JPH11281425A - Pulsation absorbing structure for flow meter - Google Patents

Pulsation absorbing structure for flow meter

Info

Publication number
JPH11281425A
JPH11281425A JP8181998A JP8181998A JPH11281425A JP H11281425 A JPH11281425 A JP H11281425A JP 8181998 A JP8181998 A JP 8181998A JP 8181998 A JP8181998 A JP 8181998A JP H11281425 A JPH11281425 A JP H11281425A
Authority
JP
Japan
Prior art keywords
flow
fluid
gas
flow meter
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8181998A
Other languages
Japanese (ja)
Inventor
Sanshiro Kodama
三四郎 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8181998A priority Critical patent/JPH11281425A/en
Publication of JPH11281425A publication Critical patent/JPH11281425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform accurate flow rate measuring by reducing the influence of a pulsating flow. SOLUTION: Pipe members 17 and 18 having fluid paths 15 and 16 smaller in inner diameter than an inlet 12 and an outlet 13 are provided inside the inlet 12 and the outlet 13 such that the fluid paths are set along the flowing-in/ flowing-out direction of fluid. Also, in a main body 11, partition walls 21 and 22 for preventing the flowing of fluid in a specified direction are provided by keeping specified gaps from the pipe member 17 and 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子式ガスメータ
等に使用される流量を計測する流量計に関し、さらに詳
しくは、流路中の流速を間欠的に計測して積算流量を推
測する推量式流量計の脈動(圧力変動、流速変動)の影
響を軽減する流量計の脈動吸収構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter for measuring a flow rate used in an electronic gas meter or the like, and more particularly, to an estimating equation for estimating an integrated flow rate by intermittently measuring a flow velocity in a flow path. The present invention relates to a flowmeter pulsation absorbing structure for reducing the influence of flowmeter pulsation (pressure fluctuation, flow velocity fluctuation).

【0002】[0002]

【従来の技術】従来、電子式ガスメータ等の流量計測に
使用されている流量計としては、超音波式やフルイディ
ック式等の流量計が広く使用されている。例えば、超音
波式のガス流量計の基本原理について簡単に説明する
と、図3に示すように、超音波式流量計30は、ガス流
路内に一定距離だけ離れて配置された超音波周波数で作
動する、例えば圧電式振動子からなる2つの音響トラン
スジューサ31、32と、超音波が伝搬する計測用ダク
ト33とを有している。
2. Description of the Related Art Conventionally, as a flow meter used for measuring a flow rate of an electronic gas meter or the like, a flow meter of an ultrasonic type or a fluidic type has been widely used. For example, the basic principle of an ultrasonic gas flow meter will be briefly described. As shown in FIG. 3, the ultrasonic flow meter 30 uses an ultrasonic frequency which is arranged at a predetermined distance in a gas flow path. It has two acoustic transducers 31, 32, for example made of piezoelectric transducers, and a measuring duct 33 through which ultrasonic waves propagate.

【0003】超音波式流量計30は、例えば、先ずガス
流入側の音響トランスジューサ31から超音波信号を発
生させ、ガス流出側の音響トランスジューサ32に受信
させて音響トランスジューサ間での超音波信号のガス流
方向の伝搬時間t1 を計測する。次に超音波式流量計3
0は、双方の音響トランスジューサを切換えて、ガス流
出側の音響トランスジューサ32から超音波信号を発生
させ、ガス流入側の音響トランスジューサ31に受信さ
せて該ガス流方向とは逆方向の伝搬時間t2 を計測す
る。更に超音波式流量計30は、計測した2つの伝搬時
間t1,t2 の伝搬時間差に基づいて計測用ダクト33内
を流れているガスの流速vを間欠的に求め、この流速v
に計測用ダクト33の断面積を乗じて瞬時流量を求め
る。そして、瞬時流量に一定の計測間隔であるサンプリ
ング時間を乗じて通過流量を求め、通過流量を積算して
求めた積算流量を表示するものである。
[0003] The ultrasonic flowmeter 30 first generates an ultrasonic signal from the acoustic transducer 31 on the gas inflow side, receives the ultrasonic signal on the acoustic transducer 32 on the gas outflow side, and converts the ultrasonic signal between the acoustic transducers into gas. The propagation time t1 in the flow direction is measured. Next, the ultrasonic flow meter 3
0 switches both acoustic transducers to generate an ultrasonic signal from the acoustic transducer 32 on the gas outflow side and to receive the ultrasonic signal on the acoustic transducer 31 on the gas inflow side. measure. Further, the ultrasonic flow meter 30 intermittently obtains the flow velocity v of the gas flowing through the measurement duct 33 based on the measured propagation time difference between the two propagation times t1 and t2.
Is multiplied by the cross-sectional area of the measuring duct 33 to determine the instantaneous flow rate. Then, the flow rate is obtained by multiplying the instantaneous flow rate by a sampling time that is a constant measurement interval, and the integrated flow rate obtained by integrating the flow rates is displayed.

