JPH11281437A - Pulsation absorbing structure for flow meter - Google Patents

Pulsation absorbing structure for flow meter

Info

Publication number
JPH11281437A
JPH11281437A JP8711898A JP8711898A JPH11281437A JP H11281437 A JPH11281437 A JP H11281437A JP 8711898 A JP8711898 A JP 8711898A JP 8711898 A JP8711898 A JP 8711898A JP H11281437 A JPH11281437 A JP H11281437A
Authority
JP
Japan
Prior art keywords
flow
case
flow meter
pulsation
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8711898A
Other languages
Japanese (ja)
Inventor
Michiaki Yamaura
路明 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8711898A priority Critical patent/JPH11281437A/en
Publication of JPH11281437A publication Critical patent/JPH11281437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a good pulsation absorbing structure for a flow meter, which is capable of facilitating accurately flow rate measuring at low costs by reducing the influence of pulsation in the flow meter of an estimation type. SOLUTION: An ultrasonic flow meter 1 is provided with a case main body 2 having an inlet 3 and an outlet 4, a flow rate measuring section 5 for intermittently measuring a physical quantity changed according to the flow velocity of fluids flowing in a measuring duct 5a arranged in the case main body 2, an in-case conduit outlet 6 for communicating the inlet 3 with the upstream side end 5b of the measuring duct 5a, and an in-case outlet conduit 7 for communicating the downstream side end 5e of the measuring duct 5a with the outlet 4, and a ball-like buffer chambers 8a and 8b provided in the midways of the in-case inlet conduit 6 and the incase outlet conduit 7 for dispersing the flowing of fluids.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子式ガスメータ等
として使用される流量計の脈動吸収構造に関し、特に、
流路中の流体の流速を間欠的に測定し、この測定した流
速と前記流路の断面積と前記間欠時間とを乗ずることに
よって流路を通過した流体の通過流量を推測する推量式
の流量計における脈動(圧力変動,流速変動)の影響を
低減する脈動吸収構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulsation absorbing structure of a flow meter used as an electronic gas meter or the like.
The flow rate of a guess-type equation that intermittently measures the flow velocity of the fluid in the flow path and estimates the passing flow rate of the fluid that has passed through the flow path by multiplying the measured flow velocity by the cross-sectional area of the flow path and the intermittent time. The present invention relates to a pulsation absorbing structure for reducing the influence of pulsation (pressure fluctuation, flow velocity fluctuation) on a meter.

【0002】[0002]

【従来の技術】近年、電子式ガスメータ等に使用される
流量計としては、流路中の流体の流速に応じて変化する
物理量を間欠的に測定する測定手段と、該測定手段によ
って測定した流速と前記流路の断面積と前記間欠時間と
を乗ずることによって流路を通過した流体の通過流量を
計測する流量計測手段とを備える推量式の流量計が知ら
れている。又、この様な推量式の流量計には、測定手段
として流体中で超音波を発信・受信する素子である音響
トランスジューサ等を使用する超音波式流量計や、流路
中の流体の圧力変動を検出するフルイディック素子を使
用するフルイディック式流量計がある。
2. Description of the Related Art In recent years, a flow meter used in an electronic gas meter or the like includes a measuring means for intermittently measuring a physical quantity which changes according to a flow velocity of a fluid in a flow path, and a flow rate measured by the measuring means. There is known an inferential flow meter that includes a flow rate measuring unit that measures a passing flow rate of a fluid that has passed through the flow path by multiplying the flow area by multiplying the cross-sectional area of the flow path by the intermittent time. In addition, such a speculative flow meter uses an ultrasonic flow meter that uses an acoustic transducer or the like, which is an element that transmits and receives ultrasonic waves in a fluid, as a measuring means, and a pressure fluctuation of a fluid in a flow path. There is a fluidic type flow meter that uses a fluidic element for detecting the flow rate.

【0003】図4は、電子式ガスメータとして使用され
る超音波式流量計20の基本構造を示したものである。
前記超音波式流量計20は、流入口26と流出口27と
を連通するガス流路を形成するケース本体24と、該ケ
ース本体24内に配置された測定手段である流量計測部
28とを備えている。前記流量計測部28は、該ケース
本体24内の上流側チャンバ20aと下流側チャンバ2
0bとを連通し、ガスの流量測定用流路と超音波の伝搬
管路を兼ねる直管状の計測用ダクト22と、該計測用ダ
クト22の両端側に一定距離だけ離れて対向配置された
一対の音響トランスジューサ21,23とを備えてい
る。該音響トランスジューサ21,23は、超音波周波
数で作動する例えば圧電式振動子からなる。
FIG. 4 shows the basic structure of an ultrasonic flowmeter 20 used as an electronic gas meter.
The ultrasonic flowmeter 20 includes a case main body 24 that forms a gas flow path that communicates the inflow port 26 and the outflow port 27, and a flow measurement unit 28 that is a measuring unit disposed in the case main body 24. Have. The flow rate measuring unit 28 includes an upstream chamber 20 a and a downstream chamber 2 in the case main body 24.
0b, and a straight tube-shaped measurement duct 22 which also functions as a gas flow measurement flow path and an ultrasonic wave propagation channel, and a pair of opposedly disposed opposite ends of the measurement duct 22 at a predetermined distance. Sound transducers 21 and 23 are provided. The acoustic transducers 21, 23 comprise, for example, piezoelectric vibrators operating at ultrasonic frequencies.

