JP2004170346A - Flow meter - Google Patents

Flow meter Download PDF

Info

Publication number
JP2004170346A
JP2004170346A JP2002339131A JP2002339131A JP2004170346A JP 2004170346 A JP2004170346 A JP 2004170346A JP 2002339131 A JP2002339131 A JP 2002339131A JP 2002339131 A JP2002339131 A JP 2002339131A JP 2004170346 A JP2004170346 A JP 2004170346A
Authority
JP
Japan
Prior art keywords
gas
measurement
flow
measuring
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339131A
Other languages
Japanese (ja)
Other versions
JP4087687B2 (en
Inventor
Toshihide Kuwabara
敏英 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimmon Manufacturing Co Ltd
Original Assignee
Kimmon Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimmon Manufacturing Co Ltd filed Critical Kimmon Manufacturing Co Ltd
Priority to JP2002339131A priority Critical patent/JP4087687B2/en
Publication of JP2004170346A publication Critical patent/JP2004170346A/en
Application granted granted Critical
Publication of JP4087687B2 publication Critical patent/JP4087687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow meter capable of reducing turbulence of a gas flow flowing through a measuring tube and stabilizing a flow rate at a flow measurement point, thus improving measurement accuracy. <P>SOLUTION: The flow meter flows a gas flowing through a gas inlet 3a from a gas supply source side into a measuring channel 5 of a flow meter body 1 and, after measuring gas flow rate with a measuring instrument disposed in the measuring channel 5, directs the gas from a gas outlet 4a to a gas consuming side. The measuring channel is provided with a measuring tube 9 opened to upstream side 7 and downstream side 8. A regulator 11 consisting of plural flow regulating plates 12 arranged radially is disposed on at least the upstream side 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、都市ガス、プロパンガス等のガス流量を計測する流量計に関する。
【0002】
【従来の技術】
一般家庭用のガスメータとしての超音波ガスメータが開発されている。超音波ガスメータは、既設の膜式ガスメータが取付けられている配管に対して互換性を持たせるために図6(a)(b)に示すように構成されている。
【0003】
すなわち、流量計本体1の上部には左右方向に離間してガス流入口3aを形成する流入口金3とガス流出口4aを形成する流出口金4が設けられている。流量計本体1の内部の計測流路5は隔壁6によって上流側7と下流側8に区画されている。さらに、隔壁6には上流側7及び下流側8に開口する測定管9が貫通して設けられている。
【0004】
この測定管9は円筒または角筒であり、ガス流入口3aから上流側7に流入したガスが測定管9の内部を流通して下流側8に流れ、ガス流出口4aに導かれるようになっている。測定管9の内部にはガスの流れる方向(矢印a方向)に対して角度θを持って対向する送信センサと受信センサからなる一対の超音波センサ10a,10bが設置されている。そして、超音波の伝搬速度の変化を検知してガス流量を計測し、積算流量を積算指示部(図示しない)に指示するようになっている。
【0005】
また、図7は、流量計本体1の上流側7及び下流側8の側壁に測定管9の開口に対向して送信センサと受信センサからなる一対の超音波センサ10a,10bを設置したものである。
【0006】
【発明が解決しようとする課題】
しかしながら、前述のように構成された超音波ガスメータは、ガス流入口3aから計測流路5の上流側7に流入したガスが測定管9の開口の周囲から略直角に曲がって測定管9に流入する。従って、測定管9の内部を流通するガスの流速分布に乱れが発生し、測定管9内の圧力変動(脈動)が生じて計測精度に影響を及ぼす要因となっている。
【0007】
この発明は、前記事情に着目してなされたもので、その目的とするところは、測定管内を流通するガスの流速分布の乱れを低減し、計測精度を向上できる流量計を提供することにある。
【0008】
【課題を解決するための手段】
この発明は、前記目的を達成するために、請求項1は、ガス供給側からガス流入口を介して流入するガスを流量計本体の計測流路に流入し、前記計測流路に設置した計器によってガス流量を計測した後、ガス流出口からガス需要側に導く流量計において、前記計測流路に、その上流側及び下流側に開口する測定管を設けるとともに、前記測定管の少なくとも上流側に複数枚の整流板を放射状に配置した整流器を設けたことを特徴とする。
【0009】
請求項2は、請求項1の前記整流板は、その内側端部が前記測定管の内周壁より内側に突出して設けられていることを特徴とする。
【0010】
請求項3は、請求項1の前記整流板は、その内側端部が前記測定管の外周壁に固定されていることを特徴とする。
【0011】
請求項4は、請求項1の前記ガス流量を計測する計器は、超音波センサ、熱線センサ、タービンのいずれかであることを特徴とする。
【0012】
前記構成によれば、計測流路の上流側から測定管に向かうガス及び測定管から下流側に向かうガスは整流器によって整流され、測定管内を流通するガスの流れの乱れを減少させることができ、流量測定点における流量を安定させることができる。従って、計測精度を向上できる。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明するが、従来と同一構成部分は同一番号を付して説明を省略する。
【0014】
図1は第1の実施形態を示し、(a)は縦断正面図、(b)はA−A線に沿う断面図である。図1に示すように、流量計本体1の計測流路5に隔壁6を貫通して設けられた円筒状の測定管9の上流側7及び下流側8にはガスの流れを整流する整流器11が設けられている。なお、整流器11は測定管9の上流側7だけに設けても同様の効果がある。
【0015】
整流器11は、測定管9に対して複数枚の整流板12を放射状に等間隔に配置することにより構成されている。そして、整流板12は測定管9の開口縁と計測流路5の上流側7及び下流側8の内側壁5aとの間の全体に亘って設けられている。さらに、整流板12の内側端部12aは測定管9の内周壁9aより内側に突出して設けられている。
【0016】
このように構成された流量計によれば、ガス流入口3aからガスが計測流路5の上流側7に流入すると、ガスは整流器11の整流板12相互間を通過して整流されて測定管9に向かう。そして、ガスは測定管9の内部を流れて下流側8に向かい、ここで、再び整流器11によって整流されてガス流出口3bから流出する。
【0017】
従って、測定管9内を流通するガスの流れの乱れを減少させることができ、送信センサと受信センサからなる一対の超音波センサ10a,10bの流量測定点における流量を安定させることができ、計測精度を向上できる。
【0018】
図2は第1の実施形態の変形例を示し、角筒状の測定管13の上流側7及び下流側8に整流器11を設けたものであり、第1の実施形態と同様の作用効果がある。
