JP2004093170A - Flow straightener - Google Patents

Flow straightener Download PDF

Info

Publication number
JP2004093170A
JP2004093170A JP2002251040A JP2002251040A JP2004093170A JP 2004093170 A JP2004093170 A JP 2004093170A JP 2002251040 A JP2002251040 A JP 2002251040A JP 2002251040 A JP2002251040 A JP 2002251040A JP 2004093170 A JP2004093170 A JP 2004093170A
Authority
JP
Japan
Prior art keywords
flow
wire mesh
mesh
sensor
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002251040A
Other languages
Japanese (ja)
Inventor
Kazumitsu Nukui
温井 一光
Michinori Komaki
小牧 充典
Takeshi Tashiro
田代 健
Hidekazu Oshima
大島 英一
Satoshi Ishitani
石谷 聡
Takeshi Yao
八尾 健史
Hiroshi Tamura
田村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Seisakusho Co Ltd
Tokyo Gas Co Ltd
Azbil Corp
Original Assignee
Takenaka Seisakusho Co Ltd
Tokyo Gas Co Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Seisakusho Co Ltd, Tokyo Gas Co Ltd, Azbil Corp filed Critical Takenaka Seisakusho Co Ltd
Priority to JP2002251040A priority Critical patent/JP2004093170A/en
Priority to AU2003257601A priority patent/AU2003257601A1/en
Priority to CNB038235889A priority patent/CN100356142C/en
Priority to PCT/JP2003/011095 priority patent/WO2004025226A1/en
Priority to DE10393177T priority patent/DE10393177B4/en
Publication of JP2004093170A publication Critical patent/JP2004093170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/025Influencing flow of fluids in pipes or conduits by means of orifice or throttle elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow straightener capable of securing stable accuracy by preventing plugging of a flow straightening element even if using a detecting part of a flow meter in environment of much dust. <P>SOLUTION: This flow straightener 4 comprises a plurality of wire mesh 6-8 of different mesh gauge installed at spaces upstream of a flow velocity sensor 3 of the flow meter to straighten fluid flow. The wire mesh 8 of the smallest mesh gauge is disposed most upstream of the flow velocity sensor 3, and the wire mesh 7, 6 of larger mesh gauge are arranged in sequence downstream of the wire mesh 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流量計の検出部の流速センサ上流側に設置して気体の流れを整流する整流装置に関するものである。
【0002】
【関連する背景技術】
流体例えば、気体の流路(配管)に介挿されて当該流路を流れる気体の質量流量を計測する流量計において、流速センサを使用する場合、流路内を流れる気体の偏流や乱れを小さくするために整流素子として金網を複数枚一定間隔で流速センサの上流側に設置する構成の整流装置が知られている。そして、整流装置は、整流効果を考慮して流速センサの最も上流側に最も目の粗い金網を設置し、下流側に向かって徐々に細かい目の金網を設置し、気体を整流した後流速センサで流量や流速を測定するようにしている。
【0003】
前記流量計は、気体の整流及びセンシングを行う検出部と、信号処理を行う変換部とから構成され、検出部の流路内壁面には、流速を検出する流速センサ例えば、マイクロフローセンサが取り付けられ、変換部がマイクロフローセンサからの信号に基づいて積算流量、瞬時流量等を演算算出して表示する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記構造の整流装置は、ダスト(異物)が多く含まれている気体に使用されると、ダストの大きさによってどの金網に引っ掛かってもおかしくはない。金網にダストが溜まって目詰まりを起こすと、当該金網の目開きの均一性が損なわれ、折角整流した流れが再び乱れてしまうことになる。特に、ダストがより下流側(センサに近い側)に設置されている目の細かい金網に溜まると、気体の流れに大きな影響を及ぼすこととなり、この結果、流速センサの出力が大きく変化するという問題がある。
【0005】
本発明は、上述の点に鑑みてなされたもので、流量計の検出部をダストの多い環境で使用しても整流素子の目詰まりを防止して安定した精度を確保することができる整流装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明では、整流装置は、目の粗さが異なる複数枚の金網から成り、流量計の流速センサの上流側に間隔を存して設置されて流体の流れを整流する整流装置において、最も目の細かい金網を前記流速センサの最上流位置に配置し、前記金網から下流側に向かって徐々に目の粗い金網を配置することを特徴としている。
【0007】
請求項2の発明では、前記整流装置は、前記流速センサの両側に対象に配置されていることを特徴としている。
流路を流れる気体にダストが含まれている場合、流速センサの最も上流に配置されている最も目の細かい金網がダストを止めてしまう。この金網を通り抜けた細かいダストは、そのまま下流側に配置されている金網を通り抜けてしまうことで、流速センサに最も近い金網が目詰まりを起こすことがなくなる。これにより、流路を流れる気体の乱れが防止され、ダストの多い環境においても経年変化のない安定した精度を確保する流量計を実現することができる。
【0008】
また、流速センサの両側に当該流速センサから遠い位置に最も目の細かい金網を配置し、前記流速センサ側に徐々に目の粗い金網を配置することで、流路を双方向に流れる場合でも前記流速センサに最も近い金網が目詰まりを起こすことがなくなり、流路を流れる気体の乱れが防止される。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明に係る整流装置について説明する。図1は、本発明に係る整流装置を適用した流量計の検出部の第1の実施形態を示す断面図である。
