JP2016223800A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2016223800A
JP2016223800A JP2015107478A JP2015107478A JP2016223800A JP 2016223800 A JP2016223800 A JP 2016223800A JP 2015107478 A JP2015107478 A JP 2015107478A JP 2015107478 A JP2015107478 A JP 2015107478A JP 2016223800 A JP2016223800 A JP 2016223800A
Authority
JP
Japan
Prior art keywords
inlet
measurement
opening
fluid
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015107478A
Other languages
Japanese (ja)
Other versions
JP6448468B2 (en
Inventor
光臣 高鍬
Mitsuomi Takakuwa
光臣 高鍬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2015107478A priority Critical patent/JP6448468B2/en
Publication of JP2016223800A publication Critical patent/JP2016223800A/en
Application granted granted Critical
Publication of JP6448468B2 publication Critical patent/JP6448468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter which can sufficiently uniformize the flow of a measurement object fluid at the time of the large flow rate and achieve miniaturization.SOLUTION: A meter case comprises: an inlet buffer part which is formed with an opening provided adjacently in the direction substantially perpendicular to the flow direction with respect to the depth side end of an inflow passage to which measurement object fluid flows from an inflow port and communicating the inflow passage, and is sectioned in a substantial box shape so that the inlet side of the measurement passage part with the substantially rectangular cross section protrudes inward, and the measurement object fluid flows into the inlet of the measurement passage part; and an outlet buffer part which communicates the outflow port and is sectioned in the substantial box shape so that the outlet side of the measurement passage part protrudes inward and the measurement object fluid flowing out from the outlet of the measurement passage part flows out to the outside. The measurement passage part is arranged so as to cover the most of the opening in the front view by protruding into the inlet buffer part so that the side surface on the inlet side becomes substantially parallel with the inner wall of the inlet buffer part formed with the opening.SELECTED DRAWING: Figure 2

Description

本発明は、被計測流体の流量を計測する超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid to be measured.

従来より、被計測流体の流量を計測する超音波流量計に関する技術が種々提案されている。
例えば、下記特許文献1に記載された超音波流量計では、計測室は、仕切り壁によって流入側と流出側とに区分され、被計測流体が流れる流路が形成されたほぼ矩形状の断面を有する筒状の流管が仕切り壁を貫通している。
Conventionally, various techniques relating to an ultrasonic flowmeter for measuring the flow rate of a fluid to be measured have been proposed.
For example, in the ultrasonic flowmeter described in Patent Document 1 below, the measurement chamber is divided into an inflow side and an outflow side by a partition wall, and a substantially rectangular cross section in which a flow path through which a fluid to be measured flows is formed. The cylindrical flow tube which has has penetrated the partition wall.

また、被計測流体が流入する流入部と計測室との間には、双方の空間を仕切る邪魔板が、流入部に流入する被計測流体の流れ方向に対して、ほぼ直角に設けられている。また、邪魔板には、仕切り壁側の端部に円形状の流入口が形成されている。従って、被計測流体は、流入部から邪魔板の上面に当たった後、邪魔板に沿って流れて流入口に入って、再度流管の外壁に当たって、流管の外壁に沿って計測室内を流れて流路に流入するように構成されている。従って、被計測流体は、2回にわたって180度の方向転換をされて一定距離流れるため、流れの均一化を図ることが可能となる。   In addition, a baffle plate that partitions both spaces between the inflow portion into which the fluid to be measured flows and the measurement chamber is provided substantially at right angles to the flow direction of the fluid to be measured that flows into the inflow portion. . The baffle plate has a circular inflow port formed at the end on the partition wall side. Therefore, the fluid to be measured hits the upper surface of the baffle plate from the inflow part, then flows along the baffle plate, enters the inlet, again hits the outer wall of the flow tube, and flows in the measurement chamber along the outer wall of the flow tube. And flow into the flow path. Therefore, since the fluid to be measured is changed in direction by 180 degrees twice and flows for a certain distance, the flow can be made uniform.

特開2004−85210号公報JP 2004-85210 A

しかしながら、前記した特許文献1に記載された超音波流量計では、流れを十分に均一化するため、被計測流体は、2回にわたって180度の方向転換をされて一定距離流れる必要がある。その結果、被計測流体の流量が大流量(例えば、約6000(リットル/時間)の流量である。)になった場合には、計測室の小型化が難しく、その結果、超音波流量計の小型化が難しいという問題がある。   However, in the ultrasonic flowmeter described in Patent Document 1, the fluid to be measured needs to change its direction 180 degrees twice and flow for a certain distance in order to make the flow sufficiently uniform. As a result, when the flow rate of the fluid to be measured becomes a large flow rate (for example, a flow rate of about 6000 (liters / hour)), it is difficult to reduce the size of the measurement chamber. There is a problem that miniaturization is difficult.

そこで、本発明は、上述した問題点を解決するためになされたものであり、大流量時の被計測流体の流れを十分に均一化することが可能となると共に、小型化を図ることが可能となる超音波流量計を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and it is possible to sufficiently equalize the flow of the fluid to be measured at the time of a large flow rate and to reduce the size. It aims at providing the ultrasonic flowmeter which becomes.

前記目的を達成するため請求項1に係る超音波流量計は、被計測流体の流入口と前記被計測流体の流出口が形成されたメータケースと、前記メータケース内に配置されて該メータケース内を通過する前記被計測流体の流量を計測する流量計測ユニットと、を備え、前記流量計測ユニットは、前記被計測流体が流れる断面略矩形状の計測流路部と、前記計測流路部の上流側と下流側に取り付けられた一対の超音波振動子と、を有し、前記メータケースは、前記流入口から前記被計測流体が流れ込む流入路の奥側端部に流れ方向に対して略直角方向に隣り合って設けられて前記流入路に連通する開口部が形成されると共に、前記計測流路部の入口側が内側に突出して前記被計測流体が該計測流路部の入口部に流入するように略箱体状に区画された入口バッファ部と、前記流出口に連通すると共に、前記計測流路部の出口側が内側に突出して該計測流路部の出口部から流出した前記被計測流体が外部へ流出するように略箱体状に区画された出口バッファ部と、を有し、前記計測流路部は、入口側の側面が、前記開口部が形成された前記入口バッファ部の内壁に対してほぼ平行になるように該入口バッファ部内に突出して、正面視前記開口部をほぼ覆うように配置されていることを特徴とする。   In order to achieve the object, an ultrasonic flowmeter according to claim 1 includes a meter case in which an inlet of a fluid to be measured and an outlet of the fluid to be measured are formed, and the meter case disposed in the meter case. A flow rate measurement unit that measures the flow rate of the fluid to be measured that passes through the flow channel, and the flow rate measurement unit includes a measurement channel portion having a substantially rectangular cross section through which the fluid to be measured flows, A pair of ultrasonic transducers attached to the upstream side and the downstream side, and the meter case is substantially in the flow direction at the back end of the inflow path through which the fluid to be measured flows from the inflow port. An opening is formed adjacent to each other at right angles and communicates with the inflow path, and the inlet side of the measurement channel portion protrudes inward so that the fluid to be measured flows into the inlet portion of the measurement channel portion. Like a box A substantially box-like body that communicates with the mouth buffer portion and the outlet, and that the outlet side of the measurement channel portion protrudes inward so that the fluid to be measured that has flowed out of the outlet portion of the measurement channel portion flows out to the outside. An outlet buffer section partitioned into a shape, and the measurement flow path section has a side surface on the inlet side substantially parallel to an inner wall of the inlet buffer section in which the opening is formed. It protrudes into the inlet buffer part, and is arranged so as to substantially cover the opening part in a front view.

また、請求項2に係る超音波流量計は、請求項1に記載の超音波流量計において、前記メータケースは、前記開口部を閉塞して前記入口バッファ部への前記被計測流体の供給を遮断する遮断弁を有し、前記遮断弁は、前記開口部を介して前記計測流路部の前記入口側の側面に対向するように配置されると共に、該遮断弁と前記開口部との間の第1隙間の距離が、前記開口部と前記計測流路部の前記入口側の側面との間の第2隙間の距離にほぼ等しくなるように配置されていることを特徴とする。   An ultrasonic flowmeter according to claim 2 is the ultrasonic flowmeter according to claim 1, wherein the meter case closes the opening and supplies the fluid to be measured to the inlet buffer. A shut-off valve for shutting off, and the shut-off valve is disposed so as to face the side surface on the inlet side of the measurement flow path section through the opening, and between the shut-off valve and the opening. The first gap is arranged so that the distance between the first gap and the second gap between the opening and the side surface on the inlet side of the measurement flow path is substantially equal.

また、請求項3に係る超音波流量計は、請求項1又は請求項2に記載の超音波流量計において、前記開口部は、相対向する前記計測流路部の側面の高さにほぼ等しい内径を有する断面略円形状に形成されていることを特徴とする。   Moreover, the ultrasonic flowmeter according to claim 3 is the ultrasonic flowmeter according to claim 1 or 2, wherein the opening is substantially equal to a height of a side surface of the opposed measurement flow path portion. The cross section is formed in a substantially circular shape having an inner diameter.

また、請求項4に係る超音波流量計は、請求項3に記載の超音波流量計において、前記計測流路部の前記入口バッファ部内への突出方向において、前記開口部の前記突出方向側の端部が、前記計測流路部の入口部よりも外側へ突出する突出距離は、前記被計測流体が該開口部から前記計測流路部の入口部に直接流入しない所定値以下になるように設定されていることを特徴とする。   An ultrasonic flow meter according to claim 4 is the ultrasonic flow meter according to claim 3, wherein the measurement flow path portion is protruded into the inlet buffer portion and is located on the protrusion direction side of the opening. The protrusion distance at which the end protrudes outward from the inlet portion of the measurement flow path portion is set to a predetermined value or less so that the fluid to be measured does not flow directly from the opening portion into the inlet portion of the measurement flow path portion. It is characterized by being set.

また、請求項5に係る超音波流量計は、請求項1乃至請求項4のいずれかに記載の超音波流量計において、前記メータケースは、前記入口バッファ部と前記出口バッファ部とに挟まれて前記計測流路部の前記一対の超音波振動子が設けられた部分が配置される中央空間部を有することを特徴とする。   The ultrasonic flowmeter according to claim 5 is the ultrasonic flowmeter according to any one of claims 1 to 4, wherein the meter case is sandwiched between the inlet buffer portion and the outlet buffer portion. And a central space portion in which the portion of the measurement flow path portion provided with the pair of ultrasonic transducers is disposed.

