JP5815437B2 - Ultrasonic fluid measuring device - Google Patents
Ultrasonic fluid measuring device Download PDFInfo
- Publication number
- JP5815437B2 JP5815437B2 JP2012041377A JP2012041377A JP5815437B2 JP 5815437 B2 JP5815437 B2 JP 5815437B2 JP 2012041377 A JP2012041377 A JP 2012041377A JP 2012041377 A JP2012041377 A JP 2012041377A JP 5815437 B2 JP5815437 B2 JP 5815437B2
- Authority
- JP
- Japan
- Prior art keywords
- flow velocity
- ultrasonic
- tube
- flow
- velocity distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/001—Flow of fluid from conduits such as pipes, sleeves, tubes, with equal distribution of fluid flow over the evacuation surface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7082—Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Measuring Volume Flow (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
この発明は、超音波を用いて流体の流量などを測定する超音波流体測定装置に関するものである。 The present invention relates to an ultrasonic fluid measuring apparatus that measures the flow rate of a fluid using ultrasonic waves.
従来より、この種の超音波流体測定装置として、超音波を用いて流体の流量を測定する超音波流量計が用いられている。この超音波流量計では、図18にその模式図を示すように、測定対象の流体が流れる測定管1の上流側の外周面に第1の超音波送受信器2を配置し、下流側の外周面に第2の超音波送受信器3を配置し、超音波送受信器2と超音波送受信器3との間の超音波の伝播時間の差に基づいて流体の流速Vを測定し、この測定した流速Vと測定管1の断面積SとからQ=V×Sとして流体の流量を求める。 Conventionally, as this type of ultrasonic fluid measuring device, an ultrasonic flowmeter that measures the flow rate of fluid using ultrasonic waves has been used. In this ultrasonic flow meter, as shown schematically in FIG. 18, the first ultrasonic transmitter / receiver 2 is disposed on the outer peripheral surface on the upstream side of the measurement tube 1 through which the fluid to be measured flows, and the outer periphery on the downstream side. The second ultrasonic transmitter / receiver 3 is arranged on the surface, and the flow velocity V of the fluid is measured based on the difference in ultrasonic propagation time between the ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3, and this measurement is performed. From the flow velocity V and the cross-sectional area S of the measuring tube 1, the flow rate of the fluid is obtained as Q = V × S.
この流量Qを求める際の演算式を下記(1)〜(4)式として示す。
t1=L/(c+V・cosθ) ・・・・(1)
t2=L/(c−V・cosθ) ・・・・(2)
V=c2・(t2−t1)/(2・L・cosθ) ・・・・(3)
Q=S・V ・・・・(4)
Calculation formulas for obtaining the flow rate Q are shown as the following formulas (1) to (4).
t1 = L / (c + V · cos θ) (1)
t2 = L / (c−V · cos θ) (2)
V = c 2 · (t2−t1) / (2 · L · cos θ) (3)
Q = S · V (4)
但し、上記(1)〜(4)式において、t1は超音波送受信器2から送信された超音波が超音波送受信器3で受信されるのに要した時間、t2は超音波送受信器3から送信された超音波が超音波送受信器2で受信されるのに要した時間、cは超音波の流体中における伝播速度、Lは超音波送受信器2と超音波送受信器3との相互間の距離(超音波伝播経路(パス)の距離)、θは測定管1の管軸Oに対する超音波伝播経路の傾きである。 However, in the above formulas (1) to (4), t1 is the time required for the ultrasonic transmitter / receiver 3 to receive the ultrasonic wave transmitted from the ultrasonic transmitter / receiver 2, and t2 is from the ultrasonic transmitter / receiver 3. The time required for the transmitted ultrasonic wave to be received by the ultrasonic transmitter / receiver 2, c is the propagation velocity of the ultrasonic wave in the fluid, and L is between the ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3. The distance (distance of the ultrasonic propagation path (path)), θ is the inclination of the ultrasonic propagation path with respect to the tube axis O of the measuring tube 1.
この超音波流量計においては、超音波伝播経路上の平均流速V’を流速Vとして測定しているため、V’×Sにより計算される計測流量Q’は、真の流量Qと若干異なる。この超音波で計測した平均流速V’と管断面の平均流速(真の流速)Vとの比V’/V=Q’/Q=kが実流校正等で予め分かっていれば、この比を流量補正係数kとすることにより、超音波で計測された超音波伝播経路上の平均流速V’と流量補正係数kとを用いて、真の流量Qを求めることができる。 In this ultrasonic flowmeter, since the average flow velocity V ′ on the ultrasonic propagation path is measured as the flow velocity V, the measured flow rate Q ′ calculated by V ′ × S is slightly different from the true flow rate Q. If the ratio V ′ / V = Q ′ / Q = k between the average flow velocity V ′ measured by this ultrasonic wave and the average flow velocity (true flow velocity) V of the pipe cross section is known beforehand by actual flow calibration or the like, this ratio By using as the flow rate correction coefficient k, the true flow rate Q can be obtained using the average flow velocity V ′ on the ultrasonic wave propagation path measured by ultrasonic waves and the flow rate correction coefficient k.
しかしながら、この流量補正係数kには次のような特徴がある。
測定管1内の流体の流速分布は流量に依存して変化する。すなわち、流量が少ない場合には層流となり、流量が多い場合には乱流となる。このため、超音波伝播経路上の管内の流速分布は、流量の少ない層流域においては放物状の凸型となり(図19(a)参照)、流量の多い乱流域においては比較的平坦な形となる(図19(b)参照)。
However, the flow rate correction coefficient k has the following characteristics.
The flow velocity distribution of the fluid in the measuring tube 1 changes depending on the flow rate. That is, when the flow rate is low, the flow becomes laminar, and when the flow rate is high, the flow becomes turbulent. For this reason, the flow velocity distribution in the pipe on the ultrasonic propagation path has a parabolic convex shape in a laminar flow region with a small flow rate (see FIG. 19A), and a relatively flat shape in a turbulent flow region with a large flow rate. (See FIG. 19B).
したがって、超音波伝播経路で計測した平均流速V’と真の流速Vとの比である流量補正係数kは、層流と乱流とで同じ値とはならない。すなわち、層流域において、超音波伝播経路で計測した平均流速V’をV1’、真の流速をV1とした場合、その流量補正係数k1はk1=V1’/V1となる。乱流域において、超音波伝播経路で計測した平均流速V’をV2’、真の流速をV2とした場合、その流量補正係数k2はk2=V2’/V2となる。この場合、層流域でのV1とV1’との差を偏差ΔV1、乱流域でのV2とV2’との差を偏差ΔV2とすると、層流域での偏差ΔV1と乱流域での偏差ΔV2との差が大きいために、層流域での流量補正係数k1と乱流域での流量補正係数k2とは等しくならない(k1≠k2)。 Therefore, the flow rate correction coefficient k, which is the ratio of the average flow velocity V ′ measured with the ultrasonic propagation path and the true flow velocity V, does not become the same value for the laminar flow and the turbulent flow. That is, in the laminar flow region, when the average flow velocity V ′ measured by the ultrasonic wave propagation path is V1 ′ and the true flow velocity is V1, the flow rate correction coefficient k1 is k1 = V1 ′ / V1. In the turbulent region, when the average flow velocity V ′ measured by the ultrasonic wave propagation path is V2 ′ and the true flow velocity is V2, the flow rate correction coefficient k2 is k2 = V2 ′ / V2. In this case, if the difference between V1 and V1 ′ in the laminar flow area is a deviation ΔV1, and the difference between V2 and V2 ′ in the turbulent flow area is a deviation ΔV2, the deviation ΔV1 in the laminar flow area and the deviation ΔV2 in the turbulent flow area Since the difference is large, the flow rate correction coefficient k1 in the laminar flow region and the flow rate correction coefficient k2 in the turbulent flow region are not equal (k1 ≠ k2).