図1に示すように流量計の検出部1は、ハウジング2と、ハウジング2に設置された流速センサ3と、流速センサ3の上流側(図中左側)に設置された整流装置4と、整流装置4を固定する円筒ねじ5から成る。ハウジング2は、流路としての厚肉パイプ2aの両端に夫々取付用フランジ2bが形成され、略中央から一側(上流側)の流路2cの内径が他側(下流側)の流路2dの内径よりも僅かに大径とされてをなして形成されており、開口端内周面に雌ねじ2fが刻設されている。そして、流路2cに整流装置4が収納され、流路2dの中央寄りの段差部2e近傍位置にその検出部が内面から僅かに突出して流速センサ3が設置されている。
【0010】
整流装置4は、整流素子として複数例えば、3枚の目の粗さが異なる円形の金網6、7、8がスペーサ9を介して所定の間隔を存して順次流速センサ3の上流側に配置され構成されている。スペーサ9は、所定長さの円筒状をなし、その外径が流路2cに嵌挿可能とされ、その内径が流路2dの内径と同径とされて面一の内面をなすように形成されている。
【0011】
図1及び図2に示すように金網6、7、8は、流速センサ3から最も上流側の金網8が最も細かい目(例えば、#100)とされ(図2(a))、金網8の直ぐ下流の金網7が二番目に細かい目(例えば、#60)とされ(図2(b))、金網7の下流(流速センサ3に最も近い位置)の金網6が最も粗い目(例えば、#40)とされている(図2(c))。
【0012】
押圧手段としての円筒ねじ5は、内径が流路2dの内径と同径とされ、外径が流路2cに嵌挿可能とされ、且つ開口部5aの外周面に雌ねじ2fと螺合する雄ねじ5cが刻設されている。また、開口部5aの端面にはピン孔5dが直径の両側位置に設けられている。
図1に示すように整流装置3は、流路2cに流速センサ3に近い側から金網6、スペーサ9、金網7、スペーサ9、金網8、スペーサ9の順に整列して収納され、次いで、円筒ねじ5が挿入されて雄ねじ5cが雌ねじ2fに螺合される。円筒ねじ5は、開口部5aの2つのピン孔5dにねじ回し冶具の対応する2本のピン(図示せず)が嵌合されて回転される。円筒ねじ5は、回転に伴い前進して開口部5bの端面が整流装置4を段差部2eに押し付けて固定する。これにより、金網6の周縁部が段差部2eとスペーサ9とに挟まれて固定され、金網7、8の各周縁部が夫々両側のスペーサ9により挟まれて固定されて流路2c内に各スペーサ9と共に強固に固定される。これにより、流路2c内での金網6、7、8、及びスペーサ9の位置ずれが防止される。また、各スペーサ9の内径が流路2dの内径と同径とされていることで、流路2dの内面との間に段差が生じることはない。このようにして、整流装置4が流速センサ3の上流側の流路2c内に設置される。
【0013】
尚、整流装置4と円筒ねじ5との間に外・内径が当該円筒ねじ5の外・内径と同径のリング状のバネワッシャ(ウェイブリング)を介在させて締め付けるようにしてもよい。このバネワッシャを使用することで、振動や衝撃等に起因する円筒ねじ5の緩みを防止することができる。前記バネワッシャは、ばね性を有する薄板のリングに周方向に沿ってバネ部としての波形部を連続して形成したもので、軸方向の圧縮に対して均一なばね性を有する。
【0014】
以下に作用を説明する。
図1に示すように流路2cを矢印A方向に向かって流れる気体にダストが含まれている場合、先ず、最も目の細かい金網8がダストを止めてしまう。この金網8を通り抜けた細かいダストは、そのまま金網7、6を通り抜けてしまうため、流速センサ3に最も近い金網6が目詰まりを起こすことがなくなる。これにより、流路2dを流れる気体の乱れが防止される。従って、ダストの多い環境においても経年変化のない安定した精度を確保する流量計を実現することができる。
【0015】
整流装置4は、整流素子としての金網6、7、8、及びスペーサ9等が円筒ねじ5により流路2c内に押圧固定されていることで、ハウジング2の外部から振動や衝撃を受けた場合でも、これらの金網6〜8、スペーサ9が変形したり、移動(位置ずれ)することが防止される。これにより、流路2d内の気体の偏流や乱れが防止され、流量計の再現性が確保される。
【0016】
図3は、本発明に係る整流装置の第2の実施形態を示す概略構成図である。図3に示すように流速センサ3の両側に、当該流速センサ3の最も上流側(流速センサ3から遠い位置)に最も細かい目(例えば、#100)の金網8、8を設置し、これらの金網8、8の下流側(流速センサ3に近い位置)にこれらの金網8、8よりも粗い目(例えば、#60)の金網7、7を設置する。即ち、整流装置4’は、流速センサ3の両側に対称に、当該流速センサ3から遠い側から近い側に向けて最も細かい目の金網8、二番目に細かい目の金網7を配置する。
【0017】
これにより、ダストを含む気体が矢印A方向、又は矢印B方向の双方向に流れる場合でも、最も目の細かい金網8がダストを止めてしまい、金網8を通り抜けた細かいダストは、そのまま金網7を通り抜けてしまうため、流速センサ3に最も近い金網7が目詰まりを起こすことがなくなる。これにより、流路2dを流れる気体の乱れが防止される。
【0018】
【発明の効果】
以上説明したように本発明では、流路を流れる気体にダストが含まれている場合、流速センサの最も上流に配置されている最も目の細かい金網がダストを止めてしい、この金網を通り抜けた細かいダストは、そのまま下流側に配置されている金網を通り抜けてしまうことで、流速センサに最も近い金網が目詰まりを起こすことがなくなる。これにより、流路を流れる気体の乱れが防止され、ダストの多い環境においても経年変化のない安定した精度を確保する流量計を実現することができる(請求項1)。
【0019】
また、流速センサの両側に当該流速センサから遠い位置に最も目の細かい金網を配置し、前記流速センサ側に徐々に目の粗い金網を配置することで、流路を双方向に流れる場合でも前記流速センサに最も近い金網が目詰まりを起こすことがなくなり、流路を流れる気体の乱れが防止される(請求項2)。
【図面の簡単な説明】
【図1】本発明に係る整流装置を適用した流量計の検出部の第1の実施形態を示す断面図である。
【図2】本発明に係る整流装置における各金網の目の粗さを示す説明図である。
【図3】本発明に係る整流装置の第2の実施形態を示す概略構成図である。
【符号の説明】
1 検出部
2 ハウジング
2c、2d 流路
3 流速センサ
4、4’  整流装置
5 円筒ねじ
6、7、8 金網(整流素子)
9 スペーサ
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a rectifying device that is installed upstream of a flow rate sensor in a detection unit of a flow meter and rectifies a gas flow.
[0002]
[Related background art]
When a flow rate sensor is used in a flow meter that measures the mass flow rate of a gas flowing through a fluid channel, for example, a gas channel (pipe), the drift and turbulence of the gas flowing in the channel are reduced. For this purpose, there is known a rectifying device having a configuration in which a plurality of wire meshes are installed at a certain interval on the upstream side of a flow rate sensor as rectifying elements. The rectifying device sets the coarsest wire mesh on the most upstream side of the flow sensor in consideration of the rectifying effect, gradually installs the finer mesh toward the downstream side, rectifies the gas, and then rectifies the gas. Is used to measure the flow rate and flow velocity.
[0003]