更に、請求項6に係る超音波流量計は、被計測流体の流入口と前記被計測流体の流出口が形成されたメータケースと、前記メータケース内に配置されて該メータケース内を通過する前記被計測流体の流量を計測する流量計測ユニットと、を備え、前記流量計測ユニットは、前記被計測流体が流れる断面略矩形状の計測流路部と、前記計測流路部の上流側と下流側に取り付けられた一対の超音波振動子と、を有し、前記メータケースは、前記流入口から前記被計測流体が流れ込む流入路の奥側端部に流れ方向に対して略直角方向に隣り合って設けられて前記流入路に連通する開口部が形成されると共に、前記計測流路部の入口側が内側に突出して前記被計測流体が該計測流路部の入口部に流入するように略箱体状に区画された入口バッファ部と、前記流出口に連通すると共に、前記計測流路部の出口側が内側に突出して該計測流路部の出口部から流出した前記被計測流体が外部へ流出するように略箱体状に区画された出口バッファ部と、前記入口バッファ部と前記出口バッファ部とに挟まれて前記計測流路部の前記一対の超音波振動子が設けられた部分が配置される中央空間部と、前記開口部を閉塞して前記入口バッファ部への前記被計測流体の供給を遮断する遮断弁と、を有し、前記計測流路部は、入口側の側面が、前記開口部が形成された前記入口バッファ部の内壁に対してほぼ平行になるように該入口バッファ部内に突出し、前記遮断弁は、前記開口部を介して前記計測流路部の前記入口側の側面に対向するように配置されると共に、該遮断弁と前記開口部との間の第1隙間の距離が、前記開口部と前記計測流路部の前記入口側の側面との間の第2隙間の距離にほぼ等しくなるように配置され、前記開口部は、相対向する前記計測流路部の側面の高さにほぼ等しい内径を有する断面略円形状に形成されて、該計測流路部の前記入口バッファ部内への突出方向において、前記開口部の前記突出方向側の端部が、前記計測流路部の入口部から突出する突出距離は、所定値以下になるように設定され、該計測流路部は、正面視前記開口部をほぼ覆うように配置されていることを特徴とする。   Furthermore, an ultrasonic flowmeter according to claim 6 is a meter case in which an inlet for a fluid to be measured and an outlet for the fluid to be measured are formed, and is disposed in the meter case and passes through the meter case. A flow rate measuring unit for measuring a flow rate of the fluid to be measured, the flow rate measuring unit having a substantially rectangular cross-section of the flow channel through which the fluid to be measured flows, and upstream and downstream of the measurement flow channel unit A pair of ultrasonic transducers attached to a side of the meter case, the meter case adjacent to a rear end portion of the inflow path through which the fluid to be measured flows from the inflow port in a direction substantially perpendicular to the flow direction. In addition, an opening that is provided and communicates with the inflow path is formed, and the inlet side of the measurement channel portion protrudes inward so that the fluid to be measured flows into the inlet portion of the measurement channel portion. An inlet buffer section partitioned in a box shape In addition to communicating with the outlet, the outlet side of the measurement channel section protrudes inward, and the fluid to be measured that has flowed out of the outlet section of the measurement channel section is partitioned into a substantially box shape. An outlet buffer part, a central space part where the pair of ultrasonic transducers of the measurement flow path part is provided sandwiched between the inlet buffer part and the outlet buffer part, and the opening part. And a shutoff valve that shuts off the supply of the fluid to be measured to the inlet buffer unit, and the measurement channel unit has a side surface on the inlet side and the inlet buffer unit in which the opening is formed. Projecting into the inlet buffer part so as to be substantially parallel to the inner wall of the sensor, and the shut-off valve is disposed so as to face the side surface on the inlet side of the measurement channel part through the opening, A first gap between the shut-off valve and the opening. Is arranged so that the distance is substantially equal to the distance of the second gap between the opening and the side surface on the inlet side of the measurement flow path section, and the opening section of the measurement flow path section facing each other. An end portion on the protruding direction side of the opening in the protruding direction into the inlet buffer portion of the measurement flow path portion is formed in a substantially circular shape having an inner diameter substantially equal to the height of the side surface. The protruding distance protruding from the inlet portion of the flow path portion is set to be equal to or less than a predetermined value, and the measurement flow path portion is arranged so as to substantially cover the opening as viewed from the front.

請求項1に係る超音波流量計では、略箱体状に区画された入口バッファ部は、流入口から被計測流体が流れ込む流入路の奥側端部に、流れ方向に対して略直角方向に隣り合って設けられ、流入路に連通する開口部が形成されている。また、流量計測ユニットの断面矩形状の計測流路部は、入口側の側面が、開口部が形成された入口バッファ部の内壁に対してほぼ平行になるように該入口バッファ部内に突出して、正面視開口部をほぼ覆うように配置されている。   In the ultrasonic flowmeter according to claim 1, the inlet buffer section partitioned in a substantially box shape is substantially perpendicular to the flow direction at the back end of the inflow path through which the fluid to be measured flows from the inlet. Openings that are provided adjacent to each other and communicate with the inflow passage are formed. Further, the measurement flow path portion having a rectangular cross section of the flow rate measurement unit protrudes into the inlet buffer portion so that the side surface on the inlet side is substantially parallel to the inner wall of the inlet buffer portion in which the opening is formed, It arrange | positions so that a front view opening part may be covered substantially.

従って、被計測流体は、流入路の奥側端部で、流れ方向が略直角方向に曲げられて入口バッファ部内に流入した後、相対向する計測流路部の側面に当たって、再度側面に沿って、略直角方向、つまり、計測流路部の側面の両高さ方向に曲げられて入口バッファ部内へ流入する。そして、入口バッファ部内に流入した被計測流体は、計測流路部の開口部に対して反対側の側面に沿って該計測流路部の入口部側へ略直角方向に曲げられて流れる。その後、被計測流体は、該計測流路部の入口部に相対向する入口バッファ部の内壁に当たって、再度180度の方向転換をして該計測流路部の入口部に流入する。   Therefore, after the fluid to be measured flows into the inlet buffer portion at the back end portion of the inflow passage, the flow direction is bent in a substantially right angle direction, hits the side surface of the opposite measurement flow path portion, and again along the side surface. The liquid crystal is bent in a substantially right angle direction, that is, in both height directions of the side surface of the measurement flow path portion, and flows into the inlet buffer portion. Then, the fluid to be measured that has flowed into the inlet buffer portion flows while being bent in a substantially right angle direction toward the inlet portion side of the measurement channel portion along the side surface opposite to the opening portion of the measurement channel portion. Thereafter, the fluid to be measured hits the inner wall of the inlet buffer portion facing the inlet portion of the measurement flow path portion, and again changes its direction by 180 degrees and flows into the inlet portion of the measurement flow path portion.

これにより、被計測流体は、入口バッファ部内へ流入して計測流路部の入口部に流入するまでに複数回、流れ方向が変更されるため、流れが十分に均一化され、大流量(例えば、8000(リットル/時間)の流量である。)の計測が可能となる。また、略箱体状の入口バッファ部の内壁に設けられる開口部は、該入口バッファ部内に突出する計測流路部によってほぼ覆われる大きさに形成されるため、計測流路部の入口バッファ部内への突出長さを短くすることにより、当該入口バッファ部の小型化を図ることが可能となる。その結果、超音波流量計の小型化を図ることが可能となる。   As a result, the flow direction is changed several times before the fluid to be measured flows into the inlet buffer portion and into the inlet portion of the measurement flow path portion, so that the flow is sufficiently uniform and a large flow rate (for example, , The flow rate of 8000 (liter / hour). In addition, the opening provided in the inner wall of the substantially box-shaped inlet buffer portion is formed in a size that is substantially covered by the measurement channel portion protruding into the inlet buffer portion. By shortening the protruding length of the inlet buffer, it is possible to reduce the size of the inlet buffer portion. As a result, it is possible to reduce the size of the ultrasonic flowmeter.

また、請求項2に係る超音波流量計では、開口部を閉塞して入口バッファ部への被計測流体の供給を遮断する遮断弁は、開口部を介して計測流路部の入口側の側面に対向するように配置されている。また、該遮断弁と開口部との間の第1隙間の距離が、開口部と計測流路部の入口側の側面との間の第2隙間の距離にほぼ等しくなるように配置されている。これにより、遮断弁と開口部との間の第1隙間の距離を狭くして、開口部と計測流路部の入口側の側面との間の第2隙間の距離を狭くすることが可能となり、入口バッファ部の更なる小型化を図ることが可能となる。その結果、超音波流量計の更なる小型化を図ることが可能となる。   In the ultrasonic flowmeter according to claim 2, the shut-off valve that closes the opening and shuts off the supply of the fluid to be measured to the inlet buffer is provided on the side surface on the inlet side of the measurement channel through the opening. It arrange | positions so that it may oppose. Further, the distance of the first gap between the shut-off valve and the opening is arranged so as to be approximately equal to the distance of the second gap between the opening and the side surface on the inlet side of the measurement flow path. . Thereby, the distance of the 1st clearance gap between a shut-off valve and an opening part can be narrowed, and it becomes possible to narrow the distance of the 2nd clearance gap between an opening part and the side surface by the side of the inlet of a measurement flow path part. Further, it is possible to further reduce the size of the inlet buffer section. As a result, it is possible to further reduce the size of the ultrasonic flowmeter.

また、請求項3に係る超音波流量計では、開口部は、相対向する計測流路部の側面の高さにほぼ等しい内径を有する断面略円形状に形成されているため、開口部の形成を容易に行うことが可能となる。また、入口バッファ部内へ突出する計測流路部によって、当該開口部を正面視ほぼ覆うように容易に構成することが可能となる。   In the ultrasonic flowmeter according to claim 3, since the opening is formed in a substantially circular cross section having an inner diameter substantially equal to the height of the side surface of the opposing measurement flow path, the opening is formed. Can be easily performed. In addition, the measurement channel portion protruding into the inlet buffer portion can be easily configured so as to substantially cover the opening portion when viewed from the front.

また、請求項4に係る超音波流量計では、計測流路部の入口バッファ部内への突出方向において、開口部の突出方向側の端部が、計測流路部の入口部よりも外側へ突出する突出距離は、被計測流体が該開口部から計測流路部の入口部に直接流入しない所定値以下になるように設定されている。これにより、被計測流体の流れが十分に均一化され、大流量(例えば、8000(リットル/時間)の流量である。)の計測が可能となる。その結果、入口バッファ部の小型化を図ることが可能となるため、超音波流量計の小型化を図ることが可能となる。   In the ultrasonic flowmeter according to claim 4, in the protruding direction into the inlet buffer portion of the measurement flow path portion, the end portion on the protruding direction side of the opening portion protrudes outward from the inlet portion of the measurement flow path portion. The protruding distance to be measured is set to be equal to or less than a predetermined value at which the fluid to be measured does not flow directly from the opening to the inlet of the measurement channel. As a result, the flow of the fluid to be measured is sufficiently uniform, and a large flow rate (for example, a flow rate of 8000 (liter / hour)) can be measured. As a result, it is possible to reduce the size of the inlet buffer, and thus it is possible to reduce the size of the ultrasonic flowmeter.

また、請求項5に係る超音波流量計では、計測流路部の一対の超音波振動子が設けられた部分が、入口バッファ部と出口バッファ部とに挟まれた中央空間部に配置されるため、出口バッファ部の小型化を容易に図ることが可能となる。その結果、超音波流量計の更なる小型化を図ることが可能となる。   In the ultrasonic flowmeter according to the fifth aspect, a portion of the measurement flow path portion where the pair of ultrasonic transducers is provided is disposed in a central space portion sandwiched between the inlet buffer portion and the outlet buffer portion. Therefore, it is possible to easily reduce the size of the outlet buffer unit. As a result, it is possible to further reduce the size of the ultrasonic flowmeter.

また、請求項6に係る超音波流量計では、略箱体状に区画された入口バッファ部は、流入口から被計測流体が流れ込む流入路の奥側端部に、流れ方向に対して略直角方向に隣り合って設けられ、流入路に連通する開口部が形成されている。また、流量計測ユニットの断面矩形状の計測流路部は、入口側の側面が、開口部が形成された入口バッファ部の内壁に対してほぼ平行になるように該入口バッファ部内に突出して、正面視開口部をほぼ覆うように配置されている。   In the ultrasonic flowmeter according to the sixth aspect, the inlet buffer section partitioned in a substantially box shape is substantially perpendicular to the flow direction at the back end of the inflow path through which the fluid to be measured flows from the inlet. Openings that are adjacent to each other and communicate with the inflow passage are formed. Further, the measurement flow path portion having a rectangular cross section of the flow rate measurement unit protrudes into the inlet buffer portion so that the side surface on the inlet side is substantially parallel to the inner wall of the inlet buffer portion in which the opening is formed, It arrange | positions so that a front view opening part may be covered substantially.

従って、被計測流体は、流入路の奥側端部で、流れ方向が略直角方向に曲げられて入口バッファ部内に流入した後、相対向する計測流路部の側面に当たって、再度側面に沿って、略直角方向、つまり、計測流路部の側面の両高さ方向に曲げられて入口バッファ部内へ流入する。そして、入口バッファ部内に流入した被計測流体は、計測流路部の外周面に沿って回り込み、入口バッファ部内の開口部に相対向する内壁に当たる。その後、被計測流体は、入口バッファ部の中央部へ流れて衝突し、計測流路部の開口部に対して反対側の側面に沿って該計測流路部の入口部側へ略直角方向に曲げられて流れる。その後、被計測流体は、該計測流路部の入口部に相対向する入口バッファ部の内壁に当たって、再度180度の方向転換をして該計測流路部の入口部に流入する。   Therefore, after the fluid to be measured flows into the inlet buffer portion at the back end portion of the inflow passage, the flow direction is bent in a substantially right angle direction, hits the side surface of the opposite measurement flow path portion, and again along the side surface. The liquid crystal is bent in a substantially right angle direction, that is, in both height directions of the side surface of the measurement flow path portion, and flows into the inlet buffer portion. Then, the fluid to be measured that has flowed into the inlet buffer section wraps around the outer peripheral surface of the measurement flow path section and hits the inner wall facing the opening in the inlet buffer section. Thereafter, the fluid to be measured flows to and collides with the central portion of the inlet buffer section, and is substantially perpendicular to the inlet section side of the measurement flow path section along the side surface opposite to the opening section of the measurement flow path section. Bent and flow. Thereafter, the fluid to be measured hits the inner wall of the inlet buffer portion facing the inlet portion of the measurement flow path portion, and again changes its direction by 180 degrees and flows into the inlet portion of the measurement flow path portion.

これにより、被計測流体は、入口バッファ部内へ流入して計測流路部の入口部に流入するまでに複数回、流れ方向が変更されるため、流れが十分に均一化され、大流量(例えば、8000(リットル/時間)の流量である。)の計測が可能となる。また、略箱体状の入口バッファ部の内壁に設けられる開口部は、該入口バッファ部内に突出する計測流路部によってほぼ覆われる大きさに形成されるため、計測流路部の入口バッファ部内への突出長さを短くすることにより、当該入口バッファ部の小型化を図ることが可能となる。その結果、超音波流量計の小型化を図ることが可能となる。   As a result, the flow direction is changed several times before the fluid to be measured flows into the inlet buffer portion and into the inlet portion of the measurement flow path portion, so that the flow is sufficiently uniform and a large flow rate (for example, , The flow rate of 8000 (liter / hour). In addition, the opening provided in the inner wall of the substantially box-shaped inlet buffer portion is formed in a size that is substantially covered by the measurement channel portion protruding into the inlet buffer portion. By shortening the protruding length of the inlet buffer, it is possible to reduce the size of the inlet buffer portion. As a result, it is possible to reduce the size of the ultrasonic flowmeter.

また、開口部を閉塞して入口バッファ部への被計測流体の供給を遮断する遮断弁は、開口部を介して計測流路部の入口側の側面に対向するように配置されている。また、該遮断弁と開口部との間の第1隙間の距離が、開口部と計測流路部の入口側の側面との間の第2隙間の距離にほぼ等しくなるように配置されている。これにより、遮断弁と開口部との間の第1隙間の距離を狭くして、開口部と計測流路部の入口側の側面との間の第2隙間の距離を狭くすることが可能となり、入口バッファ部の更なる小型化を図ることが可能となる。その結果、超音波流量計の更なる小型化を図ることが可能となる。   Further, the shut-off valve that closes the opening and blocks the supply of the fluid to be measured to the inlet buffer is disposed so as to face the inlet side surface of the measurement channel through the opening. Further, the distance of the first gap between the shut-off valve and the opening is arranged so as to be approximately equal to the distance of the second gap between the opening and the side surface on the inlet side of the measurement flow path. . Thereby, the distance of the 1st clearance gap between a shut-off valve and an opening part can be narrowed, and it becomes possible to narrow the distance of the 2nd clearance gap between an opening part and the side surface by the side of the inlet of a measurement flow path part. Further, it is possible to further reduce the size of the inlet buffer section. As a result, it is possible to further reduce the size of the ultrasonic flowmeter.

また、開口部は、相対向する計測流路部の側面の高さにほぼ等しい内径を有する断面略円形状に形成されているため、開口部の形成を容易に行うことが可能となる。また、入口バッファ部内へ突出する計測流路部によって、当該開口部を正面視ほぼ覆うように容易に構成することが可能となる。   Moreover, since the opening is formed in a substantially circular cross section having an inner diameter substantially equal to the height of the side surfaces of the opposing measurement channel parts, the opening can be easily formed. In addition, the measurement channel portion protruding into the inlet buffer portion can be easily configured so as to substantially cover the opening portion when viewed from the front.

また、計測流路部の入口バッファ部内への突出方向において、開口部の突出方向側の端部が、計測流路部の入口部よりも外側へ突出する突出距離は、被計測流体が該開口部から計測流路部の入口部に直接流入しない所定値以下になるように設定されている。これにより、被計測流体の流れが十分に均一化され、大流量(例えば、8000(リットル/時間)の流量である。)の計測が可能となる。その結果、入口バッファ部の小型化を図ることが可能となるため、超音波流量計の小型化を図ることが可能となる。   In addition, in the protruding direction of the measurement flow channel portion into the inlet buffer portion, the protruding distance at which the end portion on the protruding direction side of the opening portion protrudes outward from the inlet portion of the measurement flow channel portion is determined by the fluid to be measured. It is set so as to be equal to or less than a predetermined value that does not directly flow into the inlet portion of the measurement flow channel portion. As a result, the flow of the fluid to be measured is sufficiently uniform, and a large flow rate (for example, a flow rate of 8000 (liter / hour)) can be measured. As a result, it is possible to reduce the size of the inlet buffer, and thus it is possible to reduce the size of the ultrasonic flowmeter.

また、計測流路部の一対の超音波振動子が設けられた部分が、入口バッファ部と出口バッファ部とに挟まれた中央空間部に配置されるため、出口バッファ部の小型化を容易に図ることが可能となる。その結果、超音波流量計の更なる小型化を図ることが可能となる。   In addition, since the portion of the measurement flow path portion where the pair of ultrasonic transducers is provided is disposed in the central space portion sandwiched between the inlet buffer portion and the outlet buffer portion, the outlet buffer portion can be easily reduced in size. It becomes possible to plan. As a result, it is possible to further reduce the size of the ultrasonic flowmeter.

本実施形態に係る超音波流量計の概略構成の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of schematic structure of the ultrasonic flowmeter which concerns on this embodiment. 超音波流量計のメータケースのカバーを外した状態を示す正面図である。It is a front view which shows the state which removed the cover of the meter case of an ultrasonic flowmeter. 流量計測ユニットの中央部分の要部断面図である。It is principal part sectional drawing of the center part of a flow measurement unit. メータケースの図2におけるX1−X1矢視断面図である。It is X1-X1 arrow sectional drawing in FIG. 2 of a meter case. メータケースの図2におけるX2−X2矢視断面図である。It is X2-X2 arrow sectional drawing in FIG. 2 of a meter case. 入口バッファ部内における燃料ガスの流れの一例を示す説明図である。It is explanatory drawing which shows an example of the flow of the fuel gas in an inlet_port | entrance buffer part. 図6のX3−X3矢視断面における燃料ガスの流れの一例を示す説明図である。It is explanatory drawing which shows an example of the flow of the fuel gas in the X3-X3 arrow cross section of FIG. 流量計測ユニットの入口部と開口部端部とのずれ量を変化させて計測した計測可能な最大流量の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the largest measurable flow volume measured by changing the deviation | shift amount of the entrance part and opening part edge part of a flow measurement unit.

以下、本発明に係る超音波流量計について具体化した一実施形態に基づき図面を参照しつつ詳細に説明する。   DETAILED DESCRIPTION Hereinafter, an ultrasonic flowmeter according to the present invention will be described in detail with reference to the drawings based on an embodiment embodying the invention.

[超音波流量計1の概略構成]
先ず、本実施形態に係る超音波流量計1の概略構成について図1乃至図5に基づき説明する。図1はメータケース3のメータ筐体3Aに流量計測ユニット11及びカバー3Bを取り付ける状態を示す図である。図1に示すように、本実施形態に係る超音波流量計1は、例えば、被計測流体の一例である燃料ガス(例えば、都市ガスやLPガス等である。)の流量を計測する燃料ガスメータであって、燃料ガスの配管2の途中に接続された略直方体形状のメータケース3を備えている。
[Schematic configuration of ultrasonic flowmeter 1]
First, a schematic configuration of the ultrasonic flowmeter 1 according to the present embodiment will be described with reference to FIGS. 1 to 5. FIG. 1 is a diagram illustrating a state in which the flow rate measurement unit 11 and the cover 3B are attached to the meter housing 3A of the meter case 3. As shown in FIG. 1, the ultrasonic flowmeter 1 according to the present embodiment is a fuel gas meter that measures the flow rate of a fuel gas (for example, city gas, LP gas, etc.) that is an example of a fluid to be measured. The meter case 3 having a substantially rectangular parallelepiped shape connected to the fuel gas pipe 2 is provided.

メータケース3は、前面側が開放された略直方体形状に形成されたメータ筐体3Aに、内側が所定深さ窪んだ略箱体状のカバー3Bが各ネジ孔3Cを介して前面側にネジ止めされ、内部が気密に保持されるように構成されている。また、メータ筐体3Aの上面からは、配管2に気密に接続される流入口5と流出口6が長手方向の両端部に突出して設けられており、メータケース3内に連通している。流入口5には配管2を介して燃料ガスが供給される。また、メータケース3内には、メータケース3内を通過する燃料ガスの流量を一対の超音波振動子12A、12B(図3参照)で計測する流量計測ユニット11が、メータ筐体3Aの前面側から挿入されて、長手方向に沿って配置される。   The meter case 3 includes a meter housing 3A formed in a substantially rectangular parallelepiped shape whose front side is open, and a substantially box-shaped cover 3B whose inner side is recessed by a predetermined depth, which is screwed to the front side through each screw hole 3C. And the inside is kept airtight. Further, from the upper surface of the meter housing 3 </ b> A, an inflow port 5 and an outflow port 6 that are airtightly connected to the pipe 2 are provided so as to protrude from both ends in the longitudinal direction and communicate with the meter case 3. Fuel gas is supplied to the inflow port 5 through the pipe 2. Further, in the meter case 3, a flow rate measurement unit 11 that measures the flow rate of the fuel gas passing through the meter case 3 with a pair of ultrasonic transducers 12A and 12B (see FIG. 3) is provided on the front surface of the meter housing 3A. It is inserted from the side and arranged along the longitudinal direction.

ここで、流量計測ユニット11の概略構成について図1乃至図4に基づいて説明する。図1乃至図4に示すように、流量計測ユニット11は、流路断面が上下方向に長い矩形状の筒状の計測流路部15と、計測流路部15の長手方向中央部の上側に形成された回路ケース16とから構成されている。   Here, a schematic configuration of the flow rate measurement unit 11 will be described with reference to FIGS. 1 to 4. As shown in FIG. 1 to FIG. 4, the flow rate measurement unit 11 includes a rectangular cylindrical measurement flow path section 15 whose flow path section is long in the vertical direction, and an upper side of the longitudinal center of the measurement flow path section 15. The circuit case 16 is formed.

図3に示すように、回路ケース16内には、計測流路部15の短辺に対向する位置において(図3中、計測流路部15の上面側である。)、流れ方向両端部に各超音波振動子12A、12Bが配置され、超音波が対向面で反射されるV字型の超音波の伝搬経路17が形成される。また、各超音波振動子12A、12Bの上側には、各超音波振動子12A、12Bが電気的に接続される計測回路18Aが形成された回路基板18が配置され、燃料ガス等の被計測流体の流量計測値を算出して出力可能に構成されている。   As shown in FIG. 3, in the circuit case 16, at a position facing the short side of the measurement flow path portion 15 (on the upper surface side of the measurement flow path portion 15 in FIG. 3), at both ends in the flow direction. The ultrasonic transducers 12A and 12B are arranged, and a V-shaped ultrasonic wave propagation path 17 is formed in which the ultrasonic wave is reflected by the opposing surface. In addition, a circuit board 18 on which a measurement circuit 18A to which the ultrasonic transducers 12A and 12B are electrically connected is formed is disposed above the ultrasonic transducers 12A and 12B. The flow rate measurement value of the fluid is calculated and output.

図1乃至図4に示すように、計測流路部15の入口部15A及び出口部15Bは、内周面が外側方向へ滑らかに拡がる曲面に形成されている。また、図3及び図4に示すように、複数枚、例えば5枚の分流板19が、各超音波振動子12A、12Bの下側に、計測流路部15の流路断面の長辺に対して平行(図4では、左右方向)で、且つ、流れ方向に平行になるように短辺方向に略等間隔で設けられている。従って、各分流板19は、各超音波振動子12A、12B間の超音波の伝搬経路17を含む面と平行になるように計測流路部15内に設けられている。これにより、各分流板19によって計測流路部15内の流れ方向を安定化させることが可能となる。   As shown in FIGS. 1 to 4, the inlet portion 15 </ b> A and the outlet portion 15 </ b> B of the measurement flow path portion 15 are formed in curved surfaces whose inner peripheral surfaces smoothly spread outward. Further, as shown in FIGS. 3 and 4, a plurality of, for example, five flow dividing plates 19 are provided below the ultrasonic transducers 12A and 12B, on the long side of the flow channel cross section of the measurement flow channel section 15. They are provided at substantially equal intervals in the short side direction so as to be parallel (left and right direction in FIG. 4) and parallel to the flow direction. Accordingly, each flow dividing plate 19 is provided in the measurement flow path section 15 so as to be parallel to a plane including the ultrasonic wave propagation path 17 between the ultrasonic transducers 12A and 12B. Thereby, the flow direction in the measurement flow path part 15 can be stabilized by the respective flow dividing plates 19.

次に、メータケース3内の概略構成について図1乃至図5に基づいて説明する。図1、図2及び図4示すように、メータ筐体3Aの長手方向両端部からほぼ等しい距離の位置には、一対の仕切り壁21A、21Bが、メータ筐体3A内の奥側壁面部から前端部まで全高さに渡って上下方向に対して平行に立設されている。一対の仕切り壁21A、21B間の距離は、流量計測ユニット11の計測流路部15の長手方向における回路ケース16の長さよりも少し長い(例えば、約6mm長い)距離に設定されている。また、一対の仕切り壁22A、22Bが、カバー3B内の奥側壁面部の各仕切り壁21A、21Bに対向する位置から前端部まで全高さに渡って上下方向に対して平行に立設されている。   Next, a schematic configuration in the meter case 3 will be described with reference to FIGS. As shown in FIGS. 1, 2 and 4, the pair of partition walls 21A and 21B are located at the front end from the rear side wall surface in the meter housing 3A at a position substantially equal to the both ends in the longitudinal direction of the meter housing 3A. It is erected in parallel to the vertical direction over the entire height to the part. The distance between the pair of partition walls 21 </ b> A and 21 </ b> B is set to a distance slightly longer (for example, about 6 mm longer) than the length of the circuit case 16 in the longitudinal direction of the measurement flow path portion 15 of the flow rate measurement unit 11. A pair of partition walls 22A and 22B are erected in parallel to the vertical direction over the entire height from the position facing the partition walls 21A and 21B on the back side wall surface portion in the cover 3B to the front end. .

また、各仕切り壁21A、21Bには、前端部の上下方向中央部から奥側方向へ、流量計測ユニット11の計測流路部15の断面形状より少し大きい、例えば、計測流路部15の断面形状よりも外側へ約1mm〜約3mm程度大きい上下方向に長い相似な長方形断面の各切り欠き凹部23A、23Bが形成されている。また、流量計測ユニット11の計測流路部15の各仕切り壁21A、21Bに対向する外周部には、弾性を有するゴム等で形成された所謂Oリングを取り付けるための2列のリブ25がそれぞれ全周に渡って立設されている。   Each partition wall 21A, 21B has a slightly larger cross-sectional shape than the measurement flow path portion 15 of the flow rate measurement unit 11 from the center in the vertical direction of the front end portion toward the back side. Notch recesses 23A and 23B having a similar rectangular cross section that is long in the up-down direction and about 1 mm to about 3 mm larger than the shape are formed. In addition, two rows of ribs 25 for attaching so-called O-rings formed of elastic rubber or the like are provided on the outer peripheral portions of the measurement flow path portion 15 of the flow rate measurement unit 11 facing the partition walls 21A and 21B, respectively. It is erected over the entire circumference.

また、図1及び図2に示すように、メータ筐体3A内の長手方向両端部から各仕切り壁21A、21Bまでにおける、それぞれの上下方向の高さは、計測流路部15の入口部15Aと出口部15Bの上下方向の高さよりも少し大きい高さになるように形成されている。また、メータ筐体3A内の長手方向両端部から各仕切り壁21A、21Bまで距離は、流量計測ユニット11の計測流路部15の各リブ25から入口部15Aと出口部15Bまでのそれぞれの距離よりも所定距離(例えば、約10mmの距離である。)だけ長くなるように形成されている。   As shown in FIGS. 1 and 2, the height in the vertical direction from the both longitudinal ends in the meter housing 3 </ b> A to the partition walls 21 </ b> A and 21 </ b> B is the inlet 15 </ b> A of the measurement flow path 15. The outlet portion 15B is formed to have a height that is slightly larger than the height in the vertical direction. Further, the distance from both longitudinal end portions in the meter housing 3A to the partition walls 21A and 21B is the distance from each rib 25 of the measurement flow path portion 15 of the flow rate measurement unit 11 to the inlet portion 15A and the outlet portion 15B. It is formed so as to be longer by a predetermined distance (for example, a distance of about 10 mm).

また、メータ筐体3A内の各仕切り壁21A、21B間における上下方向の高さは、流量計測ユニット11の計測流路部15の各リブ25間にOリングを取り付けて、計測流路部15のOリングが取り付けられた部分をメータ筐体3Aの前面側から各仕切り凹部23A、23Bに嵌入した際に、回路ケース16を挿入可能な高さになるように形成されている。   Further, the height in the vertical direction between the partition walls 21A and 21B in the meter housing 3A is determined by attaching an O-ring between the ribs 25 of the measurement flow path unit 15 of the flow rate measurement unit 11 to measure the measurement flow path unit 15. When the portion to which the O-ring is attached is fitted into each of the partition recesses 23A and 23B from the front side of the meter housing 3A, the circuit case 16 is formed so that the height can be inserted.

従って、図1、図2及び図4示すように、メータケース3は、流量計測ユニット11の計測流路部15の各リブ25間にOリングを取り付けて、計測流路部15のOリングが取り付けられた部分をメータ筐体3Aの前面側から各仕切り凹部23A、23Bに嵌入した後、カバー3Bがメータ筐体3Aの前面側にネジ止めされる。   Accordingly, as shown in FIGS. 1, 2, and 4, the meter case 3 has an O-ring attached between the ribs 25 of the measurement flow path unit 15 of the flow rate measurement unit 11, and the O-ring of the measurement flow path unit 15 is After the attached portion is fitted into the partition recesses 23A and 23B from the front side of the meter housing 3A, the cover 3B is screwed to the front side of the meter housing 3A.

これにより、メータケース3内に、計測流路部15の入口部15Aが、各仕切り壁21A、22Aから内側に突出する略箱体状に区画された入口バッファ部27が構成される。また、各仕切り壁21A、22Aと各仕切り壁21B、22Bとの間に、回路ケース16及び計測流路部15の各リブ25に挟まれた中央部分が配置される略箱体状に区画された中央空間部28が構成される。   As a result, an inlet buffer section 27 is formed in the meter case 3 in which the inlet section 15A of the measurement flow path section 15 is partitioned in a substantially box shape projecting inward from the partition walls 21A and 22A. Further, a partition is formed in a substantially box shape between the partition walls 21A and 22A and the partition walls 21B and 22B, in which a central portion sandwiched between the ribs 25 of the circuit case 16 and the measurement flow path portion 15 is disposed. A central space 28 is formed.

また、計測流路部15の出口部15Bが、各仕切り壁21B、22Bから内側に突出する略箱体状に区画された出口バッファ部29が構成される。従って、入口バッファ部27、中央空間部28及び出口バッファ部29は、それぞれ内部が気密に保持されるように構成される。また、入口バッファ部27と出口バッファ部29とは、断面が上下方向に長い略矩形状の計測流路部15によって連通される。また、中央空間部28のカバー3Bに対して反対側の壁面部には、計測回路18Aに電気的に接続された外部端子30が気密に取り付けられ、計測回路18Aから出力される燃焼ガスの流量計測値を外部へ出力可能に構成されている。   Further, an outlet buffer section 29 is configured in which the outlet section 15B of the measurement flow path section 15 is partitioned in a substantially box shape protruding inward from the partition walls 21B and 22B. Accordingly, the inlet buffer unit 27, the central space unit 28, and the outlet buffer unit 29 are configured such that the inside thereof is kept airtight. Further, the inlet buffer unit 27 and the outlet buffer unit 29 are communicated with each other by a substantially rectangular measurement channel unit 15 whose section is long in the vertical direction. In addition, an external terminal 30 electrically connected to the measurement circuit 18A is airtightly attached to the wall surface of the central space 28 opposite to the cover 3B, and the flow rate of the combustion gas output from the measurement circuit 18A The measurement value can be output to the outside.

また、図2、図4及び図5に示すように、メータ筐体3Aの入口バッファ部27のカバー3Bに対して反対側には、流入口5から燃焼ガスが流れ込む流入路5Aが上下方向に沿って形成され、流入路5Aの奥側端部には、略直方体状の流入室31が入口バッファ部27に隣り合って形成されている。流入室31の上下方向(流入方向)に沿った断面形状は、入口バッファ部27の上下方向(流入方向)に沿った断面形状とほぼ同じに形成されている。   2, 4, and 5, on the opposite side of the meter buffer 3 </ b> A to the cover 3 </ b> B of the inlet buffer portion 27, an inflow passage 5 </ b> A through which combustion gas flows from the inflow port 5 extends in the vertical direction. A substantially rectangular parallelepiped inflow chamber 31 is formed adjacent to the inlet buffer 27 at the back end of the inflow passage 5A. The cross-sectional shape along the vertical direction (inflow direction) of the inflow chamber 31 is formed substantially the same as the cross-sectional shape along the vertical direction (inflow direction) of the inlet buffer portion 27.

また、流入室31の入口バッファ部27側の壁面部には、入口バッファ部27内に突出する計測流路部15の軸心に直交する中心軸を有し、計測流路部15の断面の上下方向の高さH1(図2参照)にほぼ等しい直径を有する断面円形の開口部32が開口されている。また、正面視において、開口部32の仕切り壁21Aに対して反対側の端部が、計測流路部15の入口部15Aよりも外側へずれたずれ量L1、つまり、開口部32の仕切り壁21Aに対して反対側の端部と入口部15Aの端面との計測流路部15の長手方向における距離L1は、後述のように、所定長さ以下(例えば、0mmから4.5mm以下である。)となるように設けられている(図8参照)。   Further, the wall surface portion of the inflow chamber 31 on the inlet buffer portion 27 side has a central axis perpendicular to the axis of the measurement flow channel portion 15 protruding into the inlet buffer portion 27, and the cross section of the measurement flow channel portion 15. An opening 32 having a circular cross section having a diameter substantially equal to the height H1 in the vertical direction (see FIG. 2) is opened. In addition, when viewed from the front, the end L on the opposite side of the partition wall 21A of the opening 32 is shifted to the outside from the inlet 15A of the measurement flow path section 15, that is, the partition wall of the opening 32. The distance L1 in the longitudinal direction of the measurement flow path portion 15 between the end opposite to 21A and the end face of the inlet portion 15A is a predetermined length or less (for example, 0 mm to 4.5 mm or less), as will be described later. .) (See FIG. 8).

また、流入室31の入口バッファ部27に対して反対側の壁面部には、開口部32を閉塞可能な遮断弁33が配置されている。従って、遮断弁33は、開口部32を介して計測流路部15の側面に対向するように配置されている。また、図4に示すように、遮断弁33は、通常時には、開口部32と遮断弁33との間の隙間(第1隙間)の距離D1が、開口部32と計測流路部15の側面との間の隙間(第2隙間)の距離D2にほぼ等しくなるように配置され、当該開口部32を開放している。そして、遮断弁33は、供給ガス流量等に異常が発生したときに開口部32を閉塞して、流入室31と入口バッファ部27とを強制遮断して、燃焼ガスの供給を停止することが可能となっている。   A shut-off valve 33 capable of closing the opening 32 is disposed on the wall surface of the inflow chamber 31 opposite to the inlet buffer 27. Therefore, the shut-off valve 33 is disposed so as to face the side surface of the measurement flow path portion 15 through the opening 32. As shown in FIG. 4, the shutoff valve 33 normally has a distance D <b> 1 between the opening 32 and the shutoff valve 33 such that the distance D <b> 1 between the opening 32 and the shutoff valve 33 is the side of the opening 32 and the measurement flow path 15. Are arranged so as to be substantially equal to the distance D2 of the gap (second gap) between and the opening 32. The shut-off valve 33 closes the opening 32 when an abnormality occurs in the supply gas flow rate, forcibly shuts off the inflow chamber 31 and the inlet buffer 27, and stops the supply of combustion gas. It is possible.

また、マイクロコンピュータ等を備えた制御部34が、流量計測ユニット11の計測回路18Aと電気的に接続された外部端子30と遮断弁33等に電気的に接続されている。制御部34は、計測回路18Aから出力される燃焼ガスの流量計測値に基づき、供給ガス流量等の異常を検出し、予め定められているガス遮断対象の異常である場合には、遮断弁33を駆動して開口部32を閉塞して燃焼ガスの供給を停止する。また、制御部34は、計測回路18Aから出力される燃焼ガスの流量計測値を不図示のパーソナルコンピュータ等に出力可能に構成されている。   A control unit 34 including a microcomputer or the like is electrically connected to the external terminal 30 electrically connected to the measurement circuit 18 </ b> A of the flow rate measurement unit 11, the cutoff valve 33, and the like. The control unit 34 detects an abnormality such as a supply gas flow rate based on the measured value of the flow rate of the combustion gas output from the measurement circuit 18A. If the abnormality is a predetermined gas cutoff target, the cutoff valve 33 is detected. Is driven to close the opening 32 and supply of combustion gas is stopped. Further, the control unit 34 is configured to be able to output the flow rate measurement value of the combustion gas output from the measurement circuit 18A to a personal computer (not shown) or the like.

上記のように構成されたメータケース3の入口バッファ部27における燃焼ガスの流れについて図6及び図7に基づいて説明する。図6及び図7に示すように、流入口5に流入した燃焼ガスは、上下方向に沿って流入路5Aを通って流入室31に流れ込み、流れ方向に対して略直角に曲がって開口部32を介して入口バッファ部27に流れ込む(矢印35参照)。そして、入口バッファ部27に流れ込んだ燃焼ガスは、開口部32に対して相対向する計測流路部15の側面部に当たった後、この側面部に沿って計測流路部15の突出方向に直交する入口バッファ部27の上下方向に流れる(矢印36参照)。   The flow of the combustion gas in the inlet buffer portion 27 of the meter case 3 configured as described above will be described with reference to FIGS. As shown in FIGS. 6 and 7, the combustion gas that has flowed into the inflow port 5 flows into the inflow chamber 31 through the inflow path 5 </ b> A along the vertical direction, bends substantially at right angles to the flow direction, and opens the opening 32. Into the inlet buffer 27 (see arrow 35). Then, the combustion gas that has flowed into the inlet buffer portion 27 strikes the side surface portion of the measurement flow path portion 15 facing the opening portion 32, and then in the protruding direction of the measurement flow path portion 15 along this side surface portion. It flows in the vertical direction of the orthogonal inlet buffer section 27 (see arrow 36).

