JPH11281432A - Pulsation absorbing structure for flow meter - Google Patents

Pulsation absorbing structure for flow meter

Info

Publication number
JPH11281432A
JPH11281432A JP8415898A JP8415898A JPH11281432A JP H11281432 A JPH11281432 A JP H11281432A JP 8415898 A JP8415898 A JP 8415898A JP 8415898 A JP8415898 A JP 8415898A JP H11281432 A JPH11281432 A JP H11281432A
Authority
JP
Japan
Prior art keywords
flow
outlet
flow meter
gas
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8415898A
Other languages
Japanese (ja)
Inventor
Tomiisa Yamashita
富功 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8415898A priority Critical patent/JPH11281432A/en
Publication of JPH11281432A publication Critical patent/JPH11281432A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pulsation absorbing structure for a flow meter, which is capable of performing accurate flow rate measuring by reducing the influence of a pulsating flow. SOLUTION: In the pulsation absorbing structure of an estimation type flow meter for estimating an integrated flow rate by using a weighing and measuring section 2 to intermittently measure the flow velocities of fluids flowing-in/ flowing-out through an inlet 3/outlet 4, inside at least one of the inlet 3 and the outlet 4, restriction parts 5 and 6 having inner diameters smaller than the inlet 3/outlet 4 are provided in bent parts 7 and 8 in the midway from the inlet 3/outlet 4 to the measuring duct 22 of the weighing and measuring section 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子式ガスメータ
等に使用される流量を計測する流量計に関し、さらに詳
しくは、流路中の流速を間欠的に計測して積算流量を推
測する推量式流量計の脈動(圧力変動、流速変動)の影
響を軽減する流量計の脈動吸収構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter for measuring a flow rate used in an electronic gas meter or the like, and more particularly, to an estimating equation for estimating an integrated flow rate by intermittently measuring a flow velocity in a flow path. The present invention relates to a flowmeter pulsation absorbing structure for reducing the influence of flowmeter pulsation (pressure fluctuation, flow velocity fluctuation).

【0002】[0002]

【従来の技術】従来、電子式ガスメータ等の流量計測に
使用されている流量計としては、超音波式やフルイディ
ック式等の流量計が広く使用されている。例えば、超音
波式のガス流量計の基本原理について簡単に説明する
と、図3に示すように、超音波式流量計20は、ガス流
路内に一定距離だけ離れて配置された超音波周波数で作
動する、例えば圧電式振動子からなる2つの音響トラン
スジューサ21、23と、超音波が伝搬する計測用ダク
ト22とを有している。
2. Description of the Related Art Conventionally, as a flow meter used for measuring a flow rate of an electronic gas meter or the like, a flow meter of an ultrasonic type or a fluidic type has been widely used. For example, the basic principle of an ultrasonic gas flow meter will be briefly described. As shown in FIG. 3, the ultrasonic flow meter 20 uses an ultrasonic frequency arranged at a certain distance in a gas flow path. It has two operative acoustic transducers 21, 23, for example made of piezoelectric transducers, and a measuring duct 22, through which ultrasonic waves propagate.