The flow meter is composed of a detection unit that performs gas rectification and sensing, and a conversion unit that performs signal processing.A flow rate sensor that detects a flow rate, for example, a micro flow sensor, is attached to the inner wall of the flow path of the detection unit. The conversion unit calculates and displays the integrated flow rate, the instantaneous flow rate, and the like based on the signal from the micro flow sensor.
[0004]
[Problems to be solved by the invention]
However, when the rectifying device having the above structure is used for a gas containing a large amount of dust (foreign matter), it may be caught by any wire mesh depending on the size of the dust. If dust accumulates in the wire mesh and causes clogging, the uniformity of the openings of the wire mesh is impaired, and the rectified flow is disturbed again. In particular, if dust accumulates on a finer mesh placed further downstream (closer to the sensor), it will have a large effect on the gas flow, and as a result, the output of the flow velocity sensor will change significantly. There is.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and can prevent a rectifying element from being clogged even when a detection unit of a flow meter is used in an environment with a large amount of dust and can secure stable accuracy. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the rectifying device includes a plurality of wire meshes having different meshes, and is installed at an interval upstream of the flow rate sensor of the flow meter to provide a fluid flow. In the rectifying device for rectifying the flow, the finest wire mesh is arranged at the most upstream position of the flow velocity sensor, and the coarser wire mesh is gradually arranged from the wire mesh toward the downstream side.
[0007]
According to a second aspect of the present invention, the rectifier is symmetrically disposed on both sides of the flow rate sensor.
If dust is contained in the gas flowing through the flow path, the finest wire mesh arranged at the most upstream position of the flow velocity sensor stops the dust. The fine dust that has passed through the wire mesh passes through the wire mesh disposed downstream as it is, so that the wire mesh closest to the flow velocity sensor does not become clogged. Thereby, the turbulence of the gas flowing through the flow path is prevented, and a flowmeter that ensures stable accuracy without aging even in an environment with a lot of dust can be realized.
[0008]
Further, by arranging the finest metal mesh at a position far from the flow sensor on both sides of the flow sensor, and gradually arranging the coarser metal mesh on the flow sensor side, even when flowing in the flow path in both directions, The wire mesh closest to the flow rate sensor is not clogged, and turbulence of the gas flowing through the flow path is prevented.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a rectifier according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of a detection unit of a flow meter to which a rectifier according to the present invention is applied.
As shown in FIG. 1, the detection unit 1 of the flow meter includes a housing 2, a flow rate sensor 3 installed in the housing 2, a rectifying device 4 installed on the upstream side (left side in the figure) of the flow rate sensor 3, It comprises a cylindrical screw 5 for fixing the device 4. In the housing 2, mounting flanges 2b are formed at both ends of a thick pipe 2a as a flow path, and the inside diameter of a flow path 2c on one side (upstream side) from the approximate center is a flow path 2d on the other side (downstream side). The inner diameter is slightly larger than the inner diameter of the opening, and a female screw 2f is engraved on the inner peripheral surface of the opening end. The flow rectifier 4 is housed in the flow path 2c, and the flow rate sensor 3 is installed at a position near the center of the flow path 2d near the stepped portion 2e with its detection portion slightly protruding from the inner surface.