【0004】そして、ケース本体24の流入口26から
上流側チャンバ20a内に流入したガスは、計測用ダク
ト22を通って下流側チャンバ20bに達し、流出口2
7より流出する。そこで、上流側チャンバ20a側の音
響トランスジューサ21から超音波信号を発生させ、下
流側チャンバ20b側の音響トランスジューサ23に受
信させて音響トランスジューサ21,23間での超音波
信号のガス流方向の伝搬時間t1 を計測する。
[0004] The gas flowing into the upstream chamber 20a from the inlet 26 of the case body 24 reaches the downstream chamber 20b through the measuring duct 22, and the outlet 2
Outflow from 7. Therefore, an ultrasonic signal is generated from the acoustic transducer 21 on the upstream chamber 20a side and received by the acoustic transducer 23 on the downstream chamber 20b side, and the propagation time of the ultrasonic signal in the gas flow direction between the acoustic transducers 21 and 23 is determined. to measure the t 1.

【0005】次に、双方の音響トランスジューサ21,
23を切換えて、下流側チャンバ20b側の音響トラン
スジューサ23から超音波信号を発生させ、上流側チャ
ンバ20a側の音響トランスジューサ21に受信させて
ガス流方向とは逆方向の伝搬時間t2 を計測する。この
計測した2つの伝搬時間t1 ,t2 の伝搬時間差に基づ
いて計測用ダクト22内を流れているガスの流速Vを間
欠的に求め、この流速Vに計測用ダクト22の断面積を
乗じて瞬時流量を求める。そして更に、この瞬時流量に
一定の計測間隔であるサンプリング時間を乗じて通過流
量を求め、この通過流量を積算して積算流量を求める。
そして、図示せぬ流量計測手段が求めた上記積算流量を
ケース本体24の外面に装備される図示せぬ表示手段に
表示することによって、電子式ガスメータを構成するこ
とができる。
Next, both acoustic transducers 21,
By switching the 23, to generate an ultrasonic signal from the downstream chamber 20b side of the acoustic transducer 23, the upstream chamber 20a side gas flow direction by receiving the acoustic transducer 21 of measuring the propagation time t 2 in the reverse direction . The flow velocity V of the gas flowing in the measurement duct 22 is intermittently obtained based on the difference between the two measured propagation times t 1 and t 2 , and the flow velocity V is multiplied by the cross-sectional area of the measurement duct 22. To find the instantaneous flow rate. Further, the instantaneous flow rate is multiplied by a sampling time, which is a constant measurement interval, to obtain a passing flow rate, and the passing flow rates are integrated to obtain an integrated flow rate.
An electronic gas meter can be configured by displaying the integrated flow rate obtained by the flow rate measuring means (not shown) on a display means (not shown) provided on the outer surface of the case main body 24.

【0006】[0006]

【発明が解決しようとする課題】ところで、電子ガスメ
ータを通じて供給するガスを消費する燃焼器のなかに
は、ガスガバナやガスヒートポンプ(GHP)等のよう
に、使用中に供給ガスに圧力変動や流速変動等の脈動を
生じさせるものがある。そして、例えば図5(a)に示
すように、燃焼器30の使用によって供給ガスに脈動2
5が生じ、その脈動25が前記超音波式流量計20の下
流側から流量計内に伝搬すると、計測用ダクト22内で
のガス流を脈動流とする虞がある。
Among combustors that consume gas supplied through an electronic gas meter, some gas burners, such as gas governors and gas heat pumps (GHPs), apply pressure fluctuations and flow velocity fluctuations to supply gas during use. Some cause pulsation. Then, as shown in, for example, FIG.
When the pulsation 25 propagates from the downstream side of the ultrasonic flowmeter 20 into the flowmeter, the gas flow in the measurement duct 22 may be a pulsating flow.