【0003】超音波式流量計20は、例えば、先ずガス
流入側の音響トランスジューサ21から超音波信号を発
生させ、ガス流出側の音響トランスジューサ23に受信
させて音響トランスジューサ間での超音波信号のガス流
方向の伝搬時間t1 を計測する。次に、超音波式流量計
20は、双方の音響トランスジューサを切換えて、ガス
流出側の音響トランスジューサ23から超音波信号を発
生させ、ガス流入側の音響トランスジューサ21に受信
させて該ガス流方向とは逆方向の伝搬時間t2 を計測す
る。更に、超音波式流量計20は、計測した2つの伝搬
時間t1,t2 の伝搬時間差に基づいて計測用ダクト22
内を流れているガスの流速vを間欠的に求め、この流速
vに計測用ダクト22の断面積を乗じて瞬時流量を求め
る。そして、瞬時流量に一定の計測間隔であるサンプリ
ング時間を乗じて通過流量を求め、通過流量を積算して
求めた積算流量を表示するものである。
The ultrasonic flow meter 20 first generates an ultrasonic signal from the acoustic transducer 21 on the gas inflow side, receives the ultrasonic signal from the acoustic transducer 23 on the gas outflow side, and converts the ultrasonic signal between the acoustic transducers into a gas. The propagation time t1 in the flow direction is measured. Next, the ultrasonic flow meter 20 switches between the two acoustic transducers to generate an ultrasonic signal from the acoustic transducer 23 on the gas outflow side and cause the acoustic transducer 21 on the gas inflow side to receive the ultrasonic signal. Measures the propagation time t2 in the reverse direction. Further, the ultrasonic flow meter 20 measures the measurement duct 22 based on the difference between the two measured propagation times t1 and t2.
The flow velocity v of the gas flowing inside is obtained intermittently, and the flow velocity v is multiplied by the cross-sectional area of the measurement duct 22 to obtain the instantaneous flow rate. Then, the flow rate is obtained by multiplying the instantaneous flow rate by a sampling time that is a constant measurement interval, and the integrated flow rate obtained by integrating the flow rates is displayed.

【0004】[0004]

【発明が解決しようとする課題】ところで、この種の流
量計を通じて供給されるガス等の流体を消費するガスヒ
ートポンプ(GHP)等の燃焼器の中には、作動中、供
給ガスに圧力変動や流速変動等の脈動を生じさせるもの
がある。すなわち例えば、図4(a)に示す流量計の設
置例では、燃焼器30の作動に伴ってガス圧に変動を生
じ、その脈動25が流量計20の下流側から流量計20
内に伝搬してくる。これが計測誤差の原因となる。
In a combustor such as a gas heat pump (GHP) that consumes a fluid such as a gas supplied through a flow meter of this type, during operation, pressure fluctuations or fluctuations in the supplied gas occur. Some may cause pulsations such as flow velocity fluctuations. That is, for example, in the installation example of the flow meter shown in FIG. 4A, the gas pressure fluctuates with the operation of the combustor 30, and the pulsation 25 thereof is generated from the downstream side of the flow meter 20.
Propagate inside. This causes a measurement error.

【0005】また、図4(b)に示す流量計の設置例で
は、並列に接続された2つの流量計20A、20Bのう
ち、流量計20Bには、燃焼器30Bからの脈動25B
が下流側から伝搬するとともに、燃焼器30Aからの脈
動25Aが上流側から伝搬する。したがって、流量計2
0Bには、図4(a)に示す設置例よりも更に大きな計
測誤差が発生することとなる。
[0005] In the installation example of the flow meter shown in FIG. 4B, of the two flow meters 20A and 20B connected in parallel, the flow meter 20B has a pulsation 25B from the combustor 30B.
Propagates from the downstream side, and pulsation 25A from combustor 30A propagates from the upstream side. Therefore, the flow meter 2
At 0B, a larger measurement error occurs than in the installation example shown in FIG.

【0006】図5を参照して更に詳しく説明すると、圧
力変動等が発生すると、これが原因でガス流に、時間と
共にガス流速が変化する脈動流を生じるようになる。こ
のような脈動流の生じているガス流の流速vを、上述し
たような流量計により一定のサンプリング間隔Δtを以
て測り、計測した流速vにサンプリング時間Δtを乗じ
て通過流量を求める。この場合、図中斜線を施した部分
が誤差となる。したがって、通過流量を積算して求めた
積算流量は、実際のガス使用量と違った積算値となる。
More specifically, referring to FIG. 5, when a pressure fluctuation or the like occurs, the gas flow causes a pulsating flow in which the gas flow rate changes with time due to the fluctuation. The flow velocity v of the gas flow having such a pulsating flow is measured at a constant sampling interval Δt by the flow meter as described above, and the passing flow rate is obtained by multiplying the measured flow velocity v by the sampling time Δt. In this case, the hatched portion in the figure becomes an error. Therefore, the integrated flow rate obtained by integrating the passing flow rates is an integrated value different from the actual gas usage amount.

