WO2004025226A1 - Straightening device - Google Patents

Straightening device Download PDF

Info

Publication number
WO2004025226A1
WO2004025226A1 PCT/JP2003/011095 JP0311095W WO2004025226A1 WO 2004025226 A1 WO2004025226 A1 WO 2004025226A1 JP 0311095 W JP0311095 W JP 0311095W WO 2004025226 A1 WO2004025226 A1 WO 2004025226A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifying
flow
rectification
rectifier
network
Prior art date
Application number
PCT/JP2003/011095
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Yao
Hiroshi Tamura
Kazumitsu Nukui
Mitsunori Komaki
Takashi Tashiro
Eiichi Oshima
Satoshi Ishitani
Original Assignee
Yamatake Corporation
Tokyo Gas Co., Ltd.
Takenaka Seisakusho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation, Tokyo Gas Co., Ltd., Takenaka Seisakusho Co., Ltd. filed Critical Yamatake Corporation
Priority to AU2003257601A priority Critical patent/AU2003257601A1/en
Priority to DE10393177T priority patent/DE10393177B4/en
Publication of WO2004025226A1 publication Critical patent/WO2004025226A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/025Influencing flow of fluids in pipes or conduits by means of orifice or throttle elements

Definitions

  • the present invention relates to a rectifier, and more particularly to a rectifier that stably rectifies gas flowing toward a detection element in a flow path in which a detection element provided in a flow meter is arranged.
  • Landscape technology a rectifier that stably rectifies gas flowing toward a detection element in a flow path in which a detection element provided in a flow meter is arranged.
  • a mass flow meter measures the flow rate of a fluid, for example, a gas flowing in a flow path defined by a pipe or the like.
  • a detection element for example, a flow rate sensor, and a signal processing of an output signal of the flow rate sensor are performed.
  • a conversion unit for calculating the flow rate The conversion unit calculates the instantaneous flow rate by multiplying the flow rate represented by the sensor output signal by the known pipe cross-sectional area, and calculates the integrated value of the instantaneous flow rate.
  • a rectifying element such as a rectifying plate or a rectifying network is provided on the upstream side of the flow velocity sensor, and the rectifying element regulates the flow of gas toward the flow velocity sensor to prevent a reduction in measurement accuracy due to knitting flow or turbulent flow. It is known to
  • the gas flow around the flow velocity sensor can be stabilized, and the measurement accuracy can be prevented from deteriorating due to the drift or turbulence of the gas.
  • some of the plurality of through passages (holes and meshes) provided in the rectifying element may be clogged.
  • a net for removing foreign matter is provided on the upstream side of the rectifying element. In this case as well, clogging due to relatively small foreign matter passing through the net for removing foreign matter occurs.
  • An object of the present invention is to prevent clogging of a rectifying element due to a foreign substance contained in a fluid flowing in a flow path in which a detection element of a flow meter is arranged, to make a rectifying action of each part of the rectifying element uniform,
  • An object of the present invention is to provide a rectifier capable of stabilizing a flow and maintaining good measurement accuracy of a detection element.
  • a rectifying device of the present invention includes a first rectifying element disposed upstream of a detection element of a flow meter in a flow path, and the first rectifying element and the detection element in the flow path.
  • a second rectifying element disposed between the first rectifying element and a plurality of first through passages formed in the first rectifying element. It is characterized in that it is smaller than the flow passage area of the second through passage.
  • the fluid flowing in the flow path is first rectified by the first rectifying element of the rectifying device and then rectified by the second rectifying element to reach around the detection element of the flow meter.
  • the rectifying device of the present invention performs the rectifying action in at least two stages to perform good rectification, stabilizes the flow of the fluid around the detection element, and performs detection by the turbulence of the fluid flow. A decrease in the measurement accuracy of the element is prevented.
  • the rectifying device of the present invention eliminates foreign matters in the fluid by the first rectifying element, prevents clogging of the second rectifying element, and prevents disturbance of the fluid flow. That is, foreign matter having a size larger than the flow passage area of the first through passage is captured by the first rectifying element and does not flow to the second rectifying element. Foreign matter having a size smaller than the flow passage area of the first through passage passes through the first rectifying element and flows toward the second rectifying element with the flow of the fluid. The passage area of the passage is larger than that of the first through passage of the first rectifying element, The object also passes through the second rectifying element.
  • the first rectifying element having both the rectifying function and the foreign matter removing function is arranged upstream of the second rectifying element in the fluid flow direction, and the first rectifying element prevents the second rectifying element from being clogged. I am trying to do it.
  • the first rectifying element may be clogged due to the removal of foreign matter from the first rectifying element, so that the rectifying action of the first rectifying element may be non-uniform. Fluid flowing into the second rectifying element downstream of the element does not contain a large foreign matter that may clog the second rectifying element, and therefore, the risk of clogging the second rectifying element is extremely reduced.
  • the first and second rectifying elements can be variously configured, and for example, can be configured by the first and second rectifying networks.
  • the first and second rectification networks have a plurality of first meshes and a plurality of second meshes respectively corresponding to the plurality of first and second through passages, and the size of each first mesh is the size of the second mesh. It is smaller than the mesh size.
  • the first and second rectification networks can be made of various materials in various shapes. For example, the first and second rectification networks are made of a metal material or a synthetic resin material in a square or hexagonal shape.
  • one or more intermediate rectifying elements may be arranged between the first rectifying element and the second rectifying element, and the plurality of through passages provided in the intermediate rectifying element
  • the area is larger than the flow passage area of the plurality of first through passages of the first rectifying element, and preferably smaller than the flow passage area of the plurality of second through passages of the second rectification element.
  • the rectifying device of the present invention is arranged in an environment in which fluid flows in the flow path in both directions.
  • the present invention is also applicable to a flow meter provided with a detection element.
  • the rectifying device of the present invention further includes third and fourth rectifying elements arranged on the opposite side of the detection element in the flow path from the first and second rectifying elements, and the fourth rectifying element includes the fourth rectifying element.
  • the plurality of third through passages which are arranged closer to the detection element than the third rectification element and are formed in the third rectification element, are flow paths of the plurality of fourth through passages formed in the fourth rectification element. It is characterized by having a flow passage area smaller than the area.
  • a flow meter used together with the rectifier of the present invention is configured as a mass flow meter having a flow rate sensor as the detection element and a conversion unit for processing an output signal of the flow rate sensor to obtain a flow rate of the fluid. be able to.
  • ADVANTAGE OF THE INVENTION The rectifier of this invention can stabilize the fluid flow around a flow velocity sensor, and can prevent the measurement precision fall of the flow velocity sensor resulting from the disturbance of the fluid flow. That is, the rectifier of the present invention is particularly suitable for a mass flow meter.
  • FIG. 1 is a schematic sectional view of a flow meter provided with a rectifier according to a first embodiment of the present invention
  • FIG. 2A is a schematic front view showing a first rectifier network provided in the rectifier of FIG. 1
  • FIG. 2B is a schematic front view of an intermediate rectifier network provided in the rectifier
  • FIG. 2C is a schematic front view showing a second rectifier network of the rectifier
  • FIG. 3 is a schematic diagram showing a rectifier according to a second embodiment of the present invention.
  • a detecting section 1 of a mass flow meter comprises a housing 2 and a thick pipe 2a having a circular cross section, and a detecting element mounted on the pipe 2a, for example, a flow sensor 3
  • the pipe 2a has an upstream pipe half 2c and a downstream pipe half 2d having a slightly smaller inner diameter than the upstream pipe half 2c. 2e are formed integrally with each other.
  • Two pipes (not shown) are connected to both ends of the pipe 2a.
  • Reference 2b indicates a flange that is provided for such a pipe connection.
  • the flow velocity sensor 3 extends radially through the wall of the downstream pipe half 2 d near the step 2 e of the pipe 2 a to form a flow path 10 defined by the inner peripheral surface of the pipe 2 a. It has a detection end 3a disposed in front of it, and measures the flow velocity of a fluid, for example, a gas flowing in the flow path 10.
  • the mass flow sensor calculates the instantaneous flow rate of the fluid by processing the output signal of the sensor 3 and calculates the instantaneous flow rate.
  • a display unit 12 for displaying the calculated value of the integrated flow rate.
  • the rectifier 4 is disposed on the inner surface of the upstream pipe half 2 c and is fixed to the pipe 2 a by fixing means 5. That is, the rectifier 4 is viewed in the fluid flow direction. And is fixedly arranged on the upstream side of the flow velocity sensor 3.
  • the rectifying device 4 includes three rectifying networks 6 to 8 and three spacers 9, and the rectifying networks 6 to 8 are made of, for example, a metal material. Since the pipe 2a has a circular cross section, each straightening net 6 to 8 is formed in a circular shape, and each spacer 9 is formed in a cylindrical shape. Further, for example, a cylindrical screw is used as the fixing means 5.
  • the flow straightening networks 6 to 8 are supported by the spacer 9 and the stepped portion 2e of the pipe 2a, and are arranged in the pipe 2a at intervals in the fluid flow direction.
  • the outer diameters of the straightening networks 6 to 8 and the spacer 9 are substantially the same as the inner diameter of the upstream pipe half 2c, and the inner diameter of the spacer 9 is substantially the same as the inner diameter of the downstream pipe half 2d. It is the same, so that the fluid flow in the pipe 2a is not disturbed by the rectifier 4 installed on the inner surface of the pipe.