【0007】更に、図5(b)に示すようなLPG集団
供給や都市ガス供給等の場合には、主供給管31に複数
の流量計20A,20Bが分岐接続されており、上流側
の流量計20Aに接続されている燃焼器30Aの発生し
た脈動25Aが、流量計20A及び分岐供給管31a内
のガス流を伝って、下流の流量計20B内に伝搬される
虞がある。その上、例えば、下流の流量計20Bでは、
自己に接続されている燃焼器30Bからの脈動25B
と、上流の流量計20Aに接続されている燃焼器30A
からの脈動25Aとの双方が伝搬され、双方の脈動25
A,25Bによる影響を受けて流量計20B内での脈動
流が更に激しくなる虞がある。この様な脈動流が激しく
なり、流量計の流入口における脈動の変動周期と流出口
における脈動の変動周期とが大きくずれると、場合によ
っては流量計内で逆流が生じてしまう。
Further, in the case of LPG collective supply or city gas supply as shown in FIG. 5 (b), a plurality of flow meters 20A and 20B are branched and connected to the main supply pipe 31, so that the upstream flow rate is controlled. The pulsation 25A generated by the combustor 30A connected to the meter 20A may be transmitted to the downstream flow meter 20B through the gas flow in the flow meter 20A and the branch supply pipe 31a. In addition, for example, in the downstream flow meter 20B,
Pulsation 25B from combustor 30B connected to self
And a combustor 30A connected to an upstream flow meter 20A.
And the pulsation 25A from the
A pulsating flow in the flow meter 20B may be further intensified due to the influences of A and 25B. If such a pulsating flow becomes violent and the fluctuation period of the pulsation at the inlet of the flow meter and the fluctuation period of the pulsation at the outlet greatly deviate, backflow may occur in the flow meter in some cases.

【0008】この様な推量式の流量計においては、燃焼
器の発生した脈動の影響で計測用ダクト22内のガス流
に脈動流が生じると、流量計測部28における良好な計
測が行えない。特に、計測用ダクト22内で逆流が生じ
ると、流量計の積算流量の演算にも悪影響を及ぼす。即
ち、前記計測用ダクト22内のガス流に脈動流が生じる
と、図6に示すように一定のサンプリング間隔Δtでガ
ス流の流速Vを計測し、計測した流速Vにサンプリング
時間Δtを乗じて通過流量を求めた場合に、図中斜線を
施した部分が誤差となり、通過流量を積算して求めた積
算流量は実際のガス使用量とかなり違った積算値となっ
てしまう。
In such a flow meter of the guessing type, when a pulsating flow occurs in the gas flow in the measuring duct 22 due to the pulsation generated by the combustor, good measurement cannot be performed in the flow measuring unit 28. In particular, when a backflow occurs in the measurement duct 22, the calculation of the integrated flow rate of the flowmeter is adversely affected. That is, when a pulsating flow occurs in the gas flow in the measurement duct 22, the flow velocity V of the gas flow is measured at a constant sampling interval Δt as shown in FIG. 6, and the measured flow velocity V is multiplied by the sampling time Δt. When the passing flow rate is obtained, the hatched portion in the figure becomes an error, and the integrated flow rate obtained by integrating the passing flow rates is an integrated value that is considerably different from the actual gas usage.

【0009】従って、本発明の目的は上記課題を解消す
ることに係り、推量式の流量計における脈動の影響を低
減して正確な流量計測を容易かつ安価に実現することが
できる良好な流量計の脈動吸収構造を提供することであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, and a good flow meter capable of reducing the influence of pulsation in a guess-type flow meter and realizing accurate flow measurement easily and at low cost. Is to provide a pulsation absorbing structure.

【0010】[0010]

【課題を解決するための手段】本発明の上記目的は、流
入口と流出口とを有するケース本体と、該ケース本体内
に配置され、流路中の流体の流速に応じて変化する物理
量を間欠的に測定する測定手段と、前記流入口と前記測
定手段の上流側端とを連通するケース内導入路と、前記
測定手段の下流側端と前記流出口とを連通するケース内
導出路とを備えた流量計の脈動吸収構造であって、前記
ケース内導入路及び前記ケース内導出路の少なくとも一
方には、流体の流れを拡散させる球形の緩衝室が設けら
れていることを特徴とする流量計の脈動吸収構造により
達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a case body having an inlet and an outlet, and a physical quantity which is arranged in the case body and changes according to the flow rate of the fluid in the flow path. Measuring means for measuring intermittently, an introduction path in the case communicating the inflow port and the upstream end of the measurement means, and an outflow path in the case communicating the downstream end of the measurement means and the outflow port. A pulsation absorbing structure for a flow meter, wherein at least one of the introduction path in the case and the extraction path in the case is provided with a spherical buffer chamber for diffusing a fluid flow. This is achieved by the pulsation absorbing structure of the flow meter.