【0019】
図3は第2の実施形態を示し、(a)は縦断正面図、(b)はB−B線に沿う断面図である。図3に示すように、流量計本体1の計測流路5に隔壁6を貫通して設けられた円筒状の測定管9の上流側7及び下流側8にはガスの流れを整流する整流器11が設けられている。
【0020】
整流器11は、測定管9に対して複数枚の整流板12を放射状に等間隔に配置することにより構成されている。そして、整流板12は測定管9の開口縁と計測流路5の上流側7及び下流側8の内側壁5aとの間の全体に亘って設けられている。さらに、整流板12の内側端部12aは測定管9の外周壁9bに対して固定されており、第1の実施形態と同様の作用効果がある。
【0021】
図4は第2の実施形態の変形例を示し、角筒状の測定管13の上流側7及び下流側8に整流器11を設けたものであり、第2の実施形態と同様の作用効果がある。
【0022】
図5は第3の実施形態を示し、計測流路5の上流側7及び下流側8の側壁に測定管9の開口に対向してセンサ固定部14を設け、このセンサ固定部14に送信センサと受信センサからなる一対の超音波センサ10a,10bを設置したものである。
【0023】
本実施形態においても、ガスは整流器11によって整流されるため、測定管9内を流通するガスの流れの乱れを減少させることができ、一対の超音波センサ10a,10bの流量測定点における流量を安定させることができ、計測精度を向上できる。
【0024】
なお、前記各実施形態においては、計測流路に超音波センサを設け、超音波の伝搬速度の変化を検知してガス流量を計測するようにしたが、熱線センサを1個もしくは複数個設けた熱線式流量計、測定管に羽根車を配置したタービン式流量計においても適用できる。
【0025】
【発明の効果】
以上説明したように、この発明によれば、計測流路の上流側から測定管に向かうガス及び測定管から下流側に向かうガスは整流器によって整流され、測定管内を流通するガスの流れの乱れを減少させることができる。従って、流量測定点における流量を安定させることができ、計測精度を向上できる。また、計測流路に整流用のメッシュ構造物を設ける必要がなく、異物の詰りによる流量の不安定を防止できる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態を示し、(a)は流量計本体の縦断正面図、(b)はA−A線に沿う断面図。
【図2】同実施形態の変形例を示し、流量計本体の縦断側面図。
【図3】この発明の第2の実施形態を示し、(a)は流量計本体の縦断正面図、(b)はB−B線に沿う断面図。
【図4】同実施形態の変形例を示し、流量計本体の縦断側面図。
【図5】この発明の第3の実施形態を示す流量計本体の縦断正面図。
【図6】従来の超音波メータを示し、(a)は流量計本体の縦断正面図、(b)はC−C線に沿う断面図。
【図7】別の従来の超音波メータを示し、流量計本体の縦断側面図。
【符号の説明】
1…流量計本体
3a…ガス流入口
4a…ガス流出口
5…計測流路
9…測定管
10a,10b…超音波センサ
11…整流器
12…整流板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flow meter that measures a gas flow rate of city gas, propane gas, or the like.
[0002]
[Prior art]
An ultrasonic gas meter as a general household gas meter has been developed. The ultrasonic gas meter is configured as shown in FIGS. 6A and 6B in order to provide compatibility with the pipe to which the existing membrane gas meter is attached.
[0003]
That is, an inlet metal 3 forming a gas inlet 3a and an outlet metal 4 forming a gas outlet 4a are provided at an upper portion of the flow meter main body 1 so as to be separated in the left-right direction. The measurement flow path 5 inside the flowmeter main body 1 is divided into an upstream side 7 and a downstream side 8 by a partition wall 6. Further, the partition 6 is provided with a measurement tube 9 which is opened on the upstream side 7 and the downstream side 8 so as to pass therethrough.
[0004]
The measuring tube 9 is a cylinder or a square tube, and the gas flowing from the gas inlet 3a to the upstream 7 flows through the inside of the measuring tube 9 to the downstream 8 and is guided to the gas outlet 4a. ing. Inside the measuring tube 9, a pair of ultrasonic sensors 10a and 10b composed of a transmission sensor and a reception sensor facing each other at an angle θ with respect to the direction of gas flow (direction of arrow a) are installed. Then, a change in the propagation speed of the ultrasonic wave is detected, the gas flow rate is measured, and the integrated flow rate is instructed to an integration instructing unit (not shown).
[0005]
FIG. 7 shows a configuration in which a pair of ultrasonic sensors 10a and 10b including a transmission sensor and a reception sensor are installed on the side walls of the upstream side 7 and the downstream side 8 of the flowmeter main body 1 so as to face the opening of the measurement pipe 9. is there.
[0006]
[Problems to be solved by the invention]
However, in the ultrasonic gas meter configured as described above, the gas flowing into the upstream side 7 of the measurement flow path 5 from the gas inlet 3 a bends at a substantially right angle from the periphery of the opening of the measurement pipe 9 and flows into the measurement pipe 9. I do. Therefore, the flow velocity distribution of the gas flowing through the inside of the measuring pipe 9 is disturbed, and the pressure fluctuation (pulsation) in the measuring pipe 9 is generated, which is a factor affecting the measurement accuracy.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flow meter capable of reducing disturbance of a flow velocity distribution of a gas flowing in a measurement pipe and improving measurement accuracy. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a gas which flows from a gas supply side through a gas inlet into a measurement flow path of a flowmeter main body and is installed in the measurement flow path After measuring the gas flow rate by the gas flow outlet from the gas outlet to the gas demand side, in the measurement flow path, while providing a measurement pipe opening on the upstream and downstream thereof, at least upstream of the measurement pipe A rectifier in which a plurality of rectifying plates are radially arranged is provided.