[0010]
The rectification device 4 includes a plurality of rectification elements, for example, three circular wire meshes 6, 7, and 8 having different meshes sequentially arranged at predetermined intervals via a spacer 9 on the upstream side of the flow rate sensor 3. It is configured. The spacer 9 is formed in a cylindrical shape having a predetermined length, the outer diameter of which can be inserted into the flow passage 2c, and the inner diameter of which is the same as the inner diameter of the flow passage 2d, and which is formed to be flush with the inner surface. Have been.
[0011]
As shown in FIGS. 1 and 2, the wire meshes 6, 7, 8 have the finest mesh (for example, # 100) in the wire mesh 8 on the most upstream side from the flow velocity sensor 3 (FIG. 2A). The wire mesh 7 immediately downstream is the second finest mesh (for example, # 60) (FIG. 2B), and the wire mesh 6 downstream (the position closest to the flow rate sensor 3) of the wire mesh 7 is the coarsest mesh (for example, # 60). # 40) (FIG. 2C).
[0012]
A male screw that has an inner diameter equal to the inner diameter of the flow path 2d, an outer diameter that can be inserted into the flow path 2c, and a female screw 2f screwed to the outer peripheral surface of the opening 5a is used as the pressing means. 5c is engraved. In addition, pin holes 5d are provided at both end positions of the diameter on the end face of the opening 5a.
As shown in FIG. 1, the rectifier 3 is housed in the flow path 2 c in the order of the wire mesh 6, the spacer 9, the wire mesh 7, the spacer 9, the wire mesh 8, and the spacer 9 from the side near the flow velocity sensor 3, The screw 5 is inserted, and the male screw 5c is screwed into the female screw 2f. The cylindrical screw 5 is rotated by fitting two corresponding pins (not shown) of a screwdriver jig into two pin holes 5d of the opening 5a. The cylindrical screw 5 advances with the rotation, and the end face of the opening 5b presses the rectifier 4 against the step 2e to fix it. As a result, the periphery of the wire mesh 6 is fixed by being sandwiched between the step portion 2 e and the spacer 9, and the respective edges of the wire mesh 7, 8 are fixed by being sandwiched by the spacers 9 on both sides, and each It is firmly fixed together with the spacer 9. Thereby, the misalignment of the wire nets 6, 7, 8 and the spacer 9 in the flow path 2c is prevented. Further, since the inner diameter of each spacer 9 is the same as the inner diameter of the flow path 2d, no step is formed between the spacer 9 and the inner surface of the flow path 2d. Thus, the rectifier 4 is installed in the flow path 2c on the upstream side of the flow velocity sensor 3.
[0013]
Note that a ring-shaped spring washer (wave ring) having an outer diameter and an inner diameter equal to the outer diameter and the inner diameter of the cylindrical screw 5 may be interposed between the rectifying device 4 and the cylindrical screw 5 for tightening. By using this spring washer, loosening of the cylindrical screw 5 due to vibration or impact can be prevented. The spring washer is formed by continuously forming a corrugated portion as a spring portion along a circumferential direction on a ring of a thin plate having a spring property, and has a uniform spring property against compression in the axial direction.
[0014]
The operation will be described below.
As shown in FIG. 1, when dust is contained in the gas flowing in the flow path 2c in the direction of arrow A, first, the finest wire mesh 8 stops the dust. The fine dust passing through the wire mesh 8 passes through the wire meshes 7 and 6 as it is, so that the wire mesh 6 closest to the flow velocity sensor 3 does not become clogged. Thereby, the turbulence of the gas flowing through the flow path 2d is prevented. Therefore, it is possible to realize a flowmeter that ensures stable accuracy without aging even in an environment with a lot of dust.
[0015]
The rectifying device 4 is configured such that the wire meshes 6, 7, 8 and the spacers 9 as rectifying elements are pressed and fixed in the flow path 2c by the cylindrical screw 5 so that the rectifying device 4 receives vibration or impact from outside the housing 2. However, the wire meshes 6 to 8 and the spacer 9 are prevented from being deformed or moved (positionally displaced). Thereby, the drift and turbulence of the gas in the flow path 2d are prevented, and the reproducibility of the flow meter is secured.
[0016]
FIG. 3 is a schematic configuration diagram showing a second embodiment of the rectifier according to the present invention. As shown in FIG. 3, on both sides of the flow velocity sensor 3, wire meshes 8 with the finest eyes (for example, # 100) are installed at the most upstream side (a position far from the flow velocity sensor 3) of the flow velocity sensor 3. On the downstream side of the wire meshes 8, 8 (positions close to the flow velocity sensor 3), wire meshes 7, 7 having a coarser mesh (for example, # 60) than these wire meshes 8, 8 are installed. That is, the rectifying device 4 ′ arranges the finest wire mesh 8 and the second finest wire mesh 7 symmetrically on both sides of the flow velocity sensor 3 from the side farther from the flow velocity sensor 3 to the side closer thereto.
[0017]
Thereby, even when gas containing dust flows in both directions of arrow A or arrow B, the finest wire mesh 8 stops the dust, and the fine dust passing through the wire mesh 8 passes through the wire mesh 7 as it is. Since the wire mesh passes through, the wire mesh 7 closest to the flow velocity sensor 3 does not become clogged. Thereby, the turbulence of the gas flowing through the flow path 2d is prevented.
[0018]
【The invention's effect】
As described above, in the present invention, when dust is contained in the gas flowing through the flow path, the finest wire mesh arranged upstream of the flow velocity sensor is supposed to stop dust, and has passed through this wire mesh. The fine dust passes through the wire mesh arranged on the downstream side as it is, so that the wire mesh closest to the flow velocity sensor does not become clogged. Thus, a turbulence of the gas flowing through the flow path is prevented, and a flowmeter that ensures stable accuracy without aging even in a dusty environment can be realized (claim 1).
[0019]
Further, by arranging the finest mesh at a position far from the flow sensor on both sides of the flow sensor, and gradually arranging the coarse mesh on the flow sensor side, even when flowing in the flow path in both directions, The wire mesh closest to the flow rate sensor is not clogged, and turbulence of the gas flowing through the flow path is prevented (claim 2).
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a detection unit of a flow meter to which a rectifier according to the present invention is applied.
FIG. 2 is an explanatory diagram showing the roughness of each wire mesh in the rectifier according to the present invention.
FIG. 3 is a schematic configuration diagram showing a second embodiment of the rectifier according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detection part 2 Housing 2c, 2d Channel 3 Flow velocity sensor 4, 4 'Rectifier 5 Cylindrical screw 6, 7, 8 Wire mesh (rectifier)
9 Spacer