図20に流量補正係数kの変化特性を示す。このように、流量補正係数kは、層流側で急激に変化する流量依存性をもつ。このような変化特性を示す流量補正係数kを用いた場合、流量補正係数kの変化量が急激に変化するところでは、流速計測の誤差がわずかであってもそれに適用される流量補正係数kの誤差が大きく、結果として求める流量の誤差が大きくなってしまう。 FIG. 20 shows a change characteristic of the flow rate correction coefficient k. Thus, the flow rate correction coefficient k has a flow rate dependency that changes abruptly on the laminar flow side. When the flow rate correction coefficient k showing such a change characteristic is used, where the change amount of the flow rate correction coefficient k changes abruptly, the flow rate correction coefficient k applied to the flow rate correction coefficient k can be applied even if the flow rate measurement error is slight. The error is large, and as a result, the required flow rate error becomes large.
そこで、広い流量範囲にわたって高精度の流量計測を行うために、流量補正係数kの変化量をできるだけ小さくすることが望まれる。すなわち、図21に示すように、層流側で急激に変化する流量依存性を持つ変化特性Iを、フラットな変化特性II(理想的には一定値)に近づけるようにすることが望まれる。 Therefore, in order to measure the flow rate with high accuracy over a wide flow range, it is desired to make the change amount of the flow rate correction coefficient k as small as possible. That is, as shown in FIG. 21, it is desired that the change characteristic I having a flow rate dependency that changes suddenly on the laminar flow side approaches the flat change characteristic II (ideally a constant value).
このために、例えば特許文献1では、図22に示すように、測定管1内に組み込み部材4を設けるようにしている。この組み込み部材4は、星形に形成されており、その中央部を阻止面4aとし、この阻止面4aより四方に伸びるアーム4b〜4eを有している。このような組み込み部材4を設けると、図23に示すように、測定管1を流れる流体が組み込み部材4を通過する際、中央部の流体の流速が阻止面4aによって減少し、周縁部の流体の流速が増加する。これにより、流速分布を層流域でも乱流域でも管中心部での目立った最大値を有しない平均化された流速分布となるようにすることができる。つまり、層流が乱流化されるものとなり、乱流域での真の流速V2と超音波伝播経路で計測される平均流速V2’との偏差ΔV2と、層流域での真の流速V1と超音波伝播経路で計測される平均流速V1’との偏差ΔV1との差が小さくなり、流量補正係数kの変化特性がフラットな変化特性IIに近づけられるものとなる。 For this reason, for example, in Patent Document 1, as shown in FIG. 22, the built-in member 4 is provided in the measurement tube 1. This built-in member 4 is formed in a star shape, and has a central portion as a blocking surface 4a and arms 4b to 4e extending in four directions from the blocking surface 4a. When such a built-in member 4 is provided, as shown in FIG. 23, when the fluid flowing through the measuring tube 1 passes through the built-in member 4, the flow velocity of the fluid at the central portion is reduced by the blocking surface 4a, and the fluid at the peripheral portion The flow rate increases. As a result, the flow velocity distribution can be an averaged flow velocity distribution that does not have a conspicuous maximum value at the center of the pipe in both the laminar flow region and the turbulent flow region. That is, the laminar flow becomes turbulent, and the deviation ΔV2 between the true flow velocity V2 in the turbulent flow region and the average flow velocity V2 ′ measured in the ultrasonic propagation path, and the true flow velocity V1 in the laminar flow region The difference from the deviation ΔV1 from the average flow velocity V1 ′ measured in the sound wave propagation path becomes small, and the change characteristic of the flow rate correction coefficient k becomes closer to the flat change characteristic II.
しかしながら、上述した特許文献1に示された技術では、組み込み部材を一対の超音波送受信器の間に設けているため、送受信器間で伝播する超音波を部分的に遮り、伝播する超音波の受信信号が減衰する。この受信信号の減衰により信号のSN比が低下し、ひいては計測精度の低下を招いてしまうという問題がある。また、SN比向上のためにセンサへの印加電圧を上げようとすると、機器の消費電力の増大を招くという問題がある。 However, in the technique disclosed in Patent Document 1 described above, since the built-in member is provided between the pair of ultrasonic transmitters / receivers, the ultrasonic waves propagating between the transmitters / receivers are partially blocked to propagate the ultrasonic waves. The received signal is attenuated. There is a problem in that the signal-to-noise ratio of the signal is lowered due to the attenuation of the received signal, and the measurement accuracy is lowered. In addition, if an attempt is made to increase the voltage applied to the sensor in order to improve the SN ratio, there is a problem that the power consumption of the device is increased.
本発明は、このような課題を解決するためになされたもので、その目的とするところは、SN比の低下や消費電力を増加させることなく、広い流量範囲にわたって高精度の流量計測を可能とする超音波流体測定装置を提供することにある。 The present invention has been made to solve such problems, and the object of the present invention is to enable highly accurate flow measurement over a wide flow range without lowering the SN ratio or increasing power consumption. An ultrasonic fluid measuring device is provided.