【0011】上記構成によれば、流量計の上流側又は下
流側からケース本体内に入った脈動流は、球形の緩衝室
内に流入した流体の拡散に伴って、脈動による圧力波が
室内全域に均等に伝搬され、室内を伝搬した圧力波は球
形の室内壁全域で均等に反射されることによって吸収さ
れるので、前記測定手段へ伝わる脈動を低減することが
できる。また、前記球形の緩衝室自体は、可動部等が必
要でなく、構造が極めて簡単であるので、測定手段の構
造や配置に特別な工夫を凝らさずとも容易にケース本体
内に組み込むことができる。
According to the above configuration, the pulsating flow entering the case main body from the upstream side or the downstream side of the flow meter causes pressure waves due to the pulsation to spread throughout the chamber due to the diffusion of the fluid flowing into the spherical buffer chamber. The pressure wave propagated uniformly and propagated in the room is absorbed by being uniformly reflected on the entire spherical indoor wall, so that the pulsation transmitted to the measuring means can be reduced. Further, since the spherical buffer chamber itself does not require a movable part or the like and has a very simple structure, the spherical buffer chamber can be easily incorporated into the case body without specially devising the structure and arrangement of the measuring means. .

【0012】[0012]

【発明の実施の形態】以下、添付図面に基づいて本発明
の一実施形態に係る流量計の脈動吸収構造を詳細に説明
する。図1は、本発明の第1実施形態に係る脈動吸収構
造を備えた超音波式流量計1の概略断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pulsation absorbing structure of a flow meter according to an embodiment of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of an ultrasonic flowmeter 1 provided with a pulsation absorbing structure according to a first embodiment of the present invention.

【0013】図1に示した超音波式流量計1は、電子式
ガスメータとして使用されるもので、流入口3と流出口
4とを有する略直方体のケース本体2と、該ケース本体
2内に配置された直管状の計測用ダクト5a内を流れる
流体の流速に応じて変化する物理量を間欠的に測定する
測定手段である流量測定部5と、前記流入口3と前記計
測用ダクト5aの上流側端5dとを連通するケース内導
入路6と、前記計測用ダクト5aの下流側端5eと前記
流出口4とを連通するケース内導出路7と、前記ケース
内導入路6及び前記ケース内導出路7の途中に設けられ
て流体の流れを拡散させる球形の緩衝室8a,8bとを
備えている。
The ultrasonic flow meter 1 shown in FIG. 1 is used as an electronic gas meter, and includes a substantially rectangular parallelepiped case body 2 having an inlet 3 and an outlet 4, and an inside of the case body 2. A flow rate measuring unit 5 which is a measuring means for intermittently measuring a physical quantity which varies according to a flow velocity of a fluid flowing in the arranged straight tubular measuring duct 5a, and an upstream of the inflow port 3 and the measuring duct 5a A case introduction path 6 communicating with the side end 5d, a case introduction path 7 communicating the downstream end 5e of the measurement duct 5a with the outflow port 4, a case introduction path 6 and the case introduction path. Spherical buffer chambers 8a and 8b are provided in the middle of the lead-out path 7 to diffuse the flow of the fluid.

【0014】前記流量測定部5は、ガスの流量測定用流
路と超音波の伝搬管路を兼ねる直管状の計測用ダクト5
aと、該計測用ダクト5aの両端部に一定距離だけ離れ
て対向配置された一対の音響トランスジューサ5b,5
cとを備えている。前記ケース内導入路6には、ガスの
流入を遮断可能な遮断弁9が流入口3寄りの位置に装備
されており、該ケース内導入路6上の緩衝室8aは、遮
断弁9と流量測定部5の上流側端5dとの間に設けられ
ている。
The flow rate measuring section 5 is a straight tubular measuring duct 5 which also serves as a gas flow rate measuring flow path and an ultrasonic wave propagation pipe.
a, and a pair of acoustic transducers 5b, 5 that are opposed to both ends of the measurement duct 5a at a predetermined distance from each other.
c. A shutoff valve 9 capable of shutting off the inflow of gas is provided in the case introduction path 6 at a position near the inflow port 3. The buffer chamber 8 a on the case introduction path 6 is connected to the shutoff valve 9 and the flow rate. It is provided between the upstream end 5 d of the measuring section 5.