[0009]
A second aspect of the present invention is characterized in that the straightening plate of the first aspect is provided such that an inner end thereof protrudes inward from an inner peripheral wall of the measuring tube.
[0010]
A third aspect of the present invention is characterized in that the straightening plate of the first aspect has an inner end portion fixed to an outer peripheral wall of the measurement tube.
[0011]
A fourth aspect of the present invention is characterized in that the instrument for measuring the gas flow rate according to the first aspect is any one of an ultrasonic sensor, a hot-wire sensor, and a turbine.
[0012]
According to the configuration, the gas flowing from the upstream side of the measurement flow path to the measurement pipe and the gas flowing from the measurement pipe to the downstream side are rectified by the rectifier, and the turbulence of the gas flowing through the measurement pipe can be reduced, The flow rate at the flow rate measurement point can be stabilized. Therefore, measurement accuracy can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0014]
1A and 1B show a first embodiment, in which FIG. 1A is a vertical sectional front view, and FIG. 1B is a cross-sectional view along the line AA. As shown in FIG. 1, a rectifier 11 for rectifying a gas flow is provided on an upstream side 7 and a downstream side 8 of a cylindrical measurement tube 9 provided in a measurement flow path 5 of a flowmeter main body 1 through a partition wall 6. Is provided. The same effect can be obtained even if the rectifier 11 is provided only on the upstream side 7 of the measuring tube 9.
[0015]
The rectifier 11 is configured by arranging a plurality of rectifying plates 12 radially at equal intervals with respect to the measuring tube 9. The current plate 12 is provided entirely between the opening edge of the measurement pipe 9 and the inner side walls 5 a on the upstream side 7 and the downstream side 8 of the measurement flow path 5. Further, the inner end 12 a of the current plate 12 is provided so as to protrude inward from the inner peripheral wall 9 a of the measuring tube 9.
[0016]
According to the flow meter thus configured, when gas flows into the upstream side 7 of the measurement flow path 5 from the gas inlet 3a, the gas passes between the rectifier plates 12 of the rectifier 11 and is rectified to be measured. Go to 9. Then, the gas flows inside the measuring pipe 9 toward the downstream side 8, where it is rectified again by the rectifier 11 and flows out from the gas outlet 3b.
[0017]
Therefore, the turbulence of the flow of the gas flowing through the measuring pipe 9 can be reduced, and the flow rate at the flow rate measurement point of the pair of ultrasonic sensors 10a and 10b composed of the transmission sensor and the reception sensor can be stabilized. Accuracy can be improved.
[0018]
FIG. 2 shows a modification of the first embodiment, in which rectifiers 11 are provided on the upstream side 7 and the downstream side 8 of a rectangular tube-shaped measuring tube 13, and the same operation and effect as in the first embodiment are obtained. is there.
[0019]
3A and 3B show a second embodiment, in which FIG. 3A is a vertical sectional front view, and FIG. 3B is a cross-sectional view along line BB. As shown in FIG. 3, a rectifier 11 for rectifying a gas flow is provided on an upstream side 7 and a downstream side 8 of a cylindrical measurement tube 9 provided in the measurement flow path 5 of the flowmeter main body 1 through the partition wall 6. Is provided.