【0004】[0004]

【発明が解決しようとする課題】ところで、この種の流
量計を通じて供給されるガス等の流体を消費するガスヒ
ートポンプ(GHP)等の燃焼器の中には、作動中、供
給ガスに圧力変動や流速変動等の脈動を生じさせるもの
がある。すなわち例えば、図4(a)に示す流量計の設
置例では、燃焼器40の作動に伴ってガス圧に変動を生
じ、その脈動41が流量計30の下流側から流量計30
内に伝搬してくる。これが計測誤差の原因となる。
In a combustor such as a gas heat pump (GHP) that consumes a fluid such as a gas supplied through a flow meter of this type, during operation, pressure fluctuations or fluctuations in the supplied gas occur. Some may cause pulsations such as flow velocity fluctuations. That is, for example, in the installation example of the flow meter shown in FIG. 4A, the gas pressure fluctuates with the operation of the combustor 40, and the pulsation 41 thereof is generated from the downstream side of the flow meter 30.
Propagate inside. This causes a measurement error.

【0005】また、図4(b)に示す流量計の設置例で
は、並列に接続された2つの流量計30A、30Bのう
ち、流量計30Bには、燃焼器40Bからの脈動41B
が下流側から伝搬するとともに、燃焼器40Aからの脈
動41Aが上流側から伝搬する。したがって、流量計3
0Bには、図4(a)に示す設置例よりも更に大きな計
測誤差が発生することとなる。
[0005] In the installation example of the flow meter shown in FIG. 4B, of the two flow meters 30A and 30B connected in parallel, the flow meter 30B has a pulsation 41B from the combustor 40B.
Propagates from the downstream side, and pulsations 41A from the combustor 40A propagate from the upstream side. Therefore, the flow meter 3
At 0B, a larger measurement error occurs than in the installation example shown in FIG.

【0006】図5を参照して更に詳しく説明すると、圧
力変動等が発生すると、これが原因でガス流に、時間と
共にガス流速が変化する脈動流を生じるようになる。こ
のような脈動流の生じているガス流の流速vを、上述し
たような流量計により一定のサンプリング間隔Δtを以
て測り、計測した流速vにサンプリング時間Δtを乗じ
て通過流量を求める。この場合、図中斜線を施した部分
が誤差となる。したがって、通過流量を積算して求めた
積算流量は、実際のガス使用量と違った積算値となる。
More specifically, referring to FIG. 5, when a pressure fluctuation or the like occurs, the gas flow causes a pulsating flow in which the gas flow rate changes with time due to the fluctuation. The flow velocity v of the gas flow having such a pulsating flow is measured at a constant sampling interval Δt by the flow meter as described above, and the passing flow rate is obtained by multiplying the measured flow velocity v by the sampling time Δt. In this case, the hatched portion in the figure becomes an error. Therefore, the integrated flow rate obtained by integrating the passing flow rates is an integrated value different from the actual gas usage amount.

【0007】本発明の目的は、上記課題を解決すること
にあり、脈動流の影響を軽減して、正確な流量計測を行
うことができる流量計の脈動吸収構造を提供することに
ある。
An object of the present invention is to solve the above-mentioned problems, and to provide a pulsation absorbing structure of a flow meter capable of reducing the influence of a pulsating flow and performing accurate flow measurement.

