JP2005106726A - Gas meter - Google Patents

Gas meter Download PDF

Info

Publication number
JP2005106726A
JP2005106726A JP2003343124A JP2003343124A JP2005106726A JP 2005106726 A JP2005106726 A JP 2005106726A JP 2003343124 A JP2003343124 A JP 2003343124A JP 2003343124 A JP2003343124 A JP 2003343124A JP 2005106726 A JP2005106726 A JP 2005106726A
Authority
JP
Japan
Prior art keywords
gas meter
measurement
gas
flow
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003343124A
Other languages
Japanese (ja)
Other versions
JP4455000B2 (en
Inventor
Jiro Mizukoshi
二郎 水越
Fujio Hori
富士雄 堀
Kazuhiro Yoshino
一博 吉野
Tatsuo Fujimoto
龍雄 藤本
Mamoru Suzuki
守 鈴木
Kenichiro Yuasa
健一郎 湯浅
Tomio Inoue
富美夫 井上
Yasuhiro Fujii
泰宏 藤井
Toru Hiroyama
徹 廣山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Toyo Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Toyo Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd, Toyo Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003343124A priority Critical patent/JP4455000B2/en
Publication of JP2005106726A publication Critical patent/JP2005106726A/en
Application granted granted Critical
Publication of JP4455000B2 publication Critical patent/JP4455000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas meter which assures precision of a cross section area of a path of a flow channel to be measured in which a fluid flows, and precision of a flow rate of the fluid measured by an ultrasonic flow measuring means, with reduced cost. <P>SOLUTION: In the gas meter, a pair of ultrasonic transmit-receive means are located to face each other in a flow channel to be measured. The flow channel to be measured comprises a body case, and a straight measuring tube for flow rate measurement stored in the body case. The measuring tube is connected using two L-shape members (52a and 52b) whose cross section in the vertical direction against the flow direction is L-shaped so as to make the cross section of the tube is rectangular. At the position where the ultrasonic transmit-receive means is located, an opening (52c) is provided. In addition, a turbulent flow suppression member (54) which has micropore to pass through ultrasonic waves is provided at the opening. The measuring tube also comprises a member whose coefficient of linear expansion is not greater than a prescribed value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガスの流量を計測するガスメータに関し、特に超音波式ガスメータの構造に関する。   The present invention relates to a gas meter for measuring a gas flow rate, and more particularly to a structure of an ultrasonic gas meter.

従来、超音波送受信手段を用いて気体や液体等、流体の流量の計測を行う種々の超音波流量計測装置が提案されている(例えば特許文献1参照)。
特許文献1の例では、計測精度を向上させるために、計測流路に超音波送受信手段用の開口窓を設け、更に開口窓には微細孔を備えた流入抑制体を設けたり、計測流路の流入側に流れ安定手段を設けたりして、渦及び乱流等を抑制して計測精度を向上させようとしている。
なお、超音波流量計測装置では超音波流量計測手段にて流体の速度を計測し、計測した速度と計測流路内部の断面積(流体の流れる通路の面積)に基づいて流量(体積)を算出する。従って流量の精度は、検出した速度の精度及び計測流路の面積の精度に大きく影響される。
特開2003−202254号公報
Conventionally, various ultrasonic flow measurement devices that measure the flow rate of a fluid such as gas or liquid using ultrasonic transmission / reception means have been proposed (see, for example, Patent Document 1).
In the example of Patent Document 1, in order to improve the measurement accuracy, an opening window for ultrasonic transmission / reception means is provided in the measurement channel, and an inflow suppressor having fine holes is provided in the opening window. For example, a flow stabilizing means is provided on the inflow side to suppress vortices and turbulent flow to improve measurement accuracy.
In the ultrasonic flow measurement device, the fluid flow rate is measured by the ultrasonic flow rate measurement means, and the flow rate (volume) is calculated based on the measured velocity and the cross-sectional area inside the measurement channel (the area of the passage through which the fluid flows). To do. Therefore, the accuracy of the flow rate is greatly influenced by the accuracy of the detected speed and the accuracy of the area of the measurement flow path.
Japanese Patent Laid-Open No. 2003-202254

従来の超音波流量計測装置は、計測流路をダイキャスト等で形成しており、計測流路における流体が流れる通路の断面の面積の精度を確保するためには、通路内壁の寸法精度及び通路内壁の表面仕上げ精度等、ダイキャストで形成した後に高精度な切削加工及び表面仕上げ加工が必要であり、多大なコストを要していた。
また、流体の速度を超音波流量計測手段にて計測する際、計測部において微妙な乱流が発生すると、速度の精度に影響を及ぼす可能性がある。
本発明は、このような点に鑑みて創案されたものであり、計測流路における流体が流れる通路の断面の面積の精度、及び超音波流量計測手段にて計測した流体の速度の精度を確保するとともにコストをより低減することができるガスメータを提供することを課題とする。
In the conventional ultrasonic flow rate measuring device, the measurement channel is formed by die casting or the like, and in order to ensure the accuracy of the cross-sectional area of the channel through which the fluid flows in the measurement channel, the dimensional accuracy of the channel inner wall and the channel High-precision cutting and surface finishing are required after forming by die casting, such as the surface finishing accuracy of the inner wall, and a great deal of cost is required.
Further, when the fluid velocity is measured by the ultrasonic flow rate measuring means, if a subtle turbulent flow occurs in the measurement unit, the accuracy of the velocity may be affected.
The present invention was devised in view of such points, and ensures the accuracy of the cross-sectional area of the passage through which the fluid flows in the measurement flow path and the accuracy of the velocity of the fluid measured by the ultrasonic flow rate measuring means. In addition, an object is to provide a gas meter that can further reduce the cost.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりのガスメータである。
請求項1に記載のガスメータは、ガスの流量を計測するための計測流路に1対の超音波送受信手段を対向させて設けたガスメータであって、計測流路を、本体ケースと、当該本体ケース内に収容した流量測定用のストレート形状を有する測定管とで構成する(本体ケースと測定管による二重構造とする)。
As means for solving the above-mentioned problems, the first invention of the present invention is a gas meter as described in claim 1.
The gas meter according to claim 1 is a gas meter in which a pair of ultrasonic transmission / reception means is provided opposite to a measurement channel for measuring a gas flow rate, and the measurement channel includes a main body case and the main body. It is composed of a measuring tube having a straight shape for flow rate measurement housed in a case (a double structure consisting of a main body case and a measuring tube).

また、本発明の第2発明は、請求項2に記載されたとおりのガスメータである。
請求項2に記載のガスメータは、請求項1に記載のガスメータであって、測定管を、ガスの流れる方向に対して垂直な断面がL字状となる2つのL形部材にて、断面が矩形の筒状となるように接合して構成する。
Moreover, the 2nd invention of this invention is a gas meter as described in Claim 2.
A gas meter according to a second aspect is the gas meter according to the first aspect, wherein the measurement tube is composed of two L-shaped members having a L-shaped cross section perpendicular to the gas flow direction. It joins and comprises so that it may become a rectangular cylinder shape.

また、本発明の第3発明は、請求項3に記載されたとおりのガスメータである。
請求項3に記載のガスメータは、請求項1または2に記載のガスメータであって、測定管における超音波送受信手段が臨む場所には開口部を設け、当該開口部には超音波を通過させる微細孔を備えた乱流抑制部材を設ける。
Moreover, the 3rd invention of this invention is a gas meter as described in Claim 3.
A gas meter according to a third aspect is the gas meter according to the first or second aspect, wherein an opening is provided at a location where the ultrasonic transmission / reception means faces in the measurement tube, and the ultrasonic wave is passed through the opening. A turbulent flow suppression member having a hole is provided.