そして、計測流路部15の側面部に沿って入口バッファ部27の上下方向に流れた燃料ガスは、計測流路部15の外周面に沿ってカバー3B側へ回り込み、計測流路部15の側面部に対向するカバー3Bの内壁面に当たる。その後、燃焼ガスは、カバー3Bの内壁面に沿って入口バッファ部27の上下方向中央部へ流れて衝突し、カバー3Bの内壁面と計測流路部15の側面部との間の入口バッファ部27において流れの均一化が図られる(矢印36参照)。   Then, the fuel gas that has flowed in the vertical direction of the inlet buffer 27 along the side surface of the measurement channel 15 wraps around the outer surface of the measurement channel 15 toward the cover 3B, It hits the inner wall surface of the cover 3B facing the side surface. Thereafter, the combustion gas flows along the inner wall surface of the cover 3 </ b> B to the central portion in the vertical direction of the inlet buffer portion 27 and collides with it, and the inlet buffer portion between the inner wall surface of the cover 3 </ b> B and the side surface portion of the measurement flow path portion 15. 27, the flow is made uniform (see arrow 36).

その後、燃焼ガスは、更に、計測流路部15の入口部15Aの上下両端縁部及びカバー3B側端縁部の三辺の外周縁部を通過して、計測流路部15の入口部15Aに相対向する入口バッファ部27の壁面部に当たった後、180度の方向転換をされる(各矢印36、37参照)。続いて、180度の方向転換をされた燃焼ガスは、計測流路部15内へ流れ込む(各矢印37、38参照)。そして、計測流路部15内に流れ込んだ燃焼ガスは、計測流路部15の出口部15Bから出口バッファ部29に流れ込んだ後、出口バッファ部29に連通する流出口6へ排出される。   Thereafter, the combustion gas further passes through the outer peripheral edge portions of the three sides of the upper and lower edge portions of the inlet portion 15A of the measurement flow path portion 15 and the edge portion on the cover 3B side, and enters the inlet portion 15A of the measurement flow path portion 15. Is then turned 180 degrees (see arrows 36 and 37). Subsequently, the combustion gas whose direction has been changed by 180 degrees flows into the measurement flow path section 15 (see the arrows 37 and 38). Then, the combustion gas that has flowed into the measurement flow path portion 15 flows from the outlet portion 15 </ b> B of the measurement flow path portion 15 into the outlet buffer portion 29, and then is discharged to the outlet 6 that communicates with the outlet buffer portion 29.

従って、開口部32を介して入口バッファ部27に流れ込んだ燃焼ガスは、計測流路部15の側面部や入口バッファ部27の上下方向の壁面部に当たった後、カバー3Bの内壁面に当たり、続いて、カバー3Bの内壁面に沿って入口バッファ部27の上下方向中央部へ流れて衝突する。更に、燃焼ガスは、計測流路部15の入口部15Aに相対向する入口バッファ部27の壁面部に当たった後、180度の方向転換をされて、流れが十分に均一化された後、計測流路部15の入口部15Aに流入する。   Therefore, the combustion gas that has flowed into the inlet buffer portion 27 through the opening 32 hits the side surface portion of the measurement flow path portion 15 and the vertical wall surface portion of the inlet buffer portion 27 and then hits the inner wall surface of the cover 3B. Then, it flows and collides with the center part of the up-down direction of the inlet buffer part 27 along the inner wall face of the cover 3B. Furthermore, after the combustion gas hits the wall surface portion of the inlet buffer portion 27 facing the inlet portion 15A of the measurement flow path portion 15, the direction of the gas is changed by 180 degrees, and the flow is sufficiently uniformed. It flows into the inlet 15 </ b> A of the measurement channel 15.

これにより、流量計測ユニット11を介して計測可能な燃焼ガスの流量の大流量化を図り、同一のメータケース3の構成で、広い流領域の計測を行い、且つ、供給ガスの流量等に異常が発生したときには、遮断弁33を確実に作動させ、燃焼ガスの供給を停止することが可能となる。   As a result, the flow rate of the combustion gas that can be measured via the flow rate measurement unit 11 is increased, a wide flow region is measured with the same meter case 3, and the flow rate of the supply gas is abnormal. When this occurs, the shutoff valve 33 can be operated reliably and the supply of combustion gas can be stopped.

ここで、ピストンプルーバ式流量測定装置を用いて、室温20℃で、超音波流量計1による燃焼ガス(例えば、都市ガス、LPガス等である。)の計測可能な最大流量を測定した測定結果の一例について図8に基づいて説明する。尚、開口部32の仕切り壁21Aに対して反対側の端部が、計測流路部15の入口部15Aよりも外側へずれたずれ量L1、つまり、開口部32の仕切り壁21Aに対して反対側の端部と入口部15Aの端面との計測流路部15の長手方向における距離L1(図2参照)を0mmから7.5mmまで変化させて、超音波流量計1による燃焼ガスの計測可能な最大流量を測定した。   Here, the measurement which measured the maximum flow volume which can measure combustion gas (for example, city gas, LP gas, etc.) by ultrasonic flowmeter 1 at room temperature of 20 ° C using a piston probing type flow measuring device. An example of the result will be described with reference to FIG. It should be noted that the end portion of the opening 32 opposite to the partition wall 21A is shifted to the outside from the inlet 15A of the measurement flow path portion 15, that is, with respect to the partition wall 21A of the opening 32. Measurement of combustion gas by the ultrasonic flow meter 1 by changing the distance L1 (see FIG. 2) in the longitudinal direction of the measurement flow path portion 15 between the opposite end portion and the end face of the inlet portion 15A from 0 mm to 7.5 mm. The maximum possible flow rate was measured.

図8に示すように、計測流路部15の入口部15Aと開口部32の仕切り壁21Aに対して反対側の端部とのずれ量L1が、0mmから4.5mmまでのときには、超音波流量計1による燃焼ガスの計測可能な最大流量は、約8000(リットル/時間)であった。そして、計測流路部15の入口部15Aと開口部32の仕切り壁21Aに対して反対側の端部とのずれ量L1が、6.0mmのときには、超音波流量計1による燃焼ガスの計測可能な最大流量は、約6500(リットル/時間)であった。   As shown in FIG. 8, when the shift amount L1 between the inlet 15A of the measurement channel 15 and the end of the opening 32 opposite to the partition wall 21A is 0 mm to 4.5 mm, the ultrasonic wave The maximum flow rate of combustion gas that can be measured by the flow meter 1 was about 8000 (liters / hour). When the amount of displacement L1 between the inlet 15A of the measurement flow path 15 and the end of the opening 32 opposite to the partition wall 21A is 6.0 mm, the combustion gas is measured by the ultrasonic flowmeter 1. The maximum possible flow rate was about 6500 (liters / hour).

また、計測流路部15の入口部15Aと開口部32の仕切り壁21Aに対して反対側の端部とのずれ量L1が、7.5mmのときには、超音波流量計1による燃焼ガスの計測可能な最大流量は、約5500(リットル/時間)であった。従って、計測流路部15の入口部15Aと開口部32の仕切り壁21Aに対して反対側の端部とのずれ量L1を、0mmから4.5mm以下に設定することによって、超音波流量計1による燃焼ガスの計測可能な最大流量は、約8000(リットル/時間)となり、大流量を計測することが可能となると考えられる。   Further, when the amount of deviation L1 between the inlet 15A of the measurement flow path 15 and the end of the opening 32 opposite to the partition wall 21A is 7.5 mm, measurement of combustion gas by the ultrasonic flow meter 1 is performed. The maximum possible flow rate was about 5500 (liters / hour). Therefore, the ultrasonic flowmeter is set by setting the amount of deviation L1 between the inlet 15A of the measurement flow path 15 and the end opposite to the partition wall 21A of the opening 32 from 0 mm to 4.5 mm or less. The maximum measurable flow rate of the combustion gas by 1 is about 8000 (liter / hour), and it is considered that a large flow rate can be measured.

以上詳細に説明した通り、本実施形態に係る超音波流量計1では、略箱体状に区画された入口バッファ部27は、流入口5から燃焼ガスが上下方向に沿って流れ込む流入路5Aの奥側端部に配置される流入室31に対して、流入路5A内の燃焼ガスの流れ方向に対して略直角方向に隣り合って設けられ、流入室31に連通する開口部32が形成されている。また、流量計測ユニット11の断面矩形状の計測流路部15は、入口バッファ部27内に突出する側面部が、開口部32が形成された入口バッファ部27の内壁に対してほぼ平行になるように該入口バッファ部27内に突出して、正面視開口部32をほぼ覆うように配置されている。   As described in detail above, in the ultrasonic flowmeter 1 according to the present embodiment, the inlet buffer section 27 partitioned in a substantially box shape has the inflow path 5A through which combustion gas flows from the inlet 5 along the vertical direction. An inflow chamber 31 disposed at the back end is provided adjacent to the flow direction of the combustion gas in the inflow passage 5 </ b> A in a substantially perpendicular direction, and an opening 32 communicating with the inflow chamber 31 is formed. ing. Further, in the measurement flow path portion 15 having a rectangular cross section of the flow rate measurement unit 11, the side surface portion protruding into the inlet buffer portion 27 is substantially parallel to the inner wall of the inlet buffer portion 27 in which the opening portion 32 is formed. Thus, it protrudes into the inlet buffer 27 and is arranged so as to substantially cover the opening 32 in front view.

従って、燃焼ガスは、流入路5Aの奥側端部に設けられた流入室31で、流れ方向が略直角方向に曲げられて入口バッファ部27内に流入した後、相対向する計測流路部15の側面部に当たって、再度側面に沿って、略直角方向、つまり、計測流路部15の側面の両高さ方向に曲げられて入口バッファ部27内へ流入する。そして、入口バッファ部27内に流入した燃焼ガスは、計測流路部15の外周面に沿って回り込み、計測流路部15の側面部に対向するカバー3Bの内壁面に当たる。   Therefore, after the combustion gas flows into the inlet buffer portion 27 in the inflow chamber 31 provided at the back end of the inflow passage 5A, the flow direction is bent in a substantially right angle direction and then flows into the inlet buffer portion 27, the measurement flow passage portions facing each other. 15 hits the side surface portion 15 again, is bent along the side surface in a substantially right angle direction, that is, in both height directions of the side surface of the measurement flow path portion 15 and flows into the inlet buffer portion 27. Then, the combustion gas that has flowed into the inlet buffer section 27 wraps around the outer peripheral surface of the measurement flow path section 15 and hits the inner wall surface of the cover 3 </ b> B facing the side surface section of the measurement flow path section 15.

その後、燃焼ガスは、カバー3Bの内壁面に沿って入口バッファ部27の上下方向中央部へ流れて衝突し、カバー3Bの内壁面と計測流路部15の側面部との間の入口バッファ部27において流れの均一化が図られる。そして、燃焼ガスは、更に、計測流路部15の入口部15Aの上下両端縁部及びカバー3B側端縁部の三辺の外周縁部を通過して、計測流路部15の入口部15Aに相対向する入口バッファ部27の壁面部に当たった後、180度の方向転換をされて計測流路部15の入口部15Aに流入する。   Thereafter, the combustion gas flows along the inner wall surface of the cover 3 </ b> B to the central portion in the vertical direction of the inlet buffer portion 27 and collides with it, and the inlet buffer portion between the inner wall surface of the cover 3 </ b> B and the side surface portion of the measurement flow path portion 15. At 27, the flow is made uniform. Then, the combustion gas further passes through the outer peripheral edge of the three sides of the upper and lower edge portions of the inlet portion 15A of the measurement flow path portion 15 and the edge portion on the cover 3B side, and enters the inlet portion 15A of the measurement flow path portion 15. Then, the direction is changed by 180 degrees and flows into the inlet 15A of the measurement flow path 15.

これにより、燃焼ガスは、入口バッファ部27内へ流入して計測流路部15の入口部15Aに流入するまでに複数回、流れ方向が変更されるため、流れが十分に均一化され、大流量(例えば、8000(リットル/時間)の流量である。)の計測が可能となる。また、略箱体状の入口バッファ部27の内壁に設けられる開口部32は、該入口バッファ部27内に突出する計測流路部15によってほぼ覆われる大きさに形成されるため、計測流路部15の入口バッファ部27内への突出長さを短くすることにより、当該入口バッファ部27の小型化を図ることが可能となる。その結果、超音波流量計1の小型化を図ることが可能となる。   As a result, the flow of the combustion gas is changed several times before flowing into the inlet buffer 27 and into the inlet 15A of the measurement flow path 15, so that the flow is sufficiently uniform and large. A flow rate (for example, a flow rate of 8000 (liter / hour)) can be measured. In addition, the opening 32 provided in the inner wall of the substantially box-shaped inlet buffer portion 27 is formed in a size that is substantially covered by the measurement flow passage portion 15 protruding into the inlet buffer portion 27. By shortening the protrusion length of the portion 15 into the inlet buffer portion 27, the inlet buffer portion 27 can be downsized. As a result, the ultrasonic flow meter 1 can be downsized.

また、開口部32を閉塞して入口バッファ部27への燃焼ガスの供給を遮断する遮断弁33は、開口部32を介して計測流路部15の側面部に対向するように配置されている。また、該遮断弁33と開口部32との間の隙間(第1隙間)の距離D1が、開口部32と計測流路部15の側面との間の隙間(第2隙間)の距離D2にほぼ等しくなるように配置されている。これにより、遮断弁33と開口部32との間の隙間(第1隙間)の距離D1を狭くして、開口部32と計測流路部15の側面との間の隙間(第2隙間)の距離D2を狭くすることが可能となり、入口バッファ部27の更なる小型化を図ることが可能となる。その結果、超音波流量計1の更なる小型化を図ることが可能となる。   The shut-off valve 33 that closes the opening 32 and blocks the supply of combustion gas to the inlet buffer 27 is disposed so as to face the side surface of the measurement flow path 15 via the opening 32. . Further, the distance D1 of the gap (first gap) between the shut-off valve 33 and the opening 32 is set to the distance D2 of the gap (second gap) between the opening 32 and the side surface of the measurement flow path section 15. They are arranged to be almost equal. Thereby, the distance D1 of the clearance (first clearance) between the shut-off valve 33 and the opening 32 is narrowed, and the clearance (second clearance) between the opening 32 and the side surface of the measurement flow path portion 15 is reduced. The distance D2 can be reduced, and the inlet buffer unit 27 can be further reduced in size. As a result, the ultrasonic flow meter 1 can be further reduced in size.

また、開口部32は、相対向する計測流路部15の側面の高さにほぼ等しい内径を有する断面略円形状に形成されているため、開口部32の形成を容易に行うことが可能となる。また、入口バッファ部27内への突出する計測流路部15によって、当該開口部32を正面視ほぼ覆うように容易に構成することが可能となる。   Moreover, since the opening part 32 is formed in the substantially circular cross section which has an internal diameter substantially equal to the height of the side surface of the measurement flow path part 15 which opposes, it becomes possible to form the opening part 32 easily. Become. Further, the measurement flow path portion 15 protruding into the inlet buffer portion 27 can be easily configured so as to cover the opening portion 32 substantially in a front view.

また、正面視において、開口部32の仕切り壁21Aに対して反対側の端部が、計測流路部15の入口部15Aよりも外側へずれたずれ量L1、つまり、開口部32の仕切り壁21Aに対して反対側の端部と入口部15Aの端面との計測流路部15の長手方向における距離L1を例えば、0mmから4.5mm以下とすることによって、燃焼ガスが開口部32から計測流路部15の入口部15Aに直接流入しないように設定することが可能である。これにより、燃焼ガスの流れが十分に均一化され、大流量(例えば、8000(リットル/時間)の流量である。)の計測が可能となる。その結果、入口バッファ部27の小型化を図ることが可能となるため、超音波流量計1の小型化を図ることが可能となる。   In addition, when viewed from the front, the end L on the opposite side of the partition wall 21A of the opening 32 is shifted to the outside from the inlet 15A of the measurement flow path section 15, that is, the partition wall of the opening 32. Combustion gas is measured from the opening 32 by setting the distance L1 in the longitudinal direction of the measurement flow path portion 15 between the end opposite to 21A and the end face of the inlet portion 15A to, for example, 0 mm to 4.5 mm or less. It is possible to set so as not to directly flow into the inlet portion 15A of the flow path portion 15. As a result, the flow of the combustion gas is sufficiently uniform, and a large flow rate (for example, a flow rate of 8000 (liter / hour)) can be measured. As a result, it is possible to reduce the size of the inlet buffer unit 27, and thus it is possible to reduce the size of the ultrasonic flowmeter 1.

また、計測流路部15の長手方向中央部の上側に、一対の超音波振動子12A、12Bが設けられた回路ケース16が、入口バッファ部27と出口バッファ部29とに挟まれた中央空間部28に配置されるため、出口バッファ部29の小型化を容易に図ることが可能となる。その結果、超音波流量計1の更なる小型化を図ることが可能となる。   A central space in which a circuit case 16 provided with a pair of ultrasonic transducers 12A and 12B is sandwiched between an inlet buffer portion 27 and an outlet buffer portion 29 on the upper side of the central portion in the longitudinal direction of the measurement flow path portion 15. Since it is disposed in the portion 28, it is possible to easily reduce the size of the outlet buffer portion 29. As a result, the ultrasonic flow meter 1 can be further reduced in size.

尚、本発明は前記実施形態に限定されることはなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。   In addition, this invention is not limited to the said embodiment, Of course, various improvement and deformation | transformation are possible within the range which does not deviate from the summary of this invention.

1 超音波流量計
3 メータケース
5 流入口
6 流出口
11 流量計測ユニット
12A、12B 超音波振動子
15 計測流路部
15A 入口部
15B 出口部
27 入口バッファ部
28 中央空間部
29 出口バッファ部
32 開口部
33 遮断弁
DESCRIPTION OF SYMBOLS 1 Ultrasonic flow meter 3 Meter case 5 Inlet 6 Outlet 11 Flow measurement unit 12A, 12B Ultrasonic transducer 15 Measurement flow path part 15A Inlet part 15B Outlet part 27 Inlet buffer part 28 Central space part 29 Outlet buffer part 32 Opening Part 33 Shut-off valve

Claims (6)

被計測流体の流入口と前記被計測流体の流出口が形成されたメータケースと、
前記メータケース内に配置されて該メータケース内を通過する前記被計測流体の流量を計測する流量計測ユニットと、
を備え、
前記流量計測ユニットは、
前記被計測流体が流れる断面略矩形状の計測流路部と、
前記計測流路部の上流側と下流側に取り付けられた一対の超音波振動子と、
を有し、
前記メータケースは、
前記流入口から前記被計測流体が流れ込む流入路の奥側端部に流れ方向に対して略直角方向に隣り合って設けられて前記流入路に連通する開口部が形成されると共に、前記計測流路部の入口側が内側に突出して前記被計測流体が該計測流路部の入口部に流入するように略箱体状に区画された入口バッファ部と、
前記流出口に連通すると共に、前記計測流路部の出口側が内側に突出して該計測流路部の出口部から流出した前記被計測流体が外部へ流出するように略箱体状に区画された出口バッファ部と、
を有し、
前記計測流路部は、入口側の側面が、前記開口部が形成された前記入口バッファ部の内壁に対してほぼ平行になるように該入口バッファ部内に突出して、正面視前記開口部をほぼ覆うように配置されていることを特徴とする超音波流量計。
A meter case in which an inlet of the fluid to be measured and an outlet of the fluid to be measured are formed;
A flow rate measuring unit that is disposed in the meter case and measures the flow rate of the fluid to be measured passing through the meter case; and
With
The flow rate measuring unit is
A measurement channel portion having a substantially rectangular cross section through which the fluid to be measured flows;
A pair of ultrasonic transducers attached to the upstream side and the downstream side of the measurement channel part;
Have
The meter case is
An opening is formed at the back end of the inflow path through which the fluid to be measured flows from the inflow port, adjacent to the flow direction at a substantially right angle to communicate with the inflow path. An inlet buffer section partitioned in a substantially box shape so that the inlet side of the passage projects inward and the fluid to be measured flows into the inlet section of the measurement flow path section;
In addition to communicating with the outlet, the outlet side of the measurement channel section protrudes inward, and the fluid to be measured that has flowed out of the outlet section of the measurement channel section is partitioned into a substantially box shape. An exit buffer section;
Have
The measurement channel portion protrudes into the inlet buffer portion so that the side surface on the inlet side is substantially parallel to the inner wall of the inlet buffer portion in which the opening portion is formed. An ultrasonic flowmeter, which is arranged so as to cover.
前記メータケースは、前記開口部を閉塞して前記入口バッファ部への前記被計測流体の供給を遮断する遮断弁を有し、
前記遮断弁は、前記開口部を介して前記計測流路部の前記入口側の側面に対向するように配置されると共に、該遮断弁と前記開口部との間の第1隙間の距離が、前記開口部と前記計測流路部の前記入口側の側面との間の第2隙間の距離にほぼ等しくなるように配置されていることを特徴とする請求項1に記載の超音波流量計。
The meter case has a shut-off valve that closes the opening and shuts off the supply of the fluid to be measured to the inlet buffer.
The shut-off valve is disposed so as to face the side surface on the inlet side of the measurement flow path portion through the opening, and the distance of the first gap between the shut-off valve and the opening is The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is disposed so as to be substantially equal to a distance of a second gap between the opening and a side surface on the inlet side of the measurement flow path.
前記開口部は、相対向する前記計測流路部の側面の高さにほぼ等しい内径を有する断面略円形状に形成されていることを特徴とする請求項1又は請求項2に記載の超音波流量計。   The ultrasonic wave according to claim 1 or 2, wherein the opening is formed in a substantially circular cross section having an inner diameter substantially equal to a height of a side surface of the measurement flow channel portion facing each other. Flowmeter. 前記計測流路部の前記入口バッファ部内への突出方向において、前記開口部の前記突出方向側の端部が、前記計測流路部の入口部よりも外側へ突出する突出距離は、前記被計測流体が該開口部から前記計測流路部の入口部に直接流入しない所定値以下になるように設定されていることを特徴とする請求項3に記載の超音波流量計。   In the projecting direction of the measurement channel part into the inlet buffer unit, the projecting distance at which the end of the opening on the projecting direction side projects outward from the inlet part of the measurement channel unit is the measurement target. The ultrasonic flowmeter according to claim 3, wherein the ultrasonic flowmeter is set to a predetermined value or less so that fluid does not flow directly from the opening to the inlet of the measurement flow path. 前記メータケースは、前記入口バッファ部と前記出口バッファ部とに挟まれて前記計測流路部の前記一対の超音波振動子が設けられた部分が配置される中央空間部を有することを特徴とする請求項1乃至請求項4のいずれかに記載の超音波流量計。   The meter case has a central space portion in which a portion where the pair of ultrasonic transducers of the measurement flow path portion is provided is disposed between the inlet buffer portion and the outlet buffer portion. The ultrasonic flowmeter according to any one of claims 1 to 4. 被計測流体の流入口と前記被計測流体の流出口が形成されたメータケースと、
前記メータケース内に配置されて該メータケース内を通過する前記被計測流体の流量を計測する流量計測ユニットと、
を備え、
前記流量計測ユニットは、
前記被計測流体が流れる断面略矩形状の計測流路部と、
前記計測流路部の上流側と下流側に取り付けられた一対の超音波振動子と、
を有し、
前記メータケースは、
前記流入口から前記被計測流体が流れ込む流入路の奥側端部に流れ方向に対して略直角方向に隣り合って設けられて前記流入路に連通する開口部が形成されると共に、前記計測流路部の入口側が内側に突出して前記被計測流体が該計測流路部の入口部に流入するように略箱体状に区画された入口バッファ部と、
前記流出口に連通すると共に、前記計測流路部の出口側が内側に突出して該計測流路部の出口部から流出した前記被計測流体が外部へ流出するように略箱体状に区画された出口バッファ部と、
前記入口バッファ部と前記出口バッファ部とに挟まれて前記計測流路部の前記一対の超音波振動子が設けられた部分が配置される中央空間部と、
前記開口部を閉塞して前記入口バッファ部への前記被計測流体の供給を遮断する遮断弁と、
を有し、
前記計測流路部は、入口側の側面が、前記開口部が形成された前記入口バッファ部の内壁に対してほぼ平行になるように該入口バッファ部内に突出し、
前記遮断弁は、前記開口部を介して前記計測流路部の前記入口側の側面に対向するように配置されると共に、該遮断弁と前記開口部との間の第1隙間の距離が、前記開口部と前記計測流路部の前記入口側の側面との間の第2隙間の距離にほぼ等しくなるように配置され、
前記開口部は、相対向する前記計測流路部の側面の高さにほぼ等しい内径を有する断面略円形状に形成されて、該計測流路部の前記入口バッファ部内への突出方向において、前記開口部の前記突出方向側の端部が、前記計測流路部の入口部から突出する突出距離は、所定値以下になるように設定され、
該計測流路部は、正面視前記開口部をほぼ覆うように配置されていることを特徴とする超音波流量計。
A meter case in which an inlet of the fluid to be measured and an outlet of the fluid to be measured are formed;
A flow rate measuring unit that is disposed in the meter case and measures the flow rate of the fluid to be measured passing through the meter case; and
With
The flow rate measuring unit is
A measurement channel portion having a substantially rectangular cross section through which the fluid to be measured flows;
A pair of ultrasonic transducers attached to the upstream side and the downstream side of the measurement channel part;
Have
The meter case is
An opening is formed at the back end of the inflow path through which the fluid to be measured flows from the inflow port, adjacent to the flow direction at a substantially right angle to communicate with the inflow path. An inlet buffer section partitioned in a substantially box shape so that the inlet side of the passage projects inward and the fluid to be measured flows into the inlet section of the measurement flow path section;
In addition to communicating with the outlet, the outlet side of the measurement channel section protrudes inward, and the fluid to be measured that has flowed out of the outlet section of the measurement channel section is partitioned into a substantially box shape. An exit buffer section;
A central space portion in which the portion of the measurement flow path portion provided with the pair of ultrasonic transducers is disposed between the inlet buffer portion and the outlet buffer portion;
A shutoff valve that closes the opening and shuts off the supply of the fluid to be measured to the inlet buffer;
Have
The measurement channel portion protrudes into the inlet buffer portion such that the side surface on the inlet side is substantially parallel to the inner wall of the inlet buffer portion where the opening is formed,
The shut-off valve is disposed so as to face the side surface on the inlet side of the measurement flow path portion through the opening, and the distance of the first gap between the shut-off valve and the opening is It is arranged so as to be approximately equal to the distance of the second gap between the opening and the side surface on the inlet side of the measurement flow path portion,
The opening is formed in a substantially circular cross-section having an inner diameter substantially equal to the height of the side surface of the measurement flow channel portion facing each other, and in the protruding direction of the measurement flow channel portion into the inlet buffer unit, The projecting distance at which the end of the opening in the projecting direction side projects from the inlet of the measurement channel is set to be a predetermined value or less,
The ultrasonic flowmeter, wherein the measurement flow path portion is disposed so as to substantially cover the opening when viewed from the front.
JP2015107478A 2015-05-27 2015-05-27 Ultrasonic flow meter Active JP6448468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107478A JP6448468B2 (en) 2015-05-27 2015-05-27 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107478A JP6448468B2 (en) 2015-05-27 2015-05-27 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2016223800A true JP2016223800A (en) 2016-12-28
JP6448468B2 JP6448468B2 (en) 2019-01-09

Family

ID=57747824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107478A Active JP6448468B2 (en) 2015-05-27 2015-05-27 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP6448468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158746A (en) * 2018-03-15 2019-09-19 アズビル金門株式会社 Ultrasonic flowmeter
JP2019178946A (en) * 2018-03-30 2019-10-17 矢崎エナジーシステム株式会社 Flow rate measuring device
DE102023127133A1 (en) 2022-10-17 2024-04-18 Keyence Corporation Ultrasonic flow meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061269A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Ultrasonic flow rate measuring apparatus
JP2009186429A (en) * 2008-02-08 2009-08-20 Toyo Gas Meter Kk Gas meter
US20120118407A1 (en) * 2010-11-16 2012-05-17 Hydrometer Gmbh Gas meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061269A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Ultrasonic flow rate measuring apparatus
JP2009186429A (en) * 2008-02-08 2009-08-20 Toyo Gas Meter Kk Gas meter
US20120118407A1 (en) * 2010-11-16 2012-05-17 Hydrometer Gmbh Gas meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158746A (en) * 2018-03-15 2019-09-19 アズビル金門株式会社 Ultrasonic flowmeter
JP7030574B2 (en) 2018-03-15 2022-03-07 アズビル金門株式会社 Ultrasonic flow meter
JP2019178946A (en) * 2018-03-30 2019-10-17 矢崎エナジーシステム株式会社 Flow rate measuring device
JP7036648B2 (en) 2018-03-30 2022-03-15 矢崎エナジーシステム株式会社 Flow measuring device
DE102023127133A1 (en) 2022-10-17 2024-04-18 Keyence Corporation Ultrasonic flow meter

Also Published As

Publication number Publication date
JP6448468B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
US8701501B2 (en) Ultrasonic flowmeter
US8984960B2 (en) Ultrasonic flow rate measurement device having inlet side flow rectification part and outlet side coupling part
US9372105B2 (en) Ultrasonic flow rate measurement device
JP6448468B2 (en) Ultrasonic flow meter
TWI636238B (en) Straight-tube gas meter
US20120191382A1 (en) Ultrasonic flow meter device
JP6306434B2 (en) Ultrasonic flow meter
JP2012177572A (en) Ultrasonic fluid measuring instrument
JP6646415B2 (en) Ultrasonic flow meter
JP6448467B2 (en) Ultrasonic flow meter
JP6546071B2 (en) Ultrasonic flow meter
JP6677486B2 (en) Ultrasonic flow meter
JP2006118864A (en) Gas meter
EP3683553B1 (en) Gas flow metering gas chamber and gas flow meter
JP5154197B2 (en) Gas meter
JP5669583B2 (en) Flow rate calculation system, integrated gas panel device and base plate
CN108700447B (en) Gas meter
CN213363894U (en) Cylindrical laminar flow sensor
JP2022181906A (en) gas meter
JP6851333B2 (en) Gas meter
US20210096009A1 (en) Ultrasonic flow meter path layout configuration
JP3921518B2 (en) Pulsation absorption structure of electronic gas meter
JP6646414B2 (en) Ultrasonic flow meter
JP2008051562A (en) Fluid measuring device
JP2019178946A (en) Flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250