【0008】[0008]

【課題を解決するための手段】本発明に係わる上記課題
は、流入口及び流出口を介して本体内に流入又は流出す
る流体の流量を本体内に設けられた計量測定部によって
計測する流量計において、前記流入口及び流出口の少な
くともいずれか一方の内方には、流入口又は流出口より
内径の小さな流体流路を有する管状部材が、流体流路を
流体の流入又は流出方向に沿わせるように設けられてお
り、かつ本体内には特定方向への流体の流れを阻止する
隔壁が設けられていることを特徴とする流量計の脈動吸
収構造によって解決される。
An object of the present invention is to provide a flowmeter for measuring a flow rate of a fluid flowing into or out of a main body through an inlet and an outlet by a measuring unit provided in the main body. In, at least one of the inflow port and the outflow port, a tubular member having a fluid flow path having a smaller inside diameter than the inflow port or the outflow port causes the fluid flow path to follow the inflow or outflow direction of the fluid. The pulsation absorbing structure of a flow meter is provided in such a manner as to be provided as described above, and a partition wall for preventing a flow of a fluid in a specific direction is provided in the main body.

【0009】本発明に係る流量計の脈動吸収構造におい
ては、流入口及び流出口を介して本体内に流入又は流出
する流体に、例えば流量計の上流側又は下流側から脈動
流が伝搬してきた場合、流体の流れを変える管状部材及
び隔壁の存在によって、流体の脈動が減衰される。
In the pulsation absorbing structure of the flow meter according to the present invention, the pulsating flow propagates from the upstream side or the downstream side of the flow meter to the fluid flowing into or out of the main body via the inlet and the outlet. In some cases, the pulsation of the fluid is attenuated by the presence of the tubular member and the partition that change the flow of the fluid.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態である
流量計の脈動吸収構造を適用した超音波式ガス流量計に
ついて、図1及び図2に基づいて詳細に説明する。図1
は、本発明の一実施形態である流量計の脈動吸収構造を
適用した超音波式ガス流量計を示す概略断面図、図2
は、図1に示した超音波式ガス流量計の流入口付近の拡
大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic gas flow meter to which a pulsation absorbing structure of a flow meter according to an embodiment of the present invention is applied will be described in detail with reference to FIGS. FIG.
FIG. 2 is a schematic sectional view showing an ultrasonic gas flow meter to which a pulsation absorbing structure of a flow meter according to an embodiment of the present invention is applied;
FIG. 2 is an enlarged cross-sectional view near the inlet of the ultrasonic gas flow meter shown in FIG. 1.

【0011】図1及び図2を参照すると、超音波式ガス
流量計10は、本体11内に流入口12及び流出口13
を介して流入又は流出するガス流量を、本体11内に設
けられた計量測定部14において計測する。
Referring to FIGS. 1 and 2, an ultrasonic gas flow meter 10 includes an inlet 12 and an outlet 13 in a main body 11.
The flow rate of gas flowing in or out of the main body 11 is measured by a measuring and measuring unit 14 provided in the main body 11.

【0012】流入口12及び流出口13は、それぞれ略
円筒状に形成されており、略同一の内径を有する。流入
口12及び流出口13の内方には、流体流路15、16
を有する略円筒状の管状部材17、18が、流体流路1
5、16を流体の流入又は流出方向に沿わせるように設
けられている。各管状部材17、18の流体流路15、
16の内径は、流入口12及び流出口13の内径より所
定量小さい(本実施形態では約半分)。
The inflow port 12 and the outflow port 13 are each formed in a substantially cylindrical shape, and have substantially the same inner diameter. Inside the inflow port 12 and the outflow port 13, fluid flow paths 15, 16 are provided.
The substantially cylindrical tubular members 17 and 18 having
5 and 16 are provided along the inflow or outflow direction of the fluid. The fluid flow path 15 of each tubular member 17, 18;
The inner diameter of 16 is smaller than the inner diameters of the inflow port 12 and the outflow port 13 by a predetermined amount (about half in this embodiment).

【0013】すなわち、流入口12及び流出口13の内
方は、各管状部材17、18によって、各流路15、1
6(以下、内側流路という。)と、管状部材17、18
外方の流路19、20(以下、外側流路という。)とに
分割され、同心円状の二重構造となっている。
That is, the inside of the inflow port 12 and the outflow port 13 is formed by each tubular member 17, 18 by each flow path 15, 1.
6 (hereinafter referred to as an inner flow path) and tubular members 17 and 18.
It is divided into outer flow paths 19 and 20 (hereinafter, referred to as outer flow paths), and has a concentric double structure.

【0014】本体11内には、管状部材17、18と所
定間隔を隔てて、一対の隔壁21、22が設けられてい
る。すなわち、各隔壁21、22は、本体11内におけ
る各管状部材17、18の本体11内側端部(図中、下
端部)から、図中下方に所定間隔をあけた位置に、流体
の流入又は流出方向と直交する方向(図中、左右方向)
に沿って設けられている。また、各隔壁21、22の上
面には、補助隔壁23が流入口12及び流出口13の側
壁24の延長線上に沿って、上方に向けて突設されてい
る。各隔壁21、22は、各補助隔壁23とともに本体
11内の特定方向への流体の流れを阻止する。
In the main body 11, a pair of partitions 21 and 22 are provided at predetermined intervals from the tubular members 17 and 18. That is, each of the partition walls 21 and 22 is provided with a flow of fluid or a fluid from the inner end (the lower end in the figure) of each of the tubular members 17 and 18 in the main body 11 to a position spaced a predetermined distance downward in the figure. Direction perpendicular to the outflow direction (left-right direction in the figure)
It is provided along. On the upper surfaces of the partition walls 21 and 22, an auxiliary partition wall 23 is provided to protrude upward along the extension of the side wall 24 of the inflow port 12 and the outflow port 13. Each of the partition walls 21 and 22 together with each of the auxiliary partition walls 23 prevents the fluid from flowing in a specific direction in the main body 11.

【0015】計量測定部14は、超音波が伝搬する計測
用ダクト25と、計測用ダクト25を挟んで所定の間隔
を隔てて対向する位置に配置された一対の音響トランス
ジューサ26、27を備えている。各音響トランスジュ
ーサ26、27は、超音波周波数で作動する、例えば、
圧電式振動子である。
The weighing / measuring unit 14 includes a measuring duct 25 through which ultrasonic waves propagate, and a pair of acoustic transducers 26 and 27 arranged at positions facing each other with a predetermined interval across the measuring duct 25. I have. Each acoustic transducer 26, 27 operates at an ultrasonic frequency, for example,
It is a piezoelectric vibrator.

【0016】計量測定部14は、ガス流量の計測に際し
て、ガス流入側(図中、左側)の音響トランスジューサ
26から超音波信号を発生させるとともに、当該超音波
信号をガス流出側(図中、右側)の音響トランスジュー
サ27に受信させる。このとき、音響トランスジューサ
26、27間での超音波信号のガス流方向(図中、右方
向)の伝搬時間t1 を計測する。
When measuring the gas flow rate, the measurement / measurement unit 14 generates an ultrasonic signal from the acoustic transducer 26 on the gas inflow side (the left side in the figure) and converts the ultrasonic signal into the gas outflow side (the right side in the figure). ) Is received by the acoustic transducer 27). At this time, the propagation time t1 of the ultrasonic signal between the acoustic transducers 26 and 27 in the gas flow direction (right direction in the figure) is measured.

【0017】次に、計量測定部14は、双方の音響トラ
ンスジューサ26、27を切換え、ガス流出側の音響ト
ランスジューサ27から超音波信号を発生させるととも
に、当該超音波信号をガス流入側の音響トランスジュー
サ26に受信させる。このとき、ガス流方向とは逆方向
(図中、左方向)の伝搬時間t2 を計測する。
Next, the weighing / measuring unit 14 switches between the two acoustic transducers 26 and 27 to generate an ultrasonic signal from the acoustic transducer 27 on the gas outflow side, and to transmit the ultrasonic signal to the acoustic transducer 26 on the gas inflow side. To receive. At this time, the propagation time t2 in the direction opposite to the gas flow direction (left direction in the figure) is measured.