  • the flow rectification network 6 has a large number of rectangular meshes, and each mesh defines a rectangular through passage (one of which is denoted by reference numeral 6a) through which the fluid passes.
  • the flow straightening networks 7, 8 have a large number of meshes defining through passages 7a, 8a.
  • the mesh size of the rectification network 6 (that is, the flow passage area of the through passage 6a defined by each mesh) is It differs from the mesh size of 7 and 8.
  • the upstream rectification network (first rectification network) 8 located far from the flow velocity sensor 3 as viewed in the longitudinal direction of the pipe 2a is, for example, 100 mesh (the number of meshes per inch is 100).
  • the downstream rectifying network (second rectifying network) 6 located near the flow velocity sensor 3 has the largest mesh size of, for example, 40 mesh.
  • the mesh size of the intermediate rectification network 7 disposed between the first rectification network 8 and the second rectification network 6 is, for example, 60 mesh, which is larger than the mesh size of the first rectification network 8 and the second rectification network 8. Smaller than the mesh size of
  • the rectifier networks 6 to 8 act to regulate the flow of the fluid when the fluid passes through a number of meshes provided in each rectifier network.
  • the smaller the mesh size the stronger the rectifying action.
  • the pressure loss also increases, so the mesh size is appropriately determined in consideration of the rectifying action and the degree of the pressure loss.
  • the cylindrical screw 5 has a male screw 5c formed on the outer peripheral surface thereof, and can be screwed to the inner peripheral surface of the pipe 2a with the female screw 2f. Further, for example, two pin holes 5 d are formed in the annular end face 5 a of the cylindrical screw 5 so that the cylindrical screw 5 can be screwed to the pipe 2 a using the pin hole 5 d as described later. .
  • the inner diameter of the cylindrical screw 5 is substantially the same as the inner diameter of the downstream pipe half 2 d and the inner diameter of the spacer 9.
  • the second rectifier network 6, the first spacer 9, the intermediate rectifier network 7, the second spacer 9, the first rectifier network 8, and the The three screws 9 are stored in this order, and then the cylindrical screw 5 is rotated using an instrument (not shown) having a pin fitted into the pin hole 5 d of the cylindrical screw 5.
  • the cylindrical screw 5 advances inside the pipe 2a as it rotates, and its inner end face 5b contacts the third spacer 9 and the second rectifier net 6 presses against the step 2e of the pipe 2a. Leads to.
  • the second rectifier net 6 is fixed with its peripheral edge sandwiched between the pipe step 2 e and the first spacer 9, and the rectifier nets 7, 8 also have their peripheral edge sandwiched between the spacers 9. And fixed.
  • the rectifying networks 6 to 8 and the spacer 9 of the rectifying device 4 are fixed in the upstream pipe half 2c so as not to move in the axial direction. That is, the rectifying device 4 is installed in the pipe 2 a on the upstream side of the flow velocity sensor 3. Since the inner diameter of the spacer 9 is substantially the same as the inner diameter of both pipe halves 2c and 2d, there is no large step between the inner surface of the spacer and the inner surface of the pipe. Fluid flows smoothly inside.
  • a ring-shaped spring washer (a waping ring) having substantially the same inner diameter and outer diameter as the cylindrical screw 5 may be interposed between the rectifier 4 and the cylindrical screw 5.
  • the spring washer is formed by forming a spring-like thin plate into a corrugated shape in the circumferential direction, and exhibits a uniform spring property with respect to compression in the axial direction. Therefore, the panel By using the shears, the loosening of the cylindrical screw 5 due to vibration or impact can be prevented.
  • reference numeral A indicates a flow direction of a fluid, for example, a gas flowing in a flow path 10 defined by the pipe 2a. That is, the gas supplied to the pipe 2 a via a pipe (not shown) is sequentially rectified by the first rectification network 8, the intermediate rectification network 7, and the second rectification network 6, and reaches around the flow velocity sensor 3. As described above, the rectifying operation is performed in three stages, so that the gas flow around the flow velocity sensor 3 is stabilized, and the measurement accuracy of the flow rate sensor 3 due to turbulence is prevented.
  • the output signal of the flow velocity sensor 3 is sent to the converter 11, and the converter 11 multiplies the instantaneous flow rate represented by the sensor output signal by the cross-sectional area of the flow path 10 to obtain the instantaneous flow of the gas flowing through the flow path 10. Find the flow rate, add the instantaneous flow rate to the integrated flow rate, Find the flow rate. Then, the instantaneous flow rate and the integrated flow rate are displayed on the display unit 12.
  • the rectifier 4 the rectifier networks 6 to 8 and the spacer 9 are pressed and fixed to the inner peripheral surface of the pipe 2a by the cylindrical screw 5, so that even when vibration or impact is applied to the housing 2 from the outside, In addition, the deformation and displacement of the flow regulating networks 6 to 8 and the spacer 9 are reliably prevented, and the drift and turbulence of the gas flowing in the flow path 10 are prevented. Also in this regard, the rectifier 4 contributes to preventing the measurement accuracy of the flow meter from being reduced.
  • FIG. 3 shows only the positional relationship of the rectifier networks 6, 8, 6 ′, 8 ′ with respect to the flow velocity sensor 3.
  • the rectifying device 4 ′ includes first and second rectifying networks for adjusting the flow of a fluid, for example, a gas flowing in the direction of arrow A in the flow path corresponding to the flow path 10 in FIG. 8 and 6 and have the same configuration as the rectifier 4 in FIG. 1 in this respect.
  • the rectifier 4 'does not include the intermediate rectifier network 7.
  • the first and second rectification networks 8 and 6 are each formed in an elliptical shape, and the mesh sizes of both are 100 mesh and 60 mesh, for example.
  • the rectification device 4 ′ further includes third and fourth rectification networks 8 ′ and 6 ′ for adjusting the flow of the fluid flowing in the flow path in the direction of arrow B.
  • the third rectification network 8 ′ is disposed in the flow path on the opposite side of the first rectification network 8 with respect to the flow velocity sensor 3, and is preferably symmetric with respect to the position of the first rectification network 8 with respect to the flow velocity sensor 3. Placed in position.
  • the fourth rectification network 6 ′ is disposed on the opposite side of the flow velocity sensor 3 from the second rectification network 6 in the flow path, preferably, at a position symmetrical to the arrangement position of the second rectification network 6.
  • the third rectifying network 8 ′ has a mesh size smaller than that of the fourth rectifying network 6. I have.
  • the mesh size of the third and fourth rectifier networks 8 ', 6 is the same as that of the first and second rectifier networks 8, 6, for example, 100 mesh and 60 mesh. It is.
  • the operation of the rectifier 4 ′ is substantially the same as that of the rectifier 4. That is, when a fluid, for example, a gas flows in the direction of arrow A toward the flow rate sensor 3 through the first and second rectification networks 8 and 6, relatively large foreign matter, for example, dust, flows through the first rectification network 8. On the other hand, the small dust passing through the first rectification network 8 also passes through the second rectification network 6, so that the clogging of the second rectification network 6 is prevented.
  • gas flows in the direction of arrow B large dust is trapped by the third rectifier 8 'because the mesh size of the third rectifier 8' is smaller than that of the fourth rectifier 6 '.
  • the small dust passing through the third rectification network 8 ′ also passes through the fourth rectification network 6 ′, and therefore, there is little possibility that the fourth rectification network 6 ′ becomes clogged. Therefore, since the second and fourth rectification networks 6, 6 'arranged on both sides of the flow velocity sensor 3 provide a uniform rectification action, the gas flow around the flow velocity sensor 3 is stable regardless of the flow direction. Thus, the measurement accuracy of the flow rate sensor 3 is maintained well, and a good flow rate measurement can be performed by the flow meter.
  • the present invention is not limited to the above first and second embodiments, and can be variously modified.
  • a circular or elliptical rectification net is used, but the rectification net can be formed in various shapes according to the cross-sectional shape of the flow path.
  • a rectifying net made of a metal material and having a square mesh is used.However, the material and the mesh shape of the rectifying net are not limited to this.For example, the rectifying net is made of a synthetic resin material. You may.
  • the mesh size described in both embodiments is an example, and is not limited to such a mesh size.
  • one intermediate rectification network is provided between the first rectification network on the upstream side and the second rectification network on the downstream side.
  • two or more intermediate rectification networks may be provided.
  • the intermediate rectification network may be removed.
  • the mesh size of the intermediate rectification network is It is not essential to make it smaller than this, and an intermediate rectification network having a mesh size equal to or larger than the mesh size of the second rectification network may be used.
  • the third and fourth rectification networks are provided at positions symmetrical to the arrangement positions of the first and second rectification networks with respect to the flow velocity sensor. (2) It is not essential to arrange the symmetrical position with the rectification network. Also, in the second embodiment, one or more intermediate rectification networks may be provided between the first rectification network and the second rectification network or between the third rectification network and the fourth rectification network.
  • a rectifying network is used as a rectifying element.
  • other rectifying elements for example, a rectifying plate having a large number of small-diameter through holes as through passages through which a fluid passes are replaced with a rectifying network. May be used.
  • the present invention can be variously modified.
  • it is not essential to use a cylindrical screw or a spacer when fixing the rectifier in the pipe.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

A straightening device (4) installed in a flow passage (10) formed by a pipe (2a) on the upstream side of a flow velocity sensor (3) of a flowmeter, comprising a first straightening net (8) disposed apart from the flow velocity sensor and a second straightening net (6) disposed close to the flow velocity sensor, wherein the first straightening net has meshes smaller than those of the second straightening net to exclude foreign matter included in fluid so as to prevent the second straightening net from being clogged by the foreign matter, and the flow of the fluid around the flow velocity sensor is stabilized by the straightening action of the second straightening net to prevent the measuring accuracy of the fluid sensor from being lowered by the disturbance of the flow of the fluid.

Description

明細書  Specification
技術分野 Technical field
本発明は、 整流装置に関し、 特に、 流量計が備える検出要素が配された流路 内を検出要素に向けて流れる気体を安定に整流する整流装置に関する。 景技術  The present invention relates to a rectifier, and more particularly to a rectifier that stably rectifies gas flowing toward a detection element in a flow path in which a detection element provided in a flow meter is arranged. Landscape technology
質量流量計は、パイプなどにより画成される流路内を流れる流体たとえば気 体の流量を計測するものであり、一般には、検出要素たとえば流速センサと、 流速センサの出力信号を信号処理して流量を求める変換部とを備えている。変 換部は、センサ出力信号が表す流速に既知のパイプ断面積を乗じて瞬時流量を 算出し、 また、 瞬時流量の積算値を算出する。  A mass flow meter measures the flow rate of a fluid, for example, a gas flowing in a flow path defined by a pipe or the like. In general, a detection element, for example, a flow rate sensor, and a signal processing of an output signal of the flow rate sensor are performed. A conversion unit for calculating the flow rate. The conversion unit calculates the instantaneous flow rate by multiplying the flow rate represented by the sensor output signal by the known pipe cross-sectional area, and calculates the integrated value of the instantaneous flow rate.
この様な流量計において、パイプ内を流れる気体に偏流や乱れが生じると、 流速センサの計測精度が低下して流量測定に誤差が生じる。そこで、整流板や 整流網などの整流要素を流速センサの上流側に設け、この整流要素によって流 速センサに向かう気体の流れを整えて、編流や乱流に起因する測定精度の低下 を防止することが知られている。  In such a flow meter, if the gas flowing in the pipe has a drift or turbulence, the measurement accuracy of the flow rate sensor is reduced and an error occurs in the flow rate measurement. Therefore, a rectifying element such as a rectifying plate or a rectifying network is provided on the upstream side of the flow velocity sensor, and the rectifying element regulates the flow of gas toward the flow velocity sensor to prevent a reduction in measurement accuracy due to knitting flow or turbulent flow. It is known to
整流要素を備えた流量計によれば、流速センサのまわりの気体の流れを安定 にして、気体の偏流や乱れによる測定精度低下を防止することができるが、気 体に含まれている異物により、 整流要素が備える複数の貫通通路 (孔ゃ網目) の一部が目詰まりすることがある。なお、整流要素の上流側に異物排除用の網 を設けることがあるが、この場合にも異物排除用の網を通る比較的小さな異物 による目詰まりは発生する。いずれにしても、整流要素の一部に目詰まりが生 じると、整流要素の各部における整流作用が不均一になって、整流要素を通つ て検出要素たとえば流速センサに向かう気体の流れに乱れが生じ、流速センサ の計測精度が低下するという不都合が生じる。 発明の開示 According to the flow meter equipped with the rectifying element, the gas flow around the flow velocity sensor can be stabilized, and the measurement accuracy can be prevented from deteriorating due to the drift or turbulence of the gas. However, some of the plurality of through passages (holes and meshes) provided in the rectifying element may be clogged. In some cases, a net for removing foreign matter is provided on the upstream side of the rectifying element. In this case as well, clogging due to relatively small foreign matter passing through the net for removing foreign matter occurs. In any case, if a part of the rectifying element is clogged, the rectifying action in each part of the rectifying element becomes uneven, and the flow of gas passing through the rectifying element to a detection element, for example, a flow rate sensor, is reduced. Disturbance occurs and the flow rate sensor However, there arises a disadvantage that the measurement accuracy of the measurement is reduced. Disclosure of the invention
本発明の目的は、流量計の検出要素が配された流路内を流れる流体に含まれ ている異物による整流要素の目詰まりを防止して整流要素各部の整流作用を 均一なものとし、流体流れを安定化して検出要素の測定精度を良好に維持可能 な整流装置を提供することにある。  An object of the present invention is to prevent clogging of a rectifying element due to a foreign substance contained in a fluid flowing in a flow path in which a detection element of a flow meter is arranged, to make a rectifying action of each part of the rectifying element uniform, An object of the present invention is to provide a rectifier capable of stabilizing a flow and maintaining good measurement accuracy of a detection element.
上記目的を達成するため、本発明の整流装置は、流路内において流量計の検 出要素の上流側に配された第 1整流要素と、前記流路内において前記第 1整流 要素と前記検出要素との間に配された第 2整流要素とを備え、前記第 1整流要 素に形成された複数の第 1貫通通路の流路面積が、前記第 2整流要素に形成さ れた複数の第 2貫通通路の流路面積よりも小さいことを特徴とする。  In order to achieve the above object, a rectifying device of the present invention includes a first rectifying element disposed upstream of a detection element of a flow meter in a flow path, and the first rectifying element and the detection element in the flow path. A second rectifying element disposed between the first rectifying element and a plurality of first through passages formed in the first rectifying element. It is characterized in that it is smaller than the flow passage area of the second through passage.
流路内を流れる流体は、先ず整流装置の第 1整流要素により整流され、次に、 第 2整流要素により整流されて、流量計の検出要素のまわりに至る。 この様に、 本発明の整流装置は、整流作用を少なくとも 2段階で奏して良好な整流を行う ものとなっており、検出要素のまわりの流体の流れが安定化され、流体流れの 乱れによる検出要素の計測精度低下が防止される。  The fluid flowing in the flow path is first rectified by the first rectifying element of the rectifying device and then rectified by the second rectifying element to reach around the detection element of the flow meter. As described above, the rectifying device of the present invention performs the rectifying action in at least two stages to perform good rectification, stabilizes the flow of the fluid around the detection element, and performs detection by the turbulence of the fluid flow. A decrease in the measurement accuracy of the element is prevented.
流路内を流れる流体に異物が含まれている場合、整流要素に異物による目詰 まりが生じて、整流要素の下流側にある検出要素のまわりで流体の流れが乱れ ることがある。 この点、 本発明の整流装置は、 第 1整流要素により流体内の異 物を排除して第 2整流要素の目詰まりを防止し、流体流れの乱れを防止する。 すなわち、第 1貫通通路の流路面積よりも寸法の大きな異物は第 1整流要素 により捕捉され、 第 2整流要素へは流れない。 また、 第 1貫通通路の流路面積 よりも寸法の小さい異物は、流体の流れに伴つて第 1整流要素を通過して第 2 整流要素に向かって流れるが、第 2整流要素の第 2貫通通路の流路面積が第 1 整流要素の第 1貫通通路のそれよりも大きいので、第 1整流要素を通過した異 物は第 2整流要素をも通過する。 If the fluid flowing in the flow path contains foreign matter, the foreign matter may be clogged by the foreign matter, and the flow of the fluid around the detection element downstream of the straightening element may be disturbed. In this regard, the rectifying device of the present invention eliminates foreign matters in the fluid by the first rectifying element, prevents clogging of the second rectifying element, and prevents disturbance of the fluid flow. That is, foreign matter having a size larger than the flow passage area of the first through passage is captured by the first rectifying element and does not flow to the second rectifying element. Foreign matter having a size smaller than the flow passage area of the first through passage passes through the first rectifying element and flows toward the second rectifying element with the flow of the fluid. The passage area of the passage is larger than that of the first through passage of the first rectifying element, The object also passes through the second rectifying element.
この様に、整流機能及び異物排除機能を併有した第 1整流要素を流体流れ方 向において第 2整流要素の上流側に配置し、この第 1整流要素により第 2整流 要素の目詰まりを防止するようにしている。確かに、第 1整流要素の異物排除 に伴って第 1整流要素に目詰まりが生じるので第 1整流要素の整流作用が不 均一になるおそれがあるが、その様な場合にも、第 1整流要素の下流側の第 2 整流要素に流入する流体には第 2整流要素を目詰まりさせるような大きな異 物は混入されておらず、従って、第 2整流要素 目詰まりするおそれは極めて 少なくなる。 このため、検出要素より上流側にある第 2整流要素によって均一 な整流作用が奏されるので、検出要素のまわりの流体の流れが安定化されて検 出要素の測定精度低下が確実に防止される。 この結果、ダストなどの異物の多 い測定環境下においても、流量測定を信頼性良く安定に実施することができる。 本発明において、第 1及び第 2整流要素は種々に構成可能であり、例えば、 第 1及び第 2整流網により構成することができる。第 1及び第 2整流網は、前 記複数の第 1及び第 2貫通通路にそれぞれ対応する複数の第 1網目及び複数 の第 2網目をそれぞれ有し、各第 1網目の寸法は各第 2網目の寸法よりも小さ い。 また、 第 1及び第 2整流網は、種々の材料で種々の形状に構成可能であり、 例えば、 金属材料や合成樹脂材料で四角形、 六角形などに構成される。  As described above, the first rectifying element having both the rectifying function and the foreign matter removing function is arranged upstream of the second rectifying element in the fluid flow direction, and the first rectifying element prevents the second rectifying element from being clogged. I am trying to do it. Certainly, the first rectifying element may be clogged due to the removal of foreign matter from the first rectifying element, so that the rectifying action of the first rectifying element may be non-uniform. Fluid flowing into the second rectifying element downstream of the element does not contain a large foreign matter that may clog the second rectifying element, and therefore, the risk of clogging the second rectifying element is extremely reduced. As a result, a uniform rectifying action is exerted by the second rectifying element upstream of the detecting element, so that the flow of fluid around the detecting element is stabilized, and the measurement accuracy of the detecting element is reliably prevented from lowering. You. As a result, even in a measurement environment with many foreign substances such as dust, the flow rate measurement can be performed reliably and stably. In the present invention, the first and second rectifying elements can be variously configured, and for example, can be configured by the first and second rectifying networks. The first and second rectification networks have a plurality of first meshes and a plurality of second meshes respectively corresponding to the plurality of first and second through passages, and the size of each first mesh is the size of the second mesh. It is smaller than the mesh size. The first and second rectification networks can be made of various materials in various shapes. For example, the first and second rectification networks are made of a metal material or a synthetic resin material in a square or hexagonal shape.
本発明において、第 1整流要素と第 2整流要素との間に、一つ以上の中間整 流要素(例えば整流網) を配置しても良く、 中間整流要素が備える複数の貫通 通路の流路面積は、第 1整流要素の複数の第 1貫通通路の流路面積よりも大き く、好ましくは、第 2整流要素の複数の第 2貫通通路の流路面積よりも小さい。 この好適態様によれば、中間整流要素によつて整流作用が奏されることはもと より、 中間整流要素によって、検出要素の近くに配される第 2整流要素の目詰 まりがより確実に防止されるので、 測定精度を更に向上することができる。 本発明の整流装置は、流路内を流体が双方向に流れるような環境下に配され た検出要素を備える流量計にも適用可能である。 この場合、本発明の整流装置 は、流路内において検出要素に関して前記第 1及び第 2整流要素と反対側に配 された第 3及び第 4整流要素を更に備え、前記第 4整流要素は前記第 3整流要 素よりも検出要素の近くに配され、前記第 3整流要素に形成された複数の第 3 貫通通路は、前記第 4整流要素に形成された複数の第 4貫通通路の流路面積よ りも小さい流路面積を有することを特徴とする。 In the present invention, one or more intermediate rectifying elements (for example, rectifying networks) may be arranged between the first rectifying element and the second rectifying element, and the plurality of through passages provided in the intermediate rectifying element The area is larger than the flow passage area of the plurality of first through passages of the first rectifying element, and preferably smaller than the flow passage area of the plurality of second through passages of the second rectification element. According to this preferred embodiment, not only the rectifying action is exerted by the intermediate rectifying element, but also the clogging of the second rectifying element arranged near the detecting element is more reliably caused by the intermediate rectifying element. Since it is prevented, the measurement accuracy can be further improved. The rectifying device of the present invention is arranged in an environment in which fluid flows in the flow path in both directions. The present invention is also applicable to a flow meter provided with a detection element. In this case, the rectifying device of the present invention further includes third and fourth rectifying elements arranged on the opposite side of the detection element in the flow path from the first and second rectifying elements, and the fourth rectifying element includes the fourth rectifying element. The plurality of third through passages, which are arranged closer to the detection element than the third rectification element and are formed in the third rectification element, are flow paths of the plurality of fourth through passages formed in the fourth rectification element. It is characterized by having a flow passage area smaller than the area.
この好適態様において、流体が、第 1及び第 2整流要素を通って検出要素に 向かって流れる場合、既述のように、比較的大きな異物は第 1整流要素により 捕捉される一方、第 1整流要素を通る小さな異物は第 2整流要素をも通過する ので、第 2整流要素の目詰まりが防止される。 また、 流体が反対方向に流れる 場合には、第 3整流要素の第 3貫通通路の流路面積が第 4整流要素の第 4貫通 通路の流路面積よりも小さいので、大きな異物は第 3整流要素により捕捉され、 第 3整流要素を通る小さな異物は第 4整流要素をも通過し、従って、第 4整流 要素が目詰まりするおそれは少ない。 この様に、検出要素の両側且つその近く に配された第 2及び第 4整流要素の目詰まりが防止されるので、第 2及び第 4 整流要素によって均一な整流作用が奏され、従って、検出要素のまわりでの流 体流れは流体の流れ方向にかかわらず安定なものになり、検出要素の測定精度 が良好に維持される。  In this preferred embodiment, when the fluid flows through the first and second rectifying elements toward the sensing element, as described above, relatively large foreign objects are captured by the first rectifying element while the first rectifying element. Small foreign matter passing through the element also passes through the second rectifying element, so that clogging of the second rectifying element is prevented. When the fluid flows in the opposite direction, since the flow passage area of the third through passage of the third rectifying element is smaller than the flow passage area of the fourth through passage of the fourth rectifying element, a large foreign substance is occupied by the third rectifying passage. Small foreign objects trapped by the element and passing through the third rectifying element also pass through the fourth rectifying element, and therefore there is little risk of the fourth rectifying element becoming clogged. In this way, the second and fourth rectifying elements disposed on both sides of and near the detecting element are prevented from being clogged, so that the second and fourth rectifying elements exert a uniform rectifying action, and therefore, the detection is performed. Fluid flow around the element is stable irrespective of the flow direction of the fluid, and the measurement accuracy of the detection element is well maintained.
また、本発明の整流装置と共に用いられる流量計は、前記検出要素としての 流速センサと、流速センサの出力信号を信号処理して流体の流量を求める変換 部とを有した質量流量計として構成することができる。本発明の整流装置は、 流速センサまわりでの流体流れを安定にすることができ、流体流れの乱れに起 因した流速センサの計測精度低下を防止することができる。すなわち、本発明 の整流装置は、 質量流量計に特に好適する。 図面の簡単な説明 第 1図は、本発明の第 1実施形態に係る整流装置を備えた流量計の概略断面 図、 Further, a flow meter used together with the rectifier of the present invention is configured as a mass flow meter having a flow rate sensor as the detection element and a conversion unit for processing an output signal of the flow rate sensor to obtain a flow rate of the fluid. be able to. ADVANTAGE OF THE INVENTION The rectifier of this invention can stabilize the fluid flow around a flow velocity sensor, and can prevent the measurement precision fall of the flow velocity sensor resulting from the disturbance of the fluid flow. That is, the rectifier of the present invention is particularly suitable for a mass flow meter. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a schematic sectional view of a flow meter provided with a rectifier according to a first embodiment of the present invention,
第 2 A図は、 第 1図の整流装置が備える第 1整流網を示す概略正面図、 第 2 B図は、 整流装置が備える中間整流網の概略正面図、  FIG. 2A is a schematic front view showing a first rectifier network provided in the rectifier of FIG. 1, FIG. 2B is a schematic front view of an intermediate rectifier network provided in the rectifier,
第 2 C図は、 整流装置の第 2整流網を示す概略正面図、  FIG. 2C is a schematic front view showing a second rectifier network of the rectifier,
