物性値検出部内加熱部123に、第1の温度で加熱させる(図10:S11)。その後、物性値検出部12の物性値検出部内第1温度検出部12
1及び物性値検出部内第2温度検出部122は、第1の温度を検出する(S12)。本ステップは、例えば制御部13による制御に基づいて行うようにしてもよい。測定対象流体を伝わる熱の速度は、熱伝導率、熱拡散率、比熱などの物性値によって決定される。また、物性値検出部内加熱部123と、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122との温度差を検出することによって、熱伝導率を求めることができる。例えば、物性値検出部内加熱部123と、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122との温度差が大きいほど、熱伝導率は小さくなる。このような性質を利用して、本ステップでは、測定対象流体の流れ方向と直交する方向に配置された物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122によって測定対象流体の温度を検出する。
FIG. 10 is a processing flow diagram showing an example of characteristic value acquisition processing. The characteristic value calculation unit 132 of the control unit 13 causes the physical property value detection unit internal heating unit 123 of the physical property value detection unit 12 to heat at the first temperature (FIG. 10: S11). After that, the first temperature detection section 12 in the physical property value detection section of the physical property value detection section 12
1 and the second temperature detection section 122 in the physical property value detection section detects the first temperature (S12). This step may be performed based on control by the control unit 13, for example. The speed of heat transmitted through the fluid to be measured is determined by physical property values such as thermal conductivity, thermal diffusivity, and specific heat. Furthermore, the thermal conductivity can be determined by detecting the temperature difference between the heating section 123 in the physical property value detection section, the first temperature detection section 121 in the physical property value detection section, and the second temperature detection section 122 in the physical property value detection section. . For example, the larger the temperature difference between the physical property value detection section internal heating section 123 and the physical property value detection section first temperature detection section 121 and physical property value detection section second temperature detection section 122, the smaller the thermal conductivity becomes. Utilizing such properties, in this step, the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section arranged in the direction perpendicular to the flow direction of the fluid to be measured perform measurements. Detects the temperature of the target fluid.

次に、制御部13の特性値算出部132は、物性値検出部12の物性値検出部内加熱部123に、第2の温度で加熱させる(S13)。その後、物性値検出部12の物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122は、第2の温度を検出する(S14)。本ステップも、例えば制御部13による制御に基づいて行うようにしてもよい。このようにして、物性値検出部内加熱部123の温度変化の前後において物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122により検出された温度を示す値が取得される。 Next, the characteristic value calculation unit 132 of the control unit 13 causes the physical property value detection unit internal heating unit 123 of the physical property value detection unit 12 to heat at a second temperature (S13). Thereafter, the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section of the physical property value detection section 12 detect the second temperature (S14). This step may also be performed based on control by the control unit 13, for example. In this way, values indicating the temperatures detected by the first temperature detection section 121 in the physical property value detection section and the second temperature detection section 122 in the physical property value detection section before and after the temperature change in the heating section 123 in the physical property value detection section are obtained. Ru.

また、特性値算出部132は、検出された温度を用いて特性値を算出する(S15)。本ステップでは、センサ感度比を求める。センサ感度比とは、基準となる気体を流した場合のセンサ出力値に対する、所定の気体を流した場合のセンサ出力値の比であり、熱拡散率を表す特性値である。センサ感度比αは、下記の式(1)で求められる。
α = β × rT ・・・(1)
βは所定の係数である。また、rTは、物性値検出部内加熱部123の温度変化の前後において物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122により出力された検出値の比率である。
Further, the characteristic value calculation unit 132 calculates a characteristic value using the detected temperature (S15). In this step, the sensor sensitivity ratio is determined. The sensor sensitivity ratio is the ratio of the sensor output value when a predetermined gas is flown to the sensor output value when a reference gas is flown, and is a characteristic value representing the thermal diffusivity. The sensor sensitivity ratio α is determined by the following equation (1).
α = β × rT ... (1)
β is a predetermined coefficient. Further, rT is a ratio of detection values output by the first temperature detection section 121 within the physical property value detection section and the second temperature detection section 122 within the physical property value detection section before and after the temperature change of the heating section 123 within the physical property value detection section.

その後、図9の処理に戻り、制御部13は、特性値を用いて、流量算出部が算出した測定対象流体の流量を補正する(図9:S3)。具体的には、制御部13は、下記の式(2)を用いて、補正後の流量を算出する。
補正後の出力 = 流量算出部の出力 × α ・・・(2)
Thereafter, returning to the process in FIG. 9, the control unit 13 uses the characteristic value to correct the flow rate of the fluid to be measured calculated by the flow rate calculation unit (FIG. 9: S3). Specifically, the control unit 13 calculates the corrected flow rate using equation (2) below.
Output after correction = Output of flow rate calculation section × α ... (2)

本実施形態では、マイクロヒータの温度を変化させた前後においてサーモパイルで検出される温度のの比(rT)を用いることで、測定対象流体の熱拡散率をより詳細に検出することができるようになる。ここで、熱式のフローセンサが出力する流量は、熱拡散率と相関がある。したがって、本実施形態に係る流量の補正処理によれば、あらゆる気体について適切に補正できるようになる。すなわち、熱拡散率が異なる測定対象流体について、流量の測定の精度を向上させることができる。 In this embodiment, by using the ratio (rT) of the temperature detected by the thermopile before and after changing the temperature of the microheater, the thermal diffusivity of the fluid to be measured can be detected in more detail. Become. Here, the flow rate output by the thermal flow sensor has a correlation with the thermal diffusivity. Therefore, according to the flow rate correction process according to this embodiment, it is possible to appropriately correct all gases. That is, it is possible to improve the accuracy of flow rate measurement for fluids to be measured that have different thermal diffusivities.

図11は、縦軸にセンサ感度比、横軸に熱伝導率を示すグラフである。ここで、図11に示すように、例えば組成の異なる混合ガスのように熱伝導率以外の物性値が異なる複数のガス群が存在する場合、物性値としてある熱伝導率が求められただけではいずれのセンサ感度比を用いて補正すればよいのか定まらない。すなわち、マイクロヒータの加熱温度とサーモパイルの検知温度とを1組用いて補正を行う手法では、所定のガス群に属する2以上の基準ガスに基づいて補正を行っていたところ、複数のガス群について適切に補正を行うことはできなかった。また、物性値検出部内加熱部123の温度変化の前後において物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122により出力された検出値の差ΔTでは、充分に精度のよい特性値を算出することが困難であった測定対象流体についても、適切な特性値を算出することが可能である。 FIG. 11 is a graph showing the sensor sensitivity ratio on the vertical axis and the thermal conductivity on the horizontal axis. Here, as shown in Figure 11, when there are multiple gas groups with different physical property values other than thermal conductivity, such as mixed gases with different compositions, it is not possible to just find a certain thermal conductivity as a physical property value. It is unclear which sensor sensitivity ratio should be used for correction. In other words, in the method of making corrections using one set of the heating temperature of the microheater and the detection temperature of the thermopile, corrections were made based on two or more reference gases belonging to a predetermined gas group. It was not possible to make appropriate corrections. In addition, the difference ΔT between the detected values output by the first temperature detecting section 121 and the second temperature detecting section 122 before and after the temperature change of the heating section 123 in the physical property detecting section is sufficiently accurate. It is possible to calculate appropriate characteristic values even for a fluid to be measured for which it has been difficult to calculate good characteristic values.

図12(a)は、縦軸にセンサ感度比、横軸にΔTを示すグラフである。図11に示した、センサ感度比と熱伝導率とが一直線に近似されないガスについても、センサ感度比とΔTとは一直線に近似される。したがって、本実施形態では熱拡散率が未知のガス群についても補正を行うことができる。図12(b)は、物性値検出部内加熱部123の温度変化の前後における物性検出部内第1温度検出部121及び物性検出部内第2温度検出部122の出力の平均値と、ΔTとrTとの関係を示した図である。 FIG. 12(a) is a graph showing the sensor sensitivity ratio on the vertical axis and ΔT on the horizontal axis. Even for the gas shown in FIG. 11 in which the sensor sensitivity ratio and the thermal conductivity are not approximated in a straight line, the sensor sensitivity ratio and ΔT are approximated in a straight line. Therefore, in this embodiment, correction can be performed even for a gas group whose thermal diffusivity is unknown. FIG. 12(b) shows the average value of the outputs of the first temperature detecting section 121 in the physical property detecting section and the second temperature detecting section 122 in the physical property detecting section before and after the temperature change in the heating section 123 in the physical property detecting section, and ΔT and rT. FIG.