Claims (2)

目の粗さが異なる複数枚の金網から成り、流量計の流速センサの上流側に間隔存して設置されて流体の流れを整流する整流装置において、
最も目の細かい金網を前記流速センサの最上流位置に配置し、前記金網から下流側に向かって徐々に目の粗い金網を配置することを特徴とする整流装置。
In a rectifying device that is composed of a plurality of wire meshes having different coarsenesses and that is installed at an interval upstream of a flow rate sensor of a flow meter to rectify the flow of a fluid,
A rectifier, wherein the finest mesh is arranged at the most upstream position of the flow rate sensor, and the coarser mesh is gradually arranged from the mesh toward the downstream side.
前記整流装置は、前記流速センサの両側に対象に配置されていることを特徴とする請求項1に記載の整流装置。The rectifier according to claim 1, wherein the rectifier is symmetrically disposed on both sides of the flow sensor.
JP2002251040A 2002-08-29 2002-08-29 Flow straightener Pending JP2004093170A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002251040A JP2004093170A (en) 2002-08-29 2002-08-29 Flow straightener
AU2003257601A AU2003257601A1 (en) 2002-08-29 2003-08-29 Straightening device
CNB038235889A CN100356142C (en) 2002-08-29 2003-08-29 Commutating device
PCT/JP2003/011095 WO2004025226A1 (en) 2002-08-29 2003-08-29 Straightening device
DE10393177T DE10393177B4 (en) 2002-08-29 2003-08-29 Flow straightener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251040A JP2004093170A (en) 2002-08-29 2002-08-29 Flow straightener