[0020]
The rectifier 11 is configured by arranging a plurality of rectifying plates 12 radially at equal intervals with respect to the measuring tube 9. The current plate 12 is provided entirely between the opening edge of the measurement pipe 9 and the inner side walls 5 a on the upstream side 7 and the downstream side 8 of the measurement flow path 5. Further, the inner end 12a of the current plate 12 is fixed to the outer peripheral wall 9b of the measuring tube 9, and has the same operation and effect as in the first embodiment.
[0021]
FIG. 4 shows a modified example of the second embodiment, in which rectifiers 11 are provided on the upstream side 7 and the downstream side 8 of a rectangular cylindrical measuring tube 13, and the same operation and effect as in the second embodiment are obtained. is there.
[0022]
FIG. 5 shows a third embodiment, in which a sensor fixing part 14 is provided on the side walls of the upstream side 7 and the downstream side 8 of the measurement flow path 5 so as to face the opening of the measuring pipe 9. And a pair of ultrasonic sensors 10a and 10b including a receiving sensor and a receiving sensor.
[0023]
Also in the present embodiment, since the gas is rectified by the rectifier 11, the turbulence of the flow of the gas flowing in the measurement pipe 9 can be reduced, and the flow rate at the flow rate measurement point of the pair of ultrasonic sensors 10a and 10b can be reduced. It can be stabilized, and the measurement accuracy can be improved.
[0024]
In each of the above embodiments, an ultrasonic sensor is provided in the measurement channel, and a change in the propagation speed of the ultrasonic wave is detected to measure the gas flow rate. However, one or more heat ray sensors are provided. The present invention can also be applied to a hot-wire flow meter and a turbine flow meter having an impeller arranged in a measurement tube.
[0025]
【The invention's effect】
As described above, according to the present invention, the gas flowing from the upstream side of the measurement flow path to the measurement pipe and the gas flowing from the measurement pipe to the downstream side are rectified by the rectifier, and the turbulence of the flow of the gas flowing in the measurement pipe is reduced. Can be reduced. Therefore, the flow rate at the flow rate measurement point can be stabilized, and the measurement accuracy can be improved. Further, there is no need to provide a rectifying mesh structure in the measurement flow path, and it is possible to prevent flow rate instability due to clogging of foreign matter.
[Brief description of the drawings]
1A and 1B show a first embodiment of the present invention, in which FIG. 1A is a longitudinal sectional front view of a flow meter main body, and FIG. 1B is a cross-sectional view taken along line AA.
FIG. 2 is a vertical sectional side view of a flow meter main body, showing a modification of the embodiment.
3A and 3B show a second embodiment of the present invention, in which FIG. 3A is a longitudinal sectional front view of a flow meter main body, and FIG. 3B is a sectional view taken along line BB.
FIG. 4 is a longitudinal sectional side view of a flow meter main body, showing a modification of the embodiment.
FIG. 5 is a vertical sectional front view of a flow meter main body showing a third embodiment of the present invention.
6A and 6B show a conventional ultrasonic meter, in which FIG. 6A is a vertical sectional front view of a flow meter main body, and FIG. 6B is a cross-sectional view taken along line CC.
FIG. 7 is a vertical sectional side view of a flow meter main body, showing another conventional ultrasonic meter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flow meter main body 3a ... Gas inlet 4a ... Gas outlet 5 ... Measurement flow path 9 ... Measurement tubes 10a and 10b ... Ultrasonic sensor 11 ... Rectifier 12 ... Rectifier plate