【0015】前記緩衝室8aは、十分な緩衝効果を得る
ために、室内直径が遮断弁9の出口内径の2倍以上に設
定されている。また、前記緩衝室8aを流量測定部5に
連通させる連通路10aは、流入口3から緩衝室8内に
伝搬された圧力波が、室内での拡散・反射による緩衝作
用を受けずに簡単に流量測定部5側に出ることがないよ
うに、遮断弁9の出口と対向しない位置に設けられ、更
に、内径が遮断弁9の出口内径よりも適度に絞った小さ
な径に設定されている。
The diameter of the buffer chamber 8a is set to be at least twice the inner diameter of the outlet of the shut-off valve 9 in order to obtain a sufficient buffer effect. In addition, the communication path 10a for communicating the buffer chamber 8a with the flow rate measuring unit 5 can easily provide a pressure wave transmitted from the inflow port 3 into the buffer chamber 8 without being subjected to a buffering action due to diffusion and reflection in the room. It is provided at a position not facing the outlet of the shut-off valve 9 so that it does not come out to the flow measuring unit 5 side, and its inner diameter is set to a small diameter that is appropriately narrowed down from the inner diameter of the outlet of the shut-off valve 9.

【0016】一方、前記ケース内導出路7上の緩衝室8
bは、室内直径が流出口4の出口内径の2倍以上に設定
されており、該緩衝室8bを流量測定部5に連通させる
連通路10bは、流出口4から緩衝室8b内に伝搬され
た圧力波が、室内での拡散・反射による緩衝作用を受け
ずに簡単に流量測定部5側に出ることがないように、流
出口4と対向しない位置に設けられ、更に、内径が流出
口4の出口内径よりも適度に絞った小さな径に設定され
ている。
On the other hand, the buffer chamber 8 on the outlet path 7 in the case
b, the indoor diameter is set to be at least twice the inner diameter of the outlet of the outlet 4, and the communication path 10 b for communicating the buffer chamber 8 b with the flow rate measuring unit 5 is propagated from the outlet 4 into the buffer chamber 8 b. The pressure wave is provided at a position not opposed to the outlet 4 so that the pressure wave does not easily come out to the flow measuring unit 5 side without being subjected to a buffering action due to diffusion and reflection in the room. 4 is set to a small diameter that is appropriately narrowed from the inner diameter of the outlet.

【0017】即ち、各緩衝室8a,8bでは、脈動が伝
搬されてきた場合、室内へ流入した流体の拡散に伴って
脈動による圧力波が室内全域に均等に伝搬され、室内を
伝搬した圧力波は球形の室内壁によって反射される。そ
こで、例えば緩衝室形状を直方体などに設定した場合と
比較して反射性能が偏る隅部や稜線部が存在せず、室内
壁で起こる反射が球形の室内壁全域で均等に起こるた
め、圧力変動に対して優れた緩衝効果を得ることができ
る。
That is, in each of the buffer chambers 8a and 8b, when the pulsation is propagated, the pressure wave due to the pulsation is evenly propagated throughout the room due to the diffusion of the fluid flowing into the room, and the pressure wave propagated in the room. Is reflected by the spherical interior wall. Therefore, for example, there are no corners or ridges where the reflection performance is deviated compared to the case where the buffer chamber shape is set to a rectangular parallelepiped, etc. An excellent buffer effect can be obtained.

【0018】そして例えば、上記超音波式流量計1の流
入口3は、分岐供給管32を介してガスの主供給管31
に分岐接続されており、該主供給管31には、前記超音
波式流量計1よりも上流側に位置するように、他の流量
計13の流入口13aが接続される。前記超音波式流量
計1の流出口4や、前記流量計13の流出口13bに
は、図1に示したように、ガスを燃焼・消費するガスヒ
ートポンプ(GHP)等の燃焼器14A,14Bが接続
されている。
For example, the inlet 3 of the ultrasonic flowmeter 1 is connected to a main gas supply pipe 31 through a branch supply pipe 32.
The main supply pipe 31 is connected to an inlet 13a of another flow meter 13 so as to be located upstream of the ultrasonic flow meter 1. As shown in FIG. 1, a combustor 14A, 14B such as a gas heat pump (GHP) for burning and consuming gas is provided in the outlet 4 of the ultrasonic flow meter 1 and the outlet 13b of the flow meter 13, as shown in FIG. Is connected.

【0019】そこで、ケース内導入路6及びケース内排
出路7の双方に緩衝室8a,8bを装備した上記超音波
式流量計1では、ケース内導入路6に装備した緩衝室8
aが上流の流量計13等を経て分岐供給管32内を伝搬
されてきた脈動15aを減衰低減し、ケース内排出路7
に装備した緩衝室8bが燃焼器14Bから流出口4に伝
搬されてきた脈動15bを減衰低減することができる。
従って、流量測定部5は、その上流側及び下流側の双方
からの脈動の影響が低減され、より正確な流量計測を実
現することができる。
Therefore, in the ultrasonic flowmeter 1 provided with the buffer chambers 8a and 8b in both the case introduction path 6 and the case discharge path 7, the buffer chamber 8 provided in the case introduction path 6 is provided.
a attenuates and reduces the pulsation 15 a transmitted through the branch supply pipe 32 via the upstream flow meter 13 and the like, and reduces the discharge path 7 in the case.
The pulsation 15b transmitted from the combustor 14B to the outlet 4 can be attenuated and reduced by the buffer chamber 8b provided in the above.
Therefore, the flow rate measuring unit 5 is reduced in the influence of the pulsation from both the upstream side and the downstream side, and can realize more accurate flow rate measurement.