Publications (1)

Publication Number Publication Date
JP2004093170A true JP2004093170A (en) 2004-03-25

Family

ID=31986257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251040A Pending JP2004093170A (en) 2002-08-29 2002-08-29 Flow straightener

Country Status (5)

Country Link
JP (1) JP2004093170A (en)
CN (1) CN100356142C (en)
AU (1) AU2003257601A1 (en)
DE (1) DE10393177B4 (en)
WO (1) WO2004025226A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415895B2 (en) 2005-08-26 2008-08-26 Smc Kabushiki Kaisha Flow meter with a rectifying module having a plurality of mesh members
JP2011106757A (en) * 2009-11-18 2011-06-02 Sanpo Denki Kk Airflow rectifying device and airflow rectifying system
CN102346057A (en) * 2011-09-26 2012-02-08 威海市天罡仪表股份有限公司 Conical rectifier
JP2012137264A (en) * 2010-12-27 2012-07-19 Sanpo Denki Kk Method of cleaning air shower room and air shower device
CN102767415A (en) * 2011-05-06 2012-11-07 上海通用汽车有限公司 Exhaust system, engine and automobile comprising same and supercharger performance improving method
JP2017040314A (en) * 2015-08-20 2017-02-23 アズビル金門株式会社 Secondary side rectifier of pilot type governor
JP2019141292A (en) * 2018-02-20 2019-08-29 スタンレー電気株式会社 Fluid sterilizer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102454489A (en) * 2010-10-15 2012-05-16 北汽福田汽车股份有限公司 Air rectifying device, and air inlet system for engine
CN105673626B (en) * 2016-03-31 2017-11-10 中国海洋大学 Turbulent flow becomes laminar flow sleeve pipe heating-up temperature field harvester
CN107167194B (en) * 2017-05-02 2019-07-26 四川菲罗米特仪表有限公司 A kind of gas pipeline rectifier
DE102022100779B4 (en) 2022-01-14 2023-08-03 Binder Gmbh Flow rate measurement of hydrogen in a pipeline