Claims (4)

ガス供給側からガス流入口を介して流入するガスを流量計本体の計測流路に流入し、前記計測流路に設置した計器によってガス流量を計測した後、ガス流出口からガス需要側に導く流量計において、
前記計測流路に、その上流側及び下流側に開口する測定管を設けるとともに、前記測定管の少なくとも上流側に複数枚の整流板を放射状に配置した整流器を設けたことを特徴とする流量計。
The gas flowing from the gas supply side via the gas inlet flows into the measurement flow path of the flow meter main body, and after measuring the gas flow rate by an instrument installed in the measurement flow path, the gas is guided from the gas outlet to the gas demand side. In the flow meter,
A flowmeter, wherein the measurement flow path is provided with a measurement pipe which is opened on the upstream side and the downstream side thereof, and a rectifier in which a plurality of rectifying plates are radially arranged at least on the upstream side of the measurement pipe. .
前記整流板は、その内側端部が前記測定管の内周壁より内側に突出して設けられていることを特徴とする請求項1記載の流量計。The flow meter according to claim 1, wherein the current plate has an inner end protruding inward from an inner peripheral wall of the measurement tube. 前記整流板は、その内側端部が前記測定管の外周壁に固定されていることを特徴とする請求項1記載の流量計。2. The flowmeter according to claim 1, wherein the current plate has an inner end fixed to an outer peripheral wall of the measurement tube. 前記ガス流量を計測する計器は、超音波センサ、熱線センサ、タービンのいずれかであることを特徴とする請求項1記載の流量計。The flow meter according to claim 1, wherein the instrument for measuring the gas flow rate is one of an ultrasonic sensor, a hot-wire sensor, and a turbine.
JP2002339131A 2002-11-22 2002-11-22 Flowmeter Expired - Fee Related JP4087687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339131A JP4087687B2 (en) 2002-11-22 2002-11-22 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339131A JP4087687B2 (en) 2002-11-22 2002-11-22 Flowmeter