【0018】更に、計量測定部14は、上記伝搬時間t
1,t2 の伝搬時間差に基づいて、計測用ダクト25内を
流れているガスの流速vを間欠的に求める。そして、計
測用ダクト25の断面積と、温度、圧力及びガス質(密
度、粘度)により決定される定数を流速vに乗じて瞬時
流量を求める。その後、瞬時流量に一定の計測間隔であ
るサンプリング時間を乗じて通過流量を求め、通過流量
を積算して積算流量を求める。
Further, the weighing / measuring unit 14 calculates the propagation time t.
The flow velocity v of the gas flowing in the measurement duct 25 is intermittently obtained based on the propagation time difference of 1, t2. Then, an instantaneous flow rate is obtained by multiplying a constant determined by the cross-sectional area of the measurement duct 25 and the temperature, pressure, and gas quality (density, viscosity) by the flow velocity v. Thereafter, a passing flow rate is obtained by multiplying the instantaneous flow rate by a sampling time that is a fixed measurement interval, and the passing flow rate is integrated to obtain an integrated flow rate.

【0019】本実施形態の作用を説明する。上述した本
実施形態のガス流量計10においては、流入口12及び
流出口13を介して本体11内に流入又は流出する流体
に、例えば流量計の上流側又は下流側から脈動流が伝搬
してきた場合、流体の流れを変える管状部材17、18
及び隔壁21、22の存在によって、圧力変動、流速変
動等の脈動(以下、単に脈動という。)が減衰される。
The operation of the present embodiment will be described. In the above-described gas flow meter 10 of the present embodiment, the pulsating flow propagates to the fluid flowing into or out of the main body 11 through the inflow port 12 and the outflow port 13, for example, from the upstream side or the downstream side of the flow meter. In some cases, tubular members 17, 18 that change the flow of fluid
The presence of the partitions 21 and 22 attenuates pulsations (hereinafter simply referred to as pulsations) such as pressure fluctuations and flow velocity fluctuations.

【0020】すなわち、例えば流入口12において、計
量前のガスは、内側流路15及び外側流路19を通っ
て、下方に向けて本体11内に流入する(定常流)。こ
のとき、内側流路15を通ったガスは、管状部材17の
下端部から出て隔壁21に当たり、流れを乱されて脈動
を減衰させる。更に、隔壁21に跳ね返されたガスの一
部は、外側流路19内に回り込み、外側流路19内を上
方に逆流する。この逆流により、図2中に破線円で示し
た付近において、外側流路19内を下方に流れるガスと
の間で衝突が起こり、脈動が更に減衰される。
That is, for example, at the inlet 12, the gas before measurement flows downward into the main body 11 through the inner flow path 15 and the outer flow path 19 (steady flow). At this time, the gas that has passed through the inner flow path 15 exits from the lower end of the tubular member 17 and hits the partition 21 to disturb the flow and attenuate the pulsation. Further, a part of the gas bounced back to the partition 21 goes into the outer flow path 19 and flows upward in the outer flow path 19. Due to this backflow, collision occurs with the gas flowing downward in the outer flow path 19 in the vicinity indicated by the broken circle in FIG. 2, and the pulsation is further attenuated.

【0021】また、例えば、計量後のガスは、図中右側
の隔壁22の左端部を回り込み、本体11の内壁面11
aと隔壁22の補助隔壁23先端との間を通って、流出
口13内において管状部材18の左側面に当たる。これ
により、ガスは流れを乱されて脈動を減衰させる。更
に、管状部材18に当たったガスは、外側流路20内に
流れ込むとともに、管状部材18の下端部を迂回して内
側流路16内にも流れ込む。そして、各流路16、20
を上方に向けて流れ、本体11内から流出される。
For example, the gas after measurement goes around the left end of the partition wall 22 on the right side in FIG.
a, and passes between the tip of the auxiliary partition 23 of the partition 22 and the left side surface of the tubular member 18 in the outlet 13. This causes the gas to be disturbed and dampen pulsation. Further, the gas that has hit the tubular member 18 flows into the outer flow path 20 and also flows into the inner flow path 16 bypassing the lower end of the tubular member 18. And, each flow path 16, 20
Flows upward and flows out of the main body 11.

【0022】更に、例えば、脈動流がガス流量計10の
下流側(流出口13側)からガス流量計10内に伝搬し
てきた場合には、流出口13から本体11内への脈動流
の伝搬が起こる。すなわち、流出口13において、ガス
流量計10の下流側からの脈動流は、内側流路16及び
外側流路20を介して、下方に向けて本体11内に伝搬
する。このとき、内側流路16を介して伝搬する脈動
は、管状部材18の下端部から隔壁22の上面に当た
り、乱されて減衰される。更に、隔壁22に跳ね返され
た脈動流は、外側流路20内に回り込み、外側流路20
内を逆方向(図中上方)に伝搬する。この逆方向への伝
搬により、外側流路20内を下方に向けて伝搬する脈動
との間で衝突が起こり、更に減衰される。(図2参照)
Further, for example, when the pulsating flow propagates from the downstream side (outlet 13 side) of the gas flowmeter 10 into the gas flowmeter 10, the pulsating flow propagates from the outlet 13 into the main body 11. Happens. That is, at the outlet 13, the pulsating flow from the downstream side of the gas flow meter 10 propagates downward into the main body 11 via the inner flow path 16 and the outer flow path 20. At this time, the pulsation propagating through the inner flow path 16 hits the upper surface of the partition wall 22 from the lower end of the tubular member 18 and is disturbed and attenuated. Further, the pulsating flow bounced back by the partition wall 22 wraps around the outer flow path 20 and
Propagates in the opposite direction (upward in the figure). Due to the propagation in the opposite direction, a collision occurs with the pulsation propagating downward in the outer flow path 20 and is further attenuated. (See Fig. 2)

【0023】なお、ガス流量計10の下流側からの脈動
流の伝搬に留まらず、ガス流量計10の下流側から、例
えばガスの逆流が生じた場合でも、上述したガス流量計
10の下流側からの脈動流の伝搬の場合と同様に、流出
口13において逆流するガスの脈動が減衰される。
In addition to the propagation of the pulsating flow from the downstream side of the gas flow meter 10, even if a reverse flow of the gas occurs from the downstream side of the gas flow meter 10, for example, the downstream side of the gas flow meter 10 described above. As in the case of the propagation of the pulsating flow from, the pulsation of the gas flowing backward at the outlet 13 is attenuated.

【0024】上述したように本実施形態の流量計の脈動
吸収構造によれば、流入口12及び流出口13より内径
の小さな流体流路15、16を有する管状部材17、1
8が、流入口12及び流出口13の内方に、流体流路1
5、16を流体の流入又は流出方向に沿わせるように設
けられている。また、本体11内には、特定方向への流
体の流れを阻止する隔壁21、22が、管状部材17、
18と所定間隔を隔てて設けられている。
As described above, according to the pulsation absorbing structure of the flow meter of the present embodiment, the tubular members 17, 1 having the fluid channels 15, 16 smaller in inner diameter than the inlet 12 and the outlet 13 are provided.
8 are provided inside the inflow port 12 and the outflow port 13,
5 and 16 are provided along the inflow or outflow direction of the fluid. Further, in the main body 11, partition walls 21 and 22 for preventing a flow of a fluid in a specific direction are provided.
18 and at a predetermined interval.

【0025】したがって、例えばガス流量計10の上流
側又は下流側から伝搬する脈動を流入口12及び流出口
13付近で減衰させることができる。これにより、ガス
流量計測に及ぼす脈動流の影響を軽減することができ、
正確な流量計測を行うことができる。また、製造に際し
ても、現行部品の形状変更によって対応可能であり、コ
スト低減を図ることができる。
Therefore, for example, the pulsation propagating from the upstream side or the downstream side of the gas flow meter 10 can be attenuated near the inflow port 12 and the outflow port 13. This can reduce the effect of pulsating flow on gas flow measurement,
Accurate flow measurement can be performed. In addition, it is possible to cope with the manufacturing by changing the shape of the current component, and the cost can be reduced.

【0026】なお、本発明は上記実施形態に限定される
ものでなく、適宜な変更を行うことにより他の態様でも
実施することができる。例えば、上記実施形態では、流
入口12及び流出口13の内方にそれぞれ、流入口12
及び流出口13より内径の小さな流体流路15、16を
有する管状部材17、18を設けることで、流入口12
及び流出口13の内方を同心円状の二重構造としました
が、管状部材17、18の流体流路15、16より内径
の小さな流体流路を有する第2の管状部材(図示せず)
を設け、流入口12及び流出口13の内方を同心円状の
三重構造とすることもできる。また、管状部材を更に重
ねることにより、流入口12及び流出口13の内方を、
同心円状の多重構造とすることもできる。
It should be noted that the present invention is not limited to the above embodiment, but can be embodied in other modes by making appropriate changes. For example, in the above embodiment, the inflow port 12 and the
By providing tubular members 17 and 18 having fluid flow paths 15 and 16 having a smaller inner diameter than the outlet 13, the inlet 12
And the inside of the outlet 13 has a concentric double structure, but a second tubular member (not shown) having a fluid passage smaller in inner diameter than the fluid passages 15, 16 of the tubular members 17, 18.
And the inside of the inflow port 12 and the outflow port 13 may have a concentric triple structure. Further, by further overlapping the tubular member, the inside of the inflow port 12 and the
A concentric multi-layer structure may be used.

【0027】また、上記実施形態では、超音波式を含む
推量式ガス流量計の原理・構造に特に適したものであ
り、顕著な効果が期待できるため、超音波式ガス流量計
に適用した実施形態例として説明したが、これに限るも
のではない。すなわち、ガスに限らず、他のあらゆる流
体の流量を計測する流量計に適用することが可能であ
り、超音波式に限らず、他の推量式流量計又は実測式流
量計に適用することができる。それらの場合でも、上述
と同様の高い効果を期待できる。
Further, the above embodiment is particularly suitable for the principle and structure of a guess type gas flow meter including an ultrasonic type, and a remarkable effect can be expected. Although the embodiment has been described, the invention is not limited to this. That is, the present invention is not limited to gas and can be applied to a flow meter that measures the flow rate of any other fluid, and is not limited to the ultrasonic type, and can be applied to other inferential type flow meters or actual measurement type flow meters. it can. In these cases, the same high effects as described above can be expected.

【0028】[0028]

【発明の効果】以上説明したように本発明の流量計の脈
動吸収構造によれば、流入口及び流出口の少なくともい
ずれか一方の内方には、流入口又は流出口より内径の小
さな流体流路を有する管状部材が、流体流路を流体の流
入又は流出方向に沿わせるように設けられており、かつ
本体内には特定方向への流体の流れを阻止する隔壁が管
状部材と所定間隔を隔てて設けられている。したがっ
て、流体の流量計測に際して、脈動流の影響を軽減する
ことができ、正確な流量計測を行うことができる。
As described above, according to the pulsation absorbing structure of the flow meter of the present invention, at least one of the inflow port and the outflow port has a fluid flow having a smaller inside diameter than the inflow port or the outflow port. A tubular member having a passage is provided so as to extend the fluid flow path in the inflow or outflow direction of the fluid, and a partition for preventing the flow of the fluid in a specific direction is provided in the main body at a predetermined distance from the tubular member. It is provided at a distance. Therefore, when measuring the flow rate of the fluid, the influence of the pulsating flow can be reduced, and accurate flow rate measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態である流量計の脈動吸収構
造を適用した超音波式ガス流量計を示す概略断面図であ
る。
FIG. 1 is a schematic sectional view showing an ultrasonic gas flow meter to which a pulsation absorbing structure of a flow meter according to an embodiment of the present invention is applied.

【図2】図1に示した超音波式ガス流量計の流入口付近
の拡大断面図である。
FIG. 2 is an enlarged sectional view of the vicinity of an inlet of the ultrasonic gas flow meter shown in FIG.

【図3】従来の超音波式ガス流量計を示す概略断面図で
ある。
FIG. 3 is a schematic sectional view showing a conventional ultrasonic gas flow meter.

【図4】従来のガス流量計の設置例を示す概略図であ
る。
FIG. 4 is a schematic view showing an installation example of a conventional gas flow meter.

【図5】ガス流の流速変化を示すグラフである。FIG. 5 is a graph showing a change in gas flow velocity.

【符号の説明】[Explanation of symbols]

10 流量計(超音波式ガス流量計) 11 本体 12 流入口 13 流出口 14 計量測定部 15、16 内側流路(流体流路) 17、18 管状部材 19、20 外側流路 21、22 隔壁 23 補助隔壁 25 計測用ダクト 26、27 トランスジューサ DESCRIPTION OF SYMBOLS 10 Flow meter (ultrasonic gas flow meter) 11 Main body 12 Inflow port 13 Outflow port 14 Measuring unit 15, 16 Inner flow path (fluid flow path) 17, 18 Tubular member 19, 20 Outer flow path 21, 22 Partition wall 23 Auxiliary bulkhead 25 Measurement duct 26, 27 Transducer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流入口及び流出口を介して本体内に流入
又は流出する流体の流量を本体内に設けられた計量測定
部によって計測する流量計において、 前記流入口及び流出口の少なくともいずれか一方の内方
には、流入口又は流出口より内径の小さな流体流路を有
する管状部材が、該流体流路を流体の流入又は流出方向
に沿わせるように設けられており、かつ本体内には特定
方向への流体の流れを阻止する隔壁が設けられているこ
とを特徴とする流量計の脈動吸収構造。
1. A flow meter for measuring a flow rate of a fluid flowing into or out of a main body through an inlet and an outlet by a measuring unit provided in the main body, wherein at least one of the inlet and the outlet is provided. On one side, a tubular member having a fluid flow path having a smaller inside diameter than the inflow port or the outflow port is provided so as to align the fluid flow path in the inflow or outflow direction of the fluid, and in the main body. Is a pulsation absorbing structure of a flow meter, wherein a partition wall for blocking a flow of a fluid in a specific direction is provided.
JP8181998A 1998-03-27 1998-03-27 Pulsation absorbing structure for flow meter Pending JPH11281425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8181998A JPH11281425A (en) 1998-03-27 1998-03-27 Pulsation absorbing structure for flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8181998A JPH11281425A (en) 1998-03-27 1998-03-27 Pulsation absorbing structure for flow meter

Publications (1)

Publication Number Publication Date
JPH11281425A true JPH11281425A (en) 1999-10-15

Family

ID=13757108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8181998A Pending JPH11281425A (en) 1998-03-27 1998-03-27 Pulsation absorbing structure for flow meter

Country Status (1)

Country Link
JP (1) JPH11281425A (en)

Similar Documents

Publication Publication Date Title
JP5188826B2 (en) Flow meter and flow control device
MY127673A (en) Ultrasonic flow meter
JP3758111B2 (en) Air flow measurement device
JP6375519B2 (en) Gas meter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
US4409847A (en) Ultrasonic measuring arrangement for differential flow measurement, particularly for measurement of fuel consumption in motor vehicles with a fuel return line
GB2335279A (en) Leakage inspection method and apparatus
JP3355130B2 (en) Pulsation absorption structure of flow meter
JPH11281425A (en) Pulsation absorbing structure for flow meter
JPH11351929A (en) Flowmeter and flow rate measuring method
JPH11281433A (en) Pulsation absorbing structure for flow meter
JP3383576B2 (en) Pulsation absorption structure of flow meter
JPH11281432A (en) Pulsation absorbing structure for flow meter
JPH11281438A (en) Pulsation absorbing structure for flow meter
JP7373772B2 (en) Physical quantity measuring device
JP3355129B2 (en) Pulsation absorption structure of flow meter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP3365953B2 (en) Pulsation absorption structure of flow meter
JP4561071B2 (en) Flow measuring device
JPH11281434A (en) Pulsation absorbing structure for flow meter
JP3383575B2 (en) Pulsation absorption structure of flow meter
JPH11281437A (en) Pulsation absorbing structure for flow meter
JPH11281435A (en) Pulsation absorbing structure for flow meter
JP2001165717A (en) Method and instrument for measuring gas flow rate and electronic gas meter
JPH11281439A (en) Pulsation absorbing structure for flow meter