【0007】本発明の目的は、上記課題を解決すること
にあり、脈動流の影響を軽減して、正確な流量計測を行
うことができる流量計の脈動吸収構造を提供することに
ある。
An object of the present invention is to solve the above-mentioned problems, and to provide a pulsation absorbing structure of a flow meter capable of reducing the influence of a pulsating flow and performing accurate flow measurement.

【0008】[0008]

【課題を解決するための手段】本発明に係わる上記課題
は、流入口及び流出口を介して流入又は流出する流体中
の流速を計量測定部によって間欠的に計測して積算流量
を推測する推量式流量計の脈動吸収構造において、前記
流入口及び流出口の少なくともいずれか一方の内方に
は、前記流入口又は前記流出口より内径の小さな絞り部
が、前記流入口又は前記流出口から前記計量測定部の計
測用ダクトに至る途中の屈曲部に設けられていることを
特徴とする流量計の脈動吸収構造によって解決される。
SUMMARY OF THE INVENTION The object of the present invention is to provide an estimating method for estimating an integrated flow rate by intermittently measuring the flow velocity in a fluid flowing in or out through an inlet and an outlet by a measuring unit. In the pulsation absorbing structure of the flow meter, a narrowed portion having an inner diameter smaller than the inflow port or the outflow port is provided inside the at least one of the inflow port and the outflow port from the inflow port or the outflow port. The problem is solved by a pulsation absorbing structure of a flow meter, which is provided at a bent portion on the way to a measurement duct of a measurement / measurement unit.

【0009】本発明に係る流量計の脈動吸収構造におい
ては、流入口又は流出口から計量測定部の計測用ダクト
に至る途中の屈曲部に流入口又は流出口より内径の小さ
な絞り部が設けられているので、流入口又は流出口側か
ら伝搬してきた脈動流を減衰させることができる。
In the pulsation absorbing structure for a flowmeter according to the present invention, a throttle portion having a smaller inside diameter than the inflow port or the outflow port is provided at a bent portion on the way from the inflow port or the outflow port to the measurement duct of the measuring section. Therefore, the pulsating flow propagating from the inflow port or the outflow port can be attenuated.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態である
流量計の脈動吸収構造を適用した超音波式ガス流量計に
ついて、図1及び図2に基づいて詳細に説明する。図1
は、本発明の一実施形態である流量計の脈動吸収構造を
適用した超音波式ガス流量計を示す概略断面図、図2
は、図1に示した流量計の屈曲部付近の拡大断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic gas flow meter to which a pulsation absorbing structure of a flow meter according to an embodiment of the present invention is applied will be described in detail with reference to FIGS. FIG.
FIG. 2 is a schematic sectional view showing an ultrasonic gas flow meter to which a pulsation absorbing structure of a flow meter according to an embodiment of the present invention is applied;
FIG. 2 is an enlarged cross-sectional view near a bent portion of the flow meter shown in FIG. 1.

【0011】図1及び図2を参照すると、超音波式ガス
流量計1は、流入口3及び流出口4を介して流入又は流
出するガス流量を、本体内に設けられた計量測定部2に
おいて計測する。
Referring to FIG. 1 and FIG. 2, an ultrasonic gas flow meter 1 measures the flow rate of gas flowing in or out through an inlet 3 and an outlet 4 in a measuring section 2 provided in the main body. measure.

