JP2009186429A - Gas meter - Google Patents

Gas meter Download PDF

Info

Publication number
JP2009186429A
JP2009186429A JP2008029429A JP2008029429A JP2009186429A JP 2009186429 A JP2009186429 A JP 2009186429A JP 2008029429 A JP2008029429 A JP 2008029429A JP 2008029429 A JP2008029429 A JP 2008029429A JP 2009186429 A JP2009186429 A JP 2009186429A
Authority
JP
Japan
Prior art keywords
gas
flow path
flow
path member
gas meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029429A
Other languages
Japanese (ja)
Inventor
Akira Kajitani
彰 梶谷
Shuichi Yamazaki
秀一 山崎
Fujio Hori
富士雄 堀
Jiro Mizukoshi
二郎 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Toyo Gas Meter Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Toyo Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Toho Gas Co Ltd, Toyo Gas Meter Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008029429A priority Critical patent/JP2009186429A/en
Publication of JP2009186429A publication Critical patent/JP2009186429A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the measurement accuracy of a flow rate more than the past case, by straightening the gas flow flowing into a measurement pipe from a flow channel member to some extent. <P>SOLUTION: This gas meter 10 is provided with straightening plates 36, 38 arranged in the vicinity of an inflow port 12 of the measurement pipe 40 to block the gas flow channel formed by the flow channel member 22 and guide and straighten the gas flowing in the flow channel member 22 to channel holes 36b, 38b formed at predetermined locations. Since the channel hole 36b is formed at the predetermined location of the straightening plate 36, the gas flowing in the flow channel member 22 is guided and straightened. According to such a straightening, the gas can easily flow toward the inflow port of the measurement pipe 40 from the channel hole 36b. In other words, collision to the measurement pipe 40 is restrained when the gas flows into the measurement pipe 40 from the flow channel member 22. Accordingly, since the flow of the gas, flowing into the measurement pipe 40 from the flow channel member 22, can be straightened, to some extent, and as a result, the measurement accuracy of the flow rate can be improved better than the past case. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流路部材と、計測管と、超音波伝播手段と、流量算出手段とを備えたガスメータに関する。   The present invention relates to a gas meter including a flow path member, a measurement tube, an ultrasonic wave propagation unit, and a flow rate calculation unit.

ガスメータは、例えば超音波の伝播時間または伝播速度がガス(被計測流体)の流速によって変化することを利用して、計測管内(導通路)を流れるガスに超音波を伝播させてガスの流量を計測している。流量を計測するにあたって、計測管におけるガスの流れの様相が大幅に変化すると、計測誤差が大きくなる傾向にある。従来では、計測精度を高めるため、厚さ(積層方向の高さ)が均等になるように複数の層に分割する整流板を計測管内に備える技術の一例が開示されている(例えば特許文献1を参照)。
特開2006−64626号公報
The gas meter, for example, utilizes the fact that the propagation time or propagation speed of ultrasonic waves changes depending on the flow velocity of the gas (measuring fluid), and propagates the ultrasonic waves to the gas flowing in the measurement pipe (conduction path) to reduce the gas flow rate. Measuring. When measuring the flow rate, if the aspect of the gas flow in the measuring tube changes significantly, the measurement error tends to increase. Conventionally, in order to improve measurement accuracy, an example of a technique in which a rectifying plate that is divided into a plurality of layers so that the thickness (height in the stacking direction) is uniform is provided in a measurement tube (for example, Patent Document 1). See).
JP 2006-64626 A

特許文献1に記載されたガスメータでは、流入口から流出口に至るガスの流路となる流路部材の途中に計測管を備えているので、流路部材から計測管に流れ込むガスは当該計測管に当たる等によって乱される。乱されたガスの流れを整流板のみで整えようとしても、計測管の流入口から整流板端部までに確保できる距離にも限界があるので、整流しきれないガスの流れ(いわゆる乱流状態)が少なからず存在する。   In the gas meter described in Patent Document 1, a measurement pipe is provided in the middle of a flow path member serving as a gas flow path from the inlet to the outlet, so that the gas flowing from the flow path member into the measurement pipe is the measurement pipe. It is disturbed by hitting. Even if the flow of turbulent gas is to be adjusted with only the rectifying plate, there is a limit to the distance that can be secured from the inlet of the measuring tube to the end of the rectifying plate. ) Is a little present.

本発明はこのような点に鑑みてなしたものであり、流路部材から計測管に流れ込むガスの流れをある程度整えることにより、従来よりも流量の計測精度を高めたガスメータを提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide a gas meter with higher flow rate measurement accuracy than before by adjusting the flow of gas flowing from a flow path member into a measurement tube to some extent. And

(1)課題を解決するための手段(以下では単に「解決手段」と呼ぶ。)1は、請求項1に記載した通りである。
解決手段1によれば、整流板は、流路部材で形成されるガスの流路を塞ぐように計測管の流入口の近傍に配置する。整流板の所定位置には通路穴が設けられているので、流路部材内を流れるガスを導いて整流する。この整流によって、ガスは通路穴から計測管の流入口に向けて流れ易くなる。言い換えれば、流路部材から計測管に流れ込む際に当該計測管に当たる等が抑制される。こうして流路部材から計測管に流れ込むガスの流れをある程度整えられるので、結果として流量の計測精度を従来よりも高めることができる。
(1) Means for solving the problem (hereinafter simply referred to as “solution means”) 1 is as described in claim 1.
According to the solution 1, the rectifying plate is disposed in the vicinity of the inlet of the measurement tube so as to block the gas flow path formed by the flow path member. Since a passage hole is provided at a predetermined position of the rectifying plate, the gas flowing in the flow path member is guided and rectified. This rectification facilitates the flow of gas from the passage hole toward the inlet of the measuring tube. In other words, hitting the measurement tube when flowing from the flow path member to the measurement tube is suppressed. Thus, the flow of gas flowing from the flow path member to the measuring tube can be adjusted to some extent, and as a result, the flow rate measurement accuracy can be improved as compared with the conventional case.

(2)解決手段2は、請求項2に記載した通りである。
解決手段2によれば、計測管の流入口の近傍だけでなく、流路部材で形成されるガスの流路を塞ぐように計測管の流出口の近傍にも整流板を配置する。この配置によって流出側もガスの流れをある程度整えられるので、結果として流量の計測精度がさらに高まる。
(2) Solution 2 is as described in claim 2.
According to the solution 2, the rectifying plate is disposed not only in the vicinity of the inlet of the measurement pipe but also in the vicinity of the outlet of the measurement pipe so as to block the gas flow path formed by the flow path member. With this arrangement, the gas flow can be adjusted to some extent also on the outflow side, and as a result, the measurement accuracy of the flow rate is further increased.

(3)解決手段3は、請求項3に記載した通りである。
解決手段3によれば、通路穴の周縁から起立させたリブを整流板に備える。リブは所定の高さを有するので、流路部材から計測管に流れ込むガスの流れをある程度整えられる。したがって、結果として流量の計測精度を従来よりも高めることができる。
(3) The solving means 3 is as described in claim 3.
According to the solution 3, the rectifying plate is provided with a rib that is erected from the periphery of the passage hole. Since the rib has a predetermined height, the flow of gas flowing from the flow path member to the measuring tube can be adjusted to some extent. Therefore, as a result, the measurement accuracy of the flow rate can be improved as compared with the conventional case.

本発明によれば、流路部材から計測管に流れ込むガスの流れをある程度整えることができるので、従来よりも流量の計測精度を高められる。   According to the present invention, since the flow of gas flowing from the flow path member into the measurement tube can be adjusted to some extent, the measurement accuracy of the flow rate can be improved as compared with the prior art.

本発明を実施するための最良の形態について、図1〜図7を参照しながら説明する。本発明に係るガスメータの外観例について、図1には正面図を表し、図2には平面図(上面図)を表す。図3はガスメータの構成例を分解斜視図で表す。図4は図2のIV−IV線矢視の断面図を表す。図5は図4のV−V線矢視の断面図を表す。図6は図4のVI−VI線矢視の断面図を表す。図7は流量と流量係数との関係をグラフ図で表す。   The best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 shows a front view of the gas meter according to the present invention, and FIG. 2 shows a plan view (top view). FIG. 3 is an exploded perspective view showing a configuration example of the gas meter. 4 represents a cross-sectional view taken along the line IV-IV in FIG. FIG. 5 shows a cross-sectional view taken along line VV in FIG. 6 represents a cross-sectional view taken along line VI-VI in FIG. FIG. 7 is a graph showing the relationship between the flow rate and the flow rate coefficient.

まずガスメータ10の外観例について、図1および図2を参照しながら簡単に説明する。図1および図2において、ほぼ矩形の箱状に形成されたガスメータ10は、正面パネル部材16を正面側に備え付ける。正面パネル部材16には、復帰ボタン18や表示手段20等が設けられる。復帰ボタン18は、異常検出によって作動した遮断弁34(図3を参照)を復帰させ、遮断状態から流通状態に戻す。表示手段20には例えば液晶表示器やLED表示器等が用いられ、計測したガスの流量の積算値やその他の情報等を表示する。   First, an appearance example of the gas meter 10 will be briefly described with reference to FIGS. 1 and 2. 1 and 2, a gas meter 10 formed in a substantially rectangular box shape is provided with a front panel member 16 on the front side. The front panel member 16 is provided with a return button 18, a display means 20, and the like. The return button 18 returns the shut-off valve 34 (see FIG. 3) that has been activated by abnormality detection to return from the shut-off state to the flow state. For example, a liquid crystal display, an LED display, or the like is used as the display means 20, and displays the integrated value of the measured gas flow rate, other information, and the like.

ガスメータ10は、図3に表すように、流路部材22を中心に正面パネル部材16、制御基板26、電源パック28、圧力センサ30、超音波伝播手段32(すなわち一対の超音波伝播器32a,32b)、整流板36,38、計測管40、底面パネル部材42などを有する。流路部材22は例えばアルミダイカストで一体形成され、ガスメータ10の外観には上面および左右両側面に表われる。この流路部材22は、流入口12と流出口14とが同一面(本例では上面)に配置された筒状のほぼU字型の流路を構成する。すなわち他の部材(例えば正面パネル部材16や、後述する背面パネル部材24および底面パネル部材42等)と合わせて、流入口12から流入し、流出口14から流出するガスの流路がほぼU字形状になる。   As shown in FIG. 3, the gas meter 10 includes a front panel member 16, a control board 26, a power pack 28, a pressure sensor 30, and an ultrasonic wave propagation means 32 (that is, a pair of ultrasonic wave propagation devices 32 a, around the flow path member 22. 32b), current plate 36, 38, measuring tube 40, bottom panel member 42, and the like. The flow path member 22 is integrally formed by, for example, aluminum die casting, and appears on the upper surface and the left and right side surfaces in the appearance of the gas meter 10. The flow path member 22 forms a cylindrical, substantially U-shaped flow path in which the inflow port 12 and the outflow port 14 are arranged on the same surface (upper surface in this example). That is, the flow path of the gas flowing in from the inlet 12 and flowing out of the outlet 14 together with other members (for example, the front panel member 16, the back panel member 24 and the bottom panel member 42 described later) is substantially U-shaped. Become a shape.

ところで、筒状のほぼU字型の全体を流路部材のみで一体成形した場合には、部品や部材(以下では単に「部品等」と呼ぶ。)を筒内に取り付けたり、あるいは取り外すことが困難になる。そこで、上記流路部材22は底辺部を開口させて一体成形を行い、この底辺部(すなわち開口部)から部品等を取り付けた後、底面パネル部材42で蓋をする構成とした(図3,図4を参照)。このような構成としたので、ガスの流路を筒状のほぼU字型としながらも、筒内に部品等の取り付けたり取り外すことが容易になる。   By the way, when the entire substantially cylindrical U-shape is integrally formed with only the flow path member, a part or member (hereinafter simply referred to as “part etc.”) can be attached to or removed from the cylinder. It becomes difficult. Therefore, the flow path member 22 is integrally formed by opening the bottom portion, and after attaching parts and the like from the bottom portion (that is, the opening portion), the bottom panel member 42 is used to cover (FIG. 3, FIG. 3). (See FIG. 4). With such a configuration, it is easy to attach or remove components or the like in the cylinder while the gas flow path is substantially U-shaped in a cylindrical shape.

上述のように構成された流路部材22に対して、種々の部品等を取り付ける。図3には各部品等の取付方向を矢印でそれぞれ表す。正面側(図面左側)から流路部材22に取り付けるのは、正面パネル部材16、制御基板26、電源パック28、圧力センサ30、超音波伝播器32a等である。制御基板26(「制御手段」に相当する)はCPUやメモリ等のような電子制御部品を備え、ガスメータ10全体の制御を司る。その制御例としては、超音波伝播器32a,32bから出力される検出信号に基づいて計測管40内を流れるガスの流量を算出し、当該算出したガスの流量を表示手段20に表示する。また別の制御例としては、圧力センサ30の検出信号から出力された圧力に基づいて種々の異常判定を行い、異常を判定した場合は遮断弁34に駆動信号を出力して流路を遮断する。   Various parts and the like are attached to the flow path member 22 configured as described above. In FIG. 3, the mounting directions of the components and the like are indicated by arrows. The front panel member 16, the control board 26, the power pack 28, the pressure sensor 30, the ultrasonic wave propagator 32a, and the like are attached to the flow path member 22 from the front side (left side in the drawing). The control board 26 (corresponding to “control means”) includes electronic control components such as a CPU and a memory, and controls the entire gas meter 10. As an example of the control, the flow rate of the gas flowing through the measuring tube 40 is calculated based on the detection signals output from the ultrasonic wave propagators 32a and 32b, and the calculated flow rate of the gas is displayed on the display means 20. As another control example, various abnormality determinations are performed based on the pressure output from the detection signal of the pressure sensor 30, and when the abnormality is determined, a drive signal is output to the shutoff valve 34 to block the flow path. .

電源パック28は、制御基板26や他の電子部品を駆動させるための電力源として用いられる。この電源パック28は、流路部材22のほぼ中央部に設けられた空間部Kに取り付けられる。圧力センサ30は種々の異常を検出するために利用され、流路内のガスの圧力を検出して検出信号を出力する。この圧力センサ30は、流路部材22のほぼU字型の流路における正面側に設けられた専用の取り付け穴に取り付けられる。超音波伝播器32aは、超音波伝播手段32の一方側を構成する。   The power pack 28 is used as a power source for driving the control board 26 and other electronic components. The power pack 28 is attached to a space K provided in the substantially central portion of the flow path member 22. The pressure sensor 30 is used to detect various abnormalities, detects the pressure of the gas in the flow path, and outputs a detection signal. The pressure sensor 30 is attached to a dedicated attachment hole provided on the front side of the substantially U-shaped flow path of the flow path member 22. The ultrasonic wave propagation device 32 a constitutes one side of the ultrasonic wave propagation means 32.

背面側(図面右側)から流路部材22に取り付けるのは、遮断弁34、超音波伝播器32b、背面パネル部材24等である。遮断弁34は、異常を検出した場合に流路を閉じて(遮断して)、流出口14にガスが流れないようにする。この遮断弁34は、流路部材22のほぼU字型の流路における背面側に設けられた専用の取り付け穴に取り付けられる。超音波伝播器32bは、超音波伝播手段32の他方側を構成する。背面パネル部材24は、ガスメータ10の背面側に備え付けられる。   The shut-off valve 34, the ultrasonic wave propagator 32b, the back panel member 24, and the like are attached to the flow path member 22 from the back side (right side of the drawing). The shutoff valve 34 closes (shuts down) the flow path when an abnormality is detected, so that gas does not flow to the outlet 14. The shut-off valve 34 is attached to a dedicated attachment hole provided on the back side of the substantially U-shaped flow path of the flow path member 22. The ultrasonic wave propagation device 32 b constitutes the other side of the ultrasonic wave propagation means 32. The back panel member 24 is provided on the back side of the gas meter 10.

底面側(図面下側)から流路部材22に取り付けるのは、整流板36,38、計測管40、底面パネル部材42等である。図4および図5に表すように、整流板36は流入口12から流入したガスの流れをある程度整えて計測管40の流入口に導く。この整流板36は通路穴36bとリブ36aとを有する。通路穴36bは、計測管40の流入口形状に合わせて、例えば長方形状にあけられている(図6を参照)。リブ36aは、通路穴36bの周縁から流入口12側に起立して所定の高さからなる。図4に表すように、整流板38は計測管40の流出口から流出したガスの流れをある程度整えて流出口14に導く。この整流板38は通路穴38bとリブ38aとを有する。通路穴38bは通路穴36bと同じ形状であけられている(図6を参照)。リブ38aは、通路穴38bの周縁から流出口14側に起立して所定の高さからなる。リブ36a,38aにかかる所定の高さは、実験等によって適切に定める。   The rectifying plates 36, 38, the measuring tube 40, the bottom panel member 42, and the like are attached to the flow path member 22 from the bottom surface side (the lower side in the drawing). As shown in FIGS. 4 and 5, the rectifying plate 36 regulates the flow of the gas flowing in from the inflow port 12 to some extent and guides it to the inflow port of the measuring tube 40. The rectifying plate 36 has a passage hole 36b and a rib 36a. The passage hole 36b is formed in, for example, a rectangular shape in accordance with the shape of the inlet of the measuring tube 40 (see FIG. 6). The rib 36a rises from the peripheral edge of the passage hole 36b toward the inlet 12 and has a predetermined height. As shown in FIG. 4, the rectifying plate 38 regulates the flow of the gas flowing out from the outlet of the measuring tube 40 to some extent and guides it to the outlet 14. This baffle plate 38 has a passage hole 38b and a rib 38a. The passage hole 38b is formed in the same shape as the passage hole 36b (see FIG. 6). The rib 38a rises from the peripheral edge of the passage hole 38b toward the outlet 14 and has a predetermined height. The predetermined height applied to the ribs 36a and 38a is appropriately determined by experiments or the like.

計測管40をガスの流路内に配置するべく、本例では流路部材22の中央下部と底面パネル部材42の凸部42aとで挟みつけるように取り付ける。この計測管40はガスの通過断面がほぼ矩形となる筒状に形成され、管内には整流板群44が設けられている。整流板群44は計測管40内を流れるガスを整流する部材であって、複数枚の整流板を平行かつ多層に構成している。底面パネル部材42はガスメータ10の底面側に備え付けられ、図3と図4に表すように中央部に大きな凸部42aを有する。   In this example, the measuring tube 40 is attached so as to be sandwiched between the lower center portion of the flow channel member 22 and the convex portion 42a of the bottom panel member 42 so as to be disposed in the gas flow channel. The measuring tube 40 is formed in a cylindrical shape in which the gas passage cross section is substantially rectangular, and a rectifying plate group 44 is provided in the tube. The rectifying plate group 44 is a member that rectifies the gas flowing in the measuring tube 40, and includes a plurality of rectifying plates arranged in parallel and in multiple layers. The bottom panel member 42 is provided on the bottom surface side of the gas meter 10, and has a large convex portion 42a at the center as shown in FIGS.

超音波伝播手段32(超音波送受信センサ)について簡単に説明する。図6に表すように、超音波伝播器32aと超音波伝播器32bは、ガスメータ10内における上流側と下流側の所定個所に互いに対向させて配置するとともに、ガスの流れ方向に対して所定の角度「θ」をなして設ける。いずれか一方の超音波伝播器から超音波を出力し、この超音波を他方の超音波伝播器で受信して伝播時間を計測する。上流側から下流側への伝播と、下流側から上流側への伝播との双方を行って、ガスの流速および流量を求める。ここで、音速を「C」とし、超音波伝播器32a,32bの相互間距離を「L」とし、超音波の伝播時間を「T1」「T2」とすると、ガスの流速「U」は下記式で求められる。さらに算出した流速「U」に対して計測管40の断面積および流量係数を積算すると、ガスの流量が求められる。流量係数は流体の流量を補正する係数である。
U=(L/2cosθ)×{(1/T1)−(1/T2)}
The ultrasonic propagation means 32 (ultrasonic transmission / reception sensor) will be briefly described. As shown in FIG. 6, the ultrasonic wave propagator 32a and the ultrasonic wave propagator 32b are arranged to face each other at predetermined positions on the upstream side and the downstream side in the gas meter 10, and have a predetermined amount with respect to the gas flow direction. Provided at an angle “θ”. An ultrasonic wave is output from one of the ultrasonic wave propagators, the ultrasonic wave is received by the other ultrasonic wave propagator, and the propagation time is measured. Both the propagation from the upstream side to the downstream side and the propagation from the downstream side to the upstream side are performed to obtain the flow velocity and flow rate of the gas. Here, when the sound velocity is “C”, the distance between the ultrasonic wave propagators 32a and 32b is “L”, and the ultrasonic wave propagation time is “T1” and “T2”, the gas flow velocity “U” is as follows. It is calculated by the formula. Further, when the cross-sectional area and the flow coefficient of the measuring tube 40 are integrated with the calculated flow velocity “U”, the gas flow rate is obtained. The flow coefficient is a coefficient for correcting the flow rate of the fluid.
U = (L / 2 cos θ) × {(1 / T1) − (1 / T2)}

上述のように構成したガスメータ10では整流板36,38を備えたことにより、図4に表す矢印D2,D4のようなガスの流れになる。すなわち矢印D2で表すように、流路部材22から通路穴36bを通って計測管40の流入口に流れ込むようになる。よって計測管40に当たる等の流れが抑制されるので、ガスの流れをある程度整えられる。また矢印D4で表すように、計測管40の流出口から流れ出たガスは拡散せずに、そのまま通路穴38bを通って流路部材22に向かうようになる。よって流出口からの拡散する等の流れが抑制されるので、ガスの流れをある程度整えられる。こうした整流によって、整流板群44で整流されるガスは整流板36,38が無い場合に比べて、より層流になる。よって乱流のガスが少なくなるので、超音波伝播手段32による超音波の伝播時間をより正確に計測でき、ひいてはガスの流速や流量の精度が向上する。   Since the gas meter 10 configured as described above includes the rectifying plates 36 and 38, the gas flows as indicated by arrows D2 and D4 shown in FIG. That is, as represented by the arrow D2, the fluid flows from the flow path member 22 through the passage hole 36b to the inlet of the measurement tube 40. Therefore, since the flow of hitting the measuring tube 40 is suppressed, the gas flow can be adjusted to some extent. Further, as indicated by the arrow D4, the gas flowing out from the outlet of the measuring tube 40 does not diffuse but goes directly to the flow path member 22 through the passage hole 38b. Therefore, since the flow of diffusing from the outlet is suppressed, the gas flow can be adjusted to some extent. By such rectification, the gas rectified by the rectifying plate group 44 becomes more laminar than when the rectifying plates 36 and 38 are not provided. Accordingly, since the turbulent gas is reduced, the ultrasonic propagation time by the ultrasonic wave propagation means 32 can be measured more accurately, and the accuracy of the gas flow velocity and flow rate is improved.

なお、上述した整流板36,38はリブ36a,38aを備える構成としたが(図4を参照)、当該リブ36a,38aを備えない構成としてもよい(図8を参照)。各構成について、横軸をガスの流量とし、縦軸を流量係数とした関係をグラフで図7に表す。当該図7では、リブ36a,38a付きの整流板36,38の変化を四角点「■」で表し、リブ36a,38a無しの整流板36,38の変化を菱形点「◆」で表し、比較のために整流板を備えなかった場合の変化を三角点「▲」で表す。図7から明らかなように、リブ付き整流板のほうが、リブ無し整流板よりも全般的に流量係数がほぼ一定している。また、整流板を備えない場合には流量が増えるにつれて流量係数が減少する傾向にあるが、整流板36,38を備えた場合には流量の増減にかかわらず安定する傾向がある。これらのことから、ガスの流量が変化しても乱流になる割合が低く抑えられ、レイノルズ数が低くなることを示す。   The rectifying plates 36 and 38 described above are configured to include the ribs 36a and 38a (see FIG. 4), but may be configured not to include the ribs 36a and 38a (see FIG. 8). FIG. 7 is a graph showing a relationship in which the horizontal axis is the gas flow rate and the vertical axis is the flow coefficient for each configuration. In FIG. 7, the change of the rectifying plates 36 and 38 with the ribs 36a and 38a is represented by a square point “■”, and the change of the rectifying plates 36 and 38 without the ribs 36a and 38a is represented by a rhombus point “♦”. For this reason, the change when the current plate is not provided is represented by a triangle point “▲”. As is apparent from FIG. 7, the flow coefficient with the ribs is generally more constant than that with the ribs. In addition, when the rectifying plate is not provided, the flow coefficient tends to decrease as the flow rate increases. However, when the rectifying plates 36 and 38 are provided, the flow rate tends to be stable regardless of the increase or decrease of the flow rate. From these facts, it is shown that the ratio of turbulent flow is kept low even when the gas flow rate is changed, and the Reynolds number is lowered.

上述した実施の形態によれば、以下に表す各効果を得ることができる。
(1)整流板36は、流路部材22で形成されるガスの流路を塞ぐように計測管40の流入口の近傍に配置する構成とした(図4〜図6を参照)。整流板36の所定位置には通路穴36bが設けられているので、流路部材22内を流れるガスを導いて整流する。この整流によって、ガスは通路穴36bから計測管40の流入口に向けて流れ易くなる。言い換えれば、流路部材22から計測管40に流れ込む際に当該計測管40に当たる等が抑制される。こうして流路部材22から計測管40に流れ込むガスの流れをある程度整えられるので、結果として流量の計測精度を従来よりも高めることができる。
According to the embodiment described above, the following effects can be obtained.
(1) The rectifying plate 36 is arranged in the vicinity of the inlet of the measurement tube 40 so as to block the gas flow path formed by the flow path member 22 (see FIGS. 4 to 6). Since the passage hole 36b is provided at a predetermined position of the rectifying plate 36, the gas flowing in the flow path member 22 is guided and rectified. This rectification facilitates the flow of gas from the passage hole 36b toward the inlet of the measuring tube 40. In other words, hitting the measurement tube 40 when flowing from the flow path member 22 into the measurement tube 40 is suppressed. In this way, the flow of gas flowing from the flow path member 22 into the measuring tube 40 can be adjusted to some extent, and as a result, the flow rate measurement accuracy can be improved as compared with the conventional case.

(2)計測管40の流入口の近傍だけでなく、流路部材22で形成されるガスの流路を塞ぐように計測管40の流出口の近傍にも整流板38を配置する構成とした(図4,図6を参照)。この配置によって流出側もガスの流れをある程度整えられるので、結果として流量の計測精度をさらに高めることができる。 (2) The rectifying plate 38 is arranged not only in the vicinity of the inlet of the measuring tube 40 but also in the vicinity of the outlet of the measuring tube 40 so as to block the gas channel formed by the channel member 22. (See FIGS. 4 and 6). With this arrangement, the gas flow can be adjusted to some extent on the outflow side, and as a result, the flow rate measurement accuracy can be further enhanced.

(3)通路穴36b,38bの周縁から起立させたリブ36a,38aを整流板36,38に備える構成とした(図3〜図5を参照)。リブ36a,38aは所定の高さを有するので、流路部材22から計測管40に流れ込むガスの流れをある程度整えられる。したがって、結果として流量の計測精度を従来よりも高めることができる。 (3) The ribs 36a, 38a raised from the peripheral edges of the passage holes 36b, 38b are provided on the rectifying plates 36, 38 (see FIGS. 3 to 5). Since the ribs 36a and 38a have a predetermined height, the flow of gas flowing from the flow path member 22 into the measuring tube 40 can be adjusted to some extent. Therefore, as a result, the measurement accuracy of the flow rate can be improved as compared with the conventional case.

〔他の実施の形態〕
以上では本発明を実施するための最良の形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the best mode for carrying out the present invention has been described above, the present invention is not limited to this mode. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

(1)上述した実施の形態では、流路部材22と整流板36,38とは別体に形成し、流路部材22に対して整流板36,38を取り付ける構成とした(図3を参照)。この形態に代えて、流路部材22と整流板36,38とを一体形成する構成としてもよい。この構成によれば、整流板36,38を取り付ける工程が不要になるので、ガスメータ10の製造時間を短縮することができる。その他については、別体か一体かの相違に過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。 (1) In the above-described embodiment, the flow path member 22 and the rectifying plates 36 and 38 are formed separately, and the rectifying plates 36 and 38 are attached to the flow path member 22 (see FIG. 3). ). Instead of this form, the flow path member 22 and the rectifying plates 36 and 38 may be integrally formed. According to this configuration, since the process of attaching the rectifying plates 36 and 38 is not required, the manufacturing time of the gas meter 10 can be shortened. Other than that, the difference is only whether it is a separate body or an integrated body, so that the same operational effects as those of the above-described embodiment can be obtained.

(2)上述した実施の形態では、整流板36,38の通路穴36b,38bを長方形状に形成した(図6を参照)。この形態に代えて、通路穴36b,38bを他の形状で形成してもよい。他の形状は四角形や円形(楕円形を含む)等が該当するが、計測管40の流入口や流出口の形状に合わせるのが望ましい。いずれの形状にせよ、ガスの流れをある程度整えることができる。 (2) In the embodiment described above, the passage holes 36b, 38b of the rectifying plates 36, 38 are formed in a rectangular shape (see FIG. 6). Instead of this form, the passage holes 36b, 38b may be formed in other shapes. Other shapes include a quadrangle and a circle (including an ellipse), but it is desirable to match the shape of the inlet and outlet of the measurement tube 40. Regardless of the shape, the gas flow can be adjusted to some extent.

(3)上述した実施の形態では、流入口12と流出口14とを上面に配置にしてほぼU字型の流路を構成した(図1を参照)。この形態に代えて、流入口12と流出口14とを底面に配置して逆U字型の流路を構成したり、流入口12と流出口14とを側面に配置して⊂(または⊃)字型の流路を構成してもよい。いずれの構成にせよ、ガスメータ10のいずれか同一面に流入口12と流出口14とを配置する点では変わらないので、上述した実施の形態と同様の作用効果を得ることができる。なお、流入口12と流出口14とを異なる面にそれぞれ配置した場合でも、整流板36,38による作用は変わらないので、上述した実施の形態と同様の作用効果を得ることができる。 (3) In the above-described embodiment, the inflow port 12 and the outflow port 14 are arranged on the upper surface to form a substantially U-shaped flow path (see FIG. 1). Instead of this form, the inflow port 12 and the outflow port 14 are arranged on the bottom surface to form an inverted U-shaped flow path, or the inflow port 12 and the outflow port 14 are arranged on the side surface so ) A character-shaped channel may be formed. In any configuration, since the inflow port 12 and the outflow port 14 are arranged on either side of the gas meter 10, the same effects as those of the above-described embodiment can be obtained. Even when the inflow port 12 and the outflow port 14 are respectively arranged on different surfaces, the operation by the rectifying plates 36 and 38 is not changed, so that the same effect as the above-described embodiment can be obtained.

(4)上述した実施の形態では、整流板36はリブ36aおよび通路穴36bを備え、整流板38はリブ38aおよび通路穴38bを備える構成とした(図3〜図5を参照)。いずれか一方または双方の整流板に代えて、図9に表すような整流部材50,52を備える構成としてもよい。整流部材50はリブ50aおよび誘導通路50bを備え、整流部材52はリブ52aおよび誘導通路52bを備える。整流部材50は整流板36とほぼ同位置に設け、整流部材52は整流板38とほぼ同位置に設ける。整流板36,38との違いは、誘導通路50bが計測管40の流入口までつながっており、計測管40の流出口から誘導通路52bがつながっている点である。誘導通路50b,52bによって計測管40に当たる等がさらに抑制されるので、流量の計測精度をさらに高めることができる。 (4) In the above-described embodiment, the rectifying plate 36 includes the rib 36a and the passage hole 36b, and the rectifying plate 38 includes the rib 38a and the passage hole 38b (see FIGS. 3 to 5). Instead of either one or both of the current plates, a structure may be provided that includes current regulating members 50 and 52 as shown in FIG. The rectifying member 50 includes a rib 50a and a guide passage 50b, and the rectifying member 52 includes a rib 52a and a guide passage 52b. The rectifying member 50 is provided at substantially the same position as the rectifying plate 36, and the rectifying member 52 is provided at substantially the same position as the rectifying plate 38. The difference from the rectifying plates 36 and 38 is that the guide passage 50b is connected to the inlet of the measuring tube 40, and the guide passage 52b is connected from the outlet of the measuring tube 40. Since the guide passages 50b and 52b are further prevented from hitting the measurement tube 40, the flow rate measurement accuracy can be further increased.

(5)(4)と同様にして、整流板36,38のうちでいずれか一方または双方に代えて、図10に表すような整流部材54,56を備える構成としてもよい。整流部材54は、流入口12側の流路部材22(内側壁面)と計測管40の流入口との間をつなぐ。整流部材56は計測管40の流出口と流出口14側の流路部材22(内側壁面)との間をつなぐ。単につなぐよりは、曲線的に滑らかにつなぐように形成するのが望ましい。計測管40に当たる等が完全に抑制されるので、流量の計測精度をさらに高めることができる。 (5) Similarly to (4), instead of either one or both of the rectifying plates 36, 38, rectifying members 54, 56 as shown in FIG. 10 may be provided. The flow regulating member 54 connects between the flow path member 22 (inner wall surface) on the inlet 12 side and the inlet of the measurement tube 40. The rectifying member 56 connects between the outlet of the measuring tube 40 and the flow path member 22 (inner wall surface) on the outlet 14 side. Rather than simply connecting, it is desirable to form it so that it is connected in a curved manner. Since the contact with the measuring tube 40 is completely suppressed, the flow rate measurement accuracy can be further increased.

ガスメータの外観例を表す正面図である。It is a front view showing the example of appearance of a gas meter. ガスメータの外観例を表す平面図である。It is a top view showing the external appearance example of a gas meter. ガスメータの構成例を説明する分解斜視図である。It is a disassembled perspective view explaining the structural example of a gas meter. 図2のIV−IV線矢視の断面図である。It is sectional drawing of the IV-IV line arrow of FIG. 図4のV−V線矢視の断面図である。It is sectional drawing of the VV arrow of FIG. 図4のVI−VI線矢視の断面図である。It is sectional drawing of the VI-VI line arrow of FIG. 流量と流量係数との関係を説明するグラフ図である。It is a graph explaining the relationship between a flow volume and a flow coefficient. リブの無い整流板を用いて構成した例を表す断面図である。It is sectional drawing showing the example comprised using the baffle plate without a rib. 他の形状の整流板を用いて構成した例を表す断面図である。It is sectional drawing showing the example comprised using the baffle plate of another shape. 他の形状の整流板を用いて構成した例を表す断面図である。It is sectional drawing showing the example comprised using the baffle plate of another shape.

符号の説明Explanation of symbols

10 ガスメータ
12 流入口
14 流出口
16 正面パネル部材
18 復帰ボタン
20 表示手段
22 流路部材
24 背面パネル部材
26 制御基板
28 電源パック
30 圧力センサ
32 超音波伝播手段
32a,32b 超音波伝播器
34 遮断弁
36,38 整流板
36a,38a リブ(ツバ)
36b,38b 通路穴
40 計測管
42 底面パネル部材
42a 凸部
44 整流板群
50,52,54,56 整流部材
50a,52a リブ(ツバ)
50b,52b 誘導通路
K 空間部
DESCRIPTION OF SYMBOLS 10 Gas meter 12 Inlet 14 Outlet 16 Front panel member 18 Return button 20 Display means 22 Flow path member 24 Back panel member 26 Control board 28 Power supply pack 30 Pressure sensor 32 Ultrasonic propagation means 32a, 32b Ultrasonic wave propagation device 34 Shut-off valve 36, 38 Current plate 36a, 38a Rib (head)
36b, 38b Passage hole 40 Measuring tube 42 Bottom panel member 42a Convex portion 44 Rectifying plate group 50, 52, 54, 56 Rectifying member 50a, 52a Rib (head)
50b, 52b Guide passage K space

Claims (3)

流入口から流出口に至るガスの流路としてほぼU字型の筒状に形成された流路部材と、
前記流路部材で形成されるガスの流路内に配置され、ガスの通過断面がほぼ矩形となるように形成された計測管と、
前記計測管における上流側と下流側とに設けた所定の二点間で超音波を伝播させて検出信号を出力する超音波伝播手段と、
前記超音波伝播手段から出力された検出信号に基づいて、前記計測管内を流れるガスの流量を算出する流量算出手段とを備えたガスメータであって、
前記流路部材で形成されるガスの流路を塞ぐように前記計測管の流入口の近傍に配置され、所定位置に設けた通路穴に流路部材内を流れるガスを導いて整流する整流板を有するガスメータ。
A channel member formed in a substantially U-shaped cylindrical shape as a gas channel from the inlet to the outlet;
A measuring tube disposed in the gas flow path formed by the flow path member and formed so that the gas passage cross section is substantially rectangular;
Ultrasonic wave propagation means for propagating the ultrasonic wave between two predetermined points provided on the upstream side and the downstream side in the measurement tube and outputting a detection signal;
A gas meter comprising flow rate calculation means for calculating a flow rate of the gas flowing in the measurement tube based on a detection signal output from the ultrasonic wave propagation means,
A rectifying plate that is arranged in the vicinity of the inflow port of the measurement tube so as to block the gas flow path formed by the flow path member, and rectifies the gas flowing in the flow path member through a passage hole provided at a predetermined position. Having a gas meter.
請求項1に記載したガスメータであって、
整流板は、計測管の流入口の近傍にとともに、流路部材で形成されるガスの流路を塞ぐように前記計測管の流出口の近傍に配置する構成としたガスメータ。
A gas meter according to claim 1, wherein
The rectifying plate is arranged in the vicinity of the inflow port of the measurement tube and in the vicinity of the outflow port of the measurement tube so as to close the gas flow path formed by the flow path member.
請求項1または2に記載したガスメータであって、
整流板には、通路穴の周縁から起立させ、所定の高さを有するリブを備える構造としたガスメータ。
A gas meter according to claim 1 or 2, wherein
A gas meter having a structure in which the current plate is provided with a rib that stands up from the periphery of the passage hole and has a predetermined height.
JP2008029429A 2008-02-08 2008-02-08 Gas meter Pending JP2009186429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029429A JP2009186429A (en) 2008-02-08 2008-02-08 Gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029429A JP2009186429A (en) 2008-02-08 2008-02-08 Gas meter

Publications (1)

Publication Number Publication Date
JP2009186429A true JP2009186429A (en) 2009-08-20

Family

ID=41069811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029429A Pending JP2009186429A (en) 2008-02-08 2008-02-08 Gas meter

Country Status (1)

Country Link
JP (1) JP2009186429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223800A (en) * 2015-05-27 2016-12-28 愛知時計電機株式会社 Ultrasonic flowmeter
JP2016223799A (en) * 2015-05-27 2016-12-28 愛知時計電機株式会社 Ultrasonic flowmeter
JP2020003465A (en) * 2018-07-02 2020-01-09 東洋計器株式会社 Structure for preventing wrong assembly of component for measuring flow rate of gas meter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281434A (en) * 1998-03-31 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter
JPH11281440A (en) * 1998-03-27 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter
JP2003302275A (en) * 2002-04-11 2003-10-24 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2004333202A (en) * 2003-05-01 2004-11-25 Toyo Gas Meter Kk Gas meter
JP2007010414A (en) * 2005-06-29 2007-01-18 Kimmon Mfg Co Ltd Ultrasonic gas meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281440A (en) * 1998-03-27 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter
JPH11281434A (en) * 1998-03-31 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter
JP2003302275A (en) * 2002-04-11 2003-10-24 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2004333202A (en) * 2003-05-01 2004-11-25 Toyo Gas Meter Kk Gas meter
JP2007010414A (en) * 2005-06-29 2007-01-18 Kimmon Mfg Co Ltd Ultrasonic gas meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223800A (en) * 2015-05-27 2016-12-28 愛知時計電機株式会社 Ultrasonic flowmeter
JP2016223799A (en) * 2015-05-27 2016-12-28 愛知時計電機株式会社 Ultrasonic flowmeter
JP2020003465A (en) * 2018-07-02 2020-01-09 東洋計器株式会社 Structure for preventing wrong assembly of component for measuring flow rate of gas meter

Similar Documents

Publication Publication Date Title
JP5236303B2 (en) Gas meter
JP2010164558A (en) Device for measuring flow of fluid
WO2012086156A1 (en) Ultrasonic flowmeter
WO1999031467A1 (en) Flowmeter
WO2014057673A1 (en) Flowmeter
JP5148405B2 (en) Gas meter
JP2005315717A (en) Gas meter
JP2010117201A (en) Flowmeter
JP2009186429A (en) Gas meter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP6134899B2 (en) Flow measurement unit
JP2007322221A (en) Ultrasound flowmeter
JP4852265B2 (en) Ultrasonic gas meter
JP2014077750A (en) Ultrasonic meter
JP2006118864A (en) Gas meter
JP2012063187A (en) Ultrasonic flow meter
JP4990654B2 (en) Ultrasonic gas meter
JP5154197B2 (en) Gas meter
JP2009287966A (en) Assembling method of flowmeter, and flowmeter
JP3921518B2 (en) Pulsation absorption structure of electronic gas meter
JP7373772B2 (en) Physical quantity measuring device
CN202793485U (en) Gas gauge
JP4087687B2 (en) Flowmeter
JP7312121B2 (en) ultrasonic flow meter
JP2002236045A (en) Water meter and city water reading device with the water meter mounted thereon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218