【0020】また、脈動の伝搬を低減する脈動吸収機構
としての前記緩衝室8a,8b自体は、可動部等が必要
でなく、構造が極めて簡単であるので、流量測定部5の
構造や配置に特別な工夫を凝らさずとも容易にケース本
体2内に組み込むことができ、正確な流量計測を容易か
つ安価に実現することができる。
The buffer chambers 8a and 8b as the pulsation absorbing mechanism for reducing the propagation of pulsation do not require a movable part or the like and have a very simple structure. It can be easily incorporated into the case main body 2 without special measures, and accurate flow rate measurement can be easily and inexpensively realized.

【0021】尚、本第1実施形態では、ケース内導入路
6とケース内排出路7の双方に球形の緩衝室8a,8b
を装備したが、ケース本体2内のスペース的な制限等で
ケース内導入路6とケース内排出路7の双方に緩衝室8
a,8bを装備するのが困難であり、上流側の他の流量
計13や燃焼器14A,14Bの少なくとも一つに十分
な脈動吸収機構が装備されている場合には、上記超音波
式流量計1の上流側又は下流側のいずれか一方から伝搬
される脈動のみを配慮すればよいので、ケース内導入路
6及びケース内排出路7のいずれか一方にのみ、球形の
緩衝室8を装備した構成とすればよい。
In the first embodiment, spherical buffer chambers 8a and 8b are provided in both the introduction path 6 and the discharge path 7 in the case.
However, due to space limitations in the case body 2, etc., the buffer chamber 8 is provided in both the case introduction path 6 and the case discharge path 7.
If it is difficult to equip the other flowmeters 13 and 8b with at least one of the upstream flowmeters 13 and the combustors 14A and 14B, a sufficient pulsation absorbing mechanism is provided. Since only the pulsation transmitted from either the upstream side or the downstream side of the total 1 needs to be considered, the spherical buffer chamber 8 is provided only in one of the introduction path 6 and the discharge path 7 in the case. What is necessary is just to make it the structure which did.

【0022】図2はケース内排出路7にのみ球形の緩衝
室8を装備した本発明の第2実施形態に係る超音波式流
量計1Aを示し、図3はケース内導入路6にのみ球形の
緩衝室8を装備した本発明の第3実施形態に係る超音波
式流量計1Bを示している。これらの流量計1A,1B
は、緩衝室8以外の構成は、上記第1実施形態の超音波
式流量計1と全く同様の構成であるので、同符号を付し
て詳細な説明を省略する。
FIG. 2 shows an ultrasonic flowmeter 1A according to a second embodiment of the present invention in which a spherical buffer chamber 8 is provided only in the discharge passage 7 in the case, and FIG. 3 shows an ultrasonic flowmeter 1B according to a third embodiment of the present invention equipped with the buffer chamber 8 described above. These flow meters 1A, 1B
Since the configuration other than the buffer chamber 8 is exactly the same as that of the ultrasonic flowmeter 1 of the first embodiment, the same reference numerals are given and the detailed description is omitted.

【0023】図2に示すように、球形の緩衝室8をケー
ス内排出路7にのみ装備した場合には、流量計1Aの流
出口4に接続されている燃焼器14等からケース本体2
内に伝搬されてきた脈動15bが、緩衝室8によって効
率良く吸収され、流量測定部5への影響を低減させるこ
とができる。
As shown in FIG. 2, when the spherical buffer chamber 8 is provided only in the discharge passage 7 in the case, the case body 2 is connected to the combustor 14 connected to the outlet 4 of the flow meter 1A.
The pulsation 15b propagated into the inside is efficiently absorbed by the buffer chamber 8, and the influence on the flow rate measuring unit 5 can be reduced.

【0024】また、図3に示すように、球形の緩衝室8
をケース内導入路6にのみ装備した場合には、流量計1
Bの流入口3に接続されている分岐供給管32の上流に
分岐接続されている別の流量計13等から流入口3内に
伝搬されてきた脈動15aが、緩衝室8によって効率良
く吸収され、流量測定部5への影響を低減させることが
できる。
As shown in FIG. 3, a spherical buffer chamber 8 is provided.
Is installed only in the introduction path 6 in the case, the flow meter 1
The pulsation 15a propagated into the inlet 3 from another flow meter 13 or the like branched and connected upstream of the branch supply pipe 32 connected to the inlet 3 of B is efficiently absorbed by the buffer chamber 8. In addition, the influence on the flow measurement unit 5 can be reduced.