【0012】前記流入口3及び流出口4の内方には、ガ
ス流が流れる略円筒状の流路が形成されており、その中
間位置に設けられた計量測定部2は、超音波が伝搬する
円筒状の計測用ダクト22と、該計測用ダクト22を挟
んで所定の間隔を隔てて対向する位置に配置された超音
波周波数で作動する一対の音響トランスジューサ21、
23とから構成されている。各音響トランスジューサ2
1、23は、超音波周波数で作動する圧電式振動子であ
る。
A substantially cylindrical flow path through which a gas flow flows is formed inside the inflow port 3 and the outflow port 4, and the measuring and measuring section 2 provided at an intermediate position of the flow path allows ultrasonic waves to propagate therethrough. A pair of acoustic transducers 21 that operate at an ultrasonic frequency and that are arranged at positions facing each other at a predetermined interval with the measuring duct 22 interposed therebetween,
23. Each acoustic transducer 2
Reference numerals 1 and 23 are piezoelectric vibrators that operate at an ultrasonic frequency.

【0013】本実施形態の流量計の脈動吸収構造は、流
入口3又は流出口4から計量測定部2の計測用ダクト2
2に至る途中の屈曲部7、8に流入口3及び流出口4よ
り内径の小さな絞り部5、6が設けられている。
The pulsation absorbing structure of the flow meter according to the present embodiment is configured such that the measuring duct 2 of the measuring / measuring unit 2 is connected to the inlet 3 or the outlet 4.
At the bent portions 7 and 8 on the way to 2, throttle portions 5 and 6 having smaller inner diameters than the inlet 3 and the outlet 4 are provided.

【0014】すなわち、図2に示すように流入口内径A
1 に対して屈曲部7に形成された絞り部5の内径A2 は
小さく、言い換えれば、流入口3付近の流路断面積に対
して絞り部5の流路断面積が小さく形成されている。し
かも、屈曲部7に形成されているので、流入口3から入
ってきたガス流は絞り部5でその流速が上げられ、絞り
部5出口では略90°流路方向が変更された状態で計測
用ダクト22内に流入する。
That is, as shown in FIG.
1, the inner diameter A2 of the throttle portion 5 formed in the bent portion 7 is smaller. In other words, the cross-sectional area of the throttle portion 5 is formed smaller than the cross-sectional area of the flow channel near the inlet 3. In addition, since the gas flow entering through the inlet 3 is formed at the bent portion 7, the flow velocity of the gas flow is increased by the throttle portion 5, and the gas flow is measured at the outlet of the throttle portion 5 with the flow direction being changed by approximately 90 °. Flow into the duct 22.

【0015】上記計量測定部2の計測手順は、従来で説
明した計測手順と同じである。すなわち、ガス上流側の
音響トランスジューサ21から超音波信号を発生させる
とともに、当該超音波信号を計測用ダクト22内を通過
させ、ガス下流側の音響トランスジューサ23に受信さ
せる。このとき、音響トランスジューサ21、23間で
の超音波信号のガス流方向の伝搬時間t1 を計測する。
The measuring procedure of the weighing / measuring unit 2 is the same as the measuring procedure explained in the prior art. That is, an ultrasonic signal is generated from the acoustic transducer 21 on the gas upstream side, and the ultrasonic signal is caused to pass through the inside of the measurement duct 22 and received by the acoustic transducer 23 on the gas downstream side. At this time, the propagation time t1 of the ultrasonic signal in the gas flow direction between the acoustic transducers 21 and 23 is measured.

【0016】次に、計量測定部2は、双方の音響トラン
スジューサ21、23を切換え、ガス下流側の音響トラ
ンスジューサ23から超音波信号を発生させるととも
に、当該超音波信号を計測用ダクト22内を通過させ、
ガス上流側の音響トランスジューサ21に受信させる。
このとき、ガス流方向とは逆方向の伝搬時間t2 を計測
する。
Next, the weighing / measuring unit 2 switches the two acoustic transducers 21 and 23 to generate an ultrasonic signal from the acoustic transducer 23 on the downstream side of the gas, and passes the ultrasonic signal through the measuring duct 22. Let
The sound is received by the acoustic transducer 21 on the gas upstream side.
At this time, the propagation time t2 in the direction opposite to the gas flow direction is measured.