このような目的を達成するために本発明は、測定対象の流体が流れる測定管と、この測定管の上流側の周面に配置された第1の超音波送受信器と、測定管の下流側の周面に配置された第2の超音波送受信器と、第1の超音波送受信器と第2の超音波送受信器との間の超音波の伝播時間の差に基づいて流体の流速を測定する測定部とを備えた超音波流体測定装置において、測定管の前記第1の超音波送受信器よりも上流側の管路に第1の超音波送受信器と第2の超音波送受信器との間の超音波の伝播を妨げないように設けられ、その部材の測定管の管軸と直交する断面に投影した形状の一部が、超音波の伝播経路の測定管の管軸と直交する断面に投影した軌跡の一部に重なるように配置された流速分布調整部材を備え、超音波の伝播経路は、その伝播経路の測定管の管軸と直交する断面に投影した軌跡が三角形とされ、流速分布調整部材は、測定管の管軸と直交する断面の形状が、測定管の中央部と周縁部とを分割する内側環状面と、測定管の周縁部を取り囲む外側環状面と、内側環状面と外側環状面とで囲まれた空間を複数の空間に分割する連結面とを有する形状とされ、内側環状面、外側環状面および連結面は、測定管の管軸の方向に平行に延びた形状とされていることを特徴とする。 In order to achieve such an object, the present invention provides a measurement tube through which a fluid to be measured flows, a first ultrasonic transmitter / receiver disposed on the upstream peripheral surface of the measurement tube, and a downstream side of the measurement tube The flow rate of the fluid is measured based on the difference in the propagation time of the ultrasonic waves between the second ultrasonic transmitter / receiver disposed on the peripheral surface of the first ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver In the ultrasonic fluid measuring device including the measuring unit, the first ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver are connected to a pipe upstream of the first ultrasonic transmitter / receiver of the measuring tube. A cross-section in which a part of the shape projected on the cross-section orthogonal to the tube axis of the measurement tube of the member is orthogonal to the tube axis of the measurement tube of the ultrasonic wave propagation path with the placed flow velocity distribution adjusting member so as to overlap a portion of the projected trajectory, the propagation path of the ultrasonic wave, its The trajectory projected on the cross section of the propagation path perpendicular to the tube axis of the measurement tube is a triangle, and the flow velocity distribution adjusting member has a cross-sectional shape perpendicular to the tube axis of the measurement tube. The inner annular surface to be divided, the outer annular surface surrounding the peripheral edge of the measuring tube, and the connecting surface that divides the space surrounded by the inner annular surface and the outer annular surface into a plurality of spaces, and the inner annular surface. The surface, the outer annular surface, and the connecting surface are characterized by extending in parallel to the direction of the tube axis of the measuring tube .
この発明によれば、超音波伝播経路上において、流速分布調整部材の部材形状がある部分の後の流体の流速を減少させることができ、部材形状が無い部分の後の流体の流速を増加させることができるため、流体の流量は同じでも超音波伝播経路上の流速分布を変えることにより超音波流量計が計測する流速V’を変えることができる。 According to the present invention, on the ultrasonic wave propagation path, the flow velocity of the fluid after the portion having the member shape of the flow velocity distribution adjusting member can be decreased, and the flow velocity of the fluid after the portion having no member shape is increased. Therefore, the flow velocity V ′ measured by the ultrasonic flowmeter can be changed by changing the flow velocity distribution on the ultrasonic propagation path even if the flow rate of the fluid is the same.
また、乱流域での真の流速V2と超音波伝播経路で計測される平均流速V2’との偏差ΔV2と、層流域での真の流速V1と超音波伝播経路で計測される平均流速V1’との偏差ΔV1との差ができるだけ小さくなるように流速分布調整部材の形状を決めれば、乱流域から層流域にわたる流量補正係数kの特性変化をフラットな特性に近づけることができる。 Further, a deviation ΔV2 between the true flow velocity V2 in the turbulent flow region and the average flow velocity V2 ′ measured in the ultrasonic propagation path, and the true flow velocity V1 in the laminar flow region and the average flow velocity V1 ′ measured in the ultrasonic propagation path. If the shape of the flow velocity distribution adjusting member is determined so that the difference from the deviation ΔV1 is as small as possible, the characteristic change of the flow rate correction coefficient k from the turbulent flow region to the laminar flow region can be brought close to a flat characteristic.
本発明によれば、測定管の上流側の管路に、第1の超音波送受信器と第2の超音波送受信器との間の超音波の伝播を妨げないように、その部材の測定管の管軸と直交する断面に投影した形状の一部が、超音波の伝播経路の測定管の管軸と直交する断面に投影した軌跡の一部に重なるように配置された流速分布調整部材を設けたので、流速分布調整部材の部材形状がある部分の後の流体の流速を減少させ、部材形状が無い部分の後の流体の流速を増加させることができ、超音波の伝播を阻害することなく、超音波伝播経路上の流速分布を変えるようにして、SN比の低下や消費電力を増大させることなく、乱流域から層流域にわたって流量補正係数の変化特性をフラットな変化特性に近づけるようにして、広い流量範囲にわたって高精度の流量計測が可能となる。
また、本発明において、流速分布調整部材は、測定管の管軸と直交する断面の形状が、測定管の中央部と周縁部とを分割する内側環状面と、測定管の周縁部を取り囲む外側環状面と、内側環状面と外側環状面とで囲まれた空間を複数の空間に分割する連結面とを有する形状とされ、内側環状面、外側環状面および連結面は、測定管の管軸の方向に平行に延びた形状とされているので、測定管を流れる流体が流速分布調整部材を通過する際、流体の管半径方向の速度成分が取り除かれ、その流体の流れが同一方向に規制(整流)されるものとなる。
According to the present invention, the measurement tube of the member is arranged so as not to interfere with the propagation of the ultrasonic wave between the first ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver in the upstream line of the measurement tube. A flow velocity distribution adjusting member arranged so that a part of the shape projected on the cross section orthogonal to the tube axis of the tube overlaps a part of the locus projected on the cross section orthogonal to the tube axis of the measurement pipe of the ultrasonic wave propagation path. Since it is provided, the flow velocity of the fluid after the portion with the member shape of the flow velocity distribution adjusting member can be decreased, the flow velocity of the fluid after the portion without the member shape can be increased, and the propagation of the ultrasonic wave can be inhibited. Without changing the flow velocity distribution on the ultrasonic wave propagation path, the change characteristic of the flow rate correction coefficient from the turbulent flow region to the laminar flow region is brought closer to a flat change characteristic without lowering the SN ratio or increasing the power consumption. Highly accurate flow rate over a wide flow range Measurement is possible.
Further, in the present invention, the flow velocity distribution adjusting member is formed such that the cross-sectional shape orthogonal to the tube axis of the measurement tube has an inner annular surface that divides the central portion and the peripheral portion of the measurement tube, and an outer surface that surrounds the peripheral portion of the measurement tube. An annular surface and a connecting surface that divides a space surrounded by the inner annular surface and the outer annular surface into a plurality of spaces, and the inner annular surface, the outer annular surface, and the connecting surface are tube axes of the measuring tube. Since the fluid flowing through the measurement tube passes through the flow velocity distribution adjusting member, the velocity component in the tube radial direction of the fluid is removed, and the flow of the fluid is regulated in the same direction. (Rectified).
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、以下の説明では、本発明の権利範囲に含まれないものも実施の形態として記載されているが、ここでは全て実施の形態として説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in the following description, what is not included in the scope of the right of the present invention is described as an embodiment, but here, it will be described as an embodiment.
〔実施の形態1〕
図1はこの発明に係る超音波流体測定装置の一実施の形態(実施の形態1)を示す超音波流量計の模式図である。同図において、図18と同一符号は図18を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[Embodiment 1]
FIG. 1 is a schematic diagram of an ultrasonic flowmeter showing an embodiment (Embodiment 1) of an ultrasonic fluid measuring apparatus according to the present invention. In the figure, the same reference numerals as those in FIG. 18 denote the same or equivalent components as those described with reference to FIG.
この超音波流量計100では、測定管1の上流側の管路(第1の超音波送受信器2よりも上流側の管路)に、流速分布調整部材5を設けている。この流速分布調整部材5は、測定管1の内周面の上側に位置する第1の直方体状の部材5−1と、測定管1の内周面の下側に位置する第2の直方体状の部材5−2とからなり、その長手方向を測定管1の管軸Oの方向として配置されている。 In this ultrasonic flowmeter 100, the flow velocity distribution adjusting member 5 is provided in a pipe line upstream of the measurement pipe 1 (a pipe line upstream of the first ultrasonic transmitter / receiver 2). The flow velocity distribution adjusting member 5 includes a first rectangular parallelepiped member 5-1 positioned on the upper side of the inner peripheral surface of the measurement tube 1 and a second rectangular parallelepiped shape positioned on the lower side of the inner peripheral surface of the measurement tube 1. The longitudinal direction of the measurement tube 1 is arranged as the direction of the tube axis O of the measurement tube 1.
この超音波流量計100において、流速分布調整部材5は、その部材5−1,5−2の測定管1の管軸Oと直交する断面に投影した形状の一部が、超音波の伝播経路の測定管1の管軸Oと直交する断面に投影した軌跡の一部に重なるように配置されている。 In the ultrasonic flowmeter 100, the flow velocity distribution adjusting member 5 has a part of the shape projected onto the cross section orthogonal to the tube axis O of the measuring tube 1 of the members 5-1 and 5-2, and the ultrasonic propagation path. It arrange | positions so that it may overlap with a part of locus | trajectory projected on the cross section orthogonal to the tube axis | shaft O of the measurement tube 1 of this.
図2に、流速分布調整部材5がない場合とある場合について、乱流の場合の超音波伝播経路上の管内の流速分布を比較して示す。図2(a)は流速分布調整部材5がない場合を示し、図2(b)は流速分布調整部材5がある場合を示す。この図を比較して分かるように、この超音波流量計100では、測定管1を流れる流体が流速分布調整部材5を通過する際、流速分布調整部材5の部材形状がある部分の後の流体の流速は減少し、部材形状が無い部分の後の流体の流速は増加するが、乱流域では流速分布調整部材5がある場合と無い場合とで、超音波伝播経路上で計測される平均流速V2’はあまり変化しないものとすることができる。 FIG. 2 shows a comparison of flow velocity distributions in the tube on the ultrasonic wave propagation path in the case of turbulent flow, with and without the flow velocity distribution adjusting member 5. 2A shows a case where the flow velocity distribution adjusting member 5 is not provided, and FIG. 2B shows a case where the flow velocity distribution adjusting member 5 is provided. As can be seen by comparing these figures, in this ultrasonic flowmeter 100, when the fluid flowing through the measurement tube 1 passes through the flow velocity distribution adjusting member 5, the fluid after the portion where the member shape of the flow velocity distribution adjusting member 5 is present. The flow velocity of the fluid is decreased and the flow velocity of the fluid after the portion without the member shape is increased, but in the turbulent region, the average flow velocity measured on the ultrasonic propagation path with and without the flow velocity distribution adjusting member 5 V2 ′ may not change much.
図3に、流速分布調整部材5がない場合とある場合について、層流の場合の超音波伝播経路上の管内の流速分布を比較して示す。図3(a)は流速分布調整部材5がある場合を示し、図3(b)は流速分布調整部材5がない場合を示す。この図を比較して分かるように、この超音波流量計100では、測定管1を流れる流体が流速分布調整部材5を通過する際、流速分布調整部材5の部材形状がある部分の後の流体の流速は減少し、部材形状が無い部分の後の流体の流速は増加する。層流域の場合、流速分布調整部材5がある場合と無い場合とで、超音波伝播経路上で計測される平均流速V1’は大きく変化するものとすることができる。 FIG. 3 shows a comparison of flow velocity distributions in the tube on the ultrasonic wave propagation path in the case of laminar flow, with and without the flow velocity distribution adjusting member 5. 3A shows a case where the flow velocity distribution adjusting member 5 is provided, and FIG. 3B shows a case where the flow velocity distribution adjusting member 5 is not provided. As can be seen by comparing these figures, in this ultrasonic flowmeter 100, when the fluid flowing through the measurement tube 1 passes through the flow velocity distribution adjusting member 5, the fluid after the portion where the member shape of the flow velocity distribution adjusting member 5 is present. The flow rate of the fluid decreases, and the fluid flow rate after the part without the member shape increases. In the case of a laminar flow region, the average flow velocity V1 'measured on the ultrasonic wave propagation path can vary greatly depending on whether or not the flow velocity distribution adjusting member 5 is present.
この超音波流量計100では、流速分布調整部材5を設けることにより、図2(b)および図3(b)に示されるように、乱流域での真の流速V2と超音波伝播経路で計測される平均流速V2’との偏差ΔV2と、層流域での真の流速V1と超音波伝播経路で計測される平均流速V1’との偏差ΔV1との差が小さくなる。これにより、流量補正係数kの変化特性がフラットな変化特性II(図4参照)に近づけられるものとなり、広い流量範囲にわたって高精度の流量計測が可能となる。 In this ultrasonic flow meter 100, by providing the flow velocity distribution adjusting member 5, as shown in FIG. 2B and FIG. 3B, measurement is performed with the true flow velocity V2 in the turbulent flow region and the ultrasonic propagation path. The difference between the deviation ΔV2 from the average flow velocity V2 ′ and the deviation ΔV1 between the true flow velocity V1 in the laminar flow area and the average flow velocity V1 ′ measured in the ultrasonic wave propagation path becomes small. As a result, the change characteristic of the flow rate correction coefficient k becomes closer to the flat change characteristic II (see FIG. 4), and high-precision flow rate measurement is possible over a wide flow rate range.
なお、この実施の形態1では、流速分布調整部材5を直方体状の部材5−1と5−2を測定管1内の上下に設けるようにした、図5に示すように同様の直方体状の部材5−3と5−4を左右にも設けるようにしてもよい。また、図6に示すように、リング状の部材6を流速分布調整部材として設けるようにしてもよく、図7に示すように、多数の貫通孔6aを形成したリング状の部材6を流速分布調整部材として設けるようにしてもよい。 In the first embodiment, the flow velocity distribution adjusting member 5 is provided with the rectangular parallelepiped members 5-1 and 5-2 above and below the measuring tube 1 as shown in FIG. The members 5-3 and 5-4 may also be provided on the left and right. Moreover, as shown in FIG. 6, the ring-shaped member 6 may be provided as a flow velocity distribution adjusting member, and as shown in FIG. 7, the ring-shaped member 6 in which a large number of through holes 6a are formed is flow velocity distribution. You may make it provide as an adjustment member.
また、図8に示すように、内側の環状部材7−1と外側の環状部材7−2とを多数のリブ7−3で連結した部材7を流速分布調整部材として用いるようにしてもよい。この流速分布調整部材7(7A)は、測定管1の管軸Oと直交する断面の形状が、測定管1の中央部と周縁部とを分割する内側環状面7aと、測定管1の周縁部を取り囲む外側環状面7bと、内側環状面7aと外側環状面7bとで囲まれた空間を複数の空間7cに分割する連結面7dとを有する形状とされ、内側環状面7a、外側環状面7bおよび連結面7dは、測定管1の管軸Oの方向に長さを有する形状とされている。 Further, as shown in FIG. 8, a member 7 in which an inner annular member 7-1 and an outer annular member 7-2 are connected by a large number of ribs 7-3 may be used as a flow velocity distribution adjusting member. The flow velocity distribution adjusting member 7 (7A) has a cross-sectional shape orthogonal to the tube axis O of the measuring tube 1 and an inner annular surface 7a that divides the central portion and the peripheral portion of the measuring tube 1 and the peripheral edge of the measuring tube 1 An outer annular surface 7b that surrounds the portion, and a connecting surface 7d that divides a space surrounded by the inner annular surface 7a and the outer annular surface 7b into a plurality of spaces 7c, the inner annular surface 7a, the outer annular surface 7b and the connecting surface 7d are shaped to have a length in the direction of the tube axis O of the measuring tube 1.
この流速分布調整部材7Aを用いた超音波流量計100では、測定管1を流れる流体が流速分布調整部材7Aを通過する際、内側環状面7aの内径φ1の空間7eと、連結面7dによって分割された内側環状面7aと外側環状面7bとの間の複数の空間(分割空間)7cを通過する。この内側環状面7aの内径φ1の空間7eと分割空間7cは管軸Oの方向に長さを有し、この内側環状面7aの内径φ1の空間7eの管軸Oの方向へ延びる通路(内側通路)7fと分割空間7cの管軸Oの方向へ延びる通路(外側通路)7gとを流体が通過する際、流体の管半径方向の速度成分が取り除かれ、その流体の流れが同一方向に規制(整流)されるものとなる。 In the ultrasonic flowmeter 100 using the flow velocity distribution adjusting member 7A, when the fluid flowing through the measurement tube 1 passes through the flow velocity distribution adjusting member 7A, it is divided by the space 7e having the inner diameter φ1 of the inner annular surface 7a and the connecting surface 7d. It passes through a plurality of spaces (divided spaces) 7c between the inner annular surface 7a and the outer annular surface 7b. A space 7e and a divided space 7c having an inner diameter φ1 of the inner annular surface 7a have a length in the direction of the tube axis O, and a passage (inner side) extending in the direction of the tube axis O of the space 7e having an inner diameter φ1 of the inner annular surface 7a. When the fluid passes through the passage (7f) and the passage (outer passage) 7g extending in the direction of the tube axis O of the divided space 7c, the velocity component in the tube radial direction of the fluid is removed and the flow of the fluid is regulated in the same direction. (Rectified).
なお、流速分布調整部材7の変形例として、図9(a)に示すような分割空間7cの数を少なくして例えば3つとした流速分布調整部材7B、図9(b)に示すような分割空間7cの数を多くして例えば12個とした流速分布調整部材7C、図9(c)示すような分割空間7cの大きさを変えた流速分布調整部材7Dなどが考えられる。また、図10(a)に示すような外側の環状部材7−2の長さを内側の環状部材7−1よりも長くした流速分布調整部材7E、図10(b)に示すような内側の環状部材7−1の長さを外側の環状部材7−2よりも長くした流速分布調整部材7Fなども考えられる。 As a modification of the flow velocity distribution adjusting member 7, the flow velocity distribution adjusting member 7B having a reduced number of divided spaces 7c as shown in FIG. 9A, for example, three, and the dividing as shown in FIG. 9B. For example, a flow velocity distribution adjusting member 7C in which the number of spaces 7c is increased to twelve, for example, and a flow velocity distribution adjusting member 7D in which the size of the divided space 7c is changed as shown in FIG. Further, the flow velocity distribution adjusting member 7E in which the length of the outer annular member 7-2 as shown in FIG. 10 (a) is longer than that of the inner annular member 7-1, as shown in FIG. 10 (b). A flow velocity distribution adjusting member 7F in which the length of the annular member 7-1 is longer than that of the outer annular member 7-2 is also conceivable.
〔実施の形態2〕
図11に流速分布調整部材7Aを用いた超音波流量計の具体例を実施の形態2として示す。この超音波流量計200では、測定管1の入口側の管路1−1に流速分布調整部材7Aを着脱可能に嵌め込んでいる。なお、出口側の管路1−2を入口側として使用する場合には、出口側の管路1−2に流速分布調整部材7Aに嵌め込むようにする。
[Embodiment 2]
FIG. 11 shows a specific example of an ultrasonic flowmeter using the flow velocity distribution adjusting member 7A as the second embodiment. In this ultrasonic flowmeter 200, the flow velocity distribution adjusting member 7A is detachably fitted in the pipe line 1-1 on the inlet side of the measuring pipe 1. When the outlet side pipe line 1-2 is used as the inlet side, the flow velocity distribution adjusting member 7A is fitted into the outlet side pipe line 1-2.
また、この超音波流量計200では、図11中に超音波送受信器2と超音波送受信器3との間の超音波の伝播経路(超音波伝播経路)を符号8で示すように、この超音波伝播経路8の測定管1の管軸Oと直交する断面に投影した軌跡が三角形となるように(図12参照)、超音波送受信器2と超音波送受信器3を測定管1の外周面に配置している。この場合、超音波送受信器2と超音波送受信器3との間の超音波伝播経路8は、測定管1の内周面において2点の反射点を有するものとなる。 Further, in this ultrasonic flowmeter 200, the ultrasonic propagation path (ultrasonic propagation path) between the ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3 in FIG. The ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3 are connected to the outer peripheral surface of the measuring tube 1 so that the locus projected on the cross section orthogonal to the tube axis O of the measuring tube 1 of the sound wave propagation path 8 becomes a triangle (see FIG. 12). Is arranged. In this case, the ultrasonic propagation path 8 between the ultrasonic transmitter / receiver 2 and the ultrasonic transmitter / receiver 3 has two reflection points on the inner peripheral surface of the measuring tube 1.
この反射点を2点とする超音波伝播経路8は、トライアングルパスとしてすでに既知の技術であり、流路断面のほゞ全域に対し超音波が通るように伝播経路を流路内に通すことにより、偏りがある流れに対しても偏りをうまく平均化し、精度良く流量を計測することができる手法として知られている。 The ultrasonic wave propagation path 8 having two reflection points is a technique already known as a triangle path, and by passing the propagation path through the flow path so that the ultrasonic wave passes through almost the entire area of the flow path cross section. It is known as a technique that can average out the deviations well even for a flow with deviations and can measure the flow rate with high accuracy.
図13に、流速分布調整部材7Aがない場合とある場合について、乱流の場合の超音波伝播経路上の管内の流速分布を比較して示す。図13(a)は流速分布調整部材7Aがない場合を示し、図13(b)は流速分布調整部材7Aがある場合を示す。この図を比較して分かるように、この超音波流量計200では、測定管1を流れる流体が流速分布調整部材7Aを通過する際、超音波伝播経路8の三角形の軌跡の各辺において、その中央部の流速が両端部の流速よりも減少した速度分布となる。この場合、中央部の流速の減少量は小さい。これにより、乱流域では、超音波伝播経路で計測される平均流速V2’があまり変化しないものとなる。 FIG. 13 shows a comparison of flow velocity distributions in the tube on the ultrasonic wave propagation path in the case of turbulent flow with and without the flow velocity distribution adjusting member 7A. FIG. 13A shows a case where the flow velocity distribution adjusting member 7A is not provided, and FIG. 13B shows a case where the flow velocity distribution adjusting member 7A is provided. As can be seen by comparing this figure, in this ultrasonic flowmeter 200, when the fluid flowing through the measurement tube 1 passes through the flow velocity distribution adjusting member 7A, at each side of the triangular locus of the ultrasonic propagation path 8, The velocity distribution is such that the flow velocity at the center is smaller than the flow velocity at both ends. In this case, the amount of decrease in the flow rate at the center is small. Thereby, in the turbulent flow region, the average flow velocity V2 'measured in the ultrasonic wave propagation path does not change much.
図14に、流速分布調整部材7Aがない場合とある場合について、層流の場合の超音波伝播経路上の管内の流速分布を比較して示す。図14(a)は流速分布調整部材7Aがない場合を示し、図14(b)は流速分布調整部材7Aがある場合を示す。この図を比較して分かるように、この超音波流量計200では、測定管1を流れる流体が流速分布調整部材7Aを通過する際、超音波伝播経路8の三角形の軌跡の各辺において、その中央部の流速が両端部の流速よりも減少した速度分布となる。この場合、中央部の流速の減少量が大きい。これにより、層流域では、超音波伝播経路で計測される平均流速V1’が大きく変化することになる。 FIG. 14 shows a comparison of flow velocity distributions in the tube on the ultrasonic wave propagation path in the case of laminar flow, with and without the flow velocity distribution adjusting member 7A. FIG. 14A shows a case where the flow velocity distribution adjusting member 7A is not provided, and FIG. 14B shows a case where the flow velocity distribution adjusting member 7A is provided. As can be seen by comparing this figure, in this ultrasonic flowmeter 200, when the fluid flowing through the measurement tube 1 passes through the flow velocity distribution adjusting member 7A, at each side of the triangular locus of the ultrasonic propagation path 8, The velocity distribution is such that the flow velocity at the center is smaller than the flow velocity at both ends. In this case, the amount of decrease in the flow rate at the center is large. As a result, in the laminar flow region, the average flow velocity V1 'measured by the ultrasonic wave propagation path greatly changes.
この超音波流量計200では、流速分布調整部材7Aを設けることにより、図13(b)および図14(b)に示されるように、乱流域での真の流速V2と超音波伝播経路で計測される平均流速V2との偏差ΔV2と、層流域での真の流速V1と超音波伝播経路で計測される平均流速V1’との偏差ΔV1との差が小さくなる。これにより、流量補正係数kの変化特性がフラットな変化特性II(図4参照)に近づけられるものとなり、広い流量範囲にわたって高精度の流量計測が可能となる。また、流速分布調整部材7Aを流体が通過する際、内側通路7fと外側通路7gによってその流体の流れが整流されるので、高精度の流量計測が可能となる。 In this ultrasonic flowmeter 200, by providing the flow velocity distribution adjusting member 7A, as shown in FIG. 13B and FIG. 14B, measurement is performed with the true flow velocity V2 in the turbulent region and the ultrasonic propagation path. The difference between the deviation ΔV2 from the average flow velocity V2 and the deviation ΔV1 between the true flow velocity V1 in the laminar flow area and the average flow velocity V1 ′ measured in the ultrasonic wave propagation path becomes small. As a result, the change characteristic of the flow rate correction coefficient k becomes closer to the flat change characteristic II (see FIG. 4), and high-precision flow rate measurement is possible over a wide flow rate range. Further, when the fluid passes through the flow velocity distribution adjusting member 7A, the flow of the fluid is rectified by the inner passage 7f and the outer passage 7g, so that the flow rate can be measured with high accuracy.
なお、トライアングルパスを使用する場合、図15に示すような流速分布調整部材7Gを設けるようにしてもよい。この流速分布調整部材7Gでは、トライアングルパスの三角形の軌跡の各コーナ部に重なるよう断面Y字状の凸状壁71〜73を設けている。この凸状壁71〜73は測定管1の管軸Oの方向に長さを有している。 In addition, when using a triangle path | pass, you may make it provide the flow velocity distribution adjustment member 7G as shown in FIG. In this flow velocity distribution adjusting member 7G, convex walls 71 to 73 having a Y-shaped cross section are provided so as to overlap each corner portion of the triangular locus of the triangle path. The convex walls 71 to 73 have a length in the direction of the tube axis O of the measuring tube 1.
図16に、流速分布調整部材7Gがない場合とある場合について、乱流の場合の超音波伝播経路上の管内の流速分布を比較して示す。図16(a)は流速分布調整部材7Gがない場合を示し、図16(b)は流速分布調整部材7Gがある場合を示す。この図を比較して分かるように、断面Y字状の凸状壁71〜73を設けた場合、測定管1を流れる流体が流速分布調整部材7Gを通過する際、超音波伝播経路8の三角形の軌跡の各辺において、その両端部の流速が中央部の流速よりも減少した速度分布となる。この場合、両端部の流速の減少量は小さい。これにより、乱流域では、超音波伝播経路で計測される平均流速V2’があまり変化しないものとなる。 FIG. 16 shows a comparison of flow velocity distributions in the pipe on the ultrasonic wave propagation path in the case of turbulent flow, with and without the flow velocity distribution adjusting member 7G. FIG. 16A shows a case where there is no flow velocity distribution adjusting member 7G, and FIG. 16B shows a case where there is a flow velocity distribution adjusting member 7G. As can be seen by comparing these figures, when the convex walls 71 to 73 having a Y-shaped cross section are provided, when the fluid flowing through the measuring tube 1 passes through the flow velocity distribution adjusting member 7G, the triangle of the ultrasonic propagation path 8 is obtained. In each side of the trajectory, the velocity distribution is such that the flow velocity at both ends is smaller than the flow velocity at the central portion. In this case, the amount of decrease in the flow velocity at both ends is small. Thereby, in the turbulent flow region, the average flow velocity V2 'measured in the ultrasonic wave propagation path does not change much.
図17に、流速分布調整部材7Gがない場合とある場合について、層流の場合の超音波伝播経路上の管内の流速分布を比較して示す。図17(a)は流速分布調整部材7Gがない場合を示し、図17(b)は流速分布調整部材7Gがある場合を示す。この図を比較して分かるように、断面Y字状の凸状壁71〜73を設けた場合、測定管1を流れる流体が流速分布調整部材7Gを通過する際、超音波伝播経路8の三角形の軌跡の各辺において、その両端部の流速が中央部の流速よりも減少した速度分布となる。この場合、両端部の流速の減少量が大きい。これにより、層流域では、超音波伝播経路で計測される平均流速V1’が大きく変化することになる。 FIG. 17 shows a comparison of flow velocity distributions in the tube on the ultrasonic wave propagation path in the case of laminar flow, with and without the flow velocity distribution adjusting member 7G. FIG. 17A shows a case where there is no flow velocity distribution adjusting member 7G, and FIG. 17B shows a case where there is a flow velocity distribution adjusting member 7G. As can be seen by comparing these figures, when the convex walls 71 to 73 having a Y-shaped cross section are provided, when the fluid flowing through the measuring tube 1 passes through the flow velocity distribution adjusting member 7G, the triangle of the ultrasonic propagation path 8 is obtained. In each side of the trajectory, the velocity distribution is such that the flow velocity at both ends is smaller than the flow velocity at the central portion. In this case, the amount of decrease in the flow velocity at both ends is large. As a result, in the laminar flow region, the average flow velocity V1 'measured by the ultrasonic wave propagation path greatly changes.
これにより、流速分布調整部材7Aを設けた場合と同様にして、乱流域での真の流速V2と超音波伝播経路で計測される平均流速V2との偏差ΔV2と、層流域での真の流速V1と超音波伝播経路で計測される平均流速V1’との偏差ΔV1との差が小さくなり、流量補正係数kの変化特性がフラットな変化特性II(図4参照)に近づけられるものとなって、広い流量範囲にわたって高精度の流量計測を可能となる。 Thus, in the same manner as when the flow velocity distribution adjusting member 7A is provided, the deviation ΔV2 between the true flow velocity V2 in the turbulent flow region and the average flow velocity V2 measured in the ultrasonic wave propagation path, and the true flow velocity in the laminar flow region. The difference between the difference ΔV1 between V1 and the average flow velocity V1 ′ measured by the ultrasonic wave propagation path is reduced, and the change characteristic of the flow rate correction coefficient k becomes closer to the flat change characteristic II (see FIG. 4). Highly accurate flow measurement is possible over a wide flow range.
なお、この実施の形態2では、超音波伝播経路8の測定管1の管軸と直交する断面に投影した軌跡を三角形としたが、三角形に限られるものではなく、例えば四角形、五角形などとしてもよい。四角形とした場合、測定管1の内周面における反射点は3点となり、五角形とした場合、測定管1の内周面における反射点は4点となる。 In the second embodiment, the locus projected on the cross section orthogonal to the tube axis of the measurement tube 1 of the ultrasonic wave propagation path 8 is a triangle. However, the locus is not limited to a triangle, and may be a quadrangle, a pentagon, or the like. Good. In the case of a quadrangular shape, there are three reflection points on the inner peripheral surface of the measuring tube 1, and in the case of a pentagonal shape, there are four reflection points on the inner peripheral surface of the measuring tube 1.
また、流速分布調整部材7(7A〜7G)は、必ずしも測定管1に着脱可能に設けるようにしなくてもよく、固定するようにしてもよい。また、測定管1に一体的に作り込むようにしてもよい。流速分布調整部材7(7A〜7G)を着脱可能とすることにより、メンテナンスが容易となり、ごみなどの異物が詰まった場合、簡単に除去することが可能となる。 Further, the flow velocity distribution adjusting member 7 (7A to 7G) is not necessarily provided so as to be detachable from the measuring tube 1, but may be fixed. Alternatively, the measurement tube 1 may be integrally formed. By making the flow velocity distribution adjusting member 7 (7A to 7G) detachable, maintenance becomes easy, and when foreign matters such as dust are clogged, they can be easily removed.
また、上述した実施の形態1,2では、測定した流体の流速から流量を求める超音波流量計を例にとって説明したが、流体の流速そのものを求める超音波流速計、流量から熱量を求める超音波熱量計などでも同様の構成を採用できることは言うまでもない。 In the first and second embodiments described above, the ultrasonic flowmeter for obtaining the flow rate from the measured fluid flow velocity has been described as an example. However, the ultrasonic flowmeter for obtaining the flow velocity of the fluid itself, and the ultrasonic wave for obtaining the heat amount from the flow rate. It goes without saying that a similar configuration can be adopted in a calorimeter or the like.
〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。また、各実施の形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention. Each embodiment can be implemented in any combination within a consistent range.
1…測定管、O…管軸、2…第1の超音波送受信器、3…第2の超音波送受信器、5,6,7(7A〜7G)…流速分布調整部材、7−1…内側の環状部材、7−2…外側の環状部材、7−3…リブ、7a…内側環状面、7b…外側環状面、7c…分割空間、7d…連結面、7e…内径φ1の空間、7f…内側通路、7g…外側通路、8…超音波伝播経路。 DESCRIPTION OF SYMBOLS 1 ... Measuring tube, O ... Tube axis, 2 ... 1st ultrasonic transmitter / receiver, 3 ... 2nd ultrasonic transmitter / receiver, 5, 6, 7 (7A-7G) ... Flow velocity distribution adjustment member, 7-1 ... Inner annular member, 7-2 ... outer annular member, 7-3 ... rib, 7a ... inner annular surface, 7b ... outer annular surface, 7c ... divided space, 7d ... connection surface, 7e ... space of inner diameter φ1, 7f ... inner passage, 7g ... outer passage, 8 ... ultrasonic propagation path.