【0025】更に、本発明におけるケース本体、測定手
段及び緩衝室の構成は、上記各実施形態の構成に限定さ
れるものではなく、本発明の主旨に基づいて適宜変更可
能であることは言うまでもない。例えば、上記各実施形
態においては、超音波式流量計の脈動吸収構造について
説明したが、本発明の流量計の脈動吸収構造はこれに限
定されるものではなく、フルイディック式流量計等の他
の推量式の流量計にも適用可能であり、流体としてもL
Pガスや都市ガスに限るものでなく、ガス以外の水やオ
イル等の流体にも適用できる。
Further, the configurations of the case body, the measuring means and the buffer chamber in the present invention are not limited to the configurations of the above-described embodiments, but it is needless to say that they can be appropriately changed based on the gist of the present invention. . For example, in each of the embodiments described above, the pulsation absorbing structure of the ultrasonic flow meter has been described. However, the pulsation absorbing structure of the flow meter of the present invention is not limited to this. Can be applied to the inferential flow meter of
The present invention is not limited to P gas and city gas, and can be applied to fluids other than gas, such as water and oil.

【0026】[0026]

【発明の効果】以上説明したように、本発明に係る流量
計の脈動吸収構造によれば、流量計の上流側又は下流側
からケース本体内に入った脈動流は、球形の緩衝室内に
流入した流体の拡散に伴って、脈動による圧力波が室内
全域に均等に伝搬され、室内を伝搬した圧力波は球形の
室内壁全域で均等に反射されることによって吸収される
ので、前記測定手段へ伝わる脈動を低減することができ
る。
As described above, according to the pulsation absorbing structure of the flow meter according to the present invention, the pulsating flow entering the case body from the upstream side or the downstream side of the flow meter flows into the spherical buffer chamber. With the diffusion of the fluid, the pressure wave due to the pulsation is evenly propagated throughout the room, and the pressure wave propagated inside the room is absorbed by being uniformly reflected on the entire spherical indoor wall, so that it is absorbed by the measuring means. The transmitted pulsation can be reduced.

【0027】また、前記球形の緩衝室自体は、可動部等
が必要でなく、構造が極めて簡単であるので、測定手段
の構造や配置に特別な工夫を凝らさずとも容易にケース
本体内に組み込むことができる。従って、推量式の流量
計における脈動の影響を低減して正確な流量計測を容易
かつ安価に実現することができる良好な流量計の脈動吸
収構造を提供できる。
Further, since the spherical buffer chamber itself does not require a movable part or the like and has a very simple structure, it can be easily incorporated into the case body without specially devising the structure and arrangement of the measuring means. be able to. Therefore, it is possible to provide a good pulsation absorbing structure of a flow meter which can reduce the influence of pulsation in a guess-type flow meter and realize accurate flow measurement easily and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る脈動吸収構造を備
えた超音波式流量計の概略断面図である。
FIG. 1 is a schematic sectional view of an ultrasonic flowmeter provided with a pulsation absorbing structure according to a first embodiment of the present invention.

【図2】本発明の第1実施形態に係る脈動吸収構造を備
えた超音波式流量計の概略断面図である。
FIG. 2 is a schematic sectional view of an ultrasonic flowmeter provided with a pulsation absorbing structure according to the first embodiment of the present invention.

【図3】本発明の第1実施形態に係る脈動吸収構造を備
えた超音波式流量計の概略断面図である。
FIG. 3 is a schematic sectional view of an ultrasonic flowmeter provided with a pulsation absorbing structure according to the first embodiment of the present invention.

【図4】超音波式流量計の基本構造を示した概略断面図
である。
FIG. 4 is a schematic sectional view showing a basic structure of an ultrasonic flowmeter.

【図5】脈動の発生と影響を説明する構成図である。FIG. 5 is a configuration diagram illustrating generation and influence of pulsation.

【図6】流速の計測値から流量を算出する場合に、脈動
の影響で生じる測定誤差の説明図である。
FIG. 6 is an explanatory diagram of a measurement error caused by pulsation when calculating a flow rate from a measured value of a flow velocity.