第 3図は、 本発明の第 2実施形態に係る整流装置を示す概略図である。 発明を実施するための最良の形態  FIG. 3 is a schematic diagram showing a rectifier according to a second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、第 1図及び第 2図を参照して、本発明の第 1実施形態に係る整流装置 について説明する。  Hereinafter, a rectifier according to a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
第 1図に示すように、質量流量計の検出部 1は、ハウジング 2を構成し且つ 断面が円形状の厚肉パイプ 2 aと、同パイプ 2 aに装着された検出要素たとえ ば流速センサ 3とを有している。パイプ 2 aは、上流側パイプ半部 2 cとそれ よりも内径が僅かに小さい下流側パイプ半部 2 dとを有し、両パイプ半部 2 c、 2 dはパイプ内周面に段部 2 eをなして互いに一体に形成されている。パイプ 2 aの両端には、図示しない 2本のパイプがそれぞれ接続されるようになって いる。 参照符号 2 bは、 その様なパイプ接続に供されるフランジを示す。  As shown in FIG. 1, a detecting section 1 of a mass flow meter comprises a housing 2 and a thick pipe 2a having a circular cross section, and a detecting element mounted on the pipe 2a, for example, a flow sensor 3 And The pipe 2a has an upstream pipe half 2c and a downstream pipe half 2d having a slightly smaller inner diameter than the upstream pipe half 2c. 2e are formed integrally with each other. Two pipes (not shown) are connected to both ends of the pipe 2a. Reference 2b indicates a flange that is provided for such a pipe connection.
流速センサ 3は、パイプ 2 aの段部 2 eの近くにおいて下流側パイプ半部 2 dの 壁を径方向に貫通して延び、パイプ 2 aの内周面が画成する流路 1 0に 臨んで配された検出端 3 aを有して、流路 1 0内を流れる流体たとえば気体の 流速を計測するようになっている。質量流量センサは、流速センサ 3に加えて、 同センサ 3の出力信号を信号処理して流体の瞬時流量を算出し、更に瞬時流量 を積算して積算流量を求める変換部 1 1と、瞬時流量や積算流量の算出値を表 示する表示部 1 2とを備えている。  The flow velocity sensor 3 extends radially through the wall of the downstream pipe half 2 d near the step 2 e of the pipe 2 a to form a flow path 10 defined by the inner peripheral surface of the pipe 2 a. It has a detection end 3a disposed in front of it, and measures the flow velocity of a fluid, for example, a gas flowing in the flow path 10. In addition to the flow rate sensor 3, the mass flow sensor calculates the instantaneous flow rate of the fluid by processing the output signal of the sensor 3 and calculates the instantaneous flow rate. And a display unit 12 for displaying the calculated value of the integrated flow rate.
整流装置 4は、 上流側パイプ半部 2 cの内面に配され、 また、 固定手段 5に よりパイプ 2 aに固定されている。すなわち、整流装置 4は流体流れ方向にみ て流速センサ 3の上流側に固定配置される。 The rectifier 4 is disposed on the inner surface of the upstream pipe half 2 c and is fixed to the pipe 2 a by fixing means 5. That is, the rectifier 4 is viewed in the fluid flow direction. And is fixedly arranged on the upstream side of the flow velocity sensor 3.
詳しくは、整流装置 4は、 3つの整流網 6〜 8と 3つのスぺーサ 9とを備え、 整流網 6〜 8は例えば金属材料から構成されている。パイプ 2 aが円形断面で あるので、各整流網 6〜 8は円形形状に形成され、各スぺーサ 9は円筒形状に 形成されている。 また、 固定手段 5として例えば円筒ねじが用いられる。  Specifically, the rectifying device 4 includes three rectifying networks 6 to 8 and three spacers 9, and the rectifying networks 6 to 8 are made of, for example, a metal material. Since the pipe 2a has a circular cross section, each straightening net 6 to 8 is formed in a circular shape, and each spacer 9 is formed in a cylindrical shape. Further, for example, a cylindrical screw is used as the fixing means 5.
整流網 6〜 8は、スぺーサ 9やパイプ 2 aの段部 2 eにより支持され、流体 流れ方向に互いに間隔をおいてパイプ 2 a内に配されている。整流網 6〜 8及 びスぺ一サ 9の外径は、上流側パイプ半部 2 cの内径と略同一であり、スぺー サ 9の内径は下流側パイプ半部 2 dの内径と略同一であり、パイプ内面に設置 される整流装置 4に起因してパイプ 2 a内の流体流れに乱れが生じないよう にしている。  The flow straightening networks 6 to 8 are supported by the spacer 9 and the stepped portion 2e of the pipe 2a, and are arranged in the pipe 2a at intervals in the fluid flow direction. The outer diameters of the straightening networks 6 to 8 and the spacer 9 are substantially the same as the inner diameter of the upstream pipe half 2c, and the inner diameter of the spacer 9 is substantially the same as the inner diameter of the downstream pipe half 2d. It is the same, so that the fluid flow in the pipe 2a is not disturbed by the rectifier 4 installed on the inner surface of the pipe.
整流網 6は多数の四角形状の網目を有し、各網目は、流体が通過する四角形 状の貫通通路(そのうちの一つを符号 6 aで示す) を画成している。 同様に、 整流網 7、 8は、 貫通通路 7 a、 8 aを画成する多数の網目を有している。 そ の一方で、第 2 A図ないし第 2 C図に示すように、 整流網 6の網目寸法(すな わち、 各網目が画成する貫通通路 6 aの流路面積) は、 整流網 7、 8の網目寸 法と異なる。  The flow rectification network 6 has a large number of rectangular meshes, and each mesh defines a rectangular through passage (one of which is denoted by reference numeral 6a) through which the fluid passes. Similarly, the flow straightening networks 7, 8 have a large number of meshes defining through passages 7a, 8a. On the other hand, as shown in FIGS. 2A to 2C, the mesh size of the rectification network 6 (that is, the flow passage area of the through passage 6a defined by each mesh) is It differs from the mesh size of 7 and 8.
詳しくは、パイプ 2 aの長手方向にみて流速センサ 3から遠くに位置する上 流側整流網 (第 1整流網) 8は、 例えば 1 0 0メッシュ ( 1ィンチあたりの目 数が 1 0 0 ) と最も小さい網目寸法を有し、流速センサ 3の近くに位置する下 流側整流網(第 2整流網) 6は例えば 4 0メッシュと最も大きい網目寸法を有 している。第 1整流網 8と第 2整流網 6との間に配される中間整流網 7の網目 寸法は例えば 6 0メッシュであり、第 1整流網 8の網目寸法よりも大きく且つ 第 2整流網 8の網目寸法よりも小さい。  Specifically, the upstream rectification network (first rectification network) 8 located far from the flow velocity sensor 3 as viewed in the longitudinal direction of the pipe 2a is, for example, 100 mesh (the number of meshes per inch is 100). The downstream rectifying network (second rectifying network) 6 located near the flow velocity sensor 3 has the largest mesh size of, for example, 40 mesh. The mesh size of the intermediate rectification network 7 disposed between the first rectification network 8 and the second rectification network 6 is, for example, 60 mesh, which is larger than the mesh size of the first rectification network 8 and the second rectification network 8. Smaller than the mesh size of
整流網 6〜 8は、各整流網が備える多数の網目を流体が通過する際に流体の 流れを整えるように作用する。一般に、網目寸法が小さいほど整流作用が強く なる一方で、 圧損も大きくなるので、 網目寸法は、 整流作用や圧損の度合いを 勘案して適宜に定められる。 The rectifier networks 6 to 8 act to regulate the flow of the fluid when the fluid passes through a number of meshes provided in each rectifier network. Generally, the smaller the mesh size, the stronger the rectifying action. On the other hand, the pressure loss also increases, so the mesh size is appropriately determined in consideration of the rectifying action and the degree of the pressure loss.
円筒ねじ 5は、その外周面に雄ねじ 5 cが形成され、パイプ 2 aの雌ねじ 2 f付き内周面に螺着可能になっている。 また、 円筒ねじ 5の環状端面 5 aには 例えば 2つのピン孔 5 dが形成され、後述のようにピン孔 5 dを利用して円筒 ねじ 5をパイプ 2 aに螺着できるようにしている。 また、 円筒ネジ 5の内径は、 下流側パイプ半部 2 d及びスぺ一サ 9の内径と略同一である。  The cylindrical screw 5 has a male screw 5c formed on the outer peripheral surface thereof, and can be screwed to the inner peripheral surface of the pipe 2a with the female screw 2f. Further, for example, two pin holes 5 d are formed in the annular end face 5 a of the cylindrical screw 5 so that the cylindrical screw 5 can be screwed to the pipe 2 a using the pin hole 5 d as described later. . The inner diameter of the cylindrical screw 5 is substantially the same as the inner diameter of the downstream pipe half 2 d and the inner diameter of the spacer 9.
以下、 整流装置 4の組立て手順を説明する。  Hereinafter, an assembling procedure of the rectifier 4 will be described.
整流装置 4を組立てる際、先ず、上流側パイプ半部 2 c内に第 2整流網 6、 第 1スぺーサ 9、 中間整流網 7、 第 2スぺーサ 9、 第 1整流網 8及び第 3スぺ —サ 9をこの順に収納し、次いで、 円筒ねじ 5のピン孔 5 dにそれぞれ嵌合す るピンを有した器具(図示略) を用いて円筒ねじ 5を回転させる。 円筒ねじ 5 は、回転するにつれてパイプ 2 a内を前進し、その内方端面 5 bが第 3スぺー サ 9に当接すると共に第 2整流網 6がパイプ 2 aの段部 2 eに圧接するに至 る。 また、第 2整流網 6はその周縁部がパイプ段部 2 eと第 1スぺ一サ 9とに 挟まれて固定され、整流網 7、 8もその周縁部がスぺーサ 9間に挟まれて固定 される。 この様に、整流装置 4の整流網 6〜 8及びスぺーサ 9が軸方向移動不 能に上流側パイプ半部 2 c内に固定される。 すなわち、 整流装置 4が、 パイプ 2 a内において流速センサ 3よりも上流側に設置される。スぺーサ 9の内径が 両パイプ半部 2 c、 2 dの内径と略同一であるので、スぺ一サ内面とパイプ内 面との間には大きな段差が生じることがなく、パイプ 2 a内で流体が円滑に流 れる。  When assembling the rectifier 4, first, the second rectifier network 6, the first spacer 9, the intermediate rectifier network 7, the second spacer 9, the first rectifier network 8, and the The three screws 9 are stored in this order, and then the cylindrical screw 5 is rotated using an instrument (not shown) having a pin fitted into the pin hole 5 d of the cylindrical screw 5. The cylindrical screw 5 advances inside the pipe 2a as it rotates, and its inner end face 5b contacts the third spacer 9 and the second rectifier net 6 presses against the step 2e of the pipe 2a. Leads to. The second rectifier net 6 is fixed with its peripheral edge sandwiched between the pipe step 2 e and the first spacer 9, and the rectifier nets 7, 8 also have their peripheral edge sandwiched between the spacers 9. And fixed. In this way, the rectifying networks 6 to 8 and the spacer 9 of the rectifying device 4 are fixed in the upstream pipe half 2c so as not to move in the axial direction. That is, the rectifying device 4 is installed in the pipe 2 a on the upstream side of the flow velocity sensor 3. Since the inner diameter of the spacer 9 is substantially the same as the inner diameter of both pipe halves 2c and 2d, there is no large step between the inner surface of the spacer and the inner surface of the pipe. Fluid flows smoothly inside.
なお、整流装置 4と円筒ねじ 5との間に円筒ねじ 5と内径及び外径が略同一 のリング状のバネヮッシャ (ウェイプリング)を介在させるようにしてもよい。 バネヮッシャは、 ばね性を有する薄板を周方向に波形に形成したもので、軸方 向の圧縮に対して均一なばね性を呈するようになつている。従って、パネヮッ シャを使用することで、振動や衝撃等に起因する円筒ねじ 5の緩みを防止する ことができる。 Note that a ring-shaped spring washer (a waping ring) having substantially the same inner diameter and outer diameter as the cylindrical screw 5 may be interposed between the rectifier 4 and the cylindrical screw 5. The spring washer is formed by forming a spring-like thin plate into a corrugated shape in the circumferential direction, and exhibits a uniform spring property with respect to compression in the axial direction. Therefore, the panel By using the shears, the loosening of the cylindrical screw 5 due to vibration or impact can be prevented.
以下、 整流装置 4の作用を説明する。  Hereinafter, the operation of the rectifier 4 will be described.
第 1図において、参照符号 Aは、パイプ 2 aが画成する流路 1 0内を流れる 流体たとえば気体の流れ方向を表す。すなわち、図示しないパイプを介してパ イブ 2 aに供給された気体は、第 1整流網 8、 中間整流網 7及び第 2整流網 6 により順次整流され、 流速センサ 3のまわりに至る。 この様に、 整流作用が 3 段階にわたって行われるので、流速センサ 3のまわりでの気体の流れが安定化 され、 乱流による流量センサ 3の計測精度低下が防止される。  In FIG. 1, reference numeral A indicates a flow direction of a fluid, for example, a gas flowing in a flow path 10 defined by the pipe 2a. That is, the gas supplied to the pipe 2 a via a pipe (not shown) is sequentially rectified by the first rectification network 8, the intermediate rectification network 7, and the second rectification network 6, and reaches around the flow velocity sensor 3. As described above, the rectifying operation is performed in three stages, so that the gas flow around the flow velocity sensor 3 is stabilized, and the measurement accuracy of the flow rate sensor 3 due to turbulence is prevented.
そして、流路 1 0内を流れる気体に異物たとえばダストが含まれている場合、 第 1整流網 8の網目寸法よりも寸法の大きいダストは第 1整流網 8により通 過が阻止され、第 1整流網 8より下流側には流れない。 また、 第 1整流網 8の 網目寸法よりも寸法の小さいダストは気体の流れに乗つて第 1整流網 8を通 過して中間整流網 7に向かって流れるが、中間整流網 7の網目寸法が第 1整流 網 8のそれよりも大きいので、第 1整流網 8を通過したダストは中間整流網 7 をも通過する。同様の理由で、 中間整流網 7を通過したダストは第 2整流網 6 をも通過する。  When foreign matter, such as dust, is contained in the gas flowing through the flow path 10, dust having a size larger than the mesh size of the first rectification network 8 is blocked by the first rectification network 8, and It does not flow downstream of the rectification network 8. Further, dust having a size smaller than the mesh size of the first rectifier net 8 flows through the first rectifier net 8 toward the intermediate rectifier net 7 on the gas flow. Is larger than that of the first rectification network 8, so that dust that has passed through the first rectification network 8 also passes through the intermediate rectification network 7. For the same reason, dust that has passed through the intermediate rectifier network 7 also passes through the second rectifier network 6.
この様に、比較的大きなダストを第 1整流網 8により気体から排除するので、 第 1整流網 9よりも下流の整流網 7、 6に流入する気体には、 整流網 7、 6を 目詰まりさせるほど大きなダストは含まれておらず、整流網 7、 6が目詰まり するおそれは極めて少ない。従って、 整流網 7、 6によって均一な整流作用が 奏され、 流速センサ 3まわりでの気体の流れが安定になる。 このため、 流速セ ンサ 3により流路 1 0内を流れる気体の瞬時流速が精度良く測定される。流速 センサ 3の出力信号は変換部 1 1に送出され、変換部 1 1は、センサ出力信号 が表す瞬時流速に流路 1 0の断面積を乗じることにより流路 1 0を流れる気 体の瞬時流量を求め、更に、瞬時流量を積算流量に加算して現時点までの積算 流量を求める。そして、瞬時流量および積算流量は表示部 1 2により表示され る。 As described above, relatively large dust is removed from the gas by the first rectification network 8, so that the gas flowing into the rectification networks 7, 6 downstream of the first rectification network 9 is clogged with the rectification networks 7, 6. It does not contain dust that is large enough to cause the rectification networks 7, 6 to be clogged. Therefore, a uniform rectifying action is exerted by the rectification networks 7 and 6, and the gas flow around the flow velocity sensor 3 is stabilized. Therefore, the flow velocity sensor 3 accurately measures the instantaneous flow velocity of the gas flowing in the flow path 10. The output signal of the flow velocity sensor 3 is sent to the converter 11, and the converter 11 multiplies the instantaneous flow rate represented by the sensor output signal by the cross-sectional area of the flow path 10 to obtain the instantaneous flow of the gas flowing through the flow path 10. Find the flow rate, add the instantaneous flow rate to the integrated flow rate, Find the flow rate. Then, the instantaneous flow rate and the integrated flow rate are displayed on the display unit 12.
整流装置 4では、整流網 6〜 8及びスぺーサ 9が円筒ねじ 5によりパイプ 2 aの内周面に押圧固定されているので、ハウジング 2に外部から振動や衝撃が 加えられた場合にも、整流網 6〜 8及びスぺーサ 9の変形や位置ずれが確実に 防止され、流路 1 0内を流れる気体の偏流や乱れが防止される。 この点でも、 整流装置 4は、 流量計の測定精度低下の防止に寄与する。  In the rectifier 4, the rectifier networks 6 to 8 and the spacer 9 are pressed and fixed to the inner peripheral surface of the pipe 2a by the cylindrical screw 5, so that even when vibration or impact is applied to the housing 2 from the outside, In addition, the deformation and displacement of the flow regulating networks 6 to 8 and the spacer 9 are reliably prevented, and the drift and turbulence of the gas flowing in the flow path 10 are prevented. Also in this regard, the rectifier 4 contributes to preventing the measurement accuracy of the flow meter from being reduced.
以下、第 3図を参照して、本発明の第 2実施形態に係る整流装置を説明する。 第 2実施形態の整流装置 4 'は、流路内を流体が双方向に流れる環境下に配 される流速センサ 3を備えた質量流量計に適用されるものであって、流速セン サ 3の両側に整流網を設ける点を除き、第 1図に示した第 1実施形態に係る整 流装置 4と略同一の基本構成を有している。そこで、第 3図には流速センサ 3 に対する整流網 6、 8、 6 ' 、 8 ' の位置関係のみを示すことにする。  Hereinafter, a rectifier according to a second embodiment of the present invention will be described with reference to FIG. The rectifying device 4 ′ of the second embodiment is applied to a mass flow meter provided with a flow rate sensor 3 arranged in an environment in which a fluid flows bidirectionally in a flow path. It has substantially the same basic configuration as the rectifier 4 according to the first embodiment shown in FIG. 1 except that rectification networks are provided on both sides. Therefore, FIG. 3 shows only the positional relationship of the rectifier networks 6, 8, 6 ′, 8 ′ with respect to the flow velocity sensor 3.