また、本発明の第4発明は、請求項4に記載されたとおりのガスメータである。
請求項4に記載のガスメータは、請求項1〜3のいずれかに記載のガスメータであって、線膨張係数が第1所定値以下の部材で測定管を形成する。
Moreover, the 4th invention of this invention is a gas meter as described in Claim 4.
A gas meter according to a fourth aspect is the gas meter according to any one of the first to third aspects, wherein the measuring tube is formed of a member having a linear expansion coefficient equal to or less than a first predetermined value.

また、本発明の第5発明は、請求項5に記載されたとおりのガスメータである。
請求項5に記載のガスメータは、請求項1〜4のいずれかに記載のガスメータであって、ガスの流量を計測するための計測流路に1対の超音波送受信手段を備え、1対の超音波送受信手段が送受信する超音波の進行方向がガスの流れる方向に対して所定の角度を有するように、且つ当該超音波がガスの流れを横切るように1対の超音波送受信手段が配置されたガスメータであって、計測流路内における一方の超音波送受信手段から他方の超音波送受信手段までの間に、ガスの流れる方向に平行、且つ超音波送受信手段から送信する超音波の方向に平行な整流板を設ける。
The fifth aspect of the present invention is a gas meter as set forth in the fifth aspect.
A gas meter according to a fifth aspect is the gas meter according to any one of the first to fourth aspects, wherein the measurement flow path for measuring the flow rate of the gas includes a pair of ultrasonic transmission / reception means. The pair of ultrasonic transmission / reception means is arranged so that the traveling direction of the ultrasonic waves transmitted / received by the ultrasonic transmission / reception means has a predetermined angle with respect to the gas flow direction, and the ultrasonic waves cross the gas flow. The gas meter is parallel to the gas flow direction between one ultrasonic transmission / reception means and the other ultrasonic transmission / reception means in the measurement channel, and parallel to the direction of the ultrasonic waves transmitted from the ultrasonic transmission / reception means. Provide a straightening plate.

また、本発明の第6発明は、請求項6に記載されたとおりのガスメータである。
請求項6に記載のガスメータは、請求項5に記載のガスメータであって、整流板の厚さを第2所定値以下とする。
The sixth aspect of the present invention is a gas meter as set forth in the sixth aspect.
A gas meter according to a sixth aspect is the gas meter according to the fifth aspect, wherein the thickness of the rectifying plate is set to a second predetermined value or less.

請求項1に記載のガスメータを用いれば、例えば本体ケースをダイキャストで形成し、測定管を樹脂で形成する。この場合、計測流路における流体が流れる通路の断面の面積の精度は本体ケースでなく測定管にて確保すればよい(測定管内に流体を流すため)。従ってダイキャスト(本体ケース)の内壁を切削加工及び表面仕上げ加工して精度を出す必要がなく、樹脂(測定管)の形成にて精度を出せばよい。
これにより、流体が流れる通路の断面の面積において必要な精度を容易に確保できるとともにコストをより低減することができる。
If the gas meter of Claim 1 is used, a main body case will be formed by die-casting and a measuring tube will be formed with resin, for example. In this case, the accuracy of the cross-sectional area of the passage through which the fluid flows in the measurement flow path may be ensured by the measurement tube instead of the main body case (in order to flow the fluid into the measurement tube). Therefore, it is not necessary to cut and surface finish the inner wall of the die cast (main body case), and the accuracy can be increased by forming the resin (measurement tube).
Thereby, the required accuracy can be easily secured in the area of the cross section of the passage through which the fluid flows, and the cost can be further reduced.

また、請求項2に記載のガスメータによれば、流体が流れる通路の断面の面積の精度を確保することが更に容易である。例えば測定管を樹脂で形成した場合、「コ」の字形では抜き勾配が必要になり、勾配による断面の面積の精度の低下が発生するが、「L」字形では抜き勾配を設けることなく成形が可能であるため、勾配による断面の面積の精度の低下を抑制することができる。
これにより、流体が流れる通路の断面の面積において必要な精度を確保できるとともにコストをより低減することができる。
Moreover, according to the gas meter of Claim 2, it is still easier to ensure the accuracy of the area of the cross section of the channel through which the fluid flows. For example, when the measuring tube is made of resin, the "U" shape requires a draft, and the accuracy of the cross-sectional area decreases due to the slope, but the "L" shape can be molded without a draft. Since it is possible, the fall of the precision of the cross-sectional area by a gradient can be suppressed.
Thereby, it is possible to ensure the necessary accuracy in the area of the cross section of the passage through which the fluid flows, and to further reduce the cost.

また、請求項3に記載のガスメータによれば、超音波が行き交う部分のガスの乱流を、乱流抑制部材にて抑制することができるので、超音波流量計測手段にて計測した流体の速度の精度をより向上させることができる。   According to the gas meter of the third aspect, since the turbulent flow of the portion where the ultrasonic waves come and go can be suppressed by the turbulent flow suppressing member, the velocity of the fluid measured by the ultrasonic flow rate measuring means. Accuracy can be further improved.

また、請求項4に記載のガスメータによれば、温度変化に伴う測定管の寸法変化を抑制し、流体が流れる通路の断面の面積の変動を抑制することができる。
これにより、流体が流れる通路の断面の面積において必要な精度を確保できるとともにコストをより低減することができる。
Moreover, according to the gas meter of Claim 4, the dimensional change of the measurement pipe accompanying a temperature change can be suppressed, and the fluctuation | variation of the cross-sectional area of the channel | path through which a fluid flows can be suppressed.
Thereby, it is possible to ensure the necessary accuracy in the area of the cross section of the passage through which the fluid flows, and to further reduce the cost.

また、請求項5に記載のガスメータによれば、流体が流れる通路内において、一方の超音波送受信手段から他方の超音波送受信手段に向けて超音波を送信した際、送信された超音波は整流板に沿って進行し、他方の超音波送受信手段に到達する。
このように、整流板はガスの流れを整えるとともに、超音波を適切に誘導するため、超音波流量計測手段にて計測した流体の速度の精度を確保するために有効である。
According to the gas meter of claim 5, when the ultrasonic wave is transmitted from one ultrasonic transmission / reception unit to the other ultrasonic transmission / reception unit in the passage through which the fluid flows, the transmitted ultrasonic wave is rectified. It travels along the plate and reaches the other ultrasonic transmission / reception means.
As described above, the flow straightening plate regulates the gas flow and appropriately guides the ultrasonic waves, so that it is effective for ensuring the accuracy of the fluid velocity measured by the ultrasonic flow rate measuring means.

また、請求項6に記載のガスメータによれば、測定管における流体が流れる通路の断面の面積への影響を抑制することができる。   Moreover, according to the gas meter of Claim 6, the influence on the area of the cross section of the channel | path through which the fluid in a measuring tube flows can be suppressed.

以下に本発明を実施するための最良の形態を図面を用いて説明する。図1は、本発明のガスメータ1の概略外観図である。
●[ガスメータの外観(図1)]
図1を用いて、本実施の形態のガスメータ1の外観を説明する。図1(A)は正面を含む斜視図を示しており、図1(B)は背面を含む斜視図を示している。なお、各図のX軸、Y軸、Z軸は、X軸及びY軸が水平方向を示す軸であり、Z軸が垂直方向を示す軸である。また、表示手段1cを含む面が正面である。
ガスメータ1の上部には、ガスの供給元(ガス会社等)から供給されるガスが流入する供給元流入口1aと、ガスを使用する設備等にガスを流出する設備流出口1bを備えている。また、ガスメータ1の内部には、ガスの流量を計測するための計測流路50を備えており(図2を参照)、供給元流入口1aから流入して設備流出口1bから流出されるガスの流量を計測する。
The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic external view of a gas meter 1 of the present invention.
● [Appearance of gas meter (Fig. 1)]
The external appearance of the gas meter 1 of this Embodiment is demonstrated using FIG. 1A shows a perspective view including a front surface, and FIG. 1B shows a perspective view including a back surface. In addition, the X-axis, Y-axis, and Z-axis in each figure are axes in which the X-axis and Y-axis indicate the horizontal direction, and the Z-axis is an axis that indicates the vertical direction. The surface including the display unit 1c is the front.
The upper part of the gas meter 1 is provided with a supply source inlet 1a through which gas supplied from a gas supply source (gas company or the like) flows and a facility outlet 1b through which gas flows out to a facility using the gas. . Further, the gas meter 1 is provided with a measurement flow path 50 for measuring the flow rate of gas (see FIG. 2), and gas that flows in from the supply source inlet 1a and flows out of the facility outlet 1b. Measure the flow rate.

ガスメータ1の正面には表示手段1cが設けられており、ガスの積算値等を表示させることが可能である。なお、表示手段1cの近傍に表示内容を切替えるための表示操作部(表示切替えスイッチ等)を設け、表示操作部を操作することで、表示手段1cへの表示内容を切替え可能とすることもできる。
また、端子カバー1eを取り外すと、通信装置を接続可能な通信端子(図示せず)が現れる。この通信端子に通信回線及び通信装置を接続すれば、ガスメータ1と通信装置との間で通信を行うことが可能になる。
A display means 1c is provided on the front face of the gas meter 1, and an integrated value of gas can be displayed. A display operation unit (display switch or the like) for switching display contents is provided near the display unit 1c, and the display contents on the display unit 1c can be switched by operating the display operation unit. .
Further, when the terminal cover 1e is removed, a communication terminal (not shown) to which a communication device can be connected appears. If a communication line and a communication device are connected to this communication terminal, communication can be performed between the gas meter 1 and the communication device.

●[内部構造(図2)]
次に、図2を用いて、ガスメータ1の内部構造について説明する。供給元流入口1aから流入するガスは、例えば供給元流入口1a−第1流路形成部材40(遮断弁60を含む)−計測流路50−第2流路形成部材48(圧力センサ62を含む)−設備流出口1b、の経路を通過する。
計測流路50には、1対の超音波送受信センサ(超音波送受信手段)が設けられており、計測流路50内を通過するガスの流量は、当該超音波送受信センサの信号に基づいて検出される。なお、計測流路50内のガスの流路GRは、ガスの流れる方向(図2中では左から右の方向)に対して垂直な断面S(図3参照)が矩形に形成されており、当該断面Sの面積の誤差が非常に小さくなるように高精度に形成されている。これは、ガスの流量は超音波送受信センサによって計測されたガスの速度と当該断面Sの面積に基づいて算出されるためである。
また、圧力センサ62は、第2流路形成部材48を通過するガスの圧力を検出する。例えば、検出した圧力が所定圧力範囲から逸脱した場合、制御手段(CPU等を備えた制御手段であり、図示せず)は、遮断弁60を駆動して、第1流路形成部材40の内部を閉鎖し、供給元流入口1aから流入するガスを遮断する。
● [Internal structure (Fig. 2)]
Next, the internal structure of the gas meter 1 will be described with reference to FIG. The gas flowing in from the supply source inlet 1a is, for example, the supply source inlet 1a—the first flow path forming member 40 (including the shutoff valve 60) —the measurement flow path 50—the second flow path forming member 48 (the pressure sensor 62). Pass through the path of the facility outlet 1b.
The measurement channel 50 is provided with a pair of ultrasonic transmission / reception sensors (ultrasonic transmission / reception means), and the flow rate of the gas passing through the measurement channel 50 is detected based on the signal of the ultrasonic transmission / reception sensor. Is done. The gas flow path GR in the measurement flow path 50 has a rectangular cross section S (see FIG. 3) perpendicular to the gas flow direction (the direction from left to right in FIG. 2). It is formed with high accuracy so that the error of the area of the cross section S becomes very small. This is because the gas flow rate is calculated based on the gas velocity measured by the ultrasonic transmission / reception sensor and the area of the cross section S.
Further, the pressure sensor 62 detects the pressure of the gas passing through the second flow path forming member 48. For example, when the detected pressure deviates from a predetermined pressure range, the control means (a control means having a CPU or the like, not shown) drives the shut-off valve 60 so that the inside of the first flow path forming member 40 Is closed to shut off the gas flowing in from the supply source inlet 1a.

第1流路形成部材40は供給元流入口1aと計測流入口50aとを連通しており、第2流路形成部材48は設備流出口1bと計測流出口50bとを連通している。
また、計測流路50はほぼ水平に配置され、第1流路形成部材40と第2流路形成部材48はほぼ垂直に配置されている。そして、第1流路形成部材40と計測流路50と第2流路形成部材48にて略U字型に構成されている。
The first flow path forming member 40 communicates the supply source inlet 1a and the measurement inlet 50a, and the second flow path formation member 48 communicates the equipment outlet 1b and the measurement outlet 50b.
Moreover, the measurement flow path 50 is arrange | positioned substantially horizontal, and the 1st flow path formation member 40 and the 2nd flow path formation member 48 are arrange | positioned substantially perpendicularly. The first flow path forming member 40, the measurement flow path 50, and the second flow path forming member 48 are substantially U-shaped.

●[計測流路の構造(図2、図3、図4)]
図2に示すように計測流路50は、外側の本体ケース51と、当該本体ケース51内に収容された流量測定用のストレート形状を有する測定管52との二重構造にて構成されており、本体ケース51は例えばダイキャスト等の高い剛性を有する部材で形成されている。なお本体ケース51には1対の超音波送受信センサが、ガスの流れる方向に対して所定の角度θをもって対向するように組み付けられる(図4中のセンサ孔51cに組み付けられる)。
測定管52は、少なくとも一部が本体ケース51の内壁に密着するように本体ケース51内に組み付けられる。これにより、流量を計測すべき全てのガスが、測定管52の計測流入口50aから流入して測定管52の内部を通過し、計測流出口50bから流出する。なお測定管52の内部には、ガスの流れる方向(図2中の左から右に向かう方向)に平行、且つ超音波送受信センサから送信する超音波の方向(図2中の紙面表(あるいは裏)から紙面裏(あるいは表)に向かう方向)に平行な、整流板53が設けられている。
● [Measurement channel structure (Fig. 2, Fig. 3, Fig. 4)]
As shown in FIG. 2, the measurement flow path 50 is configured by a double structure of an outer main body case 51 and a measurement tube 52 having a straight shape for flow rate measurement accommodated in the main body case 51. The main body case 51 is formed of a member having high rigidity such as die casting. A pair of ultrasonic transmission / reception sensors are assembled to the main body case 51 so as to face each other with a predetermined angle θ with respect to the gas flow direction (assembled in the sensor hole 51c in FIG. 4).
The measurement tube 52 is assembled in the main body case 51 so that at least a part thereof is in close contact with the inner wall of the main body case 51. Thereby, all the gas whose flow rate is to be measured flows in from the measurement inlet 50a of the measurement pipe 52, passes through the inside of the measurement pipe 52, and flows out of the measurement outlet 50b. Inside the measurement tube 52 is parallel to the gas flow direction (the direction from the left to the right in FIG. 2) and the direction of the ultrasonic wave transmitted from the ultrasonic transmission / reception sensor (the front (or back) of FIG. 2). ) From the back of the paper surface (or the direction from the front) to the back of the paper).

次に、図3に計測流路50の構造の例を示す。計測流路50は、本体ケース部材51a及び51bにて構成される本体ケース51の内部に略直方体の測定管52が収容されている。
また、図4に計測流路50を水平面(XY平面)で切断した面を下側から見た場合の断面図を示す。本体ケース部材51aの側面には、超音波送受信センサを挿入するセンサ孔51cが設けられている。更に、測定管52において、対向する超音波送受信センサが臨む場所には、超音波を通過させるための開口部52cが設けられている。
また、図4に示すように、測定管52の開口部52cには、測定管52の内壁とほぼ面一となり、且つ超音波を通過させる微細孔が設けられた乱流抑制部材54が設けられている。
Next, FIG. 3 shows an example of the structure of the measurement channel 50. In the measurement flow channel 50, a substantially rectangular parallelepiped measurement tube 52 is accommodated in a main body case 51 constituted by main body case members 51a and 51b.
FIG. 4 is a cross-sectional view of the measurement channel 50 cut along a horizontal plane (XY plane) when viewed from below. A sensor hole 51c for inserting an ultrasonic transmission / reception sensor is provided on a side surface of the main body case member 51a. Furthermore, in the measurement tube 52, an opening 52c for allowing ultrasonic waves to pass is provided at a location where the opposing ultrasonic transmission / reception sensor faces.
Further, as shown in FIG. 4, the opening 52c of the measurement tube 52 is provided with a turbulent flow suppressing member 54 that is substantially flush with the inner wall of the measurement tube 52 and provided with fine holes through which ultrasonic waves can pass. ing.

●[測定管の構造(図5)]
次に、図5に測定管52の構造の例を示す。測定管52は、ガスの流れる方向に対して垂直な断面が「L」字状となる2つの測定管部材52a及び52b(L形部材)にて、断面が矩形の筒状となるように接合されて構成されている。なお、接合の際、内部に整流板53が収容される。測定管部材52a及び52bの内壁における整流板53との当接部には、整流板53を支持するための溝52zが設けられており、当該溝52zにて整流板53が位置決めされる。
また、測定管部材52a及び52bにおいて、矩形の筒状に接合した際の当接部には、凸部52xあるいは凹部52yが各々に設けられており、当該凸部52x及び凹部52yにて位置決めされる。
● [Measurement tube structure (Fig. 5)]
Next, FIG. 5 shows an example of the structure of the measuring tube 52. The measuring tube 52 is joined by two measuring tube members 52a and 52b (L-shaped members) whose cross section perpendicular to the gas flow direction is an “L” shape so that the cross section is a rectangular tube. Has been configured. In addition, the current plate 53 is accommodated in the inside at the time of joining. A groove 52z for supporting the rectifying plate 53 is provided at a contact portion of the inner walls of the measurement tube members 52a and 52b with the rectifying plate 53, and the rectifying plate 53 is positioned in the groove 52z.
Further, in the measurement tube members 52a and 52b, the protrusions 52x or the recesses 52y are respectively provided in the contact portions when they are joined in a rectangular cylindrical shape, and are positioned by the protrusions 52x and the recesses 52y. The

ここで、測定管部材52a及び52bを「コ」の字形に形成した場合は抜き勾配が必須となるため、測定管52においてガスの流れる方向と垂直な面による断面S(図3参照)の各角が直角でなくなり、断面Sの精度にばらつきが発生する可能性がある。また、整流板53を測定管52にインサート成形する場合も、抜き勾配が必要なため、断面Sの精度に問題が発生する(要求精度を満足できない)可能性がある。
しかし、本実施の形態では、測定管部材52a及び52bを「L」字状に形成しているため、抜き勾配は必要でない。このため、断面Sの各角を直角とすることが可能であり、例えば樹脂を用いて測定管部材52a及び52bを形成しても、面積Sの精度を充分確保することができる。また、樹脂で形成する場合、コストを低減できるだけでなく、内壁の平面度を確保し易く、より乱流を抑制することができる。
また、開口部52cには、内壁側に乱流抑制部材54が設けられる。
Here, when the measurement tube members 52a and 52b are formed in a “U” shape, a draft is indispensable. Therefore, each of the cross sections S (see FIG. 3) of the measurement tube 52 by a plane perpendicular to the gas flow direction. There is a possibility that the angle is not a right angle and the accuracy of the cross section S varies. Further, when the rectifying plate 53 is insert-molded into the measuring tube 52, since a draft is required, a problem may occur in the accuracy of the cross section S (the required accuracy cannot be satisfied).
However, in this embodiment, since the measurement tube members 52a and 52b are formed in an “L” shape, no draft is necessary. For this reason, it is possible to make each angle of the cross section S a right angle. For example, even if the measurement tube members 52a and 52b are formed using resin, the accuracy of the area S can be sufficiently secured. Moreover, when forming with resin, not only can cost be reduced, but it is easy to ensure the flatness of the inner wall, and turbulence can be further suppressed.
The opening 52c is provided with a turbulent flow suppressing member 54 on the inner wall side.

なお、一般的な樹脂は熱変形が大きいが、断面Sの面積の温度による変動を抑制するために、測定管部材52a及び52bは、線膨張係数が第1所定値以下(例えば10*10-5[cm/cm・℃]以下)の材質の部材を用いる。例えばABS樹脂(約10*10-5[cm/cm・℃])や、ABS樹脂にグラスファイバを30%程度混入させた部材(約2.8*10-5[cm/cm・℃])や、フェノール樹脂(約5*10-5[cm/cm・℃])や、ステンレス(約1.7*10-5[cm/cm・℃])や、アルミ(約2.4*10-5[cm/cm・℃])等を用いる。 In addition, although general resin has a large thermal deformation, in order to suppress the fluctuation | variation with the temperature of the area of the cross section S, the measurement pipe members 52a and 52b have a linear expansion coefficient below 1st predetermined value (for example, 10 * 10 < - >). 5 [cm / cm · ° C.] or less) is used. For example, an ABS resin (about 10 * 10 −5 [cm / cm · ° C.]) or a member in which about 30% glass fiber is mixed in ABS resin (about 2.8 * 10 −5 [cm / cm · ° C.]) Phenol resin (about 5 * 10 −5 [cm / cm · ° C.]), stainless steel (about 1.7 * 10 −5 [cm / cm · ° C.]), aluminum (about 2.4 * 10 − 5 [cm / cm · ° C.]) or the like.

また、線膨張係数が第1所定値以下となり得る他の材質及び当該材質の線膨張係数としては、ポリカーポネード(グラスファイバ30%混入):約7.0*10-5[cm/cm・℃](約3.5*10-5[cm/cm・℃])、ポリアセタール(グラスファイバ20%混入):8.1〜9.0*10-5[cm/cm・℃](4〜7.0*10-5[cm/cm・℃])、ポリアミド(グラスファイバ30%混入):8.0〜10*10-5[cm/cm・℃](2〜4*10-5[cm/cm・℃])、ポリブチレンテレフタレート:7.0〜9.5*10-5[cm/cm・℃]、ポリスチレン(グラスファイバ30%混入):7.0〜10.0*10-5[cm/cm・℃](2〜7*10-5[cm/cm・℃])、高密度ポリエチレン:10〜15*10-5[cm/cm・℃]、ポリプロピレン:6〜11*10-5[cm/cm・℃]、ジアリルフタレートにグラスファイバ30%混入:1〜3.5*10-5[cm/cm・℃]等があげられる。 In addition, other materials whose linear expansion coefficient can be equal to or less than the first predetermined value and the linear expansion coefficient of the material are: Polycarbonate (mixed with glass fiber 30%): about 7.0 * 10 −5 [cm / cm · ° C] (about 3.5 * 10 −5 [cm / cm · ° C.]), polyacetal (mixed with 20% glass fiber): 8.1 to 9.0 * 10 −5 [cm / cm · ° C.] (4 to 7.0 * 10 −5 [cm / cm · ° C.]), polyamide (mixed with 30% glass fiber): 8.0 to 10 * 10 −5 [cm / cm · ° C.] (2 to 4 * 10 −5 [ cm / cm · ° C.), polybutylene terephthalate: 7.0 to 9.5 * 10 −5 [cm / cm · ° C.], polystyrene (mixed with 30% glass fiber): 7.0 to 10.0 * 10 − 5 [cm / cm · ℃] (2~7 * 10 -5 [cm / cm · ℃]), high density polyethylene: 1 ~15 * 10 -5 [cm / cm · ℃], polypropylene: 6~11 * 10 -5 [cm / cm · ℃], diallyl phthalate 30% glass fiber mixed: 1 to 3.5 * 10 -5 [ cm / cm · ° C.] and the like.

●[乱流抑制部材の構造(図6)]
次に、図6を用いて乱流抑制部材54について説明する。乱流抑制部材54には、幅EHh、高さEHvの範囲において、微細孔EHが略2次元状に設けられている。なお、幅EHh及び高さEHvは、測定管52の開口部52cとほぼ同じ寸法である。
本実施の形態に示す乱流抑制部材54は、磁石につくステンレスを用いており、厚さ(Y軸方向の幅)は約0.1[mm]である。例えば乱流抑制部材54の微細孔EHは、フォトエッチングにて形成する。そして、磁石に乱流抑制部材54をつけて金型に樹脂を流し込み、測定管部材52aまたは52bと乱流抑制部材54とを一体成形する。
微細孔EHの形状及び径、そして微細孔EHの水平方向のピッチPh、及び垂直方向のピッチPvは、種々の実験により、最適な形状及び寸法が求められる。発明者は種々の実験により、微細孔EHの形状を「円形状」、微細孔EHの直径を「約0.16[mm]」、水平方向のピッチPhを「約0.248[mm]」、垂直方向のピッチを「約0.212[mm]」と設定した。しかし、これらの値は、計測する流体の種類、流量のダイナミックレンジ、使用環境等、種々の要因で各々適切な値が異なる可能性がある。
● [Structure of turbulent flow suppression member (Fig. 6)]
Next, the turbulent flow suppressing member 54 will be described with reference to FIG. The turbulent flow suppressing member 54 is provided with a fine hole EH in a substantially two-dimensional manner within the range of the width EHh and the height EHv. The width EHh and the height EHv are substantially the same dimensions as the opening 52c of the measurement tube 52.
The turbulent flow suppressing member 54 shown in the present embodiment uses stainless steel attached to a magnet, and the thickness (width in the Y-axis direction) is about 0.1 [mm]. For example, the fine hole EH of the turbulent flow suppressing member 54 is formed by photoetching. Then, the turbulent flow suppressing member 54 is attached to the magnet, the resin is poured into the mold, and the measuring tube member 52a or 52b and the turbulent flow suppressing member 54 are integrally formed.
As for the shape and diameter of the micro holes EH, and the horizontal pitch Ph and the vertical pitch Pv of the micro holes EH, optimum shapes and dimensions are required by various experiments. The inventor conducted various experiments to make the shape of the microhole EH “circular”, the diameter of the microhole EH “about 0.16 [mm]”, and the horizontal pitch Ph “about 0.248 [mm]”. The vertical pitch was set to “about 0.212 [mm]”. However, these values may differ from each other due to various factors such as the type of fluid to be measured, the dynamic range of the flow rate, and the usage environment.

ここで、乱流抑制部材54を金属の繊維を編み込んだメッシュを用いた場合、微視的に見ると各繊維が表と裏に交互に編み込まれているため表面に凹凸があり、ガスの流れによる微細な乱流が発生し易く、超音波送受信センサの検出精度への影響が比較的大きい。しかし、微細孔EHを有する本実施の形態に示す乱流抑制部材54の場合、微視的に見ても表面の凹凸がほとんどなく、ガスの流れによる乱流の発生が抑制され、超音波送受信センサの検出精度への影響が比較的小さい。
また、メッシュの場合は各繊維と繊維による隙間において、超音波を通過させたい方向以外にも種々の方向に不要な隙間ができてしまい、微細なダスト等が付着し易い。しかし、微細孔EHを有する本実施の形態に示す乱流抑制部材54の場合、超音波を通過させたい方向以外には隙間がないため、ダスト等の付着を抑制でき、より安定した精度を維持することができる。
Here, when a mesh in which metal fibers are knitted is used as the turbulent flow suppressing member 54, when viewed microscopically, since each fiber is knitted alternately on the front and back, the surface has irregularities, and the gas flow As a result, a fine turbulent flow is likely to occur and the detection accuracy of the ultrasonic transmission / reception sensor is relatively large. However, in the case of the turbulent flow suppression member 54 shown in the present embodiment having the fine hole EH, there is almost no surface irregularity even when viewed microscopically, and the generation of turbulent flow due to the gas flow is suppressed, and ultrasonic transmission / reception is performed. The influence on the detection accuracy of the sensor is relatively small.
In the case of a mesh, unnecessary gaps are formed in various directions other than the direction in which the ultrasonic waves are desired to pass between the fibers and the gaps between the fibers, and fine dust or the like is likely to adhere. However, in the case of the turbulent flow suppressing member 54 shown in the present embodiment having the fine holes EH, since there is no gap in the direction other than the direction in which the ultrasonic waves are desired to pass, adhesion of dust and the like can be suppressed and more stable accuracy can be maintained. can do.

●[整流板の配置と効果(図7)]
次に、図7を用いて整流板53について説明する。図5及び図7に示すように、測定管52の内部には整流板53がガスの流れる方向に対して平行に配置され、ガスを整流して(乱流を抑制して)超音波送受信センサの検出精度を向上させている。
また、整流板53はガスを整流するだけでなく、一方の超音波送受信センサから送信された超音波を、他方の超音波送受信センサに適切に誘導する効果も有している。図7に示すように、超音波は測定管52における一方の開口部52cから対向する開口部52cに向けて送信される。ここで、整流板53を、ガスの流れる方向に対して平行、且つ超音波送受信センサから送信する超音波の方向に対して平行となるように配置する。なお、整流板53の長さ(ガスの流れる方向に対する長さ)は、1対の開口部52cを含む長さ以上であればよく、少なくとも一方の超音波送受信センサから他方の超音波送受信センサまでの間に配置されていればよい。
これにより、一方の超音波送受信センサから送信された超音波を、他方の超音波送受信センサに適切に誘導することができ、超音波送受信センサのS/Nを向上させ、検出精度を向上させている。
● [Arrangement and effect of current plate (Fig. 7)]
Next, the current plate 53 will be described with reference to FIG. As shown in FIGS. 5 and 7, a rectifying plate 53 is disposed in the measurement tube 52 in parallel with the gas flow direction, and rectifies the gas (suppresses turbulent flow) to transmit and receive an ultrasonic wave. The detection accuracy is improved.
The rectifying plate 53 not only rectifies the gas but also has an effect of appropriately guiding the ultrasonic wave transmitted from one ultrasonic transmission / reception sensor to the other ultrasonic transmission / reception sensor. As shown in FIG. 7, the ultrasonic wave is transmitted from one opening 52 c in the measurement tube 52 toward the opening 52 c facing the ultrasonic wave. Here, the rectifying plate 53 is arranged so as to be parallel to the gas flow direction and parallel to the direction of the ultrasonic wave transmitted from the ultrasonic transmission / reception sensor. Note that the length of the rectifying plate 53 (the length with respect to the gas flow direction) may be longer than the length including the pair of openings 52c, from at least one ultrasonic transmission / reception sensor to the other ultrasonic transmission / reception sensor. What is necessary is just to be arrange | positioned between.
Thereby, the ultrasonic wave transmitted from one ultrasonic transmission / reception sensor can be appropriately guided to the other ultrasonic transmission / reception sensor, and the S / N of the ultrasonic transmission / reception sensor is improved, and the detection accuracy is improved. Yes.

次に、整流板53の厚さ(図7におけるZ軸方向の厚さ)について説明する。整流板53が必要以上に厚いと、超音波送受信センサによる超音波信号の受信レベルに影響する(整流板53が厚いほど、受信レベルが小さくなる傾向がある)ため、薄いほうが好ましい。受信レベルが所定値よりも小さい場合、電子回路で増幅するが、受信レベルが小さいほど増幅度が大きくなり、ノイズ成分も大きくなり、計測精度が悪くなる(S/Nが低下する)。しかし、組み付け強度、耐振動性等より薄さにも限界がある。発明者は種々の実験の結果、厚さ0.3[mm]以下(第2所定値以下)のステンレス板を用いることが良好な計測精度を得られることを確認した。なお、強度及び耐振動性及び受信レベルの観点から0.2[mm]程度が望ましいことを実験的に確認し、より好ましい計測精度を得ることができた。なお、材質はステンレスに限定されず、種々のものを用いることができる。また、ステンレス板以上の強度があれば0.2[mm]以下にしても良いことは言うまでもない。   Next, the thickness of the rectifying plate 53 (the thickness in the Z-axis direction in FIG. 7) will be described. If the rectifying plate 53 is thicker than necessary, the reception level of the ultrasonic signal from the ultrasonic transmission / reception sensor is affected (the reception level tends to decrease as the rectifying plate 53 is thicker). When the reception level is smaller than a predetermined value, amplification is performed by an electronic circuit. However, the smaller the reception level is, the larger the amplification is, the larger the noise component is, and the measurement accuracy is deteriorated (S / N is lowered). However, there is a limit to thinness as well as assembly strength and vibration resistance. As a result of various experiments, the inventors have confirmed that it is possible to obtain good measurement accuracy by using a stainless steel plate having a thickness of 0.3 [mm] or less (second predetermined value or less). In addition, from the viewpoint of strength, vibration resistance, and reception level, it was experimentally confirmed that about 0.2 [mm] was desirable, and more preferable measurement accuracy could be obtained. The material is not limited to stainless steel, and various materials can be used. Needless to say, if the strength is higher than that of the stainless steel plate, it may be 0.2 [mm] or less.

●[本実施の形態の効果(図8、図9)]
図8に、本実施の形態に示すガスメータ1にて計測した流量の精度について実験結果の例を示す。
図8に示す例は、乱流抑制部材54の構造において、メッシュタイプ54z(改良前)とフォトエッチングによる微細孔タイプ54a(改良後)について比較したものである(図8(A)参照)。乱流抑制部材54の構造以外の部分(計測流路50の構造、超音波送受信センサ特性等)は同じである(どちらも雰囲気温度23[℃])。なお、図8に示す実験では、本実施の形態にて説明した内容を採用しており、測定管52の断面S(図3参照)の面積の精度、整流板53による超音波送受信センサの検出精度等が従来より向上されている。
● [Effects of the present embodiment (FIGS. 8 and 9)]
In FIG. 8, the example of an experimental result is shown about the precision of the flow volume measured with the gas meter 1 shown to this Embodiment.
The example shown in FIG. 8 compares the mesh type 54z (before improvement) and the fine hole type 54a (after improvement) by photoetching in the structure of the turbulent flow suppressing member 54 (see FIG. 8A). Portions other than the structure of the turbulent flow suppressing member 54 (the structure of the measurement channel 50, the characteristics of the ultrasonic transmission / reception sensor, etc.) are the same (both are ambient temperature 23 [° C.]). In the experiment shown in FIG. 8, the contents described in the present embodiment are adopted, and the accuracy of the area of the cross section S (see FIG. 3) of the measurement tube 52 and the detection of the ultrasonic transmission / reception sensor by the rectifying plate 53 are adopted. Accuracy and the like have been improved compared to the prior art.

図8(B)は、メッシュタイプ54z(改良前)を用いた場合の、空気及び13A(計測用代替ガス)の各流量(横軸方向)において、器差(縦軸方向)を示している。また、図8(C)は、フォトエッチングによる微細孔タイプ54a(改良後)を用いた場合の、空気及び13A(計測用代替ガス)の各流量(横軸方向)において、器差(縦軸方向)を示している。
なお「器差」とは、「測定器が示した値」から「示すべき値」を差し引いて、その割合に換算したものである。
メッシュタイプ54z(改良前)の場合(図8(B))、空気では器差がプラス側に偏り、13Aではマイナス側に偏る傾向にある。また、同じ流量でも空気と13Aでは器差の差がやや大きい。また、同じ空気であっても流量の違いによる器差の変動が比較的大きい。通常では「空気」の流量を計測して精度等を検査し、実際には「13A」と特性的に近いガスの流量を計測するため、同じ流量でも空気と13Aで器差の差があるのは好ましくない。
これに対しフォトエッチングによる微細孔タイプ54a(改良後)の場合(図8(C))、空気及び13Aともに偏りなく「器差0[%]」の近傍に収まっている。また、空気と13Aでの器差の差がほとんど生じておらず(特に流量L1以上の場合には差が非常に小さい)、非常に良好な特性を示している。
FIG. 8B shows the instrumental error (vertical axis direction) at each flow rate (horizontal axis direction) of air and 13A (measurement alternative gas) when the mesh type 54z (before improvement) is used. . FIG. 8C shows the instrumental difference (vertical axis) at each flow rate (horizontal axis direction) of air and 13A (alternative gas for measurement) when the fine hole type 54a (after improvement) by photoetching is used. Direction).
The “instrument difference” is obtained by subtracting the “value to be shown” from the “value shown by the measuring device” and converting it to the ratio.
In the case of the mesh type 54z (before improvement) (FIG. 8B), the instrumental difference tends to be biased toward the plus side in air, and tends to be biased toward the minus side in 13A. Further, the difference in instrumental difference between air and 13A is slightly large even at the same flow rate. Moreover, even if the air is the same, the fluctuation of the instrumental difference due to the difference in flow rate is relatively large. Normally, the flow rate of “air” is measured to check the accuracy, etc., and the flow rate of gas that is close in characteristic to “13A” is actually measured. Is not preferred.
On the other hand, in the case of the micro-hole type 54a (after improvement) by photoetching (FIG. 8C), both air and 13A are within the vicinity of “vessel difference 0 [%]” without any bias. In addition, there is almost no difference in instrumental difference between air and 13A (particularly the difference is very small when the flow rate is L1 or more), and very good characteristics are shown.

また、図9はフォトエッチングによる微細孔タイプ54aであって、測定管部材52a及び52bの材質を変えた場合のグラフである。(改良前)は線膨張係数が約10*10-5[cm/cm・℃]の材料であり、(改良後)は約2.8*10-5[cm/cm・℃]の材料を使用したときの試験結果である。
図9に示すグラフを見ればわかるように、(改良前)と(改良後)のどちらも器差枠内に収まっているが、(改良後)のほうが器差0%からのずれが小さく、且つ器差枠までのマージンが広い。このため、(改良後)のほうが流量測定の精度がより高く、且つ温度変化に伴う器差変動が小さく、より好ましい特性を実現できていることが確認できた。
FIG. 9 is a graph of the fine hole type 54a by photoetching when the material of the measuring tube members 52a and 52b is changed. (Before improvement) is a material with a linear expansion coefficient of about 10 * 10 −5 [cm / cm · ° C.] (After improvement) is a material with about 2.8 * 10 −5 [cm / cm · ° C.] It is a test result when using it.
As can be seen from the graph shown in FIG. 9, both (before improvement) and (after improvement) are within the instrumental error frame, but (after improvement) has a smaller deviation from instrumental error of 0%. In addition, the margin to the instrument frame is wide. For this reason, it was confirmed that (after improvement) the flow rate measurement accuracy was higher, the instrumental difference variation with temperature change was smaller, and more favorable characteristics could be realized.

本発明のガスメータ1は、本実施の形態で説明した構成、構造、外観、形状、材質等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
本実施の形態では整流板53を3枚用いたが、計測する流体の種類、断面Sの大きさ、流量のダイナミックレンジ等に応じて適切な数の整流板を用いるようにしてもよい。
また、以上(≧)、以下(≦)、より大きいまたは越える(>)、未満または下回る(<)等は、等号を含んでも含まなくてもよい。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
The gas meter 1 of the present invention is not limited to the configuration, structure, appearance, shape, material, and the like described in the present embodiment, and various modifications, additions, and deletions can be made without changing the gist of the present invention.
In this embodiment, three rectifying plates 53 are used. However, an appropriate number of rectifying plates may be used according to the type of fluid to be measured, the size of the cross section S, the dynamic range of the flow rate, and the like.
Further, the above (≧), the following (≦), the larger or larger (>), the smaller or smaller (<), or the like may or may not include an equal sign.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.

本発明のガスメータ1は、業務用ガスメータ及び一般家庭用ガスメータの他にも、種々の流体の流量を計測する流量計測装置に適用することができる。   The gas meter 1 of the present invention can be applied to a flow rate measuring device that measures the flow rates of various fluids in addition to a business gas meter and a general household gas meter.

本発明のガスメータ1の一実施の形態の概略外観図である。It is a schematic external view of one embodiment of the gas meter 1 of the present invention. ガスメータ1の内部構造を説明する図である。It is a figure explaining the internal structure of the gas meter. 計測流路50の構造を説明する図である。It is a figure explaining the structure of the measurement flow path. 計測流路50の断面(水平方向の断面)を示す図である。It is a figure which shows the cross section (horizontal direction cross section) of the measurement flow path. 測定管52の構造を説明する図である。It is a figure explaining the structure of the measurement pipe | tube 52. FIG. 乱流抑制部材54の構造を説明する図である。It is a figure explaining the structure of the turbulent flow suppression member. 整流板53の配置位置と効果を説明する図である。It is a figure explaining the arrangement position and effect of the baffle plate 53. FIG. 実際に流体の流量を計測した実験結果を示す図である。It is a figure which shows the experimental result which actually measured the flow volume of the fluid. 各温度にて流体の流量を計測した実験結果を示す図である。It is a figure which shows the experimental result which measured the flow volume of the fluid at each temperature.

符号の説明Explanation of symbols

1 ガスメータ
1a 供給元流入口
1b 設備流出口
40 第1流路形成部材
48 第2流路形成部材
50 計測流路
51 本体ケース
51a、51b 本体ケース部材
51c センサ孔
52 測定管
52a、52b 測定管部材
52c 開口部
53 整流板
54 乱流抑制部材
DESCRIPTION OF SYMBOLS 1 Gas meter 1a Supply source inlet 1b Equipment outlet 40 1st flow path formation member 48 2nd flow path formation member 50 Measurement flow path 51 Main body case 51a, 51b Main body case member 51c Sensor hole 52 Measurement pipe 52a, 52b Measurement pipe member 52c Opening 53 Current plate 54 Turbulence suppressing member

Claims (6)

ガスの流量を計測するための計測流路に1対の超音波送受信手段を対向させて設けたガスメータであって、
計測流路を、本体ケースと、当該本体ケース内に収容した流量測定用のストレート形状を有する測定管とで構成する、
ことを特徴とするガスメータ。
A gas meter provided with a pair of ultrasonic transmission / reception means facing a measurement channel for measuring the flow rate of gas,
The measurement channel is composed of a main body case and a measurement tube having a straight shape for flow rate measurement accommodated in the main body case.
A gas meter characterized by that.
請求項1に記載のガスメータであって、
測定管を、ガスの流れる方向に対して垂直な断面がL字状となる2つのL形部材にて、断面が矩形の筒状となるように接合して構成する、
ことを特徴とするガスメータ。
The gas meter according to claim 1,
The measurement tube is configured by joining two L-shaped members having a L-shaped cross section perpendicular to the gas flow direction so that the cross section is a rectangular tube.
A gas meter characterized by that.
請求項1または2に記載のガスメータであって、
測定管における超音波送受信手段が臨む場所には開口部を設け、当該開口部には超音波を通過させる微細孔を備えた乱流抑制部材を設ける、
ことを特徴とするガスメータ。
The gas meter according to claim 1 or 2,
An opening is provided at a place where the ultrasonic transmission / reception means faces in the measurement tube, and a turbulent flow suppression member having a fine hole through which the ultrasonic wave passes is provided in the opening.
A gas meter characterized by that.
請求項1〜3のいずれかに記載のガスメータであって、
線膨張係数が第1所定値以下の部材で測定管を形成する、
ことを特徴とするガスメータ。
The gas meter according to any one of claims 1 to 3,
Forming a measuring tube with a member having a linear expansion coefficient equal to or less than a first predetermined value;
A gas meter characterized by that.
請求項1〜4のいずれかに記載のガスメータであって、
ガスの流量を計測するための計測流路に1対の超音波送受信手段を備え、1対の超音波送受信手段が送受信する超音波の進行方向がガスの流れる方向に対して所定の角度を有するように、且つ当該超音波がガスの流れを横切るように1対の超音波送受信手段が配置されたガスメータであって、
計測流路内における一方の超音波送受信手段から他方の超音波送受信手段までの間に、ガスの流れる方向に平行、且つ超音波送受信手段から送信する超音波の方向に平行な整流板を設ける、
ことを特徴とするガスメータ。
A gas meter according to any one of claims 1 to 4,
A pair of ultrasonic transmission / reception means is provided in the measurement flow path for measuring the gas flow rate, and the traveling direction of the ultrasonic waves transmitted / received by the pair of ultrasonic transmission / reception means has a predetermined angle with respect to the gas flow direction. And a gas meter in which a pair of ultrasonic transmission / reception means is arranged so that the ultrasonic wave crosses the gas flow,
Between the one ultrasonic transmission / reception means and the other ultrasonic transmission / reception means in the measurement flow path, a rectifying plate is provided that is parallel to the gas flow direction and parallel to the direction of the ultrasonic waves transmitted from the ultrasonic transmission / reception means,
A gas meter characterized by that.
請求項5に記載のガスメータであって、
整流板の厚さを第2所定値以下とする、
ことを特徴とするガスメータ。