【符号の説明】[Explanation of symbols]

1 超音波式流量計 2 ケース本体 3 流入口 4 流出口 5 流量測定部 5a 計測用ダクト 6 ケース内導入路 7 ケース内排出路 8a 緩衝室 8b 緩衝室 9 遮断弁 10a 連通路 10b 連通路 DESCRIPTION OF SYMBOLS 1 Ultrasonic flow meter 2 Case main body 3 Inflow port 4 Outflow port 5 Flow measurement section 5a Measurement duct 6 Introductory path in case 7 Outlet path in case 8a Buffer chamber 8b Buffer chamber 9 Shut-off valve 10a Communication path 10b Communication path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流入口と流出口とを有するケース本体
と、該ケース本体内に配置され、流路中の流体の流速に
応じて変化する物理量を間欠的に測定する測定手段と、
前記流入口と前記測定手段の上流側端とを連通するケー
ス内導入路と、前記測定手段の下流側端と前記流出口と
を連通するケース内導出路とを備えた流量計の脈動吸収
構造であって、 前記ケース内導入路及び前記ケース内導出路の少なくと
も一方には、流体の流れを拡散させる球形の緩衝室が設
けられていることを特徴とする流量計の脈動吸収構造。
1. A case body having an inflow port and an outflow port, and measurement means disposed in the case body and intermittently measuring a physical quantity that changes according to a flow rate of a fluid in a flow path;
A pulsation absorbing structure of a flow meter including an in-case introduction path that communicates the inflow port with the upstream end of the measurement means, and an in-case induction path that communicates the downstream end of the measurement means with the outflow port. A pulsation absorbing structure for a flow meter, wherein a spherical buffer chamber for diffusing a fluid flow is provided in at least one of the introduction path in the case and the extraction path in the case.
JP8711898A 1998-03-31 1998-03-31 Pulsation absorbing structure for flow meter Pending JPH11281437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8711898A JPH11281437A (en) 1998-03-31 1998-03-31 Pulsation absorbing structure for flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8711898A JPH11281437A (en) 1998-03-31 1998-03-31 Pulsation absorbing structure for flow meter

Publications (1)

Publication Number Publication Date
JPH11281437A true JPH11281437A (en) 1999-10-15

Family

ID=13906049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8711898A Pending JPH11281437A (en) 1998-03-31 1998-03-31 Pulsation absorbing structure for flow meter

Country Status (1)

Country Link
JP (1) JPH11281437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170346A (en) * 2002-11-22 2004-06-17 Kimmon Mfg Co Ltd Flow meter
WO2006068263A1 (en) 2004-12-22 2006-06-29 Matsushita Electric Works, Ltd. Liquid discharge control apparatus
CN109827626A (en) * 2019-03-22 2019-05-31 安徽徽宁电器仪表集团有限公司 A kind of shock proof flow instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170346A (en) * 2002-11-22 2004-06-17 Kimmon Mfg Co Ltd Flow meter
WO2006068263A1 (en) 2004-12-22 2006-06-29 Matsushita Electric Works, Ltd. Liquid discharge control apparatus
US7942650B2 (en) 2004-12-22 2011-05-17 Panasonic Electric Works Co., Ltd. Liquid discharge control apparatus including a pump and accumulator with a movable member
CN109827626A (en) * 2019-03-22 2019-05-31 安徽徽宁电器仪表集团有限公司 A kind of shock proof flow instrument

Similar Documents

Publication Publication Date Title
US20130167655A1 (en) Ultrasonic flow rate measurement device
JP6375519B2 (en) Gas meter
JP2895704B2 (en) Ultrasonic flow meter
WO2005005932A1 (en) Flow measuring device
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP4936856B2 (en) Flowmeter
US5157974A (en) Fluidic flowmeter
JP2005189090A (en) Ultrasonic water meter
AU600409B2 (en) Trapped-vortex pair flowmeter
JPH11281437A (en) Pulsation absorbing structure for flow meter
JP2014077750A (en) Ultrasonic meter
JP2935944B2 (en) Ultrasonic flow meter unit
JP3355130B2 (en) Pulsation absorption structure of flow meter
JP3355129B2 (en) Pulsation absorption structure of flow meter
JPH11281438A (en) Pulsation absorbing structure for flow meter
JPH11281439A (en) Pulsation absorbing structure for flow meter
JPH11281434A (en) Pulsation absorbing structure for flow meter
JP3383576B2 (en) Pulsation absorption structure of flow meter
JPH11281435A (en) Pulsation absorbing structure for flow meter
JPH10221150A (en) Flowmeter
JP2003114142A (en) Ultrasonic gas meter
WO1998023927A1 (en) Portable device for in-situ measurement of active pressure
RU207419U1 (en) ULTRASONIC GAS FLOW SENSOR
JPH11281432A (en) Pulsation absorbing structure for flow meter
RU118744U1 (en) ULTRASONIC FLOW METER