第 3図に示すように、 整流装置 4 ' は、第 1図の流路 1 0に対応する流路内 を矢印 A方向に流れる流体たとえば気体の流れを整えるための第 1及び第 2 整流網 8、 6を備え、 この点で第 1図の整流装置 4と同一構成である。但し、 整流装置 4とは異なり、 整流装置 4 ' は中間整流網 7を具備しない。 また、 第 1及び第 2整流網 8、 6はそれぞれ楕円形状に形成され、両者の網目寸法は例 えば 1 0 0メッシュ及び 6 0メッシュである。  As shown in FIG. 3, the rectifying device 4 ′ includes first and second rectifying networks for adjusting the flow of a fluid, for example, a gas flowing in the direction of arrow A in the flow path corresponding to the flow path 10 in FIG. 8 and 6 and have the same configuration as the rectifier 4 in FIG. 1 in this respect. However, unlike the rectifier 4, the rectifier 4 'does not include the intermediate rectifier network 7. The first and second rectification networks 8 and 6 are each formed in an elliptical shape, and the mesh sizes of both are 100 mesh and 60 mesh, for example.
整流装置 4 'は、流路内を矢印 B方向に流れる流体の流れを整えるための第 3及び第 4整流網 8 ' 、 6 ' を更に備えている。 第 3整流網 8 ' は、 流路内に おいて流速センサ 3に関して第 1整流網 8と反対側に配され、好ましくは、流 速センサ 3に関して第 1整流網 8の配設位置と対称な位置に配される。また、 第 4整流網 6 'は、流路内において流速センサ 3に関して第 2整流網 6と反対 側に、好ましくは、 第 2整流網 6の配設位置と対称な位置に配される。そして、 第 3整流網 8 ' は、 第 4整流網 6, の網目寸法よりも小さい網目寸法を有して いる。 第 2実施形態では、 第 3及び第 4整流網 8 ' 、 6, の網目寸法は第 1及 び第 2整流網 8、 6のものと同一であり、例えば 1 0 0メッシュ及び 6 0メッ シュである。 The rectification device 4 ′ further includes third and fourth rectification networks 8 ′ and 6 ′ for adjusting the flow of the fluid flowing in the flow path in the direction of arrow B. The third rectification network 8 ′ is disposed in the flow path on the opposite side of the first rectification network 8 with respect to the flow velocity sensor 3, and is preferably symmetric with respect to the position of the first rectification network 8 with respect to the flow velocity sensor 3. Placed in position. Further, the fourth rectification network 6 ′ is disposed on the opposite side of the flow velocity sensor 3 from the second rectification network 6 in the flow path, preferably, at a position symmetrical to the arrangement position of the second rectification network 6. The third rectifying network 8 ′ has a mesh size smaller than that of the fourth rectifying network 6. I have. In the second embodiment, the mesh size of the third and fourth rectifier networks 8 ', 6 is the same as that of the first and second rectifier networks 8, 6, for example, 100 mesh and 60 mesh. It is.
整流装置 4 ' の作用は整流装置 4のものと略同様である。すなわち、 流体た とえば気体が、第 1及び第 2整流網 8、 6を通って流速センサ 3に向かって矢 印 A方向に流れる場合、比較的大きな異物たとえばダストは第 1整流網 8によ り捕捉される一方、第 1整流網 8を通る小さなダストは第 2整流網 6をも通過 するので、第 2整流網 6の目詰まりが防止される。 また、 気体が矢印 B方向に 流れる場合には、 第 3整流網 8 ' の網目寸法が第 4整流網 6 ' のものよりも小 さいので、 大きなダストは第 3整流網 8 ' により捕捉され、 第 3整流網 8 ' を 通る小さなダストは第 4整流網 6 ' をも通過し、 従って、 第 4整流網 6 ' が目 詰まりするおそれは少ない。従って、流速センサ 3の両側に配された第 2及び 第 4整流網 6、 6 ' によって均一な整流作用が奏されるので、 流速センサ 3の まわりでの気体の流れは流れ方向にかかわらず安定なものになり、流速センサ 3の測定精度が良好に維持され、流量計により良好な流量測定が実施可能にな る。  The operation of the rectifier 4 ′ is substantially the same as that of the rectifier 4. That is, when a fluid, for example, a gas flows in the direction of arrow A toward the flow rate sensor 3 through the first and second rectification networks 8 and 6, relatively large foreign matter, for example, dust, flows through the first rectification network 8. On the other hand, the small dust passing through the first rectification network 8 also passes through the second rectification network 6, so that the clogging of the second rectification network 6 is prevented. When gas flows in the direction of arrow B, large dust is trapped by the third rectifier 8 'because the mesh size of the third rectifier 8' is smaller than that of the fourth rectifier 6 '. The small dust passing through the third rectification network 8 ′ also passes through the fourth rectification network 6 ′, and therefore, there is little possibility that the fourth rectification network 6 ′ becomes clogged. Therefore, since the second and fourth rectification networks 6, 6 'arranged on both sides of the flow velocity sensor 3 provide a uniform rectification action, the gas flow around the flow velocity sensor 3 is stable regardless of the flow direction. Thus, the measurement accuracy of the flow rate sensor 3 is maintained well, and a good flow rate measurement can be performed by the flow meter.
本発明は、上記第 1及び第 2実施形態に限定されず、種々に変形可能である。 例えば、第 1、第 2実施形態では円形形状または楕円形状の整流網を用いた が、 整流網は流路断面形状に応じて各種形状に形成可能である。 また、 実施形 態では、金属材料からなると共に四角形状の網目を有する整流網を用いたが、 整流網の構成材料や網目形状はこれに限定されず、例えば合成樹脂材料で整流 網を構成してもよい。 また、 両実施態様に記載の網目寸法は例示であって、 そ の様な網目寸法に限定されるものではない。  The present invention is not limited to the above first and second embodiments, and can be variously modified. For example, in the first and second embodiments, a circular or elliptical rectification net is used, but the rectification net can be formed in various shapes according to the cross-sectional shape of the flow path. Further, in the embodiment, a rectifying net made of a metal material and having a square mesh is used.However, the material and the mesh shape of the rectifying net are not limited to this.For example, the rectifying net is made of a synthetic resin material. You may. Further, the mesh size described in both embodiments is an example, and is not limited to such a mesh size.
第 1実施形態では、上流側の第 1整流網と下流側の第 2整流網との間に一つ の中間整流網を設けたが、 2つ以上の中間整流網を配設しても良く、 また、 中 間整流網を除去しても良い。 また、 中間整流網の網目寸法を第 2整流網のもの よりも小さくすることは必須ではなく、第 2整流網の網目寸法と同一またはそ れよりも大きい網目寸法の中間整流網を使用しても良い。 In the first embodiment, one intermediate rectification network is provided between the first rectification network on the upstream side and the second rectification network on the downstream side. However, two or more intermediate rectification networks may be provided. Alternatively, the intermediate rectification network may be removed. Also, the mesh size of the intermediate rectification network is It is not essential to make it smaller than this, and an intermediate rectification network having a mesh size equal to or larger than the mesh size of the second rectification network may be used.
第 2実施形態では、流速センサに関して第 1及び第 2整流網の配設位置と対 称な位置に第 3及び第 4整流網を設けたが、第 3及び第 4整流網を第 1及び第 2整流網と対称位置に配置することは必須ではない。 また、第 2実施形態にお いて第 1整流網と第 2整流網との間あるいは第 3整流網と第 4整流網との間 に一つ以上の中間整流網を設けても良い。  In the second embodiment, the third and fourth rectification networks are provided at positions symmetrical to the arrangement positions of the first and second rectification networks with respect to the flow velocity sensor. (2) It is not essential to arrange the symmetrical position with the rectification network. Also, in the second embodiment, one or more intermediate rectification networks may be provided between the first rectification network and the second rectification network or between the third rectification network and the fourth rectification network.
更に、第 1及び第 2実施形態では整流要素として整流網を用いたが、その他 の整流要素、たとえば、流体が通過する貫通通路としての小径貫通孔を多数形 成した整流板を整流網に代えて使用しても良い。  Furthermore, in the first and second embodiments, a rectifying network is used as a rectifying element. However, other rectifying elements, for example, a rectifying plate having a large number of small-diameter through holes as through passages through which a fluid passes are replaced with a rectifying network. May be used.
その他の点についても本発明は種々に変形可能であり、例えば、整流装置を パイプ内に固定する際に円筒ねじやスぺ一サを用いることは必須ではない。  In other respects, the present invention can be variously modified. For example, it is not essential to use a cylindrical screw or a spacer when fixing the rectifier in the pipe.

Claims

請求の範囲 The scope of the claims
1 . 流路内において流量計の検出要素の上流側に配された第 1整流要素と、 前記流路内において前記第 1整流要素と前記検出要素との間に配された第 1. A first rectifying element disposed upstream of the detection element of the flow meter in the flow path, and a first rectification element disposed between the first rectification element and the detection element in the flow path.
2整流要素とを備え、 With two rectifying elements,
前記第 1整流要素に形成された複数の第 1貫通通路の流路面積が、前記第 2 整流要素に形成された複数の第 2貫通通路の流路面積よりも小さいことを特 徵とする整流装置。  The rectifier is characterized in that the flow passage area of the plurality of first through passages formed in the first rectification element is smaller than the flow passage area of the plurality of second through passages formed in the second rectification element. apparatus.
2 . 前記第 1及び第 2整流要素は、前記複数の第 1貫通通路に対応する複数 の第 1網目を有した第 1整流網、および、前記複数の第 2貫通通路に対応する 複数の第 2網目を有した第 2整流網からそれぞれ構成され、  2. The first and second rectifying elements include a first rectifying network having a plurality of first meshes corresponding to the plurality of first through passages, and a plurality of first rectifying networks corresponding to the plurality of second through passages. Each is composed of a second commutation network having a second mesh,
各前記第 1網目の寸法が各前記第 2網目の寸法よりも小さいことを特徴と する請求の範囲第 1項記載の整流装置。  2. The rectifier according to claim 1, wherein the size of each of the first meshes is smaller than the size of each of the second meshes.
3 .前記第 1整流要素と前記第 2整流要素との間に配された一つ以上の中間 整流要素を更に備え、 '  3. It further comprises one or more intermediate rectifying elements disposed between the first rectifying element and the second rectifying element,
前記中間整流要素が備える複数の貫通通路の流路面積は、前記第 1整流要素 の複数の第 1貫通通路の流路面積よりも大きいことを特徴とする請求の範囲 第 1項記載の整流装置。  The rectifying device according to claim 1, wherein the flow passage area of the plurality of through passages provided in the intermediate rectifying element is larger than the flow passage area of the plurality of first through passages of the first rectifying element. .
4 . 前記中間整流要素が備える複数の貫通通路の流路面積が、前記第 2整流 要素の複数の第 2貫通通路の流路面積よりも小さいことを特徴とする請求の 範囲第 3項記載の整流装置。  4. The flow passage area of the plurality of through passages provided in the intermediate rectifying element is smaller than the flow passage area of the plurality of second through passages of the second rectification element. Rectifier.
5 .前記流路内において前記検出要素に関して前記第 1及び第 2整流要素と 反対側に配された第 3及び第 4整流要素を更に備え、  5. The apparatus further comprises third and fourth rectifying elements disposed on the opposite side of the detection element from the first and second rectifying elements in the flow path,
前記第 4整流要素は前記第 3整流要素よりも前記検出要素の近くに配され、 前記第 3整流要素に形成された複数の第 3貫通通路は、前記第 4整流要素に 形成された複数の第 4貫通通路の流路面積よりも小さい流路面積を有するこ とを特徴とする請求の範囲第 1項記載の整流装置。 The fourth rectifying element is arranged closer to the detection element than the third rectifying element, and the plurality of third through passages formed in the third rectifying element are arranged in the plurality of fourth rectifying elements. 2. The rectifying device according to claim 1, wherein the rectifying device has a passage area smaller than a passage area of the fourth through passage.
6 .前記検出部をなす流速センサと前記流速センサの出力信号を信号処理して 流体の流量を求める変換部とを有する質量流量計に適用されることを特徴と する請求の範囲第 1項に記載の整流装置。 6. The method according to claim 1, wherein the mass spectrometer is applied to a mass flow meter having a flow rate sensor serving as the detection section and a conversion section for processing a signal output from the flow rate sensor to obtain a flow rate of a fluid. A rectifier as described.
PCT/JP2003/011095 2002-08-29 2003-08-29 Straightening device WO2004025226A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003257601A AU2003257601A1 (en) 2002-08-29 2003-08-29 Straightening device
DE10393177T DE10393177B4 (en) 2002-08-29 2003-08-29 Flow straightener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002251040A JP2004093170A (en) 2002-08-29 2002-08-29 Flow straightener
JP2002-251040 2002-08-29

Publications (1)

Publication Number Publication Date
WO2004025226A1 true WO2004025226A1 (en) 2004-03-25

Family

ID=31986257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011095 WO2004025226A1 (en) 2002-08-29 2003-08-29 Straightening device

Country Status (5)

Country Link
JP (1) JP2004093170A (en)
CN (1) CN100356142C (en)
AU (1) AU2003257601A1 (en)
DE (1) DE10393177B4 (en)
WO (1) WO2004025226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210370008A1 (en) * 2020-05-29 2021-12-02 Ludger Tappehorn Connection with a volume flow sensor and a homogenization unit for artificial ventilation of a patient and manufacturing process

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415895B2 (en) 2005-08-26 2008-08-26 Smc Kabushiki Kaisha Flow meter with a rectifying module having a plurality of mesh members
JP5502432B2 (en) * 2009-11-18 2014-05-28 三宝電機株式会社 Airflow rectifier and airflow rectifier system
CN102454489A (en) * 2010-10-15 2012-05-16 北汽福田汽车股份有限公司 Air rectifying device, and air inlet system for engine
JP5701594B2 (en) * 2010-12-27 2015-04-15 三宝電機株式会社 Air shower chamber cleaning method and air shower device
CN102767415B (en) * 2011-05-06 2015-09-16 上海通用汽车有限公司 Vent systems, containing its motor, automobile and improve the method for booster performance
CN102346057B (en) * 2011-09-26 2012-10-17 威海市天罡仪表股份有限公司 Conical rectifier
JP6472353B2 (en) * 2015-08-20 2019-02-20 アズビル金門株式会社 Secondary rectifier of pilot type governor
CN105673626B (en) * 2016-03-31 2017-11-10 中国海洋大学 Turbulent flow becomes laminar flow sleeve pipe heating-up temperature field harvester
CN107167194B (en) * 2017-05-02 2019-07-26 四川菲罗米特仪表有限公司 A kind of gas pipeline rectifier
JP6978341B2 (en) * 2018-02-20 2021-12-08 スタンレー電気株式会社 Fluid sterilizer
DE102022100779B4 (en) 2022-01-14 2023-08-03 Binder Gmbh Flow rate measurement of hydrogen in a pipeline

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161825U (en) * 1984-04-04 1985-10-28 日本光電工業株式会社 flysch type pneumotachograph
JPH02221817A (en) * 1988-12-16 1990-09-04 Honeywell Inc Correction of fluid composition for flowmeter
JPH0518795A (en) * 1991-07-15 1993-01-26 Hitachi Ltd Flow straightening duct and gas flow measuring device
JPH0742599A (en) * 1993-08-02 1995-02-10 Mazda Motor Corp Intake air quantity detecting device for engine
JP2001241979A (en) * 2000-03-01 2001-09-07 Matsushita Electric Ind Co Ltd Gas safety device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3009382A1 (en) * 1980-03-12 1981-09-24 Degussa Ag, 6000 Frankfurt DEVICE FOR MEASURING THE FLOW VELOCITIES OF GASES AND LIQUIDS
US5081866A (en) * 1990-05-30 1992-01-21 Yamatake-Honeywell Co., Ltd. Respiratory air flowmeter
US5220830A (en) * 1991-07-09 1993-06-22 Honeywell Inc. Compact gas flow meter using electronic microsensors
FR2687219B1 (en) * 1992-02-11 1994-04-15 Faure Herman Ets TRANQUILIZER DEVICE FOR COUNTING FLUID FLOW.
US5596969A (en) * 1995-10-02 1997-01-28 Cummins Engine Company, Inc. Flow conditioning gas mass sensor
RU2222784C2 (en) * 1997-12-15 2004-01-27 Токио Гэс Ко., Лтд. Flowmeter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161825U (en) * 1984-04-04 1985-10-28 日本光電工業株式会社 flysch type pneumotachograph
JPH02221817A (en) * 1988-12-16 1990-09-04 Honeywell Inc Correction of fluid composition for flowmeter
JPH0518795A (en) * 1991-07-15 1993-01-26 Hitachi Ltd Flow straightening duct and gas flow measuring device
JPH0742599A (en) * 1993-08-02 1995-02-10 Mazda Motor Corp Intake air quantity detecting device for engine
JP2001241979A (en) * 2000-03-01 2001-09-07 Matsushita Electric Ind Co Ltd Gas safety device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210370008A1 (en) * 2020-05-29 2021-12-02 Ludger Tappehorn Connection with a volume flow sensor and a homogenization unit for artificial ventilation of a patient and manufacturing process

Also Published As

Publication number Publication date
CN100356142C (en) 2007-12-19
JP2004093170A (en) 2004-03-25
AU2003257601A8 (en) 2004-04-30
DE10393177B4 (en) 2013-08-22
CN1688871A (en) 2005-10-26
AU2003257601A1 (en) 2004-04-30
DE10393177T5 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR100827759B1 (en) Flow Meter
WO2004025226A1 (en) Straightening device
JP5066675B2 (en) Flow sensor
RU2491513C2 (en) Averaging diaphragm with holes located near inner wall of pipe
US20110011478A1 (en) Apparatus for providing conditioned fluid flows
TW200949213A (en) Flow sensor
US9534942B2 (en) Variable orifice flow sensor utilizing localized contact force
KR100742495B1 (en) Flow rate-measuring device
US20160059171A1 (en) Air Filtration Cartridges Having Air Flow Rectification and Methods of Making Air Filtration Cartridges having Air Flow Rectification
AU2006263279A1 (en) Flow rate measurement device
JP4719075B2 (en) Flowmeter
JP4178207B2 (en) Rectification unit
JPH10115537A (en) Vortex sensor with turbulent flow lattice
JP2003185477A (en) Flowmeter
EP3583897A1 (en) Breath measurement device
JP3659935B2 (en) Rectifier, rectifier tube and flow meter provided with the same
US11484823B2 (en) Air flow conditioning device
CN106908107B (en) Flow sensing assembly with high dynamic range
JP2003269417A (en) Straightening mesh unit and fixing method of straightening mesh
JP2007086085A (en) Pulsation absorbing structure of electronic gas meter
JP4087687B2 (en) Flowmeter
CN210221166U (en) Gas flowmeter
JP2005140672A (en) Air intake duct device
JP4411917B2 (en) Vortex flow meter
JP2003270021A (en) Straightener

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038235889

Country of ref document: CN

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607