Claims (1)
前記測定管の前記第1の超音波送受信器よりも上流側の管路に前記第1の超音波送受信器と前記第2の超音波送受信器との間の超音波の伝播を妨げないように設けられ、その部材の前記測定管の管軸と直交する断面に投影した形状の一部が、前記超音波の伝播経路の前記測定管の管軸と直交する断面に投影した軌跡の一部に重なるように配置された流速分布調整部材を備え、
前記超音波の伝播経路は、
その伝播経路の前記測定管の管軸と直交する断面に投影した軌跡が三角形とされ、
前記流速分布調整部材は、
前記測定管の管軸と直交する断面の形状が、前記測定管の中央部と周縁部とを分割する内側環状面と、前記測定管の周縁部を取り囲む外側環状面と、前記内側環状面と前記外側環状面とで囲まれた空間を複数の空間に分割する連結面とを有する形状とされ、
前記内側環状面、前記外側環状面および前記連結面は、
前記測定管の管軸の方向に平行に延びた形状とされている
ことを特徴とする超音波流体測定装置。 A measurement tube through which a fluid to be measured flows, a first ultrasonic transmitter / receiver disposed on a peripheral surface on the upstream side of the measurement tube, and a second ultrasonic wave disposed on a peripheral surface on the downstream side of the measurement tube An ultrasonic wave comprising: a transmitter / receiver; and a measurement unit that measures a flow velocity of the fluid based on a difference in propagation time of ultrasonic waves between the first ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver. In the fluid measuring device,
The propagation of the ultrasonic wave between the first ultrasonic transmitter / receiver and the second ultrasonic transmitter / receiver is not disturbed in the pipe line upstream of the first ultrasonic transmitter / receiver of the measurement tube. A part of the shape projected on the cross section perpendicular to the tube axis of the measurement tube of the member is part of the locus projected onto the cross section of the ultrasonic wave propagation path perpendicular to the tube axis of the measurement tube. It has a flow velocity distribution adjustment member arranged so as to overlap ,
The ultrasonic propagation path is:
The locus projected on the cross section perpendicular to the tube axis of the measurement tube of the propagation path is a triangle,
The flow velocity distribution adjusting member is
The shape of the cross section orthogonal to the tube axis of the measurement tube is an inner annular surface that divides the central portion and the peripheral portion of the measurement tube, an outer annular surface that surrounds the peripheral portion of the measurement tube, and the inner annular surface A shape having a connecting surface that divides a space surrounded by the outer annular surface into a plurality of spaces;
The inner annular surface, the outer annular surface and the connecting surface are:
2. An ultrasonic fluid measuring apparatus having a shape extending in parallel with a direction of a tube axis of the measuring tube .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012041377A JP5815437B2 (en) | 2012-02-28 | 2012-02-28 | Ultrasonic fluid measuring device |
KR1020147021877A KR101616662B1 (en) | 2012-02-28 | 2013-02-22 | Ultrasonic wave fluid measurement device |
PCT/JP2013/054480 WO2013129246A1 (en) | 2012-02-28 | 2013-02-22 | Ultrasonic wave fluid measurement device |
CN201380010867.9A CN104136892B (en) | 2012-02-28 | 2013-02-22 | Ultrasonic fluid determinator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012041377A JP5815437B2 (en) | 2012-02-28 | 2012-02-28 | Ultrasonic fluid measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013178126A JP2013178126A (en) | 2013-09-09 |
JP5815437B2 true JP5815437B2 (en) | 2015-11-17 |
Family
ID=49082446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012041377A Expired - Fee Related JP5815437B2 (en) | 2012-02-28 | 2012-02-28 | Ultrasonic fluid measuring device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5815437B2 (en) |
KR (1) | KR101616662B1 (en) |
CN (1) | CN104136892B (en) |
WO (1) | WO2013129246A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103808380B (en) * | 2013-12-23 | 2016-10-05 | 浙江先芯科技有限公司 | A kind of flow fast tracking method for ultrasonic flow rate measuring instrument |
US9297679B2 (en) | 2014-01-14 | 2016-03-29 | General Electric Company | Flowmeter with a flow conditioner formed by a protrusion having restriction provided upstream of the measurement section |
US9372106B2 (en) | 2014-01-14 | 2016-06-21 | General Electric Company | Non-circular flowmeter |
US20180306216A1 (en) * | 2017-04-24 | 2018-10-25 | Sensus Spectrum, Llc | Flow Conditioners for Use Normalizing Flow in Meters and Related Systems |
EP4273511A1 (en) * | 2022-05-04 | 2023-11-08 | Sartorius Stedim Biotech GmbH | Device for arranging on a fluid-carrying line and for applying a flow measuring device, and method for detecting a measurement variable of the fluid guided by a conduit |
EP4273512A1 (en) * | 2022-05-04 | 2023-11-08 | Levitronix GmbH | Ultrasonic measuring system and measuring tube for such a system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2803170B2 (en) | 1989-06-07 | 1998-09-24 | 日本電気株式会社 | Semiconductor wafer transfer equipment |
JPH06241858A (en) * | 1993-02-15 | 1994-09-02 | Oval Corp | Straightening apparatus |
JP2001021399A (en) * | 1999-07-05 | 2001-01-26 | Toho Gas Co Ltd | Ultrasonic type gas meter |
DE50111872D1 (en) * | 2000-11-30 | 2007-02-22 | Landis & Gyr Gmbh | FLOWMETERS |
JP2004157101A (en) * | 2002-09-11 | 2004-06-03 | Fuji Electric Retail Systems Co Ltd | Ultrasonic flowmeter |
EP1775560B1 (en) * | 2005-10-14 | 2010-12-22 | Kamstrup A/S | Ultrasonic flow meter with flow mixer |
DE102006030942A1 (en) * | 2006-07-05 | 2008-01-10 | Landis+Gyr Gmbh | Flow meter with an inlet area and a flow measuring section |
JP5229105B2 (en) * | 2009-05-15 | 2013-07-03 | パナソニック株式会社 | Flow measuring device |
JP2012132801A (en) * | 2010-12-22 | 2012-07-12 | Panasonic Corp | Ultrasonic flowmeter |
-
2012
- 2012-02-28 JP JP2012041377A patent/JP5815437B2/en not_active Expired - Fee Related
-
2013
- 2013-02-22 WO PCT/JP2013/054480 patent/WO2013129246A1/en active Application Filing
- 2013-02-22 KR KR1020147021877A patent/KR101616662B1/en active IP Right Grant
- 2013-02-22 CN CN201380010867.9A patent/CN104136892B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20140112540A (en) | 2014-09-23 |
WO2013129246A1 (en) | 2013-09-06 |
JP2013178126A (en) | 2013-09-09 |
CN104136892B (en) | 2016-10-26 |
KR101616662B1 (en) | 2016-04-28 |
CN104136892A (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5815437B2 (en) | Ultrasonic fluid measuring device | |
US9874234B2 (en) | Flow conditioner and method for optimization | |
CN103196504B (en) | Method and device for measuring multi-channel ultrasonic flow | |
JP2010164558A (en) | Device for measuring flow of fluid | |
WO2019161716A1 (en) | Throttling component and rectification and flow measurement device | |
KR101618151B1 (en) | Accessory apparatus for flowmeters | |
WO2013129197A1 (en) | Ultrasonic-wave fluid measurement device | |
JP4936856B2 (en) | Flowmeter | |
JP5816831B2 (en) | Ultrasonic flow meter | |
US11885654B2 (en) | Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device | |
WO2013157990A1 (en) | Ultrasonic flow meter | |
JP2013250254A (en) | Multiple reflection prevention rectifier tube for ultrasonic spirometer | |
JP2001133307A (en) | Inflow and outflow symmetric flowmeter | |
JP2009264906A (en) | Flow meter | |
JP2013217780A (en) | Ultrasonic flowmeter | |
CN103630271A (en) | Diameter-decreasing-structured ultrasonic heat meter | |
JPH0882540A (en) | Ultrasonic flow-rate measuring method and ultrasonic flowmeter | |
JP2004251700A (en) | Fluid measuring device | |
JP2014515491A (en) | Measuring device for measuring fluid flow rate | |
CN105890684A (en) | Novel setting method for determining sound channel positions by adopting Gauss-Jacobi polynomial | |
CN113574349A (en) | Ultrasonic gas meter and associated flow tube | |
JP2004170346A (en) | Flow meter | |
JP2022154946A (en) | Flowmeter | |
KR101038971B1 (en) | Asembly of flow meter and profiler | |
JP2020064002A (en) | Fluid state determination unit and ultrasonic flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5815437 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |