JP5069141B2 - Gas meter manufacturing method - Google Patents

Gas meter manufacturing method Download PDF

Info

Publication number
JP5069141B2
JP5069141B2 JP2008029468A JP2008029468A JP5069141B2 JP 5069141 B2 JP5069141 B2 JP 5069141B2 JP 2008029468 A JP2008029468 A JP 2008029468A JP 2008029468 A JP2008029468 A JP 2008029468A JP 5069141 B2 JP5069141 B2 JP 5069141B2
Authority
JP
Japan
Prior art keywords
gas meter
flow rate
rectifying
gas
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008029468A
Other languages
Japanese (ja)
Other versions
JP2009186432A (en
Inventor
彰 梶谷
秀一 山崎
富士雄 堀
二郎 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008029468A priority Critical patent/JP5069141B2/en
Publication of JP2009186432A publication Critical patent/JP2009186432A/en
Application granted granted Critical
Publication of JP5069141B2 publication Critical patent/JP5069141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガスメータの製造方法に関する。   The present invention relates to a method for manufacturing a gas meter.

従来、ガスの流量計測には、膜式ガスメータ等の種々のガスメータが利用されており、近年では、より高精度に流量を計測可能な超音波式ガスメータが提案されている。
例えば、図9及び図10に示す特許文献1に記載された従来技術では、流入口11から流出口12へと流れる被計測流体(ガス)の流量を計測する際、導通路125を流れる被計測流体に超音波を伝播させて、その超音波の伝播時間または伝播速度が被計測流体の流速によって変化することを利用して被計測流体の流量を計測している。
この計測方法では、一般に導通路における被計測流体の流れの様相が大幅に変化すると、それに起因して計測誤差が大きくなる傾向にある。そのため、特許文献1では、導通路125を整流板126で厚さ(複数の層の積層方向の高さ)が均等になるように複数の層に分割して流速分布を均一または安定化させて計測精度を向上させている。
そしてガスメータ101は、このように計測した流量に対して、個々のガスメータ毎に求めた補正係数(流量係数)を用いてガス流量を積算して流量値を求め、どのガスメータ101も正確な流量値を求めることができるようにしている。
特開2006−64626号公報
Conventionally, various gas meters such as a membrane gas meter have been used for gas flow rate measurement. In recent years, an ultrasonic gas meter capable of measuring a flow rate with higher accuracy has been proposed.
For example, in the related art described in Patent Document 1 shown in FIGS. 9 and 10, when the flow rate of the fluid (gas) to be measured flowing from the inlet 11 to the outlet 12 is measured, the measured target flowing through the conduction path 125 is measured. An ultrasonic wave is propagated through the fluid, and the flow rate of the ultrasonic wave is measured by changing the propagation time or propagation speed of the ultrasonic wave according to the flow velocity of the measured fluid.
In this measuring method, generally, when the flow state of the fluid to be measured in the conduction path changes significantly, the measurement error tends to increase. For this reason, in Patent Document 1, the conduction path 125 is divided into a plurality of layers so that the thickness (height in the stacking direction of the plurality of layers) is equalized by the rectifying plate 126 to make the flow velocity distribution uniform or stable. The measurement accuracy is improved.
The gas meter 101 obtains a flow value by integrating the gas flow rate using the correction coefficient (flow coefficient) obtained for each gas meter with respect to the flow rate thus measured, and any gas meter 101 has an accurate flow value. To be able to ask.
JP 2006-64626 A

上記の補正係数は、ガスメータとして要求される計測精度を個々のガスメータで満足させるために、例えばガスメータの製造における検査工程にて、基準となる種々の流量の流体(ガス)を用い、ガスメータ毎の補正係数を求めて、そのガスメータに固有の補正係数を記憶させている。
また、流量を計測するための導通路125(図10参照)は、樹脂成形品の計測管122に、金属板で形成された整流板126を組み付けて製造されている。流量の計測精度を向上させるためには、計測管122の寸法精度を向上させる必要があるが、複数の金型を作った場合における各金型の寸法バラツキや、樹脂成形品の成形時の熱収縮のバラツキ等により、安定した寸法精度を確保することが困難である。このバラツキが上記の補正係数で補正可能な許容範囲内であれば特に問題ないが、流量の計測値を補正する許容範囲をはずれた場合、その計測管122を破棄して許容範囲内に収まる計測管122と交換したり、金型そのものを作り直したりしており、多くの手間と費用を必要としている。
本発明は、このような点に鑑みて創案されたものであり、流量の計測値を補正する許容範囲をはずれた計測管を破棄することなく再利用することが可能な、ガスメータの製造方法を提供することを課題とする。
In order to satisfy the measurement accuracy required for each gas meter with each gas meter, for example, in the inspection process in the manufacture of the gas meter, the above correction coefficient uses fluids (gases) of various flow rates as a reference. A correction coefficient is obtained, and a correction coefficient unique to the gas meter is stored.
In addition, the conduction path 125 (see FIG. 10) for measuring the flow rate is manufactured by assembling a rectifying plate 126 formed of a metal plate to a measurement tube 122 of a resin molded product. In order to improve the measurement accuracy of the flow rate, it is necessary to improve the dimensional accuracy of the measuring tube 122. However, when a plurality of dies are produced, the dimensional variation of each die and the heat during molding of the resin molded product are required. It is difficult to ensure stable dimensional accuracy due to variations in shrinkage and the like. If this variation is within an allowable range that can be corrected by the above correction coefficient, there is no particular problem. However, if the allowable range for correcting the flow rate measurement value is deviated, the measurement tube 122 is discarded and the measurement falls within the allowable range. The tube 122 is exchanged or the mold itself is remade, which requires a lot of labor and cost.
The present invention was devised in view of such a point, and provides a method for manufacturing a gas meter that can be reused without discarding a measuring tube that is out of an allowable range for correcting a flow rate measurement value. The issue is to provide.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりのガスメータの製造方法である。
請求項1に記載のガスメータの製造方法は、ガスメータの内部に設けられ、断面が矩形の空洞部にてガスの流路が形成された筒状形状を有し、前記流路が、所定の間隔で配置された複数の薄板状の整流板にて複数の層に仕切られており、前記流路を流れるガスの流量が所定の検出手段による検出結果に基づいて計測されるように構成された計測管を有するガスメータの製造方法に関する。
まず、前記複数の整流板が組み付けられる計測管を、分解して整流板を並べ替えて再度組み付け直すことが可能な構造とする。
また、前記整流板を、ガスの流れる方向に対して平坦でなく僅かに反らせた反り形状として、所定の間隔で配置する複数の整流板について、n番目の整流板の前記反り形状の凹形状が1番目の整流板の方向を向くように、且つm番目の整流板の前記反り形状の凸形状が1番目の整流板の方向を向くように、反り形状の凹形状と凸形状との並べ方において、複数の並べ方の中から、ガス流量の計測値が小さくなる傾向にある、あるいはガス流量の計測値を補正する補正係数が大きくなる傾向にある、前記整流板の第1の並べ方と、複数の並べ方の中から、ガス流量の計測値が大きくなる傾向にある、あるいはガス流量の計測値を補正する補正係数が小さくなる傾向にある、前記整流板の第2の並べ方と、の少なくとも2通りの並べ方を予め選定しておく。
そして、まず、任意の並べ方として前記整流板を組み付けた計測管を用いてガスメータを組み付けて、基準流量のガスを用いて、個々のガスメータにおいて前記基準流量に対する計測値、あるいは前記基準流量に対する前記補正係数を求め、求めた計測値が許容範囲をはずれて小さい方向にずれている場合、あるいは求めた補正係数が許容範囲をはずれて大きい方向にずれていた場合は、当該ガスメータにおける計測管を分解して前記第2の並べ方に整流板を並び替えて再度計測管を組み付け、求めた計測値が許容範囲をはずれて大きい方向にずれている場合、あるいは求めた補正係数が許容範囲をはずれて小さい方向にずれていた場合は、当該ガスメータにおける計測管を分解して前記第1の並べ方に整流板を並び替えて再度計測管を組み付ける、ガスメータの製造方法である。
As means for solving the above-mentioned problems, the first invention of the present invention is a gas meter manufacturing method as described in claim 1.
The method of manufacturing a gas meter according to claim 1 is provided inside the gas meter and has a cylindrical shape in which a gas flow path is formed in a hollow portion having a rectangular cross section, and the flow path has a predetermined interval. Is divided into a plurality of layers by a plurality of thin plate-like rectifying plates arranged in the above, and a measurement configured to measure the flow rate of the gas flowing through the flow path based on a detection result by a predetermined detection means The present invention relates to a method for manufacturing a gas meter having a tube.
First, the measuring tube to which the plurality of rectifying plates are assembled is disassembled, the rectifying plates are rearranged, and the structure can be reassembled.
Further, as for the plurality of rectifying plates arranged at a predetermined interval, the concave shape of the warping shape of the nth rectifying plate is a warped shape in which the rectifying plate is not flat but slightly bent with respect to the gas flow direction. In arranging the warped concave shape and the convex shape so that the warped convex shape of the mth current plate faces the direction of the first current plate, and the convex shape of the mth current plate faces the direction of the first current plate. A first arrangement of the rectifying plates, in which a measured value of the gas flow rate tends to decrease or a correction coefficient for correcting the measured value of the gas flow rate tends to increase from among a plurality of arrangement methods; Among the arrangement methods, there are at least two kinds of the second arrangement method of the rectifying plates in which the measurement value of the gas flow rate tends to increase or the correction coefficient for correcting the measurement value of the gas flow rate tends to decrease. Select the arrangement method in advance To keep.
First, as an arbitrary arrangement, a gas pipe is assembled using a measurement pipe assembled with the rectifying plate, and a reference flow rate gas is used to measure a value measured with respect to the reference flow rate in each gas meter, or the correction with respect to the reference flow rate. If the measured value is out of the allowable range and deviates in a small direction, or the calculated correction coefficient is out of the allowable range and deviates in a large direction, disassemble the measuring tube in the gas meter. In this case, the rectifying plates are rearranged in the second arrangement and the measuring tube is assembled again, and the obtained measurement value deviates from the allowable range and deviates in the large direction, or the obtained correction coefficient deviates from the allowable range and is small. If the measurement tube is not aligned, the measurement tube in the gas meter is disassembled, the rectifying plates are rearranged in the first arrangement, and the measurement tube is assembled again. Kicking, it is a method of manufacturing a gas meter.

また、本発明の第2発明は、請求項2に記載されたとおりのガスメータの製造方法である。
請求項2に記載のガスメータの製造方法は、請求項1に記載のガスメータの製造方法であって、更に、複数の並べ方の中から、ガス流量の計測値が中央近傍となる傾向にある、あるいはガス流量の計測値を補正する補正係数が中央近傍となる傾向にある、前記整流板の第3の並べ方を予め選定しておく。
そして、まず、任意の並べ方として前記整流板を組み付けた計測管を用いてガスメータを組み付けて、基準流量のガスを用いて、個々のガスメータにおいて前記基準流量に対する計測値、あるいは前記基準流量に対する前記補正係数を求めることに代えて、まず、前記第3の並べ方として前記整流板を組み付けた計測管を用いてガスメータを組み付けて、基準流量のガスを用いて、個々のガスメータにおいて前記基準流量に対する計測値、あるいは前記基準流量に対する前記補正係数を求める、ガスメータの製造方法である。
A second invention of the present invention is a gas meter manufacturing method as set forth in claim 2.
The method for manufacturing a gas meter according to claim 2 is the method for manufacturing a gas meter according to claim 1, and the measured value of the gas flow rate tends to be near the center from among a plurality of arrangement methods, or A third arrangement of the rectifying plates in which the correction coefficient for correcting the measured value of the gas flow rate tends to be near the center is selected in advance.
First, as an arbitrary arrangement, a gas pipe is assembled using a measurement pipe assembled with the rectifying plate, and a reference flow rate gas is used to measure a value measured with respect to the reference flow rate in each gas meter, or the correction with respect to the reference flow rate. Instead of obtaining a coefficient, first, as a third arrangement, a gas meter is assembled using a measurement pipe assembled with the rectifying plate, and a measured value with respect to the reference flow rate in each gas meter using a reference flow rate gas. Or a method of manufacturing a gas meter, wherein the correction coefficient for the reference flow rate is obtained.

また、本発明の第3発明は、請求項3に記載されたとおりのガスメータの製造方法である。
請求項3に記載のガスメータの製造方法は、請求項1または2に記載のガスメータの製造方法であって、前記計測管には、5枚の整流板を所定の間隔で配置し、前記第1の並べ方では、2番目の整流板は凹形状が1番目の整流板の方向を向くように、且つ4番目の整流板は凸形状が1番目の整流板の方向を向くように並べる、ガスメータの製造方法である。
A third invention of the present invention is a gas meter manufacturing method as set forth in claim 3.
A gas meter manufacturing method according to claim 3 is the gas meter manufacturing method according to claim 1 or 2, wherein five rectifying plates are arranged at predetermined intervals in the measurement pipe, and the first In this arrangement, the second rectifying plate is arranged so that the concave shape faces the direction of the first rectifying plate, and the fourth rectifying plate is arranged so that the convex shape faces the direction of the first rectifying plate. It is a manufacturing method.

また、本発明の第4発明は、請求項4に記載されたとおりのガスメータの製造方法である。
請求項4に記載のガスメータの製造方法は、請求項1または2に記載のガスメータの製造方法であって、前記計測管には、5枚の整流板を所定の間隔で配置し、前記第2の並べ方では、2番目の整流板は凸形状が1番目の整流板の方向を向くように、且つ4番目の整流板は凹形状が1番目の整流板の方向を向くように並べる、ガスメータの製造方法である。
A fourth invention of the present invention is a gas meter manufacturing method as set forth in claim 4.
A gas meter manufacturing method according to claim 4 is the gas meter manufacturing method according to claim 1 or 2, wherein five rectifying plates are arranged at predetermined intervals in the measurement pipe, and the second In this arrangement, the second rectifying plate is arranged so that the convex shape faces the direction of the first rectifying plate, and the fourth rectifying plate is arranged so that the concave shape faces the direction of the first rectifying plate. It is a manufacturing method.

また、本発明の第5発明は、請求項5に記載されたとおりのガスメータの製造方法である。
請求項5に記載のガスメータの製造方法は、請求項2に記載のガスメータの製造方法であって、前記計測管には、5枚の整流板を所定の間隔で配置し、前記第3の並べ方では、2番目と4番目の整流板は凹形状が1番目の整流板の方向を向くように、且つ3番目の整流板は凸形状が1番目の整流板の方向を向くように並べる、あるいは、2番目と4番目の整流板は凸形状が1番目の整流板の方向を向くように、且つ3番目の整流板は凹形状が1番目の整流板の方向を向くように並べる、ガスメータの製造方法である。
A fifth aspect of the present invention is a gas meter manufacturing method as set forth in the fifth aspect.
The gas meter manufacturing method according to claim 5 is the gas meter manufacturing method according to claim 2, wherein five rectifying plates are arranged at predetermined intervals in the measurement tube, and the third arrangement method is performed. Then, the second and fourth rectifying plates are arranged so that the concave shape faces the direction of the first rectifying plate and the third rectifying plate is arranged so that the convex shape faces the direction of the first rectifying plate, or The second and fourth rectifying plates are arranged so that the convex shape faces the direction of the first rectifying plate, and the third rectifying plate is arranged so that the concave shape faces the direction of the first rectifying plate. It is a manufacturing method.

請求項1に記載のガスメータの製造方法では、まず、計測管の構成を、分解して整流板を並べ替えて再度組み付け可能な構成とする。更に、整流板の並べ方において、計測値が小さくなる(補正係数が大きくなる)傾向の並べ方、計測値が大きくなる(補正係数が小さくなる)傾向の並べ方、を予め選定しておく。
これにより、まず、整流板を任意の並べ方とした計測管を用いてガスメータを組み付けて、基準流量にて検査し、計測値が小さい(補正係数が大きい)場合は計測管を破棄することなく一旦分解して計測値が大きくなる(補正係数が小さくなる)傾向の並べ方として再度組み付けて再検査すればよい。また、計測値が大きい(補正係数が小さい)場合は計測管を破棄することなく一旦分解して計測値が小さくなる(補正係数が大きくなる)傾向の並べ方として再度組み付けて再検査すればよい。
このように、流量の計測値を補正する許容範囲をはずれた計測管を破棄することなく再利用することが可能となり、ムダがない。また、検査手順も明確になり、検査時間の短縮化も期待できる。
In the gas meter manufacturing method according to the first aspect, first, the configuration of the measurement tube is disassembled, the rectifying plates are rearranged, and the assembly can be reassembled. Further, in arranging the current plates, a method of arranging the tendency of the measured value to be small (correction coefficient is large) and a method of arranging the tendency of the measurement value to be large (the correction coefficient is small) are selected in advance.
In this way, first, a gas meter is assembled using a measuring tube with an arbitrary arrangement of rectifying plates and inspected at a reference flow rate. If the measured value is small (correction coefficient is large), the measuring tube is temporarily discarded without being discarded. What is necessary is just to assemble again and re-inspect as a way of arranging the tendency that the measurement value becomes large by decomposing and the correction coefficient becomes small. If the measurement value is large (the correction coefficient is small), the measurement tube may be once disassembled without discarding the measurement tube, and the measurement value may be reduced (increase the correction coefficient).
In this way, it becomes possible to reuse a measuring tube that is out of the permissible range for correcting the flow rate measurement value without discarding it, and there is no waste. In addition, the inspection procedure will be clear and the inspection time can be shortened.

また、請求項2に記載のガスメータの製造方法では、ガスメータの最初の組み付けの際、整流板の並べ方を、任意の並べ方にするのでなく、計測値が中央近傍となる確率が高くなるように、第3の並べ方とする。
これにより、組み付けたガスメータの検査の結果、計測値が小さい(補正係数が大きい)場合や、計測値が大きい(補正係数が小さい)場合を低減できることが期待でき、手直し(分解と再組み付け)及び再検査の低減を期待できる。
Further, in the gas meter manufacturing method according to claim 2, in the initial assembly of the gas meter, the arrangement of the rectifying plates is not an arbitrary arrangement, so that the probability that the measured value is near the center is increased. The third way of arrangement.
As a result of the inspection of the assembled gas meter, it can be expected that the case where the measurement value is small (the correction coefficient is large) or the measurement value is large (the correction coefficient is small) can be reduced, and the correction (disassembly and reassembly) and Reduction of re-inspection can be expected.

また、請求項3に記載のガスメータの製造方法では、5枚の整流板の反り形状の向きにおいて、2番目と4番目の整流板の向きを、図6(A)に示す向きに設定することで、計測値が小さくなる(補正係数が大きくなる)傾向の並べ方とすることができる。   In the gas meter manufacturing method according to claim 3, the orientation of the second and fourth rectifying plates is set to the orientation shown in FIG. 6A in the direction of the warped shape of the five rectifying plates. Thus, it is possible to arrange the tendency in which the measured values are small (the correction coefficient is large).

また、請求項4に記載のガスメータの製造方法では、5枚の整流板の反り形状の向きにおいて、2番目と4番目の整流板の向きを、図6(B)に示す向きに設定することで、計測値が大きくなる(補正係数が小さくなる)傾向の並べ方とすることができる。   Further, in the gas meter manufacturing method according to claim 4, in the direction of the warped shape of the five rectifying plates, the direction of the second and fourth rectifying plates is set to the direction shown in FIG. 6 (B). Thus, it is possible to arrange the measured values to increase (correction coefficient decreases).

また、請求項5に記載のガスメータの製造方法では、5枚の整流板の反り形状の向きにおいて、2番目と3番目と4番目の整流板の向きを、図6(C)または図6(D)に示す向きに設定することで、計測値が中央近傍となる(補正係数が中央近傍となる)傾向の並べ方とすることができる。   Further, in the gas meter manufacturing method according to claim 5, the orientation of the second, third, and fourth rectifying plates in the direction of the warped shape of the five rectifying plates is changed to that shown in FIG. By setting the orientation shown in D), it is possible to arrange the measured values so that they tend to be near the center (the correction coefficient is near the center).

以下に本発明を実施するための最良の形態について図面を用いて説明する。図1(A)及び(B)は、本発明のガスメータの製造方法を用いて製造する、ガスメータ1の一実施の形態における概略外観図を示している。   The best mode for carrying out the present invention will be described below with reference to the drawings. 1 (A) and 1 (B) show schematic external views of an embodiment of a gas meter 1 manufactured using the method for manufacturing a gas meter of the present invention.

●[ガスメータ1の外観(図1(A)及び(B))]
図1(A)及び(B)を用いて、本実施の形態のガスメータ1の外観を説明する。図1(A)は正面図を示しており、図1(B)は上面図を示している。なお、各図のX軸、Y軸、Z軸は、X軸及びY軸が水平方向を示す軸であり、Z軸が垂直方向を示す軸である。
ガスメータ1の正面には計測したガスの流量の積算値等を表示する表示手段41(LCD等)、異常検出によって遮断弁34にてガスを遮断した状態からの復帰を行う復帰ボタン42等が設けられている。
本実施の形態にて説明するガスメータ1は、略矩形の箱状であり、流入口11と流出口12とが同一方向に配置された筒状の略U字型の流路を備えた流路部材10が一体成形品で形成されており、当該流路部材10は、ガスメータ1の外観において、上面と右側面と左側面を構成している。
なお、ガスメータ1内において、流入したガスが流れる流路は、略U字型に形成されているが(図3(A)参照)、筒状の略U字型を一体成形するには、U字型の底辺部において筒の内側の型の挿入及び抜き取りが困難である。そこで、この底辺部を開口した形状で一体成形し、この開口部から計測管22を組み付け、開口部に蓋をするように底面パネル部材21を組み付ける(図2、図3(A)参照)。これにより、筒状の略U字型の流路を一体成形することが容易となる。
なお、本実施の形態のガスメータ1では、流路部材10の材質として、一体成形に適しているとともに熱膨張係数が比較的小さいアルミを使用したアルミダイカストとしたが、これに限定されるものではない。
● [Appearance of gas meter 1 (FIGS. 1A and 1B)]
The external appearance of the gas meter 1 of this Embodiment is demonstrated using FIG. 1 (A) and (B). FIG. 1A shows a front view, and FIG. 1B shows a top view. In addition, the X-axis, Y-axis, and Z-axis in each figure are axes in which the X-axis and Y-axis indicate the horizontal direction, and the Z-axis is an axis that indicates the vertical direction.
On the front face of the gas meter 1, there are provided display means 41 (LCD or the like) for displaying an integrated value of the measured gas flow rate, a return button 42 for returning from a state where the gas is shut off by the shut-off valve 34 due to abnormality detection, and the like. It has been.
The gas meter 1 described in the present embodiment has a substantially rectangular box shape, and has a cylindrical substantially U-shaped flow path in which an inflow port 11 and an outflow port 12 are arranged in the same direction. The member 10 is formed as an integrally molded product, and the flow path member 10 constitutes an upper surface, a right side surface, and a left side surface in the appearance of the gas meter 1.
In addition, although the flow path through which the inflowed gas flows in the gas meter 1 is formed in a substantially U shape (see FIG. 3A), in order to integrally form a cylindrical substantially U shape, U It is difficult to insert and remove the mold inside the cylinder at the bottom of the letter shape. Therefore, the bottom side is integrally formed in an open shape, the measuring tube 22 is assembled from the opening, and the bottom panel member 21 is assembled so as to cover the opening (see FIGS. 2 and 3A). Thereby, it becomes easy to integrally form a cylindrical substantially U-shaped flow path.
In the gas meter 1 of the present embodiment, the material of the flow path member 10 is aluminum die casting that uses aluminum that is suitable for integral molding and has a relatively low coefficient of thermal expansion. However, the present invention is not limited to this. Absent.

●[ガスメータ1の構造(図2〜図4)]
次に、図2〜図4を用いてガスメータ1の構造について説明する。
図2はガスメータ1に組み付ける部品の概略形状と組み付け方向の例を示している。また、図3(A)は図1(B)におけるA−A断面図(電源パック32等は省略)の例を示しており、図3(B)は図3(A)におけるB−B断面図の例を示しており、図4は図3(A)におけるC−C断面図の例を示している。図3(A)に示すように、流入口11から流出口12に至るまでのガスの流路は、略U字型の筒状に形成されている。
● [Structure of gas meter 1 (FIGS. 2 to 4)]
Next, the structure of the gas meter 1 will be described with reference to FIGS.
FIG. 2 shows an example of the schematic shape and assembly direction of parts to be assembled to the gas meter 1. 3A shows an example of a cross-sectional view taken along line AA in FIG. 1B (power supply pack 32 and the like are omitted), and FIG. 3B is a cross-sectional view taken along line BB in FIG. The example of a figure is shown, and FIG. 4 has shown the example of CC sectional drawing in FIG. 3 (A). As shown in FIG. 3A, the gas flow path from the inflow port 11 to the outflow port 12 is formed in a substantially U-shaped cylindrical shape.

図9及び図10に示す従来のガスメータ101では、略U字型の筒状の流路を、流入口11及び流出口12を備えた背面カバー150と、流入口11部に接続された第1流路部材151と、流出口12部に接続された第2流路部材154と、計測管122を収めるとともに第1流路部材151と第2流路部材154とを接続する計測管ケース152及び153にて形成している。このため、組み付ける部品点数が多く構造が複雑であるとともに各々が異なる誤差を有するため、ガスの漏れが発生しないように密閉状態となるように組み付ける作業に、非常に手間がかかる。
これに対して本実施の形態にて説明するガスメータ1では、一体成形品で形成した流路部材10の底辺部に設けた開口部から計測管22を組み付け、開口部に蓋をするように底面パネル部材21を組み付けるだけで、流入口11から流出口12に至る略U字型の筒状の流路を形成することができるので、組み付けが非常に容易であり、作業性がよい(図2、図3(A)参照)。
In the conventional gas meter 101 shown in FIGS. 9 and 10, a substantially U-shaped cylindrical flow path is connected to a back cover 150 having an inlet 11 and an outlet 12, and a first inlet 11 connected to the inlet 11 portion. A measurement pipe case 152 that houses the flow path member 151, the second flow path member 154 connected to the outflow port 12, the measurement pipe 122 and connects the first flow path member 151 and the second flow path member 154; 153. For this reason, since the number of parts to be assembled is large and the structure is complicated and each has a different error, the work of assembling in a sealed state so as not to cause gas leakage takes much labor.
On the other hand, in the gas meter 1 described in the present embodiment, the measurement tube 22 is assembled from the opening provided in the bottom side of the flow path member 10 formed as an integrally molded product, and the bottom is configured to cover the opening. Since only a panel member 21 is assembled, a substantially U-shaped cylindrical flow path from the inlet 11 to the outlet 12 can be formed, so that the assembly is very easy and the workability is good (FIG. 2). FIG. 3A).

次に図2を用いて、ガスメータ1の組み付ける部品の概略形状と組み付けの手順を説明する。
まず、流入口11と流出口12が同一方向に配置された一体成形品の流路部材10を、流入口11及び流出口12が上面となるようにした場合、流路部材10の底面に設けた開口部から、計測管22が流路内に配置されるように計測管22が組み付けられる。そして、開口部に底面パネル部材21が組み付けられ、開口部が密閉される(蓋をされる)。また、流路部材10に設けられた超音波伝播手段の取り付け穴に、一対の超音波伝播手段23A、23B(超音波送受信センサ)が組み付けられる。
計測管22は、流路内に配置され、流路内に流れるガスが通過する断面が略矩形に形成された導通路25を有している。そして、一対の超音波伝播手段23A、23Bは、導通路25内における上流側と下流側の所定個所に配置され、この2点間において、上流側から超音波を発信して下流側で受信して伝播時間を計測し、下流側から超音波を発信して上流側で受信して伝播時間を計測する。超音波伝播手段23A、23B(超音波送受信センサ)は流体の流れ方向に対して所定の角度「θ」をもって対向するように組み付けられている。ここで音速を「C」、ガスの流速を「U」、超音波伝播手段23Aと23Bの間隔(距離)を「L」、超音波の伝播時間を「T1」、「T2」とした場合、上流→下流(伝播時間「T1」)においては「T1=L/(C+Ucosθ)」の関係が成立し、下流→上流(伝播時間「T2」)においては「T2=L/(C−Ucosθ)」の関係が成立する。この両式より流速「U」を算出すると「U=(L/2cosθ)((1/T1)−(1/T2))」となる。そして、この算出した流速Uに導通路25の断面Sと流量係数とを積算して流量を算出している。ここで流量係数とは、流体の流量を補正する係数であり、後述する。なお、導通路25内には、導通路25を多層に区切ってガスの流れを整える複数の整流板24が設けられている。
Next, with reference to FIG. 2, the schematic shape of the parts to be assembled in the gas meter 1 and the assembly procedure will be described.
First, when the inflow port 11 and the outflow port 12 are arranged in the same direction, the integrally formed flow path member 10 is provided on the bottom surface of the flow path member 10 when the inflow port 11 and the outflow port 12 are on the upper surface. From the opened opening, the measuring tube 22 is assembled so that the measuring tube 22 is disposed in the flow path. And the bottom panel member 21 is assembled | attached to an opening part, and an opening part is sealed (covered). In addition, a pair of ultrasonic propagation means 23A and 23B (ultrasonic transmission / reception sensors) are assembled in the attachment holes of the ultrasonic propagation means provided in the flow path member 10.
The measurement tube 22 has a conduction path 25 that is disposed in the flow path and has a substantially rectangular cross section through which the gas flowing in the flow path passes. The pair of ultrasonic wave propagation means 23A and 23B are arranged at predetermined locations on the upstream side and the downstream side in the conduction path 25, and between these two points, an ultrasonic wave is transmitted from the upstream side and received on the downstream side. The propagation time is measured and the ultrasonic wave is transmitted from the downstream side and received at the upstream side to measure the propagation time. The ultrasonic propagation means 23A, 23B (ultrasonic transmission / reception sensors) are assembled so as to face each other with a predetermined angle “θ” with respect to the fluid flow direction. Here, when the sound velocity is “C”, the gas flow velocity is “U”, the distance (distance) between the ultrasonic wave propagation means 23A and 23B is “L”, and the ultrasonic wave propagation time is “T1”, “T2”, From upstream to downstream (propagation time “T1”), the relationship “T1 = L / (C + Ucos θ)” is established, and from downstream to upstream (propagation time “T2”), “T2 = L / (C−Ucos θ)”. The relationship is established. When the flow velocity “U” is calculated from both equations, “U = (L / 2 cos θ) ((1 / T1) − (1 / T2))” is obtained. Then, the flow rate is calculated by integrating the calculated flow velocity U with the cross section S of the conduction path 25 and the flow coefficient. Here, the flow rate coefficient is a coefficient for correcting the flow rate of the fluid, which will be described later. A plurality of rectifying plates 24 are provided in the conduction path 25 to divide the conduction path 25 into multiple layers to regulate the gas flow.

次に、流路部材10の背面側から、流路部材10の略U字型の流路の一部の背面側に設けられた遮断弁用の取り付け穴に、遮断弁34が組み付けられる。流路部材10の背面側の流路の所定個所には、遮断弁34を組み付けるための取り付け穴が予め設けられて一体成形されている。なお遮断弁34は、異常を検出した場合に流路を閉じて(遮断して)、流出口12にガスが流れないようにするものである。
次に、流路部材10の正面側から、流路部材10の中央近傍に設けられた空間部Kに電源パック32が組み付けられる。そして、流路部材10の略U字型の流路の一部の正面側に設けられた圧力センサ用の取り付け穴に、圧力センサ31が組み付けられる。流路部材10の正面側の流路の所定個所には、圧力センサ31を組み付けるための取り付け穴が予め設けられて一体成形されている。なお圧力センサ31は、種々の異常を検出するための条件等で利用するガスの圧力を検出するものである。
次に、流路部材10の正面側から制御基板33(制御手段に相当)を組み付ける。制御基板33は、CPU等を備えており、超音波伝播手段23A、23Bを制御して超音波伝播手段23A、23Bからの検出信号に基づいて導通路25内に流れるガスの流量を算出する。
そして、流路部材10の背面側から背面パネル部材50を組み付け、流路部材10の正面側から正面パネル部材40を組み付ける。なお制御基板33のCPUにて、圧力センサ31の検出信号から圧力を算出し、種々の異常判定を行い、異常を判定した場合は遮断弁34に駆動信号を出力して流路を遮断する。
以上の組み付けにより、上面部と左右側面部が流路部材10で構成され、底面部が底面パネル部材21で構成され、背面部が背面パネル部材50で構成され、正面部が正面パネル部材40で構成された、略箱型のガスメータ1が完成する。
Next, the shut-off valve 34 is assembled from the back side of the flow path member 10 to the shut-off valve mounting hole provided on the back side of a part of the substantially U-shaped flow path of the flow path member 10. An attachment hole for assembling the shut-off valve 34 is provided in advance at a predetermined location of the flow path on the back side of the flow path member 10 and is integrally formed. The shutoff valve 34 closes (shuts down) the flow path when an abnormality is detected, and prevents gas from flowing into the outlet 12.
Next, the power pack 32 is assembled from the front side of the flow path member 10 into the space K provided in the vicinity of the center of the flow path member 10. And the pressure sensor 31 is assembled | attached to the attachment hole for pressure sensors provided in the one part front side of the substantially U-shaped flow path of the flow path member 10. FIG. A mounting hole for assembling the pressure sensor 31 is provided in advance at a predetermined location of the flow path on the front side of the flow path member 10 and is integrally formed. The pressure sensor 31 detects the pressure of the gas used under conditions for detecting various abnormalities.
Next, the control board 33 (corresponding to the control means) is assembled from the front side of the flow path member 10. The control board 33 includes a CPU and the like, and controls the ultrasonic propagation means 23A and 23B to calculate the flow rate of the gas flowing in the conduction path 25 based on the detection signals from the ultrasonic propagation means 23A and 23B.
Then, the back panel member 50 is assembled from the back side of the flow path member 10, and the front panel member 40 is assembled from the front side of the flow path member 10. Note that the CPU of the control board 33 calculates the pressure from the detection signal of the pressure sensor 31, performs various abnormality determinations, and when an abnormality is determined, outputs a drive signal to the shutoff valve 34 to block the flow path.
With the above assembly, the upper surface portion and the left and right side surface portions are configured by the flow path member 10, the bottom surface portion is configured by the bottom panel member 21, the back surface portion is configured by the back panel member 50, and the front surface portion is the front panel member 40. The substantially box-shaped gas meter 1 configured is completed.

●[計測管22の構造(図5)]
次に、図5を参照して計測管22の内部構造を説明する。計測管22は、流体の流れる方向に対して垂直な断面が「L」字状となる2つの計測管上部材22a及び計測管下部材22bにて、断面Sが矩形の空洞部を有する筒状となるように接合されて構成されている。なお、この接合の際、内部に5枚の整流板24が収容される。計測管上部材22a及び計測管下部材22bの各内壁における各整流板24との当接部位には、各整流板24を挟み込むための溝22zがそれぞれ設けられており、前記溝22zにて整流板24が位置決めされて支持されている。
また、計測管上部材22a及び計測管下部材22bにおいて、矩形の筒状に接合した際の当接部位には、凸部22xあるいは凹部22yが各々に設けられており、前記凸部22x及び凹部22yにて、計測管上部材22aと計測管下部材22bとが位置決めされる。
● [Structure of measuring tube 22 (FIG. 5)]
Next, the internal structure of the measurement tube 22 will be described with reference to FIG. The measurement tube 22 is a cylindrical shape having a hollow portion having a rectangular cross section S by two measurement tube upper members 22a and measurement tube lower members 22b whose cross sections perpendicular to the fluid flow direction are “L” -shaped. It is configured to be joined. In this connection, five rectifying plates 24 are accommodated inside. Grooves 22z for sandwiching the respective rectifying plates 24 are respectively provided in contact portions of the inner walls of the measuring tube upper member 22a and the measuring tube lower member 22b with the respective rectifying plates 24, and rectification is performed in the grooves 22z. A plate 24 is positioned and supported.
Further, in the measurement tube upper member 22a and the measurement tube lower member 22b, a protruding portion 22x or a recessed portion 22y is provided at each contact portion when the measuring tube upper member 22a and the measured tube lower member 22b are joined to each other. At 22y, the measurement tube upper member 22a and the measurement tube lower member 22b are positioned.

ここで、計測管上部材22a及び計測管下部材22bを「コ」の字形に形成した場合は抜き勾配が必須となるため、計測管22において流体の流れる方向と垂直な面による断面S(空洞部分の断面)の各角が直角でなくなり、断面Sの精度にばらつきが発生する可能性がある。また、整流板24を計測管22にインサート成形する場合も、抜き勾配が必要なため、断面Sの精度に問題が発生する(要求精度を満足できない)可能性がある。
しかし、本実施の形態では、計測管上部材22a及び計測管下部材22bを「L」字状に形成しているため、抜き勾配は必要でない。このため、断面Sの各角を直角とすることが可能であり、例えば樹脂を用いて計測管上部材22a及び計測管下部材22bを形成しても、面積の精度を充分確保することができる。
また、開口部22c(超音波伝播手段の取り付け位置に相当)には、内壁側にその内壁と略同一面を形成するように乱流抑制部材が設けられている。
Here, when the measurement tube upper member 22a and the measurement tube lower member 22b are formed in a “U” shape, a draft is essential, and therefore, a cross section S (cavity) by a plane perpendicular to the direction of fluid flow in the measurement tube 22. Each corner of the partial cross section) is not a right angle, and the accuracy of the cross section S may vary. Further, when the rectifying plate 24 is insert-molded into the measuring tube 22, since a draft is necessary, a problem may occur in the accuracy of the cross section S (the required accuracy cannot be satisfied).
However, in the present embodiment, since the measurement tube upper member 22a and the measurement tube lower member 22b are formed in an “L” shape, no draft is necessary. For this reason, it is possible to make each angle of the cross section S a right angle. For example, even if the measurement tube upper member 22a and the measurement tube lower member 22b are formed using resin, the area accuracy can be sufficiently secured. .
In addition, a turbulent flow suppressing member is provided in the opening 22c (corresponding to the attachment position of the ultrasonic wave propagation means) so as to form substantially the same surface as the inner wall on the inner wall side.

本実施の形態にて説明したガスメータ1は、ガス流量の計測値を要求精度に収めるために、個々のガスメータにて、基準流量のガスを用いて計測結果を検査し、要求精度を満足するように補正係数を求め、求めた補正係数を制御基板33上に設けられた記憶手段に記憶している。
個々のガスメータは、計測管22の個々の誤差、超音波伝播手段23A、23Bの個々の誤差、超音波伝播手段23A、23Bの検出信号を取り込んで計測値を算出する制御基板33の電子回路の誤差等により、理想状態に対して、計測値が大きくなる方向、または小さくなる方向にずれている。そこで、従来より、個々のガスメータに固有の補正係数を求めて記憶することで、このずれを吸収している。
ところが、場合によっては、補正係数で補正できる補正許容範囲をはずれるガスメータが発生する。従来では、補正係数でも調整できない場合は、当該ガスメータの計測管22を破棄し、新たな計測管22と交換していた。
In the gas meter 1 described in the present embodiment, in order to keep the measurement value of the gas flow rate with the required accuracy, the measurement result is inspected using the gas of the reference flow rate with each gas meter so as to satisfy the required accuracy. The correction coefficient is obtained, and the obtained correction coefficient is stored in a storage means provided on the control board 33.
Each gas meter takes in the individual error of the measurement tube 22, the individual error of the ultrasonic wave propagation means 23A and 23B, and the detection signal of the ultrasonic wave propagation means 23A and 23B, and calculates the measurement value. Due to an error or the like, the measured value is deviated in the direction of increasing or decreasing with respect to the ideal state. Therefore, conventionally, the deviation is absorbed by obtaining and storing a correction coefficient unique to each gas meter.
However, in some cases, a gas meter is generated that falls outside the allowable correction range that can be corrected by the correction coefficient. Conventionally, if the correction coefficient cannot be adjusted, the measuring tube 22 of the gas meter is discarded and replaced with a new measuring tube 22.

本実施の形態にて説明するガスメータの製造方法では、以下に説明するように、補正許容範囲をはずれるガスメータであっても、計測管22を破棄することなく、補正許容範囲内に収まるように計測管22を組み付け直す方法である。   In the gas meter manufacturing method described in the present embodiment, as will be described below, even if the gas meter is out of the correction allowable range, the measurement tube 22 is not discarded, and the measurement is performed within the correction allowable range. This is a method of reassembling the tube 22.

●[計測管22内における整流板24の反り形状の向きと計測値(補正係数)の傾向(図6、図7)]
まず、計測管22は、図5(A)に示すように各整流板24を(治具を用いて)配置して組み付けて、図5(B)に示す状態にすることが可能であるとともに、図5(B)に示す組み上がり状態から、図5(A)に示すように分解して、整流板24を並べ替えて再度、図5(B)に示す状態に組み付けることが可能な構造とする。
本実施の形態では、計測管22を樹脂成形品、整流板24をステンレス等の金属板としており、嵌め込み式の構造であるため、分解及び再組み立てが可能である。
また、整流板24を、ガスが流れる方向に対して平坦でなく、僅かに反らせた(例えば、0.1mm〜0.2mm程度反らせた)形状とする。この反り形状の凹凸の並べ方を、n番目の整流板を凸形状が1番目の整流板の方向を向くように、且つm番目の整流板を凹形状が1番目の整流板の方向を向くように並べる。この整流板の並べ方で、計測値が大きくなる並べ方、計測値が小さくなる並べ方、を利用して計測値が大きく(または小さく)なるように制御するものである。
● [Direction of warping shape of rectifying plate 24 in measurement tube 22 and tendency of measured value (correction coefficient) (FIGS. 6 and 7)]
First, as shown in FIG. 5 (A), the measuring tube 22 can be placed in the state shown in FIG. 5 (B) by arranging and assembling each rectifying plate 24 (using a jig). From the assembled state shown in FIG. 5 (B), the structure can be disassembled as shown in FIG. 5 (A), the rectifying plates 24 can be rearranged and assembled again into the state shown in FIG. 5 (B). And
In the present embodiment, the measurement tube 22 is a resin molded product, the rectifying plate 24 is a metal plate such as stainless steel, and has a fitting type structure, so that it can be disassembled and reassembled.
In addition, the rectifying plate 24 is not flat with respect to the gas flow direction but is slightly warped (for example, warped by about 0.1 mm to 0.2 mm). The arrangement of the warp-shaped irregularities is such that the n-th rectifying plate is oriented so that the convex shape faces the first rectifying plate, and the m-th rectifying plate is oriented so that the concave shape faces the first rectifying plate. Line up. In this arrangement of the rectifying plates, the measurement value is controlled to be large (or small) by using the arrangement method in which the measurement value is increased and the arrangement method in which the measurement value is decreased.

そこで、反り形状の複数の並べ方の中から、計測値が小さくなる傾向(つまり、補正係数が大きくなる傾向)となる第1の並べ方と、計測値が大きくなる傾向(つまり、補正係数が小さくなる傾向)となる第2の並べ方と、計測値が中央近傍となる傾向(つまり、補正係数が中央近傍となる傾向)となる第3の並べ方を予め選定する。
発明者は、多数のガスメータに対して種々の並べ方で実験した結果、図6(A)〜(D)に示す組み合わせを選定した。なお、図6(A)〜(D)は、例として整流板24が5枚の場合において、凹凸形状の方向を明確にするための模式図を示しており、凹凸方向を特定する整流板を太く記載して強調している。
Therefore, a first arrangement in which the measured values tend to be smaller (that is, the correction coefficient tends to be larger) and a tendency that the measured values are larger (that is, the correction coefficient is smaller) from among a plurality of warped shape arrangement methods. (Tendency) is selected in advance, and the third arrangement is selected in advance so that the measured value tends to be near the center (that is, the correction coefficient tends to be near the center).
The inventor selected combinations shown in FIGS. 6 (A) to 6 (D) as a result of experiments in various arrangements on a large number of gas meters. 6A to 6D are schematic diagrams for clarifying the direction of the uneven shape when the number of the current plates 24 is five as an example. It is highlighted and emphasized.

第1の並べ方となる図6(A)の並べ方(以下、「並べ方A」と記載する)では、5枚の整流板24において、2番目の整流板24(2)を凹形状が1番目の整流板24(1)の方向を向くように、且つ4番目の整流板24(4)を凸形状が1番目の整流板24(1)の方向を向くように並べる。この場合、1番目の整流板24(1)、3番目の整流板24(3)、5番目の整流板24(5)の向きは、どちらであってもよい。   In the arrangement shown in FIG. 6A (hereinafter referred to as “arrangement A”), which is the first arrangement, in the five rectifying plates 24, the second rectifying plate 24 (2) has the concave shape as the first. The fourth rectifying plate 24 (4) is arranged so as to face the direction of the rectifying plate 24 (1) and the convex shape thereof is directed to the direction of the first rectifying plate 24 (1). In this case, the orientation of the first rectifying plate 24 (1), the third rectifying plate 24 (3), and the fifth rectifying plate 24 (5) may be any direction.

第2の並べ方となる図6(B)の並べ方(以下、「並べ方B」と記載する)では、5枚の整流板24において、2番目の整流板24(2)を凸形状が1番目の整流板24(1)の方向を向くように、且つ4番目の整流板24(4)を凹形状が1番目の整流板24(1)の方向を向くように並べる。この場合、1番目の整流板24(1)、3番目の整流板24(3)、5番目の整流板24(5)の向きは、どちらであってもよい。   In the second arrangement method shown in FIG. 6B (hereinafter, referred to as “arrangement method B”), in the five rectifying plates 24, the second rectifying plate 24 (2) has the first convex shape. The fourth rectifying plate 24 (4) is arranged so as to face the direction of the rectifying plate 24 (1) and the concave shape thereof is directed to the direction of the first rectifying plate 24 (1). In this case, the orientation of the first rectifying plate 24 (1), the third rectifying plate 24 (3), and the fifth rectifying plate 24 (5) may be any direction.

第3の並べ方は、図6(C)及び(D)の並べ方(以下、「並べ方C」、「並べ方D」と記載する)が相当する。「並べ方C」では、5枚の整流板24において、2番目の整流板24(2)と4番目の整流板24(4)を凹形状が1番目の整流板24(1)の方向を向くように、且つ3番目の整流板24(3)を凸形状が1番目の整流板24(1)の方向を向くように並べる。「並べ方D」では、5枚の整流板24において、2番目の整流板24(2)と4番目の整流板24(4)を凸形状が1番目の整流板24(1)の方向を向くように、且つ3番目の整流板24(3)を凹形状が1番目の整流板24(1)の方向を向くように並べる。この場合、1番目の整流板24(1)、5番目の整流板24(5)の向きは、どちらであってもよい。   The third arrangement method corresponds to the arrangement method shown in FIGS. 6C and 6D (hereinafter referred to as “arrangement method C” and “arrangement method D”). In the “arrangement method C”, in the five rectifying plates 24, the second rectifying plate 24 (2) and the fourth rectifying plate 24 (4) are directed in the direction of the first rectifying plate 24 (1). Then, the third rectifying plate 24 (3) is arranged so that the convex shape faces the direction of the first rectifying plate 24 (1). In “Arrangement D”, in the five rectifying plates 24, the second rectifying plate 24 (2) and the fourth rectifying plate 24 (4) are directed in the direction of the first rectifying plate 24 (1). In addition, the third current plate 24 (3) is arranged so that the concave shape faces the direction of the first current plate 24 (1). In this case, the direction of the first rectifying plate 24 (1) and the fifth rectifying plate 24 (5) may be any direction.

図7及び図8に、例として5台のガスメータをサンプルとして取り上げ、上記の「並べ方A」〜「並べ方D」の各並べ方の場合の補正係数を求めた結果を示す。どのガスメータも、「並べ方A」では補正係数が大きくなる傾向(つまり計測値が小さくなる傾向)にあり、「並べ方B」では補正係数が小さくなる傾向(つまり計測値が大きくなる傾向)にあり、「並べ方C」及び「並べ方D」では補正係数が中央近傍となる傾向(つまり計測値が中央近傍となる傾向)であることがわかる。   FIG. 7 and FIG. 8 show, as an example, five gas meters taken as samples, and the results of calculating the correction coefficient in each of the above “arrangement methods A” to “arrangement method D” are shown. Any gas meter tends to have a large correction coefficient (that is, the measurement value tends to be small) in “Arrangement A”, and tends to have a small correction coefficient (that is, the measurement value tends to be large) in “Arrangement B”. It can be seen that the “arrangement method C” and “arrangement method D” tend to have a correction coefficient in the vicinity of the center (that is, the measurement value tends to be in the vicinity of the center).

●[ガスメータの製造方法]
生産ラインでガスメータ1を組み付ける際、まず、第3の並べ方である「並べ方C」または「並べ方D」の整流板の凹凸形状の並べ方で組み付けた計測管22を用いて、ガスメータ1を組み付ける。
そして、補正係数を求めて記憶する検査工程にて、基準流量に対する補正係数を求め、求めた補正係数が補正許容範囲内であれば、その補正係数を当該ガスメータに記憶すればよい。
求めた補正係数が補正許容範囲をはずれて大きい方向にずれていた場合は、補正係数が小さくなるようにすればよいので、計測管22を一旦分解して、「並べ方B」となるように整流板24を並べ替えて、再度計測管22を組み付けて、再検査する。
また、求めた補正係数が補正許容範囲をはずれて小さい方向にずれていた場合は、補正係数が大きくなるようにすればよいので、計測管22を一旦分解して、「並べ方A」となるように整流板24を並べ替えて、再度計測管22を組み付けて、再検査する。
このように、流量の計測値を補正する許容範囲をはずれた計測管22を破棄することなく再利用することが可能となるので、ムダがない。また、検査手順(手直し手順)も明確になり、検査及び手直しの時間の短縮化も期待できる。
● [Gas meter manufacturing method]
When assembling the gas meter 1 in the production line, first, the gas meter 1 is assembled by using the measuring tube 22 assembled in the third arrangement method “arrangement method C” or “arrangement method D” with the concavo-convex shape of the current plate.
Then, in the inspection process for obtaining and storing the correction coefficient, the correction coefficient for the reference flow rate is obtained. If the obtained correction coefficient is within the correction allowable range, the correction coefficient may be stored in the gas meter.
When the obtained correction coefficient deviates from the correction allowable range and deviates in a large direction, the correction coefficient only needs to be reduced. Therefore, the measurement tube 22 is once disassembled and rectified so as to become “arrangement B”. The plates 24 are rearranged, the measuring tube 22 is assembled again, and reinspected.
Further, when the obtained correction coefficient deviates from the correction allowable range and deviates in a small direction, the correction coefficient only needs to be increased. Therefore, the measurement tube 22 is disassembled once so that the “arrangement A” is obtained. The current plates 24 are rearranged, the measuring tube 22 is assembled again, and reinspected.
In this way, the measuring tube 22 outside the allowable range for correcting the flow rate measurement value can be reused without being discarded, and there is no waste. In addition, the inspection procedure (repairing procedure) becomes clear, and shortening of the inspection and reworking time can be expected.

以上に説明したガスメータの製造方法では、複数の並べ方の中から予め第1の並べ方〜第3の並べ方を選定しておき、ガスメータの組み付けにおいて、まず第3の並べ方で整流板を並べた計測管22を用いた。求めた補正係数が中央近傍となる確率が高いことを期待してガスメータを最初に組み付けた際、第3の並べ方としている。
しかし、第3の並べ方を選定せずに、第1の並べ方と第2の並べ方を選定しておき、まず、任意の並べ方で整流板を並べた計測管22を用いてガスメータを組み付けてもよい。もちろん、求めた補正係数が補正許容範囲内であれば、そのままガスメータに記憶すればよいし、求めた補正係数が補正許容範囲をはずれて大きい方向にずれていた場合は、計測管22を一旦分解して、「並べ方B」となるように整流板24を並べ替えて、再度計測管22を組み付けて、再検査すればよい。また、求めた補正係数が補正許容範囲をはずれて小さい方向にずれていた場合は、計測管22を一旦分解して、「並べ方A」となるように整流板24を並べ替えて、再度計測管22を組み付けて、再検査すればよい。
In the gas meter manufacturing method described above, a first arrangement method to a third arrangement method are selected from a plurality of arrangement methods in advance, and in assembling the gas meter, first, a measurement tube in which rectifying plates are arranged in the third arrangement method. 22 was used. When the gas meter is first assembled with the expectation that the obtained correction coefficient is likely to be near the center, the third arrangement is used.
However, without selecting the third arrangement method, the first arrangement method and the second arrangement method may be selected, and first, the gas meter may be assembled using the measuring tube 22 in which the rectifying plates are arranged in an arbitrary arrangement method. . Of course, if the calculated correction coefficient is within the correction allowable range, it may be stored in the gas meter as it is. If the calculated correction coefficient is outside the correction allowable range and deviated in a large direction, the measuring tube 22 is once disassembled. Then, the rectifying plates 24 may be rearranged so that the “arrangement method B” is obtained, the measuring tube 22 is assembled again, and the inspection is performed again. If the obtained correction coefficient deviates from the correction allowable range and deviates in a small direction, the measuring tube 22 is once disassembled, the rectifying plates 24 are rearranged so as to be “arrangement A”, and the measuring tube is again formed. 22 may be assembled and re-inspected.

なお、補正係数が中央近傍でなく大きい方向または小さい方向にずれる誤差は、計測管22の誤差のみによるのではなく、超音波伝播手段(超音波送受信センサ)の特性ずれによる誤差や、超音波伝播手段からの検出信号を取り込む制御基板上の電子回路の特性ずれよる誤差等も含めた、計測系全体の誤差であり、そのガスメータに固有の誤差である。その計測系全体の誤差を、本発明のガスメータの製造方法では、計測管22の整流板24の並び替えで小さくすることができる点で、非常に有効な方法である。そして、小さくした誤差は、補正係数で補正することができる。   It should be noted that the error that the correction coefficient is not in the vicinity of the center but in a larger or smaller direction is not only due to the error of the measuring tube 22, but is also due to an error due to the characteristic deviation of the ultrasonic wave propagation means (ultrasonic wave transmitting / receiving sensor) or the ultrasonic wave propagation. This is an error of the entire measurement system, including an error due to a characteristic shift of an electronic circuit on the control board that takes in a detection signal from the means, and is an error inherent to the gas meter. The error in the entire measurement system is a very effective method in that the gas meter manufacturing method of the present invention can reduce the error by rearranging the rectifying plates 24 of the measurement tube 22. The reduced error can be corrected with a correction coefficient.

本発明のガスメータの製造方法は、本実施の形態で説明した方法、手順等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、整流板24の数は5枚に限定されず、第1の並べ方〜第3の並べ方における凹凸方向の並び順は、本実施の形態にて説明したものに限定されるものではない。
また、本実施の形態の説明に用いたグラフ等の特性は一例であり、この特性に限定されるものではない。
また、本実施の形態の説明では、流入口11と流出口12とを上向きにした略U字型の流路を備えたガスメータ1を説明したが、流入口11と流出口12とを下向きとした逆U字型のガスメータを構成することもできる。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
The manufacturing method of the gas meter of the present invention is not limited to the method and procedure described in the present embodiment, and various modifications, additions and deletions can be made without changing the gist of the present invention. For example, the number of rectifying plates 24 is not limited to five, and the arrangement order of the uneven directions in the first to third arrangement methods is not limited to that described in the present embodiment.
Further, the characteristics such as the graph used in the description of the present embodiment are examples, and the present invention is not limited to these characteristics.
In the description of the present embodiment, the gas meter 1 having the substantially U-shaped flow path with the inflow port 11 and the outflow port 12 facing upward has been described, but the inflow port 11 and the outflow port 12 are directed downward. An inverted U-shaped gas meter can also be configured.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.

本発明のガスメータ1の概略外観図である。1 is a schematic external view of a gas meter 1 of the present invention. ガスメータ1に組み付ける部品の概略形状と組み付け方向の例を示す図である。It is a figure which shows the example of the schematic shape and assembly direction of the components assembled | attached to the gas meter. 図1(B)におけるA−A断面図の例(図3(A))、図3(A)におけるB−B断面図の例を説明する図である。It is a figure explaining the example of an AA sectional view in Drawing 1 (B) (Drawing 3 (A)), and an example of a BB sectional view in Drawing 3 (A). 図3(A)におけるC−C断面図の例を説明する図である。It is a figure explaining the example of CC sectional drawing in FIG. 3 (A). 分解して再度組み付け可能な計測管22の構造の例を説明する図である。It is a figure explaining the example of the structure of the measurement pipe | tube 22 which can be decomposed | disassembled and reassembled. 整流板の凹凸形状の並べ方を示す第1の並べ方〜第3の並べ方の例を説明する図である。It is a figure explaining the example of the 1st arrangement method-the 3rd arrangement method which shows how to arrange the uneven | corrugated shape of a baffle plate. サンプルとして抽出したガスメータに対して、計測管22を「並べ方A」〜「並べ方D」とした各場合の流量と補正係数の関係の測定結果を示す図(グラフ)である。It is a figure (graph) which shows the measurement result of the relation between the flow rate and the correction coefficient in each case where the measurement pipes 22 are “arrangement method A” to “arrangement method D” for the gas meter extracted as a sample. サンプルとして抽出したガスメータに対して、計測管22を「並べ方A」〜「並べ方D」とした各場合の流量と補正係数の関係の測定結果を示す図(グラフ)である。It is a figure (graph) which shows the measurement result of the relation between the flow rate and the correction coefficient in each case where the measurement pipes 22 are “arrangement method A” to “arrangement method D” for the gas meter extracted as a sample. 従来のガスメータ101の外観の例を説明する図である。It is a figure explaining the example of the external appearance of the conventional gas meter 101. FIG. 従来のガスメータ101の内部構造(特に流路を形成する部品)を説明する図である。It is a figure explaining the internal structure (especially component which forms a flow path) of the conventional gas meter 101. FIG.

1 ガスメータ
10 流路部材(一体成形品)
11 流入口
12 流出口
21 底面パネル部材
22 計測管
23A、23B 超音波伝播手段
24 整流板
25 導通路
31 圧力センサ
32 電源パック
33 制御基板(制御手段)
34 遮断弁
40 正面パネル部材
41 表示手段
42 復帰ボタン
50 背面パネル部材
K 空間部

1 Gas meter 10 Channel member (integral molded product)
DESCRIPTION OF SYMBOLS 11 Inflow port 12 Outlet port 21 Bottom panel member 22 Measuring pipe 23A, 23B Ultrasonic propagation means 24 Current plate 25 Conduction path 31 Pressure sensor 32 Power supply pack 33 Control board (control means)
34 Shutoff valve 40 Front panel member 41 Display means 42 Return button 50 Back panel member K Space part

Claims (5)

ガスメータの内部に設けられ、
断面が矩形の空洞部にてガスの流路が形成された筒状形状を有し、
前記流路が、所定の間隔で配置された複数の薄板状の整流板にて複数の層に仕切られており、
前記流路を流れるガスの流量が所定の検出手段による検出結果に基づいて計測されるように構成された計測管を有するガスメータの製造方法において、
前記複数の整流板が組み付けられる計測管を、分解して整流板を並べ替えて再度組み付け直すことが可能な構造として、
前記整流板を、ガスの流れる方向に対して平坦でなく僅かに反らせた反り形状として、
所定の間隔で配置する複数の整流板について、n番目の整流板の前記反り形状の凹形状が1番目の整流板の方向を向くように、且つm番目の整流板の前記反り形状の凸形状が1番目の整流板の方向を向くように、反り形状の凹形状と凸形状との並べ方において、
複数の並べ方の中から、ガス流量の計測値が小さくなる傾向にある、あるいはガス流量の計測値を補正する補正係数が大きくなる傾向にある、前記整流板の第1の並べ方と、
複数の並べ方の中から、ガス流量の計測値が大きくなる傾向にある、あるいはガス流量の計測値を補正する補正係数が小さくなる傾向にある、前記整流板の第2の並べ方と、の少なくとも2通りの並べ方を予め選定しておき、
まず、任意の並べ方として前記整流板を組み付けた計測管を用いてガスメータを組み付けて、基準流量のガスを用いて、個々のガスメータにおいて前記基準流量に対する計測値、あるいは前記基準流量に対する前記補正係数を求め、
求めた計測値が許容範囲をはずれて小さい方向にずれている場合、あるいは求めた補正係数が許容範囲をはずれて大きい方向にずれていた場合は、当該ガスメータにおける計測管を分解して前記第2の並べ方に整流板を並び替えて再度計測管を組み付け、
求めた計測値が許容範囲をはずれて大きい方向にずれている場合、あるいは求めた補正係数が許容範囲をはずれて小さい方向にずれていた場合は、当該ガスメータにおける計測管を分解して前記第1の並べ方に整流板を並び替えて再度計測管を組み付ける、
ガスメータの製造方法。
Provided inside the gas meter,
It has a cylindrical shape in which a gas flow path is formed in a hollow portion having a rectangular cross section,
The flow path is divided into a plurality of layers by a plurality of thin plate-like rectifying plates arranged at a predetermined interval,
In the method of manufacturing a gas meter having a measuring tube configured to measure the flow rate of the gas flowing through the flow path based on a detection result by a predetermined detection unit,
As a structure that can disassemble the measuring tube to which the plurality of rectifying plates are assembled, rearrange the rectifying plates, and re-assemble,
As the warping shape that the current plate is slightly flat rather than flat with respect to the gas flow direction,
About the several baffle plate arrange | positioned by predetermined spacing, the said convex shape of the said warp shape of an nth baffle plate faces the direction of the 1st baffle plate, and the said convex shape of the said warp shape of an mth baffle plate In the arrangement of the warped concave shape and the convex shape so that is directed toward the first current plate,
A first arrangement of the rectifying plates in which a measured value of the gas flow rate tends to decrease or a correction coefficient for correcting the measured value of the gas flow rate tends to increase from among a plurality of arrangement methods;
Among the plurality of arrangement methods, at least two of the second arrangement methods of the rectifying plates in which the measurement value of the gas flow rate tends to increase or the correction coefficient for correcting the measurement value of the gas flow rate tends to decrease. Select how to arrange the streets in advance,
First, as an arbitrary arrangement, a gas meter is assembled using a measurement pipe with the rectifying plate assembled, and a reference flow rate gas is used, and the measured value for the reference flow rate or the correction coefficient for the reference flow rate is calculated for each gas meter. Seeking
When the obtained measurement value deviates from the allowable range and deviates in the small direction, or when the obtained correction coefficient deviates from the allowable range and deviates in the large direction, the measurement tube in the gas meter is disassembled and the second Rearrange the rectifying plate in the way of arrangement, and reassemble the measuring tube,
When the obtained measurement value deviates from the permissible range and deviates in the large direction, or when the obtained correction coefficient deviates from the permissible range and deviates in the small direction, the measurement tube in the gas meter is disassembled and the first Rearrange the rectifying plates in the way of arranging and assemble the measuring tube again,
Gas meter manufacturing method.
請求項1に記載のガスメータの製造方法であって、
更に、複数の並べ方の中から、ガス流量の計測値が中央近傍となる傾向にある、あるいはガス流量の計測値を補正する補正係数が中央近傍となる傾向にある、前記整流板の第3の並べ方を予め選定しておき、
まず、任意の並べ方として前記整流板を組み付けた計測管を用いてガスメータを組み付けて、基準流量のガスを用いて、個々のガスメータにおいて前記基準流量に対する計測値、あるいは前記基準流量に対する前記補正係数を求めることに代えて、まず、前記第3の並べ方として前記整流板を組み付けた計測管を用いてガスメータを組み付けて、基準流量のガスを用いて、個々のガスメータにおいて前記基準流量に対する計測値、あるいは前記基準流量に対する前記補正係数を求める、
ガスメータの製造方法。
A method for manufacturing a gas meter according to claim 1,
Furthermore, among the plurality of arrangement methods, there is a tendency that the measured value of the gas flow rate tends to be near the center, or the correction coefficient for correcting the measured value of the gas flow rate tends to be near the center. Select the arrangement method in advance,
First, as an arbitrary arrangement, a gas meter is assembled using a measurement pipe with the rectifying plate assembled, and a reference flow rate gas is used, and the measured value for the reference flow rate or the correction coefficient for the reference flow rate is calculated for each gas meter. Instead of obtaining , first, as a third arrangement, a gas meter is assembled using a measurement pipe assembled with the rectifying plate, and a reference flow rate gas is used to measure a value for the reference flow rate in each gas meter, or Obtaining the correction coefficient for the reference flow rate;
Gas meter manufacturing method.
請求項1または2に記載のガスメータの製造方法であって、
前記計測管には、5枚の整流板を所定の間隔で配置し、
前記第1の並べ方では、2番目の整流板は凹形状が1番目の整流板の方向を向くように、且つ4番目の整流板は凸形状が1番目の整流板の方向を向くように並べる、
ガスメータの製造方法。
It is a manufacturing method of the gas meter according to claim 1 or 2,
In the measuring tube, five rectifying plates are arranged at a predetermined interval,
In the first arrangement, the second rectifying plate is arranged so that the concave shape faces the direction of the first rectifying plate, and the fourth rectifying plate is arranged so that the convex shape faces the direction of the first rectifying plate. ,
Gas meter manufacturing method.
請求項1または2に記載のガスメータの製造方法であって、
前記計測管には、5枚の整流板を所定の間隔で配置し、
前記第2の並べ方では、2番目の整流板は凸形状が1番目の整流板の方向を向くように、且つ4番目の整流板は凹形状が1番目の整流板の方向を向くように並べる、
ガスメータの製造方法。
It is a manufacturing method of the gas meter according to claim 1 or 2,
In the measuring tube, five rectifying plates are arranged at a predetermined interval,
In the second arrangement, the second rectifying plate is arranged so that the convex shape faces the direction of the first rectifying plate, and the fourth rectifying plate is arranged so that the concave shape faces the direction of the first rectifying plate. ,
Gas meter manufacturing method.
請求項2に記載のガスメータの製造方法であって、
前記計測管には、5枚の整流板を所定の間隔で配置し、
前記第3の並べ方では、
2番目と4番目の整流板は凹形状が1番目の整流板の方向を向くように、且つ3番目の整流板は凸形状が1番目の整流板の方向を向くように並べる、
あるいは、2番目と4番目の整流板は凸形状が1番目の整流板の方向を向くように、且つ3番目の整流板は凹形状が1番目の整流板の方向を向くように並べる、
ガスメータの製造方法。
It is a manufacturing method of the gas meter according to claim 2,
In the measuring tube, five rectifying plates are arranged at a predetermined interval,
In the third arrangement,
The second and fourth rectifying plates are arranged so that the concave shape faces the direction of the first rectifying plate, and the third rectifying plate is arranged so that the convex shape faces the direction of the first rectifying plate,
Alternatively, the second and fourth rectifying plates are arranged so that the convex shape faces the direction of the first rectifying plate, and the third rectifying plate is arranged so that the concave shape faces the direction of the first rectifying plate.
Gas meter manufacturing method.
JP2008029468A 2008-02-08 2008-02-08 Gas meter manufacturing method Active JP5069141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029468A JP5069141B2 (en) 2008-02-08 2008-02-08 Gas meter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029468A JP5069141B2 (en) 2008-02-08 2008-02-08 Gas meter manufacturing method

Publications (2)

Publication Number Publication Date
JP2009186432A JP2009186432A (en) 2009-08-20
JP5069141B2 true JP5069141B2 (en) 2012-11-07

Family

ID=41069814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029468A Active JP5069141B2 (en) 2008-02-08 2008-02-08 Gas meter manufacturing method

Country Status (1)

Country Link
JP (1) JP5069141B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013051272A1 (en) * 2011-10-06 2015-03-30 パナソニックIpマネジメント株式会社 Setting method of flow rate measuring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317974A (en) * 2000-05-09 2001-11-16 Yazaki Corp Ultrasonic flowmeter
JP3436247B2 (en) * 2000-10-10 2003-08-11 松下電器産業株式会社 Ultrasonic flow meter
JP2003083791A (en) * 2001-09-11 2003-03-19 Tokyo Gas Co Ltd Flow rate-measuring apparatus and gas meter
JP4455000B2 (en) * 2003-10-01 2010-04-21 東洋ガスメーター株式会社 Gas meter

Also Published As

Publication number Publication date
JP2009186432A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
EP2639559B1 (en) Ultrasonic flow rate measuring device
US9372105B2 (en) Ultrasonic flow rate measurement device
US20110238333A1 (en) Ultrasonic flowmeter
EP2600116A1 (en) Flow measurement structure and flow measurement device
WO2013099233A1 (en) Flow quantity measurement device setting method and flow quantity measurement device
JP2020034464A (en) Ultrasonic flowmeter
US20210270649A1 (en) Ultrasonic flow meter
JP5069141B2 (en) Gas meter manufacturing method
JP2022181906A (en) gas meter
JP2010117201A (en) Flowmeter
JP2012177572A (en) Ultrasonic fluid measuring instrument
JP4455000B2 (en) Gas meter
CN108463695B (en) Ultrasonic fluid meter and method for determining the flow rate and/or volume of a flowing medium
JP5154197B2 (en) Gas meter
JP2004316685A (en) Flow passage unit, layered part, and manufacturing method of layered part
JP2008232943A (en) Ultrasonic gas meter
JP6033583B2 (en) Gas meter
JP4588386B2 (en) Gas meter
JP4459734B2 (en) Gas meter
JP2006064626A (en) Flow rate measuring apparatus
JP2006118864A (en) Gas meter
JP2009186429A (en) Gas meter
CN202793485U (en) Gas gauge
JP2009047536A (en) Flow measuring device
JP2019164035A (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250