The gas meter according to claim 5, wherein
The thickness of the current plate is set to a second predetermined value or less,
A gas meter characterized by that.

JP2003343124A 2003-10-01 2003-10-01 Gas meter Expired - Lifetime JP4455000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343124A JP4455000B2 (en) 2003-10-01 2003-10-01 Gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343124A JP4455000B2 (en) 2003-10-01 2003-10-01 Gas meter

Publications (2)

Publication Number Publication Date
JP2005106726A true JP2005106726A (en) 2005-04-21
JP4455000B2 JP4455000B2 (en) 2010-04-21

Family

ID=34537194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343124A Expired - Lifetime JP4455000B2 (en) 2003-10-01 2003-10-01 Gas meter

Country Status (1)

Country Link
JP (1) JP4455000B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283565A (en) * 2004-03-02 2005-10-13 Yazaki Corp Flow rate measurement device
JP2006118864A (en) * 2004-10-19 2006-05-11 Yazaki Corp Gas meter
JP2006162455A (en) * 2004-12-08 2006-06-22 Yazaki Corp Bottom face flow passage unit, and gas meter incorporated therewith
JP2008232943A (en) * 2007-03-22 2008-10-02 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2009085814A (en) * 2007-10-01 2009-04-23 Panasonic Corp Flow-measuring device for fluid
JP2009186432A (en) * 2008-02-08 2009-08-20 Toyo Gas Meter Kk Manufacturing method for gas meter
JP2009210524A (en) * 2008-03-06 2009-09-17 Panasonic Corp Multilayer channel member of ultrasonic fluid measuring device
JP2009210525A (en) * 2008-03-06 2009-09-17 Panasonic Corp Method of manufacturing multilayer channel member of ultrasonic fluid measuring device
JP2009216389A (en) * 2008-03-06 2009-09-24 Tokyo Gas Co Ltd Method for inspecting ultrasonic gas meter parts and its apparatus
CN103323065A (en) * 2013-06-08 2013-09-25 重庆前卫仪表有限责任公司 Opposite-emission single-channel flow channel for gas flow meter
WO2017152915A1 (en) * 2016-03-07 2017-09-14 Apator Miitors Aps Flow conduit insert, ultrasonic flow meter comprising such flow conduit insert, and use of a flow conduit insert
CN117213571A (en) * 2023-09-18 2023-12-12 青岛乾程科技股份有限公司 Structure and method for improving linearity of metering error of ultrasonic gas flowmeter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283565A (en) * 2004-03-02 2005-10-13 Yazaki Corp Flow rate measurement device
JP4555669B2 (en) * 2004-03-02 2010-10-06 矢崎総業株式会社 Flow measuring device
JP2006118864A (en) * 2004-10-19 2006-05-11 Yazaki Corp Gas meter
JP2006162455A (en) * 2004-12-08 2006-06-22 Yazaki Corp Bottom face flow passage unit, and gas meter incorporated therewith
JP4677224B2 (en) * 2004-12-08 2011-04-27 矢崎総業株式会社 Gas meter
JP2008232943A (en) * 2007-03-22 2008-10-02 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2009085814A (en) * 2007-10-01 2009-04-23 Panasonic Corp Flow-measuring device for fluid
JP2009186432A (en) * 2008-02-08 2009-08-20 Toyo Gas Meter Kk Manufacturing method for gas meter
JP2009216389A (en) * 2008-03-06 2009-09-24 Tokyo Gas Co Ltd Method for inspecting ultrasonic gas meter parts and its apparatus
JP2009210525A (en) * 2008-03-06 2009-09-17 Panasonic Corp Method of manufacturing multilayer channel member of ultrasonic fluid measuring device
JP2009210524A (en) * 2008-03-06 2009-09-17 Panasonic Corp Multilayer channel member of ultrasonic fluid measuring device
CN103323065A (en) * 2013-06-08 2013-09-25 重庆前卫仪表有限责任公司 Opposite-emission single-channel flow channel for gas flow meter
CN103323065B (en) * 2013-06-08 2016-08-10 重庆前卫科技集团有限公司 The correlation single channel runner of gas flow gauge table
WO2017152915A1 (en) * 2016-03-07 2017-09-14 Apator Miitors Aps Flow conduit insert, ultrasonic flow meter comprising such flow conduit insert, and use of a flow conduit insert
US10620025B2 (en) 2016-03-07 2020-04-14 Apator Miitors Aps Flow conduit insert, ultrasonic flow meter comprising such flow conduit insert, and use of a flow conduit insert
CN117213571A (en) * 2023-09-18 2023-12-12 青岛乾程科技股份有限公司 Structure and method for improving linearity of metering error of ultrasonic gas flowmeter

Also Published As

Publication number Publication date
JP4455000B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US9372105B2 (en) Ultrasonic flow rate measurement device
JP4455000B2 (en) Gas meter
EP2639560B1 (en) Ultrasonic flow rate measurement device
WO2010070891A1 (en) Ultrasonic flowmeter
EP1182431A1 (en) Ultrasonic flowmeter
EP2600116A1 (en) Flow measurement structure and flow measurement device
US9612141B2 (en) Ultrasonic flow measurement system
JP2017173200A (en) Straight tube type gas meter
JP2020034464A (en) Ultrasonic flowmeter
JP4936856B2 (en) Flowmeter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP2014077750A (en) Ultrasonic meter
JP2006064626A (en) Flow rate measuring apparatus
JP2007121036A (en) Flowmeter
JP4583831B2 (en) Gas meter
JP4588386B2 (en) Gas meter
JP2009047536A (en) Flow measuring device
JP5154197B2 (en) Gas meter
JP2006017499A (en) Gas meter
JP7373772B2 (en) Physical quantity measuring device
JP7373771B2 (en) Physical quantity measuring device
US11906337B2 (en) Inline transducer housing assembly
JP5069141B2 (en) Gas meter manufacturing method
JP4346458B2 (en) Ultrasonic flow meter
JP2008051562A (en) Fluid measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term