【0017】次に、計量測定部2は、上記伝搬時間t1,
t2 の伝搬時間差に基づいて、計測用ダクト22内を流
れているガスの流速vを間欠的に求め、計測用ダクト2
2の断面積と、温度、圧力及びガス質(密度、粘度)に
より決定される定数を流速vに乗じて瞬時流量を求め
る。その後、瞬時流量に一定の計測間隔であるサンプリ
ング時間を乗じて通過流量を求め、通過流量を積算して
積算流量を求める。
Next, the weighing / measuring unit 2 calculates the propagation time t1,
On the basis of the propagation time difference of t2, the flow velocity v of the gas flowing in the measurement duct 22 is intermittently obtained.
The instantaneous flow rate is obtained by multiplying the flow rate v by a constant determined by the cross-sectional area of 2 and the temperature, pressure, and gas quality (density, viscosity). Thereafter, a passing flow rate is obtained by multiplying the instantaneous flow rate by a sampling time that is a fixed measurement interval, and the passing flow rate is integrated to obtain an integrated flow rate.

【0018】本実施形態の作用を流入口側を一例に説明
する。上述した本実施形態のガス流量計1においては、
流入口3から本体内に流入するガス流体に脈動流25が
伝搬してきた場合、ガス流体の流速を変える絞り部5の
存在によって、圧力変動、流速変動等の脈動(以下、単
に脈動という。)が減衰される。
The operation of the present embodiment will be described by taking the inlet side as an example. In the above-described gas flow meter 1 of the present embodiment,
When the pulsating flow 25 propagates from the inflow port 3 to the gas fluid flowing into the main body, pulsation such as pressure fluctuation and flow velocity fluctuation (hereinafter simply referred to as pulsation) is caused by the presence of the throttle unit 5 that changes the flow velocity of the gas fluid. Is attenuated.

【0019】すなわち、図2に示すように流入口3にお
いて、上述したように計量前のガス流には、脈動流25
が伝搬して来るが、屈曲部7に形成された絞り部5でガ
ス流体は圧縮され、その流速が上げられる。そして、絞
り部5出口では略90°流路方向が変更されるととも
に、計測用ダクト22の上流側では再び膨張されて計測
用ダクト22内に流入する。このガス流体の圧縮及び膨
張と方向変更を経ることで、ガス流体に伝搬して来た脈
動流25を減衰させて計測値に影響を及ぼさない程度の
ほぼ定常流26にすることができる。
That is, as shown in FIG. 2, at the inflow port 3, the pulsating flow 25
Is propagated, but the gas fluid is compressed by the constricted portion 5 formed in the bent portion 7 and the flow velocity is increased. Then, the direction of the flow passage is changed by approximately 90 ° at the outlet of the restricting portion 5, and is expanded again on the upstream side of the measurement duct 22 and flows into the measurement duct 22. Through the compression, expansion and direction change of the gas fluid, the pulsating flow 25 propagating in the gas fluid can be attenuated to a substantially steady flow 26 which does not affect the measured value.

【0020】また、計量後のガス流については、上述し
た流入口側と同様であり、計量後のガス流は絞り部5で
圧縮され、その流速が上げられる。そして、絞り部5出
口では方向変更されるとともに、流出口4手前では再び
膨張される。したがって、流出口4の下流側ガス流体を
伝搬して来る脈動流を減衰させて計測値に影響を及ぼさ
ない程度のほぼ定常流にすることができる。
The gas flow after the measurement is the same as that at the above-described inlet side, and the gas flow after the measurement is compressed by the throttle unit 5 to increase the flow velocity. Then, the direction is changed at the outlet of the restricting section 5 and expanded again before the outlet 4. Therefore, it is possible to attenuate the pulsating flow propagating through the gas fluid downstream of the outlet 4 to make it a substantially steady flow that does not affect the measured value.

【0021】上述したように本実施形態の流量計の脈動
吸収構造によれば、流入口3及び流出口4より内径の小
さな絞り部5、6が流入口3及び流出口4から計測用ダ
クト22に至る途中の屈曲部7、8に形成されているの
で、例えばガス流量計1の上流側又は下流側から伝搬す
る脈動を絞り部5、6付近で減衰させることができる。
これにより、ガス流量計測に及ぼす脈動流の影響を軽減
することができ、正確な流量計測を行うことができる。
また、製造に際しても、比較的簡単な構成で脈動流の軽
減を図ることができるので、コスト低減を図ることがで
きる。
As described above, according to the pulsation absorbing structure of the flow meter according to the present embodiment, the throttle portions 5 and 6 having smaller inner diameters than the inlet 3 and the outlet 4 are connected to the measuring duct 22 from the inlet 3 and the outlet 4. Are formed at the bent portions 7 and 8 on the way to the slope, for example, pulsation propagating from the upstream side or the downstream side of the gas flow meter 1 can be attenuated near the throttle portions 5 and 6.
Thereby, the influence of the pulsating flow on the gas flow measurement can be reduced, and accurate flow measurement can be performed.
In manufacturing, the pulsating flow can be reduced with a relatively simple configuration, so that the cost can be reduced.

【0022】なお、本発明は上記実施形態に限定される
ものでなく、適宜な変更を行うことにより他の態様でも
実施することができる。例えば、上記実施形態では、超
音波式を含む推量式ガス流量計の原理・構造に特に適し
たものであり、顕著な効果が期待できるため、超音波式
ガス流量計に適用した実施形態例として説明したが、こ
れに限るものではなく、渦流により流速を計測するフル
イディック式流量計等にも適用することができる。
The present invention is not limited to the above embodiment, but can be implemented in other modes by making appropriate changes. For example, in the above embodiment, since it is particularly suitable for the principle and structure of a guess type gas flow meter including an ultrasonic type and a remarkable effect can be expected, as an example of an embodiment applied to an ultrasonic type gas flow meter Although described above, the present invention is not limited to this, and may be applied to a fluidic flow meter or the like that measures a flow velocity by a vortex.

【0023】[0023]

【発明の効果】以上説明したように本発明の流量計の脈
動吸収構造によれば、流入口及び流出口の少なくともい
ずれか一方の内方には、前記流入口又は前記流出口より
内径の小さな絞り部が、前記流入口又は前記流出口から
前記計量測定部の計測用ダクトに至る途中の屈曲部に設
けられている。したがって、流体の流量計測に際して、
脈動流の影響を絞り部で軽減させることができ、正確な
流量計測に基づき積算流量の誤差を軽減させることがで
き、安価で信頼性の高い流量計を得ることができる。
As described above, according to the pulsation absorbing structure of the flow meter of the present invention, at least one of the inlet and the outlet has a smaller inner diameter than the inlet or the outlet. A throttle portion is provided at a bent portion on the way from the inflow port or the outflow port to the measurement duct of the measurement and measurement section. Therefore, when measuring the flow rate of the fluid,
The influence of the pulsating flow can be reduced by the throttle section, the error of the integrated flow rate can be reduced based on accurate flow rate measurement, and an inexpensive and highly reliable flow meter can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流量計の脈動吸収構造の一実施形態を
示す概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a pulsation absorbing structure of a flow meter according to the present invention.

【図2】図1に示した流量計の要部を示す拡大部分断面
図である。
FIG. 2 is an enlarged partial cross-sectional view showing a main part of the flow meter shown in FIG.

【図3】従来のガス流量計を示す概略図である。FIG. 3 is a schematic view showing a conventional gas flow meter.

【図4】従来の流量計と燃焼器との関係を示すブロック
図である。
FIG. 4 is a block diagram showing a relationship between a conventional flow meter and a combustor.

【図5】従来のガス流の流速変化を示すグラフである。FIG. 5 is a graph showing a change in flow velocity of a conventional gas flow.

【符号の説明】[Explanation of symbols]

1 流量計(超音波式ガス流量計) 2 計量測定部 3 流入口 4 流出口 5 上流側絞り部 6 下流側絞り部 7 上流側屈曲部 8 下流側屈曲部 21 上流側トランスジューサ 22 計測用ダクト 23 下流側トランスジューサ DESCRIPTION OF SYMBOLS 1 Flow meter (ultrasonic gas flow meter) 2 Metering / measuring part 3 Inlet 4 Outlet 5 Upstream restrictor 6 Downstream restrictor 7 Upstream bend 8 Downstream bend 21 Upstream transducer 22 Measurement duct 23 Downstream transducer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流入口及び流出口を介して流入又は流出
する流体中の流速を計量測定部によって間欠的に計測し
て積算流量を推測する推量式流量計の脈動吸収構造にお
いて、 前記流入口及び流出口の少なくともいずれか一方の内方
には、前記流入口又は前記流出口より内径の小さな絞り
部が、前記流入口又は前記流出口から前記計量測定部の
計測用ダクトに至る途中の屈曲部に設けられていること
を特徴とする流量計の脈動吸収構造。
1. A pulsation absorbing structure of a guess-type flowmeter for estimating an integrated flow rate by intermittently measuring a flow velocity in a fluid flowing in or out through an inlet and an outlet by a measuring unit, Inside at least one of the outlet and the outlet, a narrowed portion having a smaller inner diameter than the inlet or the outlet is bent on the way from the inlet or the outlet to the measurement duct of the measuring unit. A pulsation absorbing structure for a flow meter, which is provided in a section.
JP8415898A 1998-03-30 1998-03-30 Pulsation absorbing structure for flow meter Pending JPH11281432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8415898A JPH11281432A (en) 1998-03-30 1998-03-30 Pulsation absorbing structure for flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8415898A JPH11281432A (en) 1998-03-30 1998-03-30 Pulsation absorbing structure for flow meter

Publications (1)

Publication Number Publication Date
JPH11281432A true JPH11281432A (en) 1999-10-15

Family

ID=13822703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8415898A Pending JPH11281432A (en) 1998-03-30 1998-03-30 Pulsation absorbing structure for flow meter

Country Status (1)

Country Link
JP (1) JPH11281432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076152A1 (en) * 2008-12-29 2010-07-08 Endress+Hauser Flowtec Ag Measuring tube of a measuring system for determining and/or monitoring the flow of a measuring medium through said measuring tube by means of ultrasound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076152A1 (en) * 2008-12-29 2010-07-08 Endress+Hauser Flowtec Ag Measuring tube of a measuring system for determining and/or monitoring the flow of a measuring medium through said measuring tube by means of ultrasound

Similar Documents

Publication Publication Date Title
JP5188826B2 (en) Flow meter and flow control device
RU2181477C2 (en) Flowmeter of overflow type
JP3045677B2 (en) Ultrasonic flow meter
JP6375519B2 (en) Gas meter
JP4936856B2 (en) Flowmeter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP3470872B2 (en) Flow meter and flow measurement method
JPH11281432A (en) Pulsation absorbing structure for flow meter
JP3355130B2 (en) Pulsation absorption structure of flow meter
JPH11281433A (en) Pulsation absorbing structure for flow meter
JP2935944B2 (en) Ultrasonic flow meter unit
JPH11281425A (en) Pulsation absorbing structure for flow meter
JP3383576B2 (en) Pulsation absorption structure of flow meter
JP5663288B2 (en) Ultrasonic measuring device
JPH11281438A (en) Pulsation absorbing structure for flow meter
JPH11281437A (en) Pulsation absorbing structure for flow meter
JP4561071B2 (en) Flow measuring device
JP3383577B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP3383575B2 (en) Pulsation absorption structure of flow meter
JPH11281434A (en) Pulsation absorbing structure for flow meter
JP3355129B2 (en) Pulsation absorption structure of flow meter
JP3365953B2 (en) Pulsation absorption structure of flow meter
JPH11281414A (en) Pulsation absorbing structure of flowmeter
JP3528436B2 (en) Ultrasonic flow meter and current meter
JPH11281435A (en) Pulsation absorbing structure for flow meter