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3009382A1 (en) * 1980-03-12 1981-09-24 Degussa Ag, 6000 Frankfurt DEVICE FOR MEASURING THE FLOW VELOCITIES OF GASES AND LIQUIDS
JPS60161825U (en) * 1984-04-04 1985-10-28 日本光電工業株式会社 flysch type pneumotachograph
US4961348A (en) * 1988-12-16 1990-10-09 Ulrich Bonne Flowmeter fluid composition correction
US5081866A (en) * 1990-05-30 1992-01-21 Yamatake-Honeywell Co., Ltd. Respiratory air flowmeter
US5220830A (en) * 1991-07-09 1993-06-22 Honeywell Inc. Compact gas flow meter using electronic microsensors
JPH0518795A (en) * 1991-07-15 1993-01-26 Hitachi Ltd Flow straightening duct and gas flow measuring device
FR2687219B1 (en) * 1992-02-11 1994-04-15 Faure Herman Ets TRANQUILIZER DEVICE FOR COUNTING FLUID FLOW.
JPH0742599A (en) * 1993-08-02 1995-02-10 Mazda Motor Corp Intake air quantity detecting device for engine
US5596969A (en) * 1995-10-02 1997-01-28 Cummins Engine Company, Inc. Flow conditioning gas mass sensor
WO1999031467A1 (en) * 1997-12-15 1999-06-24 Tokyo Gas Co., Ltd. Flowmeter
JP2001241979A (en) * 2000-03-01 2001-09-07 Matsushita Electric Ind Co Ltd Gas safety device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415895B2 (en) 2005-08-26 2008-08-26 Smc Kabushiki Kaisha Flow meter with a rectifying module having a plurality of mesh members
CN100439873C (en) * 2005-08-26 2008-12-03 Smc株式会社 Flow meter
DE102006039238B4 (en) * 2005-08-26 2009-04-30 Smc K.K. flowmeter
JP2011106757A (en) * 2009-11-18 2011-06-02 Sanpo Denki Kk Airflow rectifying device and airflow rectifying system
JP2012137264A (en) * 2010-12-27 2012-07-19 Sanpo Denki Kk Method of cleaning air shower room and air shower device
CN102767415A (en) * 2011-05-06 2012-11-07 上海通用汽车有限公司 Exhaust system, engine and automobile comprising same and supercharger performance improving method
CN102346057A (en) * 2011-09-26 2012-02-08 威海市天罡仪表股份有限公司 Conical rectifier
JP2017040314A (en) * 2015-08-20 2017-02-23 アズビル金門株式会社 Secondary side rectifier of pilot type governor
JP2019141292A (en) * 2018-02-20 2019-08-29 スタンレー電気株式会社 Fluid sterilizer

Also Published As

Publication number Publication date
CN100356142C (en) 2007-12-19
AU2003257601A8 (en) 2004-04-30
CN1688871A (en) 2005-10-26
DE10393177B4 (en) 2013-08-22
DE10393177T5 (en) 2005-10-20
AU2003257601A1 (en) 2004-04-30
WO2004025226A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
KR100827759B1 (en) Flow Meter
US5014552A (en) Flow meter
JP2004093170A (en) Flow straightener
JP5066675B2 (en) Flow sensor
US8544342B1 (en) Vortex flowmeter
JP4259522B2 (en) Flow measuring device
JP4178207B2 (en) Rectification unit
JP2000110676A (en) Fluid pipeline and air cleaner equipped with flow meter
JP5068194B2 (en) Flowmeter
JPS63180819A (en) Air flowmeter having straightening lattice
US11484823B2 (en) Air flow conditioning device
JP2009085814A (en) Flow-measuring device for fluid
JP2004093159A (en) Fixing device of straightening unit
JP2003269417A (en) Straightening mesh unit and fixing method of straightening mesh
JP3921518B2 (en) Pulsation absorption structure of electronic gas meter
JP3629703B2 (en) Vortex flow meter
JP2007086085A (en) Pulsation absorbing structure of electronic gas meter
JP2005003534A (en) Flow regulating instrument
JP2003270021A (en) Straightener
JP2004093392A (en) Pulsation absorption structure of electronic gas meter
JP3029665B2 (en) Ring vortex flow meter
JP2004170346A (en) Flow meter
JP2001033288A (en) Air flow rate measuring device
JP2003270023A (en) Straightener
JP2004093394A (en) Pulsation absorption structure of electronic gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050810

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080702

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A02 Decision of refusal

Effective date: 20081015

Free format text: JAPANESE INTERMEDIATE CODE: A02