なお、本実施形態においては、マイクロヒータの温度を変化させた前後においてサーモパイルで検出される温度の比(rT)を用いて特性値を算出した。これに加え、本実施形態においては、マイクロヒータの温度を変化させた前後においてサーモパイルで検出される温度の差(ΔT)をも用いて特性値を算出してもよい。その場合のセンサ感度比αは、下記の式(3)で求められる。
α = γ × rT + ε × ΔT ・・・(3)
ここで、γ、εは所定の係数である。
これにより、熱拡散率と相関のある、マイクロヒータの温度を変化させた前後においてサーモパイルで検出される温度の比(rT)と、マイクロヒータの温度を変化させた前後においてサーモパイルで検出される温度の差(ΔT)の両方を用いて、特性値を算出することができ、より精度よく、特性値を算出することが可能となる。なお、本実施形態において、測定対象流体の熱拡散率と、マイクロヒータの温度を変化させた前後においてサーモパイルで検出される温度の差(ΔT)との相関が非常に高い場合には、センサ感度比αを、ΔTのみの式(ΔTに所定の係数を乗じた値)によって定義しても構わない。
In this embodiment, the characteristic value was calculated using the ratio (rT) of the temperatures detected by the thermopile before and after changing the temperature of the microheater. In addition, in this embodiment, the characteristic value may be calculated using the difference (ΔT) between the temperatures detected by the thermopile before and after changing the temperature of the microheater. The sensor sensitivity ratio α in that case is determined by the following equation (3).
α = γ × rT + ε × ΔT ... (3)
Here, γ and ε are predetermined coefficients.
As a result, the ratio of the temperature detected by the thermopile before and after changing the temperature of the micro-heater (rT), which is correlated with the thermal diffusivity, and the temperature detected by the thermopile before and after changing the temperature of the micro-heater are determined. The characteristic value can be calculated using both of the differences (ΔT), and it becomes possible to calculate the characteristic value with higher accuracy. In addition, in this embodiment, if the correlation between the thermal diffusivity of the fluid to be measured and the difference in temperature (ΔT) detected by the thermopile before and after changing the temperature of the microheater is very high, the sensor sensitivity The ratio α may be defined by an equation containing only ΔT (a value obtained by multiplying ΔT by a predetermined coefficient).

〔変形例〕
上述した実施形態では、流量測定装置1のフローセンサが主流路部2内の流体を測定対象とする構成を示したが、このような例には限定されない。例えば、流量測定装置1のフローセンサは、主流路部2から分岐させた副流路内の流体を測定対象としてもよい。
[Modified example]
In the embodiment described above, the flow sensor of the flow rate measuring device 1 has a configuration in which the fluid in the main flow path section 2 is measured, but the present invention is not limited to such an example. For example, the flow sensor of the flow rate measurement device 1 may measure fluid in a sub-flow path branched from the main flow path portion 2 .

図13(a)は、本実施形態に係る流量測定装置1を示す分解斜視図であり、図13(b)は、図13(a)に示される流量測定装置1を示す透視図である。図13(a)(b)に示すように、変形例に係る流量測定装置1は、主流路部2と、副流路部3と、シール4と、回路基板5と、カバー6とを備えている。 FIG. 13(a) is an exploded perspective view showing the flow rate measuring device 1 according to this embodiment, and FIG. 13(b) is a perspective view showing the flow rate measuring device 1 shown in FIG. 13(a). As shown in FIGS. 13(a) and 13(b), the flow rate measuring device 1 according to the modification includes a main flow path section 2, a sub flow path section 3, a seal 4, a circuit board 5, and a cover 6. ing.

主流路部2は、長手方向に貫通した管状部材である。主流路部2の内周面には、測定対象流体の流れ方向Oに対して、上流側に流入口(第1流入口)34が形成され、下流側に流出口(第1流出口)35が形成されている。 The main flow path portion 2 is a tubular member that penetrates in the longitudinal direction. On the inner peripheral surface of the main flow path section 2, an inlet (first inlet) 34 is formed on the upstream side with respect to the flow direction O of the fluid to be measured, and an outlet (first outlet) 35 is formed on the downstream side. is formed.

なお、本実施形態では、主流路部2の軸方向の長さは約50mmであり、内周面の直径(主流路部2の内径)は約20mmであり、主流路部2の外径は約24mmである。 In this embodiment, the axial length of the main flow path section 2 is approximately 50 mm, the diameter of the inner peripheral surface (inner diameter of the main flow path section 2) is approximately 20 mm, and the outer diameter of the main flow path section 2 is approximately 50 mm. It is approximately 24 mm.

副流路部3は、主流路部2の上に設けられており、その内部および上面には、副流路が形成されている。副流路部3は、一端が流入口34Aに連通し、他端が流出口35Aに連通している。流量測定装置1では、副流路部3は、流入用流路34と、物性値検出用流路32と、流量検出用流路33と、流出用流路35とから構成されている。 The sub-channel section 3 is provided on the main channel section 2, and is formed inside and on the upper surface thereof. One end of the sub-channel portion 3 communicates with the inlet 34A, and the other end communicates with the outlet 35A. In the flow rate measurement device 1, the sub-flow path portion 3 includes an inflow flow path 34, a physical property value detection flow path 32, a flow rate detection flow path 33, and an outflow flow path 35.

流入用流路34は、主流路部2を流れる測定対象流体を流入させて、物性値検出用流路32および流量検出用流路33に分流させるための流路である。流入用流路34は、主流路部2と垂直な方向に、副流路部3を貫通して形成されており、一端が流入口34Aに連通し、他端は主流路部2の上面で開口して、物性値検出用流路32および流量検出用流路33に連通している。これにより、主流路部2を流れる測定対象流体の一部を、流入用流
路34を介して、物性値検出用流路32および流量検出用流路33に分流させることができる。
The inflow channel 34 is a channel for allowing the fluid to be measured flowing through the main channel portion 2 to flow in and branching into the physical property value detection channel 32 and the flow rate detection channel 33. The inflow channel 34 is formed in a direction perpendicular to the main channel section 2, penetrating the sub channel section 3, and has one end communicating with the inflow port 34A, and the other end communicating with the upper surface of the main channel section 2. It is open and communicates with the physical property value detection channel 32 and the flow rate detection channel 33. Thereby, a part of the fluid to be measured flowing through the main flow path section 2 can be divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 via the inflow flow path 34.

物性値検出用流路32は、副流路部3の上面に形成された、主流路部2と平行な方向に延在する、縦断面が略コの字型の流路である。物性値検出用流路32は、長手方向(主流路部2と平行な方向)に延在する部分に、測定対象流体の物性値を検出するための物性値検出部12が配置されている。物性値検出用流路32の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。 The physical property value detection flow path 32 is a flow path formed on the upper surface of the sub flow path section 3, extending in a direction parallel to the main flow path section 2, and having a substantially U-shaped vertical section. In the physical property value detection flow path 32, a physical property value detection unit 12 for detecting the physical property value of the fluid to be measured is arranged in a portion extending in the longitudinal direction (in a direction parallel to the main flow path portion 2). One end of the physical property value detection channel 32 communicates with the inlet 34A via the inflow channel 34, and the other end communicates with the outlet 35A via the outflow channel 35.

流量検出用流路33は、副流路部3の上面に形成された、主流路部2と平行な方向に延在する、縦断面が略コの字型の流路である。流量検出用流路33は、長手方向(主流路部2と平行な方向)に延在する部分に、測定対象流体の流量を検出するための流量検出部11が配置された流量検出用流路33を有している。流量検出用流路33の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。 The flow rate detection flow path 33 is a flow path formed on the upper surface of the sub flow path section 3, extending in a direction parallel to the main flow path section 2, and having a substantially U-shaped vertical cross section. The flow rate detection flow path 33 is a flow rate detection flow path in which a flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is arranged in a portion extending in the longitudinal direction (in a direction parallel to the main flow path portion 2). It has 33. One end of the flow rate detection channel 33 communicates with the inlet 34A via the inflow channel 34, and the other end communicates with the outlet 35A via the outflow channel 35.

なお、図面では、説明の便宜上、物性値検出部12および流量検出部11と、回路基板5とが分離された状態で図示しているが、物性値検出部12および流量検出部11は、回路基板5に実装された状態で物性値検出用流路32または流量検出用流路33に配置されている。 In addition, in the drawing, for convenience of explanation, the physical property value detecting section 12 and the flow rate detecting section 11 are shown in a separated state from the circuit board 5, but the physical property value detecting section 12 and the flow rate detecting section 11 are It is disposed in the physical property value detection channel 32 or the flow rate detection channel 33 while being mounted on the substrate 5.

流出用流路35は、物性値検出用流路32および流量検出用流路33を通過した測定対象流体を、主流路部2に流出させるための流路である。流出用流路35は、主流路部2と垂直な方向に、副流路部3を貫通して形成されており、一端が流出口35Aに連通し、他端は主流路部2の上面で開口して、物性値検出用流路32および流量検出用流路33に連通している。これにより、物性値検出用流路32および流量検出用流路33を通過した測定対象流体を、流出用流路35を介して、主流路部2に流出させることができる。 The outflow channel 35 is a channel for causing the fluid to be measured that has passed through the physical property value detection channel 32 and the flow rate detection channel 33 to flow out into the main channel section 2 . The outflow channel 35 is formed in a direction perpendicular to the main channel section 2, penetrating the sub channel section 3, one end communicating with the outflow port 35A, and the other end communicating with the upper surface of the main channel section 2. It is open and communicates with the physical property value detection channel 32 and the flow rate detection channel 33. Thereby, the fluid to be measured that has passed through the physical property value detection channel 32 and the flow rate detection channel 33 can flow out into the main channel section 2 via the outflow channel 35.

このように、同じ流入口34Aから流入させた測定対象流体を、物性値検出用流路32および流量検出用流路33に分流させることで、物性値検出部12および流量検出部11は、温度、濃度などの条件が等しい測定対象流体に基づいて物性値または流量を検出することができる。したがって、流量測定装置1の測定精度を向上させることができる。 In this way, by dividing the fluid to be measured that flows in from the same inlet 34A into the physical property value detection channel 32 and the flow rate detection channel 33, the physical property value detection section 12 and the flow rate detection section 11 can detect the temperature. , the physical property value or the flow rate can be detected based on the fluids to be measured that have the same conditions such as concentration. Therefore, the measurement accuracy of the flow rate measuring device 1 can be improved.

なお、流量測定装置1では、副流路部3にシール4を嵌め込んだ後、回路基板5が配置され、さらにカバー6によって回路基板5を副流路部3に固定することで、副流路部3の内部の気密性を確保している。 In the flow measuring device 1, the circuit board 5 is placed after the seal 4 is fitted into the sub-flow path section 3, and the circuit board 5 is further fixed to the sub-flow path section 3 by the cover 6, so that the sub-flow Airtightness inside the road section 3 is ensured.

図14は、図13(a)に示される副流路部3を示す斜視図である。図14に示されるように、物性値検出用流路32は、略コの字型の一端が流入用流路34に連通し、他端が流出用流路35に連通している。同様に、流量検出用流路33は、略コの字型の一端が流入用流路34に連通し、他端が流出用流路35に連通している。 FIG. 14 is a perspective view showing the sub-channel section 3 shown in FIG. 13(a). As shown in FIG. 14, the substantially U-shaped end of the physical property value detection channel 32 communicates with the inflow channel 34, and the other end communicates with the outflow channel 35. Similarly, the flow rate detection channel 33 has a substantially U-shaped one end communicating with the inflow channel 34 and the other end communicating with the outflow channel 35 .

また、物性値検出用流路32と流量検出用流路33との両端部も互いに連通しており、物性値検出用流路32および流量検出用流路33は、副流路部3の上面において矩形状の流路を構成している。 Further, both ends of the physical property value detection flow path 32 and the flow rate detection flow path 33 communicate with each other, and the physical property value detection flow path 32 and the flow rate detection flow path 33 are connected to the upper surface of the sub flow path section 3. A rectangular flow path is formed in this section.

流量測定装置1では、物性値検出用流路32および流量検出用流路33は、何れも副流路部3の上面と垂直な方向から見たときの形状が正方形であり、流入用流路34と流出用流路35とを結ぶ直線に対して対象となる位置にそれぞれ形成されている。 In the flow rate measuring device 1, the physical property value detection channel 32 and the flow rate detection channel 33 both have a square shape when viewed from a direction perpendicular to the top surface of the sub-channel section 3, and the inflow channel 34 and the outflow channel 35 at symmetrical positions with respect to the straight line connecting them.

なお、本実施形態では、物性値検出用流路32および流量検出用流路33の一辺の長さは、何れも約4mmである。 In this embodiment, the length of one side of the physical property value detection flow path 32 and the flow rate detection flow path 33 is approximately 4 mm.

また、本実施形態では、物性値検出用流路32および流量検出用流路33の形状を正方形としているが、本発明はこれに限定されない。物性値検出用流路32および流量検出用流路33の形状は、物性値検出部12または流量検出部11が配置可能であればよく、配置される物性値検出部12および流量検出部11の形状に応じて決定される。 Furthermore, in this embodiment, the physical property value detection channel 32 and the flow rate detection channel 33 have a square shape, but the present invention is not limited to this. The shape of the physical property value detection flow path 32 and the flow rate detection flow path 33 may be such that the physical property value detection section 12 or the flow rate detection section 11 can be arranged, and the shape of the physical property value detection section 12 or the flow rate detection section 11 to be arranged is sufficient. Determined according to the shape.

したがって、例えば、物性値検出用流路32の幅よりも、物性値検出部12のサイズが小さい場合には、物性値検出用流路32の幅を物性値検出用流路32の幅に一致させてもよい。この場合、物性値検出用流路32の長手方向に延在する部分は、直線形状に形成されることとなる。なお、流量検出用流路33についても同様である。 Therefore, for example, when the size of the physical property value detection section 12 is smaller than the width of the physical property value detection channel 32, the width of the physical property value detection channel 32 is made to match the width of the physical property value detection channel 32. You may let them. In this case, the portion extending in the longitudinal direction of the physical property value detection channel 32 is formed in a linear shape. Note that the same applies to the flow rate detection channel 33.

図15(a)は、図13に示される物性値検出部12の概略構成を示す上面図であり、図15(b)は、図13に示される流量検出部11の概略構成を示す上面図である。図15に示す流量測定装置1では、物性値検出用流路32と流量検出用流路33とは、長手方向に延在する流路の幅がそれぞれ異なっており、物性値検出用流路32の物性値検出部12が配置された流路の幅は、流量検出用流路33の流量検出部11が配置された流路の幅よりも狭くなっている。これにより、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流される測定対象流体の流量を、それぞれ個別に制御されている。 15(a) is a top view showing a schematic configuration of the physical property value detection unit 12 shown in FIG. 13, and FIG. 15(b) is a top view showing a schematic configuration of the flow rate detection unit 11 shown in FIG. It is. In the flow rate measuring device 1 shown in FIG. 15, the physical property value detection flow path 32 and the flow rate detection flow path 33 have different widths extending in the longitudinal direction, and the physical property value detection flow path 32 and the flow rate detection flow path 33 have different widths extending in the longitudinal direction. The width of the channel in which the physical property value detection section 12 is arranged is narrower than the width of the channel in which the flow rate detection section 11 of the flow rate detection channel 33 is arranged. Thereby, in the flow rate measurement device 1, the flow rate of the fluid to be measured that is divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 is individually controlled.

図16は、図13に示される物性値検出用流路32および流量検出用流路33に分流する測定対象流体の流量を説明するための模式図である。図16に示されるように、本実施形態では、物性値検出用流路32には流量Pの測定対象流体が分流され、流量検出用流路33には流量Qの測定対象流体が流れるように、物性値検出用流路32および流量検出用流路33の幅が設定されている。 FIG. 16 is a schematic diagram for explaining the flow rate of the fluid to be measured that is divided into the physical property value detection channel 32 and the flow rate detection channel 33 shown in FIG. As shown in FIG. 16, in the present embodiment, the fluid to be measured with a flow rate P is branched into the flow path 32 for physical property value detection, and the fluid to be measured with a flow rate Q flows into the flow path 33 for flow rate detection. , the widths of the physical property value detection channel 32 and the flow rate detection channel 33 are set.

この流量Pおよび流量Qの値は、主流路部2を流れる測定対象流体の流量によって変動するものであるが、通常の使用態様において、流量Pは物性値検出部12の検出レンジ内の値となり、流量Qは流量検出部11の検出レンジ内の値となるように、物性値検出用流路32および流量検出用流路33の幅がそれぞれ設定されている。 The values of the flow rate P and the flow rate Q vary depending on the flow rate of the fluid to be measured flowing through the main flow path section 2, but in normal usage, the flow rate P is a value within the detection range of the physical property value detection section 12. The widths of the physical property value detection channel 32 and the flow rate detection channel 33 are set so that the flow rate Q is within the detection range of the flow rate detection section 11.

なお、本実施形態では、物性値検出用流路32の幅は約0.4mmであり、流量検出用流路33の幅は約0.8mmである。 In this embodiment, the width of the physical property value detection channel 32 is about 0.4 mm, and the width of the flow rate detection channel 33 is about 0.8 mm.

このように、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流する測定対象流体の流量を、それぞれの幅を調整することで個別に制御することが可能である。このため、物性値検出部12の検出レンジに応じて物性値検出用流路32を流れる測定対象流体の流量を制御し、流量検出部11の検出レンジに応じて流量検出用流路33を流れる測定対象流体の流量を制御することができる。 In this way, in the flow rate measuring device 1, it is possible to individually control the flow rate of the fluid to be measured that is divided into the physical property value detection channel 32 and the flow rate detection channel 33 by adjusting the widths of each. be. Therefore, the flow rate of the fluid to be measured flowing through the physical property value detection flow path 32 is controlled according to the detection range of the physical property value detection section 12, and the flow rate of the fluid to be measured flows through the flow rate detection flow path 33 according to the detection range of the flow rate detection section 11. The flow rate of the fluid to be measured can be controlled.

したがって、物性値検出部12は、固有の検出レンジに応じた最適な流量で、測定対象流体の物性値を検出することができるので、物性値検出部12の検出精度を高めることができる。 Therefore, the physical property value detection section 12 can detect the physical property value of the fluid to be measured at the optimal flow rate according to the unique detection range, so that the detection accuracy of the physical property value detection section 12 can be improved.

同様に、流量検出部11は、固有の検出レンジに応じた最適な流量で、測定対象流体の流量を検出することができるので、流量検出部11の検出精度を高めることができる。 Similarly, the flow rate detection section 11 can detect the flow rate of the fluid to be measured at an optimal flow rate according to the unique detection range, so that the detection accuracy of the flow rate detection section 11 can be improved.

上述の変形例では、図16に示されるように、物性値検出用流路32および流量検出用流路33が、何れも略コの字型に形成された構成について説明したが、本発明はこれに限定されない。物性値検出用流路32および流量検出用流路33は、物性値検出用流路32および流量検出用流路33を通過する測定対象流体の流量が制御可能な幅に設定されていれば、その形状は特に限定されない。 In the above-mentioned modification, as shown in FIG. 16, the physical property value detection channel 32 and the flow rate detection channel 33 are both formed in a substantially U-shape. It is not limited to this. If the physical property value detection channel 32 and the flow rate detection channel 33 are set to a width that allows control of the flow rate of the fluid to be measured that passes through the physical property value detection channel 32 and the flow rate detection channel 33, Its shape is not particularly limited.

図17(a)~(d)は、図16に示される副流路部3の上面に形成された、物性値検出用流路32および流量検出用流路33の変形例を示す上面図である。 17(a) to (d) are top views showing modified examples of the physical property value detection channel 32 and the flow rate detection channel 33 formed on the upper surface of the sub-channel section 3 shown in FIG. be.

図17(a)に示されるように、例えば、物性値検出用流路32を直線状に形成し、流量検出用流路33を略コの字型に形成してもよい。 As shown in FIG. 17A, for example, the physical property value detection channel 32 may be formed in a straight line, and the flow rate detection channel 33 may be formed in a substantially U-shape.

また、図17(b)~図17(d)に示されるように、流量検出用流路33に対して測定対象流体を流入させる方向と直行する方向から物性値検出用流路32に対して測定対象流体を流入させるように、物性値検出用流路32を形成してもよい。 In addition, as shown in FIGS. 17(b) to 17(d), the physical property value detection flow path 32 is directed from a direction perpendicular to the direction in which the fluid to be measured flows into the flow rate detection flow path 33. The physical property value detection channel 32 may be formed to allow the fluid to be measured to flow therein.

この場合、物性値検出部12と流量検出部11との配置角度を一致させることができるため、流量測定装置1の製造過程において、回路基板5に物性値検出部12および流量検出部11を実装する工程を簡略化することができる。 In this case, since the arrangement angles of the physical property value detection section 12 and the flow rate detection section 11 can be matched, the physical property value detection section 12 and the flow rate detection section 11 are mounted on the circuit board 5 during the manufacturing process of the flow rate measuring device 1. The process of doing so can be simplified.

上述の変形例では、図15(a)に示されるように、物性値検出部12は、測定対象流体を加熱する物性値検出部内加熱部123と、測定対象流体の温度を検出する物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122とを備え、物性値検出部内第1温度検出部121および物性値検出部内第2温度検出部122が、物性値検出部内加熱部123を挟んで左右対称に配置された構成について説明したが、本発明はこれに限定されない。 In the above modification, as shown in FIG. 15(a), the physical property value detection section 12 includes a physical property value detection section internal heating section 123 that heats the fluid to be measured, and a physical property value detection section that detects the temperature of the fluid to be measured. The first internal temperature detecting section 121 and the second internal physical property value detecting temperature detecting section 122 are provided, and the first internal physical property value detecting section 121 and the second internal physical property value detecting temperature detecting section 122 are configured to detect internal heating of the physical property value detecting section. Although a configuration in which the parts are arranged symmetrically with the portion 123 in between has been described, the present invention is not limited thereto.

図18は、図15(a)に示される物性値検出部12の変形例の概略構成を示す上面図である。図18に示されるように、物性値検出部内第2温度検出部122を省略して、物性値検出部内加熱部123と、物性値検出部内第1温度検出部121とで、物性値検出部12aを構成してもよい。 FIG. 18 is a top view showing a schematic configuration of a modified example of the physical property value detection section 12 shown in FIG. 15(a). As shown in FIG. 18, the second temperature detection section 122 in the physical property value detection section is omitted, and the physical property value detection section 12a is composed of the heating section 123 in the physical property value detection section and the first temperature detection section 121 in the physical property value detection section. may be configured.

このように、物性値検出部内加熱部と物性値検出部内第1温度検出部を、測定対象流体の流れ方向と直交する方向に並べて配置することで、物性値検出部12aを実現してもよい。 In this way, the physical property value detecting part 12a may be realized by arranging the heating part in the physical property value detecting part and the first temperature detecting part in the physical property value detecting part in a direction perpendicular to the flow direction of the fluid to be measured. .

〔変形例2〕
本発明に係る流量測定装置の他の変形例について、図19に基づいて説明する。なお、上述した実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。本変形例に係る流量測定装置は、流量検出部が主流路に配置される。
[Modification 2]
Another modification of the flow rate measuring device according to the present invention will be described based on FIG. 19. In addition, regarding the member corresponding to the embodiment mentioned above, the corresponding code|symbol is attached|subjected and the description is abbreviate|omitted. In the flow rate measurement device according to this modification, the flow rate detection section is arranged in the main flow path.

図19(a)は、本変形例に係る流量測定装置1aを示す斜視図であり、図19(b)は、図19(a)に示される流量測定装置1aを示す断面図であり、図19(c)は、図19(a)に示される副流路部3aを示す上面図である。 FIG. 19(a) is a perspective view showing a flow rate measuring device 1a according to this modification, and FIG. 19(b) is a sectional view showing the flow rate measuring device 1a shown in FIG. 19(a). 19(c) is a top view showing the sub-channel portion 3a shown in FIG. 19(a).

図19(a)~図19(c)に示されるように、流量測定装置1aでは、主流路部2aの内周面の流入口34Aと流出口35Aとの間に、開口部37Aが形成されている。 As shown in FIGS. 19(a) to 19(c), in the flow measuring device 1a, an opening 37A is formed between the inlet 34A and the outlet 35A on the inner circumferential surface of the main flow path 2a. ing.

副流路部3aの内部には、流量検出部11が配置されたセル状の流量検出用流路37aが形成されており、流量検出用流路37aは開口部37Aに連通している。このため、流
量検出用流路37aには、開口部37Aを介して主流路部2aを流れる測定対象流体が流入し、流量検出部11によってその流量が検出される。
A cellular flow rate detection flow path 37a in which the flow rate detection unit 11 is disposed is formed inside the sub flow path portion 3a, and the flow rate detection flow path 37a communicates with the opening 37A. Therefore, the fluid to be measured flowing through the main flow path 2a flows into the flow rate detection flow path 37a through the opening 37A, and the flow rate is detected by the flow rate detection section 11.

なお、開口部37Aの大きさを制御調整することによって、主流路部2aから流量検出用流路37aに流入する測定対象流体の流量を制御することができる。 Note that by controlling and adjusting the size of the opening 37A, the flow rate of the fluid to be measured flowing from the main flow path portion 2a into the flow rate detection flow path 37a can be controlled.

副流路部3aは、流入用流路34と、物性値検出用流路32と、流出用流路35とから構成されており、物性値検出用流路32は、長手方向に延在する流路に、測定対象流体の物性値を検出するための物性値検出部12が配置された物性値検出用流路32を有している。 The sub-channel portion 3a includes an inflow channel 34, a physical property value detection channel 32, and an outflow channel 35, and the physical property value detection channel 32 extends in the longitudinal direction. The flow path has a physical property value detection flow path 32 in which a physical property value detection unit 12 for detecting the physical property value of the fluid to be measured is arranged.

このように、流量測定装置1aでは、物性値検出部12が副流路部3aに配置され、流量検出部11が主流路部2aに配置されている。このため、流量測定装置1aでは、物性値検出部12の検出レンジに応じた流量を制御することが可能である。 In this way, in the flow rate measurement device 1a, the physical property value detection section 12 is arranged in the sub-flow path section 3a, and the flow rate detection section 11 is arranged in the main flow path section 2a. Therefore, in the flow rate measuring device 1a, it is possible to control the flow rate according to the detection range of the physical property value detection section 12.

それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1aを実現することができる。 Therefore, according to the present embodiment, it is possible to realize a flow rate measuring device 1a that can reduce changes in output characteristics due to changes in physical properties of the fluid to be measured and can measure the flow rate of the fluid to be measured with high accuracy. .

〔変形例3〕
本発明に係る流量測定装置の他の変形例について、図20に基づいて説明する。なお、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。
[Modification 3]
Another modification of the flow rate measuring device according to the present invention will be described based on FIG. 20. In addition, regarding the member corresponding to embodiment, the corresponding code|symbol is attached|subjected and the description is abbreviate|omitted.

本変形例に係る流量測定装置は、独立した2つの副流路を有する点で、上述の流量測定装置と異なっている。 The flow rate measuring device according to this modification differs from the above-described flow rate measuring device in that it has two independent sub-channels.

図20(a)は、本実施形態に係る流量測定装置1bを示す斜視図であり、図20(b)は、図20(a)に示される副流路部3を示す上面図である。 FIG. 20(a) is a perspective view showing the flow rate measuring device 1b according to the present embodiment, and FIG. 20(b) is a top view showing the sub flow path section 3 shown in FIG. 20(a).

図20(a)および図20(b)に示されるように、流量測定装置1bでは、副流路部3bは、その内部および上面に2つの副流路部が形成されている。 As shown in FIGS. 20(a) and 20(b), in the flow measuring device 1b, the sub-channel portion 3b has two sub-channel portions formed inside and on the upper surface thereof.

第1の副流路部は、流入用流路34bと、物性値検出用流路32bと、流出用流路35bとから構成されており、物性値検出用流路32bには、長手方向に延在する流路に、測定対象流体の物性値を検出するための物性値検出部12が配置されている。 The first sub-channel section is composed of an inflow channel 34b, a physical property value detection channel 32b, and an outflow channel 35b. A physical property value detection unit 12 for detecting physical property values of the fluid to be measured is arranged in the extending flow path.

第2の副流路部は、流入用流路34Bと、流量検出用流路33Bと、流出用流路35Bとから構成されており、流量検出用流路33Bには、長手方向に延在する流路に、測定対象流体の流量を検出するための流量検出部11が配置されている。 The second sub-channel section is composed of an inflow channel 34B, a flow rate detection channel 33B, and an outflow channel 35B. A flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is arranged in the flow path.

このように、流量測定装置1bでは、副流路部3bが独立した2つの副流路を有しており、物性値検出部12が第1の副流路部に配置され、流量検出部11が第2の副流路部に配置されている。このため、流量測定装置1bによれば、物性値検出部12および流量検出部11の検出レンジに応じた流量を、個別に制御することが可能である。 In this way, in the flow rate measuring device 1b, the sub-channel section 3b has two independent sub-channels, the physical property value detection section 12 is disposed in the first sub-channel section, and the flow rate detection section 11 is disposed in the first sub-channel section. is arranged in the second sub-channel section. Therefore, according to the flow rate measuring device 1b, it is possible to individually control the flow rates according to the detection ranges of the physical property value detection section 12 and the flow rate detection section 11.

それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1bを実現することができる。 Therefore, according to the present embodiment, it is possible to realize a flow rate measuring device 1b that can reduce changes in output characteristics due to changes in physical properties of the fluid to be measured and can measure the flow rate of the fluid to be measured with high accuracy. .

〔変形例4〕
本発明に係る流量測定装置の他の変形例について、図21に基づいて説明する。なお、実施形態と対応する部材に関しては、対応する符号を付し、その説明を省略する。
[Modification 4]
Another modification of the flow rate measuring device according to the present invention will be described based on FIG. 21. In addition, regarding the member corresponding to embodiment, the corresponding code|symbol is attached|subjected and the description is abbreviate|omitted.

本変形例に係る流量測定装置は、物性値検出用流路が、流量検出用流路内に形成されている点で、上述の流量測定装置と異なっている。 The flow rate measurement device according to this modification differs from the above-described flow rate measurement device in that the physical property value detection channel is formed within the flow rate detection channel.

図21(a)は、本実施形態に係る流量測定装置1cを示す斜視図であり、図21(b)は、図21(a)に示される副流路部3cを示す斜視図であり、図21(c)は、図21(a)に示される副流路部3cを示す上面図である。 FIG. 21(a) is a perspective view showing the flow rate measuring device 1c according to the present embodiment, and FIG. 21(b) is a perspective view showing the sub-flow path portion 3c shown in FIG. 21(a). FIG. 21(c) is a top view showing the sub-channel portion 3c shown in FIG. 21(a).

図21(a)~図21(c)に示されるように、流量測定装置1cでは、副流路部3cは、流入用流路34と、物性値検出用流路32cと、流量検出用流路33cと、流出用流路35とから構成されている。 As shown in FIGS. 21(a) to 21(c), in the flow rate measuring device 1c, the sub-channel portion 3c includes an inflow channel 34, a physical property value detection channel 32c, and a flow rate detection channel 34. It is composed of a passage 33c and an outflow passage 35.

副流路部3cでは、物性値検出用流路32cが、流量検出用流路33c内に形成されており、測定対象流体の流れ方向に対して上流側に流量検出部11が配置され、下流側に物性値検出部12が配置されている。 In the sub flow path section 3c, a physical property value detection flow path 32c is formed within a flow rate detection flow path 33c, and a flow rate detection section 11 is disposed on the upstream side with respect to the flow direction of the fluid to be measured, and A physical property value detection section 12 is arranged on the side.

ここで、物性値検出用流路32cは、測定対象流体の流量を制御するための流量制御部材40によって、流量検出用流路33cと仕切られており、物性値検出部12は流量制御部材40の内部に配置されている。 Here, the physical property value detection channel 32c is separated from the flow rate detection channel 33c by a flow rate control member 40 for controlling the flow rate of the fluid to be measured. is located inside.

流量制御部材40は、物性値検出用流路32cを通過する測定対象流体の流量を制御するためのものであり、第1側壁部40aと第2側壁部40bとから構成されている。第1側壁部40aおよび第2側壁部40bは何れも略コの字型の板状部材であり、それぞれの端部を対向させた状態で、所定の間隔をおいて配置されている。 The flow rate control member 40 is for controlling the flow rate of the fluid to be measured passing through the physical property value detection channel 32c, and is composed of a first side wall portion 40a and a second side wall portion 40b. The first side wall portion 40a and the second side wall portion 40b are both substantially U-shaped plate members, and are arranged at a predetermined interval with their respective ends facing each other.

したがって、第1側壁部40aと第2側壁部40bとの間隔を制御することによって、流量制御部材40の内部、すなわち、物性値検出用流路32cを通過する測定対象流体の流量を調整することができる。 Therefore, by controlling the distance between the first side wall portion 40a and the second side wall portion 40b, the flow rate of the fluid to be measured passing through the inside of the flow rate control member 40, that is, the physical property value detection flow path 32c can be adjusted. I can do it.

このように、流量測定装置1cでは、副流路部3cが流量制御部材40を備え、流量制御部材40の内部に物性値検出用流路32cが設けられているため、副流路部3c内の任意の位置に物性値検出用流路32cを設けることが可能となる。また、流量制御部材40を備えることで、物性値検出用流路32cを通過する測定対象流体の流量を容易に制御することができる。 In this manner, in the flow rate measurement device 1c, the sub-flow path portion 3c includes the flow rate control member 40, and the physical property value detection flow path 32c is provided inside the flow rate control member 40. It becomes possible to provide the physical property value detection channel 32c at an arbitrary position. Moreover, by providing the flow rate control member 40, the flow rate of the fluid to be measured passing through the physical property value detection channel 32c can be easily controlled.

このように、物性値検出用流路32cが、流量検出用流路33c内に形成されて構成であっても、物性値検出部12および流量検出部11の検出レンジに応じた流量を個別に制御することが可能である。 In this way, even if the physical property value detection flow path 32c is formed within the flow rate detection flow path 33c, the flow rate can be determined individually according to the detection range of the physical property value detection section 12 and the flow rate detection section 11. It is possible to control.

それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1cを実現することができる。 Therefore, according to the present embodiment, it is possible to realize a flow rate measuring device 1c that can reduce changes in output characteristics due to changes in physical properties of the fluid to be measured and can measure the flow rate of the fluid to be measured with high accuracy. .

〔変形例5〕
図22(a)~図22(c)は、他の変形例に係る多段分流型の一例を示す図である。図22(c)は、主流路部2d及び流量測定装置1dの接続箇所を示す。図22(b)は、図22(c)において破線の長方形で示した箇所を拡大した図である。また、図22(a)は、図22(c)におけるユニット1000のA-A断面図である。図22(b)に
拡大して示すように、本変形例では、主流路部2の流れ方向に沿って、主流路部2dよりも細い(断面積の小さい)副流路部3dが設けられている。また、副流路部3dは、主流路部2dに沿って貫通する主流路2eと、副流路部3dに対しほぼ垂直に接続される副流路部3eとに分岐する。そして、図22(a)に示すように、副流路部3eは、流量検出部11が設けられた副流路部3fと、物性値検出部12が設けられた副流路部3gとに分岐する。
[Modification 5]
FIGS. 22(a) to 22(c) are diagrams showing an example of a multi-stage branch type according to another modification. FIG. 22(c) shows a connection point between the main flow path section 2d and the flow rate measuring device 1d. FIG. 22(b) is an enlarged view of the portion indicated by the dashed rectangle in FIG. 22(c). Further, FIG. 22(a) is a sectional view taken along line AA of the unit 1000 in FIG. 22(c). As shown in an enlarged view in FIG. 22(b), in this modification, a sub-flow path section 3d that is thinner (having a smaller cross-sectional area) than the main flow path section 2d is provided along the flow direction of the main flow path section 2. ing. Further, the sub-channel section 3d branches into a main channel 2e penetrating along the main channel section 2d, and a sub-channel section 3e connected substantially perpendicularly to the sub-channel section 3d. As shown in FIG. 22(a), the sub-flow path section 3e is divided into a sub-flow path section 3f in which the flow rate detection section 11 is provided and a sub-flow path section 3g in which the physical property value detection section 12 is provided. Branch out.

上述した副流路を有する変形例によれば、主流路部2dの流量(すなわち、主流路部2dの太さ(断面積))にかかわらず、小型の流量測定装置1dで流量を測定できる。また、上述した副流路を有する変形例によれば、センサチップへのダストの侵入を抑制し、測定精度を向上させることができるところ、図22に示す変形例のように3段階の分流構造を採用すれば、ダストの侵入量をさらに低減することができる。 According to the above-described modification having the sub-flow path, the flow rate can be measured using the small-sized flow rate measuring device 1d, regardless of the flow rate of the main flow path portion 2d (that is, the thickness (cross-sectional area) of the main flow path portion 2d). In addition, according to the above-mentioned modification having the sub-flow path, it is possible to suppress the intrusion of dust into the sensor chip and improve measurement accuracy, but as in the modification shown in FIG. If this is adopted, the amount of dust intrusion can be further reduced.

また、図22に示したユニット1000のように、例えば流量検出部11が設けられた副流路部3fと、物性値検出部12が設けられた副流路部3gとを有する部品を着脱自在な部品として形成するようにしてもよい。このようにすれば、様々な流量や形状の主流路部2に対して取り付け可能な部品を提供することができ、コストを低減できる。 Further, like the unit 1000 shown in FIG. 22, for example, a component having a sub-flow path section 3f in which a flow rate detection section 11 is provided and a sub-flow path section 3g in which a physical property value detection section 12 is provided can be freely attached and detached. It may also be formed as a separate part. In this way, it is possible to provide components that can be attached to the main flow passage section 2 having various flow rates and shapes, and it is possible to reduce costs.

図23は、他の変形例を説明するための断面図である。図23の例では、回路基板の表裏にそれぞれ流量検出部11と物性値検出部12とが配置されている。そして、回路基板を貫通して副流路が設けられている。管状の副流路を設ける態様に限らず、図23に示すような分流構造を採用してもよい。 FIG. 23 is a sectional view for explaining another modification. In the example of FIG. 23, a flow rate detection section 11 and a physical property value detection section 12 are arranged on the front and back sides of the circuit board, respectively. A sub-flow path is provided through the circuit board. The embodiment is not limited to providing a tubular sub-flow path, and a branching structure as shown in FIG. 23 may be adopted.

なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
主流路を流れる測定対象流体の流量を検出するための流量検出部(11)と、
測定対象流体を加熱する加熱部(123)および測定対象流体の温度を検出する温度検出部(121、122)を有し、測定対象流体の特性値を取得するための特性値取得部と、
前記特性値取得部によって取得された測定対象流体の特性値を用いて、前記流量検出部(11)から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部(131)と、
を備え、
前記加熱部(123)および前記温度検出部(121、122)は、測定対象流体の流れ方向と直交する方向に並んで配置されており、
前記特性値取得部は、前記加熱部(123)の温度を変化させた前後における、前記温度検出部(121、122)により検出された前記測定対象流体の温度の比により、前記特性値を取得することを特徴とする流量測定装置(1)。
<発明14>
測定対象流体の流れ方向に並んで配置された、測定対象流体を加熱する加熱部(113)および測定対象流体の温度を検出する温度検出部(111、112)を有し、主流路を流れる測定対象流体の流量を検出するための流量検出部(11)と、
測定対象流体の流れと直交する方向に並んで配置された、測定対象流体を加熱する第二加熱部(123)および測定対象流体の温度を検出する第二温度検出部(121、123)を有し、測定対象流体の特性値を取得するための特性値取得部と、
を備えた流量測定装置(1)を用いた前記測定対象流体の流量の測定方法であって、
前記流量検出部(11)によって前記主流路を流れる測定対象流体の流量を検出する流量検出工程(S1)と、
前記第二温度検出部(121、123)により前記測定対象流体の温度を測定する第一
温度測定工程(S12)と、
前記第二加熱部(123)の温度を変化させる温度変化工程(S13)と、
前記温度変化工程(S13)の後に、前記第二温度検出部(121、123)により前記測定対象流体の温度を測定する第二温度測定工程(S14)と、
前記第一温度測定工程(S12)で測定された前記測定対象流体の温度と、前記第二温度測定工程で測定された前記測定対象流体の温度との比によって、前記特性値を取得する特性値取得工程(S15)と、
前記流量検出工程(S1)において検出された測定対象流体の流量に、前記特性値を乗
じることで、前記測定対象流体の流量を補正する補正工程(S3)と、
を有することを特徴とする流量の測定方法。
<発明15>
測定対象流体の流れ方向に並んで配置された、測定対象流体を加熱する加熱部(113)および測定対象流体の温度を検出する温度検出部(111、112)を有し、主流路を流れる測定対象流体の流量を検出するための流量検出部(11)と、
測定対象流体の流れと直交する方向に並んで配置された、測定対象流体を加熱する第二加熱部(123)および測定対象流体の温度を検出する第二温度検出部(121、123)を有し、測定対象流体の特性値を取得するための特性値取得部と、
を備えた流量測定装置(1)に、前記測定対象流体の流量の測定させる流量測定プログラムであって、
情報処理装置に、
前記流量検出部(11)によって前記主流路を流れる測定対象流体の流量を検出する流量検出ステップ(S1)と、
前記第二温度検出部(121、123)により前記測定対象流体の温度を測定する第一温度測定ステップ(S12)と、
前記第二加熱部(123)の温度を変化させる温度変化ステップ(S13)と、
前記温度変化ステップ(S13)の後に、前記第二温度検出部(121、123)により前記測定対象流体の温度を測定する第二温度測定ステップ(S14)と、
前記第一温度測定ステップ(S12)で測定された前記測定対象流体の温度と、前記第二温度測定ステップで測定された前記測定対象流体の温度との比によって、前記特性値を取得する特性値取得ステップ(S15)と、
前記流量検出ステップ(S1)において検出された測定対象流体の流量に、前記特性値
を乗じることで、前記測定対象流体の流量を補正する補正ステップ(S3)と、
を実行させるための流量測定プログラム。
Note that in order to make it possible to compare the constituent features of the present invention and the configurations of the embodiments, the constituent features of the present invention will be described below with reference numerals in the drawings.
<Invention 1>
a flow rate detection unit (11) for detecting the flow rate of the fluid to be measured flowing through the main flow path;
a characteristic value acquisition unit that has a heating unit (123) that heats the fluid to be measured and a temperature detection unit (121, 122) that detects the temperature of the fluid to be measured, and that acquires the characteristic value of the fluid to be measured;
a flow rate correction unit (10) that corrects the flow rate of the fluid to be measured calculated based on the detection signal output from the flow rate detection unit (11) using the characteristic value of the fluid to be measured acquired by the characteristic value acquisition unit; 131) and
Equipped with
The heating unit (123) and the temperature detection unit (121, 122) are arranged side by side in a direction perpendicular to the flow direction of the fluid to be measured,
The characteristic value acquisition unit acquires the characteristic value based on a ratio of temperatures of the fluid to be measured detected by the temperature detection unit (121, 122) before and after changing the temperature of the heating unit (123). A flow rate measuring device (1) characterized by:
<Invention 14>
It has a heating part (113) that heats the fluid to be measured and a temperature detection part (111, 112) that detects the temperature of the fluid to be measured, which are arranged in parallel in the flow direction of the fluid to be measured. a flow rate detection unit (11) for detecting the flow rate of the target fluid;
It has a second heating part (123) that heats the fluid to be measured and a second temperature detection part (121, 123) that detects the temperature of the fluid to be measured, which are arranged side by side in a direction perpendicular to the flow of the fluid to be measured. and a characteristic value acquisition unit for acquiring characteristic values of the fluid to be measured;
A method for measuring the flow rate of the fluid to be measured using a flow rate measuring device (1) comprising:
a flow rate detection step (S1) in which the flow rate detection unit (11) detects the flow rate of the fluid to be measured flowing through the main channel;
a first temperature measurement step (S12) of measuring the temperature of the fluid to be measured by the second temperature detection unit (121, 123);
a temperature changing step (S13) of changing the temperature of the second heating section (123);
After the temperature change step (S13), a second temperature measurement step (S14) in which the second temperature detection section (121, 123) measures the temperature of the fluid to be measured;
A characteristic value that obtains the characteristic value based on the ratio of the temperature of the fluid to be measured measured in the first temperature measurement step (S12) and the temperature of the fluid to be measured measured in the second temperature measurement step. an acquisition step (S15);
a correction step (S3) of correcting the flow rate of the fluid to be measured by multiplying the flow rate of the fluid to be measured detected in the flow rate detection step (S1) by the characteristic value;
A method for measuring a flow rate, comprising:
<Invention 15>
It has a heating part (113) that heats the fluid to be measured and a temperature detection part (111, 112) that detects the temperature of the fluid to be measured, which are arranged in parallel in the flow direction of the fluid to be measured. a flow rate detection unit (11) for detecting the flow rate of the target fluid;
It has a second heating part (123) that heats the fluid to be measured and a second temperature detection part (121, 123) that detects the temperature of the fluid to be measured, which are arranged side by side in a direction perpendicular to the flow of the fluid to be measured. and a characteristic value acquisition unit for acquiring characteristic values of the fluid to be measured;
A flow rate measurement program that causes a flow rate measurement device (1) equipped with a flow rate measurement device (1) to measure the flow rate of the fluid to be measured,
In the information processing device,
a flow rate detection step (S1) in which the flow rate detection unit (11) detects the flow rate of the fluid to be measured flowing through the main channel;
a first temperature measurement step (S12) of measuring the temperature of the fluid to be measured by the second temperature detection unit (121, 123);
a temperature changing step (S13) of changing the temperature of the second heating section (123);
After the temperature change step (S13), a second temperature measurement step (S14) of measuring the temperature of the fluid to be measured by the second temperature detection section (121, 123);
A characteristic value that obtains the characteristic value based on a ratio between the temperature of the fluid to be measured measured in the first temperature measurement step (S12) and the temperature of the fluid to be measured measured in the second temperature measurement step. an acquisition step (S15);
a correction step (S3) of correcting the flow rate of the fluid to be measured by multiplying the flow rate of the fluid to be measured detected in the flow rate detection step (S1) by the characteristic value;
A flow rate measurement program to run.

1 :流量測定装置
2 :主流路部
3 :副流路部
5 :回路基板
11 :流量検出部
111 :流量検出部内第1温度検出部
112 :流量検出部内第2温度検出部
113 :マイクロヒータ
12 :物性値検出部
121 :物性値検出部内第1温度検出部
122 :物性値検出部内第2温度検出部
123 :物性値検出部内加熱部
13 :制御部
131 :補正処理部
132 :特性値算出部
32 :物性値検出用流路
33 :流量検出用流路
34 :流入用流路
100 :センサ素子
101 :マイクロヒータ
102 :サーモパイル
1000 :ユニット
1 : Flow rate measurement device 2 : Main flow path part 3 : Sub flow path part 5 : Circuit board 11 : Flow rate detection part 111 : First temperature detection part in the flow rate detection part 112 : Second temperature detection part in the flow rate detection part 113 : Micro heater 12 : Physical property value detection section 121 : First temperature detection section in the physical property value detection section 122 : Second temperature detection section in the physical property value detection section 123 : Heating section in the physical property value detection section 13 : Control section 131 : Correction processing section 132 : Characteristic value calculation section 32 : Physical property value detection channel 33 : Flow rate detection channel 34 : Inflow channel 100 : Sensor element 101 : Micro heater 102 : Thermopile 1000 : Unit

Claims (15)

主流路を流れる測定対象流体の流量を検出するための流量検出部と、
測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有し、測定対象流体の特性値を取得するための特性値取得部と、
前記特性値取得部によって取得された測定対象流体の特性値を用いて、前記流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部と、
を備え、
前記加熱部および前記温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されており、
前記特性値取得部は、前記加熱部の温度を変化させた前後における、前記温度検出部により検出された前記測定対象流体の温度の比により、前記特性値を取得することを特徴とする流量測定装置。
a flow rate detection unit for detecting the flow rate of the fluid to be measured flowing through the main flow path;
a characteristic value acquisition unit that has a heating unit that heats the fluid to be measured and a temperature detection unit that detects the temperature of the fluid to be measured, and obtains a characteristic value of the fluid to be measured;
a flow rate correction unit that corrects the flow rate of the fluid to be measured calculated based on the detection signal output from the flow rate detection unit using the characteristic value of the fluid to be measured acquired by the characteristic value acquisition unit;
Equipped with
The heating section and the temperature detection section are arranged side by side in a direction perpendicular to the flow direction of the fluid to be measured,
The characteristic value acquisition section acquires the characteristic value based on a ratio of temperatures of the fluid to be measured detected by the temperature detection section before and after changing the temperature of the heating section. Device.
前記特性値取得部は、前記加熱部の温度を変化させた前後における、前記温度検出部により検出された前記測定対象流体の温度の差及び比により、前記特性値を取得することを特徴とする請求項1に記載の流量測定装置。 The characteristic value acquisition unit acquires the characteristic value based on the difference and ratio of the temperature of the fluid to be measured detected by the temperature detection unit before and after changing the temperature of the heating unit. The flow rate measuring device according to claim 1. 前記特性値は、前記加熱部の温度を変化させた前後における、前記温度検出部により検出された前記測定対象流体の温度の差及び比、または温度の比に、所定の係数を乗じた値であり、
前記流量補正部は、前記流量検出部から出力された検出信号に、前記特性値を乗じることで、前記測定対象流体の流量を補正することを特徴とする請求項1または2に記載の流量測定装置。
The characteristic value is a difference and ratio of the temperature of the fluid to be measured detected by the temperature detection unit before and after changing the temperature of the heating unit, or a value obtained by multiplying the temperature ratio by a predetermined coefficient. can be,
3. The flow rate measurement according to claim 1, wherein the flow rate correction section corrects the flow rate of the fluid to be measured by multiplying the detection signal output from the flow rate detection section by the characteristic value. Device.
一端が前記主流路内に開口した第1流入口に連通し、且つ、他端が前記主流路内に開口した第1流出口に連通することで前記主流路から分流されるとともに、前記特性値取得部の前記温度検出部が配置された特性値検出流路を有する副流路部をさらに備え、
前記流量検出部は、前記特性値検出流路とは異なる位置に配置される
請求項1から3のいずれか一項に記載の流量測定装置。
One end communicates with a first inlet opening in the main flow path, and the other end communicates with a first outflow port open in the main flow path, so that the flow is separated from the main flow path, and the characteristic value further comprising a sub-channel section having a characteristic value detection channel in which the temperature detection section of the acquisition section is arranged,
The flow rate measuring device according to any one of claims 1 to 3, wherein the flow rate detection section is arranged at a position different from the characteristic value detection channel.
前記特性値取得部の前記温度検出部および前記流量検出部は、前記主流路または、前記副流路部を構成する部材に脱着可能に設けられた流量検出部材に設けられたことを特徴とする請求項4に記載の流量測定装置。 The temperature detection section and the flow rate detection section of the characteristic value acquisition section are provided in a flow rate detection member that is detachably provided to a member constituting the main flow channel or the sub flow channel section. The flow rate measuring device according to claim 4. 前記副流路部は、前記流量検出部が配置された流量検出流路と、
一端が前記主流路内に開口した第1流入口に連通し、且つ、他端が前記主流路内に開口した第1流出口に連通することで前記副流路部から分流された第一副流路部と、
一端が前記第一副流路部に開口した第2流入口に連通し、且つ、他端が前記第一副流路部内に開口した第2流出口に連通することで前記第一副流路部から分流された第二副流路部と、
を有し、
前記流量検出流路及び前記特性値検出流路はともに、一端が前記第二副流路部に開口した第3流入口に連通し、且つ、他端が前記第二副流路部内に開口した第3流出口に連通することで前記第二副流路部からさらに分流されることで形成されたことを特徴とする請求項4または5に記載の流量測定装置。
The sub-channel section includes a flow rate detection channel in which the flow rate detection section is arranged;
A first subflow branched from the subflow path by having one end communicating with a first inflow port opened into the main flow path and the other end communicating with a first outflow port opened into the main flow path. A flow path section;
One end communicates with a second inlet opened in the first sub-channel, and the other end communicates with a second outlet opened in the first sub-channel, thereby forming the first sub-channel. a second sub-channel section separated from the section;
has
Both the flow rate detection channel and the characteristic value detection channel have one end communicating with a third inlet opening in the second sub-channel section, and the other end opening into the second sub-channel section. 6. The flow rate measuring device according to claim 4, wherein the flow rate measuring device is formed by being further divided from the second sub-flow path section by communicating with a third outlet.
前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、
前記流量検出流路は、一端が前記第1流入口に連通し、且つ、他端が前記第1流出口に連通しており、
前記第1流入口から流入した測定対象流体を、前記特性値検出流路および前記流量検出流路に分流させることを特徴とする請求項4または5に記載の流量測定装置。
The sub-channel section further includes a flow rate detection channel in which the flow rate detection section is arranged,
The flow rate detection channel has one end communicating with the first inlet and the other end communicating with the first outlet,
6. The flow rate measuring device according to claim 4, wherein the fluid to be measured that flows in from the first inlet is divided into the characteristic value detection channel and the flow rate detection channel.
前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、
前記特性値検出流路は、前記流量検出流路内に設けられており、
前記流量検出流路内を流れる測定対象流体の一部を前記特性値検出流路に流入させることを特徴とする請求項4または5に記載の流量測定装置。
The sub-channel section further includes a flow rate detection channel in which the flow rate detection section is arranged,
The characteristic value detection channel is provided within the flow rate detection channel,
6. The flow rate measuring device according to claim 4, wherein a part of the fluid to be measured flowing in the flow rate detection channel is caused to flow into the characteristic value detection channel.
前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、
前記流量検出流路は、一端が前記主流路内に開口した第4流入口に連通し、且つ、他端が前記主流路内に開口した第4流出口に連通していることを特徴とする請求項4または5に記載の流量測定装置。
The sub-channel section further includes a flow rate detection channel in which the flow rate detection section is arranged,
The flow rate detection flow path is characterized in that one end communicates with a fourth inlet opened into the main flow path, and the other end communicates with a fourth outflow port opened into the main flow path. The flow rate measuring device according to claim 4 or 5.
前記流量検出部は、前記主流路に配置されていることを特徴とする請求項1から5のいずれか一項に記載の流量測定装置。 The flow rate measuring device according to any one of claims 1 to 5, wherein the flow rate detection section is arranged in the main flow path. 前記加熱部は、当該加熱部の長手方向が測定対象流体の流れ方向に沿って配置されていることを特徴とする請求項1から10の何れか一項に記載の流量測定装置。 11. The flow rate measuring device according to claim 1, wherein the heating section is arranged such that the longitudinal direction of the heating section is along the flow direction of the fluid to be measured. 前記温度検出部は、当該温度検出部の長手方向が測定対象流体の流れ方向に沿って配置されていることを特徴とする請求項1から11の何れか一項に記載の流量測定装置。 12. The flow rate measuring device according to claim 1, wherein the temperature detecting section is arranged such that a longitudinal direction of the temperature detecting section is arranged along a flow direction of the fluid to be measured. 前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、
前記流量検出流路と前記特性値検出流路は、前記副流路部または該副流路部から分流された流路に、回路基板を前記測定対象流体の流れ方向に平行に配置して前記副流路部または該副流路部を分流することで形成され、
前記流量検出部及び前記特性値取得部の前記温度検出部は、それぞれ、前記回路基板上の一面と、反対面に設けられたことを特徴とする請求項4又は5に記載の流量測定装置。
The sub-channel section further includes a flow rate detection channel in which the flow rate detection section is arranged,
The flow rate detection flow path and the characteristic value detection flow path are configured such that a circuit board is disposed in the sub-flow path portion or a flow path branched from the sub-flow path portion in parallel to the flow direction of the fluid to be measured. Formed by a sub-flow path portion or by dividing the sub-flow path portion,
6. The flow rate measuring device according to claim 4, wherein the flow rate detection section and the temperature detection section of the characteristic value acquisition section are provided on one surface and the opposite surface of the circuit board, respectively.
測定対象流体の流れ方向に並んで配置された、測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有し、主流路を流れる測定対象流体の流量を検出するための流量検出部と、
測定対象流体の流れと直交する方向に並んで配置された、測定対象流体を加熱する第二加熱部および測定対象流体の温度を検出する第二温度検出部を有し、測定対象流体の特性値を取得するための特性値取得部と、
を備えた流量測定装置を用いた前記測定対象流体の流量の測定方法であって、
前記流量検出部によって前記主流路を流れる測定対象流体の流量を検出する流量検出工程と、
前記第二温度検出部により前記測定対象流体の温度を測定する第一温度測定工程と、
前記第二加熱部の温度を変化させる温度変化工程と、
前記温度変化工程の後に、前記第二温度検出部により前記測定対象流体の温度を測定する第二温度測定工程と、
前記第一温度測定工程で測定された前記測定対象流体の温度と、前記第二温度測定工程で測定された前記測定対象流体の温度との比によって、前記特性値を取得する特性値取得工程と、
前記流量検出工程において検出された測定対象流体の流量に、前記特性値を乗じることで、前記測定対象流体の流量を補正する補正工程と、
を有することを特徴とする流量の測定方法。
It has a heating part that heats the fluid to be measured and a temperature detection part to detect the temperature of the fluid to be measured, which are arranged side by side in the flow direction of the fluid to be measured, and for detecting the flow rate of the fluid to be measured flowing through the main channel. a flow rate detection section;
It has a second heating part that heats the fluid to be measured and a second temperature detection part to detect the temperature of the fluid to be measured, which are arranged side by side in a direction perpendicular to the flow of the fluid to be measured, and a characteristic value of the fluid to be measured. a characteristic value acquisition unit for acquiring
A method for measuring the flow rate of the fluid to be measured using a flow rate measuring device comprising:
a flow rate detection step of detecting the flow rate of the fluid to be measured flowing through the main flow path by the flow rate detection unit;
a first temperature measurement step of measuring the temperature of the fluid to be measured by the second temperature detection section;
a temperature changing step of changing the temperature of the second heating section;
a second temperature measurement step of measuring the temperature of the fluid to be measured by the second temperature detection section after the temperature change step;
a characteristic value acquisition step of acquiring the characteristic value based on the ratio of the temperature of the fluid to be measured measured in the first temperature measurement step and the temperature of the fluid to be measured measured in the second temperature measurement step; ,
a correction step of correcting the flow rate of the fluid to be measured by multiplying the flow rate of the fluid to be measured detected in the flow rate detection step by the characteristic value;
A method for measuring a flow rate, comprising:
測定対象流体の流れ方向に並んで配置された、測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有し、主流路を流れる測定対象流体の流量を検出するための流量検出部と、
測定対象流体の流れと直交する方向に並んで配置された、測定対象流体を加熱する第二加熱部および測定対象流体の温度を検出する第二温度検出部を有し、測定対象流体の特性値を取得するための特性値取得部と、
を備えた流量測定装置に、前記測定対象流体の流量の測定させる流量測定プログラムであって、
情報処理装置に、
前記流量検出部によって前記主流路を流れる測定対象流体の流量を検出する流量検出ステップと、
前記第二温度検出部により前記測定対象流体の温度を測定する第一温度測定ステップと、
前記第二加熱部の温度を変化させる温度変化ステップと、
前記温度変化ステップの後に、前記第二温度検出部により前記測定対象流体の温度を測定する第二温度測定ステップと、
前記第一温度測定ステップで測定された前記測定対象流体の温度と、前記第二温度測定ステップで測定された前記測定対象流体の温度との比によって、前記特性値を取得する特性値取得ステップと、
前記流量検出ステップにおいて検出された測定対象流体の流量に、前記特性値を乗じることで、前記測定対象流体の流量を補正する補正ステップと、
を実行させるための流量測定プログラム。
It has a heating part that heats the fluid to be measured and a temperature detection part to detect the temperature of the fluid to be measured, which are arranged side by side in the flow direction of the fluid to be measured, and for detecting the flow rate of the fluid to be measured flowing through the main channel. a flow rate detection section;
It has a second heating part that heats the fluid to be measured and a second temperature detection part to detect the temperature of the fluid to be measured, which are arranged side by side in a direction perpendicular to the flow of the fluid to be measured, and a characteristic value of the fluid to be measured. a characteristic value acquisition unit for acquiring
A flow rate measurement program that causes a flow rate measurement device equipped with a flow rate measurement device to measure the flow rate of the fluid to be measured, the program comprising:
In the information processing device,
a flow rate detection step of detecting the flow rate of the fluid to be measured flowing through the main flow path by the flow rate detection unit;
a first temperature measurement step of measuring the temperature of the fluid to be measured by the second temperature detection section;
a temperature changing step of changing the temperature of the second heating section;
a second temperature measurement step of measuring the temperature of the fluid to be measured by the second temperature detection section after the temperature change step;
a characteristic value acquisition step of acquiring the characteristic value based on the ratio of the temperature of the fluid to be measured measured in the first temperature measurement step and the temperature of the fluid to be measured measured in the second temperature measurement step; ,
a correction step of correcting the flow rate of the fluid to be measured by multiplying the flow rate of the fluid to be measured detected in the flow rate detection step by the characteristic value;
A flow rate measurement program to run.
JP2020020720A 2020-02-10 2020-02-10 Flow rate measurement device, flow rate measurement method, and flow rate measurement program Active JP7419855B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020020720A JP7419855B2 (en) 2020-02-10 2020-02-10 Flow rate measurement device, flow rate measurement method, and flow rate measurement program
CN202110047077.4A CN113252124A (en) 2020-02-10 2021-01-14 Flow rate measurement device, flow rate measurement method, and flow rate measurement program
DE102021100802.6A DE102021100802A1 (en) 2020-02-10 2021-01-15 FLOW METER, METHOD OF FLOW MEASUREMENT AND PROGRAM OF FLOW MEASUREMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020720A JP7419855B2 (en) 2020-02-10 2020-02-10 Flow rate measurement device, flow rate measurement method, and flow rate measurement program

Publications (2)

Publication Number Publication Date
JP2021127992A JP2021127992A (en) 2021-09-02
JP7419855B2 true JP7419855B2 (en) 2024-01-23

Family

ID=76968745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020720A Active JP7419855B2 (en) 2020-02-10 2020-02-10 Flow rate measurement device, flow rate measurement method, and flow rate measurement program

Country Status (3)

Country Link
JP (1) JP7419855B2 (en)
CN (1) CN113252124A (en)
DE (1) DE102021100802A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115600046B (en) * 2022-12-01 2023-03-21 深圳核心医疗科技有限公司 Fluid flow estimation method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515714A (en) 1994-11-17 1996-05-14 General Motors Corporation Vapor composition and flow sensor
JP2012233776A (en) 2011-04-28 2012-11-29 Omron Corp Flow rate measuring device
JP2017129470A (en) 2016-01-20 2017-07-27 オムロン株式会社 Flow rate measuring device, measurement method of flow rate, and flow rate measurement program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046143A (en) * 1999-04-27 2008-02-28 Yazaki Corp Thermal fluid sensor and flow sensor
CN100483286C (en) * 2004-06-21 2009-04-29 日立金属株式会社 Flow controller and its regulation method
JP2010066107A (en) * 2008-09-10 2010-03-25 Isuzu Motors Ltd Fluid flow measuring device and method for measuring maf
JP2019002717A (en) * 2017-06-12 2019-01-10 オムロン株式会社 Flow rate measurement device
JP2019035640A (en) * 2017-08-14 2019-03-07 アズビル株式会社 Thermal flow meter
JP7104502B2 (en) * 2017-09-29 2022-07-21 オムロン株式会社 Flow measuring device
JP6825589B2 (en) * 2018-02-20 2021-02-03 オムロン株式会社 Detection device
JP7061534B2 (en) 2018-08-02 2022-04-28 日立Astemo株式会社 Radar device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515714A (en) 1994-11-17 1996-05-14 General Motors Corporation Vapor composition and flow sensor
JP2012233776A (en) 2011-04-28 2012-11-29 Omron Corp Flow rate measuring device
JP2017129470A (en) 2016-01-20 2017-07-27 オムロン株式会社 Flow rate measuring device, measurement method of flow rate, and flow rate measurement program

Also Published As

Publication number Publication date
CN113252124A (en) 2021-08-13
JP2021127992A (en) 2021-09-02
DE102021100802A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP6493235B2 (en) Flow rate measuring device, flow rate measuring method, and flow rate measuring program
JP5652315B2 (en) Flow measuring device
KR100485944B1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
WO2018230478A1 (en) Flow measuring device
CN210123295U (en) Flow rate measuring device
JP7419855B2 (en) Flow rate measurement device, flow rate measurement method, and flow rate measurement program
JP4355792B2 (en) Thermal flow meter
US6684695B1 (en) Mass flow sensor utilizing a resistance bridge
US20190285453A1 (en) Airflow Sensor with Gas Composition Correction
JP3470881B2 (en) Micro flow sensor
WO2019064819A1 (en) Flow rate measurement device
JP6680248B2 (en) Flow rate measuring device and flow rate measuring method
JP4755712B2 (en) Mass flow sensor device
CN111693105B (en) Flow rate measuring device
JP7487500B2 (en) Flow Measuring Device
JP5575359B2 (en) Thermal flow meter
KR20150070389A (en) Air mass sensor
CN113310538A (en) Flow rate measuring device
WO2020080189A1 (en) Flow rate measuring device, and method for controlling flow rate measuring device
JP2007121221A (en) Fluid flow detector
WO2024147736A1 (en) Thermal flow sensor for determining a flow rate of a fluid
JP4793098B2 (en) Magnetic oxygen measuring method and magnetic oxygen meter
JP2003090751A (en) Flow sensor type flowmeter and calibration method thereof
Fralick et al. Mass flow sensor utilizing a resistance bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7419855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150