Publications (2)

Publication Number Publication Date
JP2004170346A true JP2004170346A (en) 2004-06-17
JP4087687B2 JP4087687B2 (en) 2008-05-21

Family

ID=32702153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339131A Expired - Fee Related JP4087687B2 (en) 2002-11-22 2002-11-22 Flowmeter

Country Status (1)

Country Link
JP (1) JP4087687B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071944A (en) * 2008-09-22 2010-04-02 Yazaki Corp Gas meter
KR101038971B1 (en) 2009-07-14 2011-06-03 자인테크놀로지(주) Asembly of flow meter and profiler
JP2021526642A (en) * 2019-03-16 2021-10-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter especially for gas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262209A (en) * 1991-02-18 1992-09-17 Takenaka Seisakusho:Kk Fluidic flowmeter having micro-flow sensor
JPH06241858A (en) * 1993-02-15 1994-09-02 Oval Corp Straightening apparatus
JPH06307908A (en) * 1993-04-27 1994-11-04 Yazaki Corp Straightener
JPH1048013A (en) * 1996-08-05 1998-02-20 Ntc Kogyo Kk Flow rate sensor
JPH1151722A (en) * 1997-08-06 1999-02-26 Yazaki Corp Gas meter and its gas flow velocity measuring tube
JPH11281437A (en) * 1998-03-31 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter
JP2000292231A (en) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd Ultrasonic flowmeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262209A (en) * 1991-02-18 1992-09-17 Takenaka Seisakusho:Kk Fluidic flowmeter having micro-flow sensor
JPH06241858A (en) * 1993-02-15 1994-09-02 Oval Corp Straightening apparatus
JPH06307908A (en) * 1993-04-27 1994-11-04 Yazaki Corp Straightener
JPH1048013A (en) * 1996-08-05 1998-02-20 Ntc Kogyo Kk Flow rate sensor
JPH1151722A (en) * 1997-08-06 1999-02-26 Yazaki Corp Gas meter and its gas flow velocity measuring tube
JPH11281437A (en) * 1998-03-31 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter
JP2000292231A (en) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd Ultrasonic flowmeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071944A (en) * 2008-09-22 2010-04-02 Yazaki Corp Gas meter
KR101038971B1 (en) 2009-07-14 2011-06-03 자인테크놀로지(주) Asembly of flow meter and profiler
JP2021526642A (en) * 2019-03-16 2021-10-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter especially for gas
JP7085027B2 (en) 2019-03-16 2022-06-15 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter for gas

Also Published As

Publication number Publication date
JP4087687B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
EP1775560B1 (en) Ultrasonic flow meter with flow mixer
JP2010164558A (en) Device for measuring flow of fluid
JP2007333460A (en) Manometer integration type multi-vortex flowmeter
JP2806602B2 (en) Fluidic flow meter
JPH06241854A (en) Vortex flowmeter
JP4936856B2 (en) Flowmeter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP2008232943A (en) Ultrasonic gas meter
JP2781063B2 (en) Fluidic flow meter
JP2004170346A (en) Flow meter
JPH10115537A (en) Vortex sensor with turbulent flow lattice
JP4852265B2 (en) Ultrasonic gas meter
JP2003185477A (en) Flowmeter
JP2009264906A (en) Flow meter
JP4990654B2 (en) Ultrasonic gas meter
JP2006118864A (en) Gas meter
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
JP3659935B2 (en) Rectifier, rectifier tube and flow meter provided with the same
JPH0634405A (en) Vortex flowmeter
JP2001194193A (en) Flow meter
JP2004251700A (en) Fluid measuring device
JP2004191103A (en) Pressure governor and flow measuring method
JP2005140672A (en) Air intake duct device
JP2004093392A (en) Pulsation absorption structure of electronic gas meter
JPH1172362A (en) Fluidic type flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150228

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees