JP2004061269A - Ultrasonic flow rate measuring apparatus - Google Patents

Ultrasonic flow rate measuring apparatus Download PDF

Info

Publication number
JP2004061269A
JP2004061269A JP2002219334A JP2002219334A JP2004061269A JP 2004061269 A JP2004061269 A JP 2004061269A JP 2002219334 A JP2002219334 A JP 2002219334A JP 2002219334 A JP2002219334 A JP 2002219334A JP 2004061269 A JP2004061269 A JP 2004061269A
Authority
JP
Japan
Prior art keywords
flow
ultrasonic
measurement
inlet
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219334A
Other languages
Japanese (ja)
Other versions
JP3514259B1 (en
Inventor
Shigeru Iwanaga
岩永 茂
Hajime Miyata
宮田 肇
Yoshiaki Inui
乾 善紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002219334A priority Critical patent/JP3514259B1/en
Publication of JP2004061269A publication Critical patent/JP2004061269A/en
Application granted granted Critical
Publication of JP3514259B1 publication Critical patent/JP3514259B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To generate a stable flow speed distribution in a measuring flow path and enhance measuring accuracy regardless of a shape of an inflow pipeline coupled to the measuring flow path. <P>SOLUTION: An ultrasonic flow rate measuring apparatus is provided with the measuring flow path 5 for making a test fluid flow, a lead-in 11 and a lead-out 12 provided on an upstream side and a downstream side of the measured flow path 5, at least a pair of ultrasonic transducers 7, 8 provided and propagating ultrasonic waves through the measured flow path 5, an entrance enlarging space 19 provided on an upstream side of the lead-in 11 and an entrance protrusion element 20 having a protrusion 22 connected to the lead-in and protruding into the entrance enlarging space 19 and an entrance opening 23 provided in the protrusion 22. The measuring accuracy is enhanced by supplying a stable flow to the measuring flow path 5 regardless of the shape of the inflow pipeline. <P>COPYRIGHT: (C)2004,JPO

Description

【特許請求の範囲】
【請求項1】被計測流体が流れる計測流路と、前記計測流路の上流側に設けた導入部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記突出部は流れを整流するように設けられた超音波流量計測装置。
【請求項2】入口開孔を入口側拡大空間部の流入口と対向しない位置に設けることにより被計測流体が前記流入口から前記入口開孔に直接流れ込むのを防止した請求項1に記載の超音波流量計測装置。
【請求項】被計測流体が流れる計測流路と、前記計測流路の上流側および下流側に設けた導入部および導出部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導出部の下流側に設けた出口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記導出部に接続し前記出口側拡大空間部に突出させた突出部に出口開孔を設けた出口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記突出部は流れを整流するように設けられた超音波流量計測装置。
【請求項4】被計測流体が流れる計測流路と、前記計測流路の上流側に設けた導入部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記入口開孔に流入する被計測流体の流れ方向を変えて流入させる流入方向転換手段を設けた超音波流量計測装置。
【請求項5】被計測流体が流れる計測流路と、前記計測流路の上流側および下流側に設けた導入部および導出部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導出部の下流側に設けた出口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記導出部に接続し前記出口側拡大空間部に突出させた突出部に出口開孔を設けた出口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記入口開孔および前記出口開孔に流入する被計測流体の流れ方向を変えて流入させる流入方向転換手段を設けた超音波流量計測装置。
【請求項】入口側拡大空間部は被計測流体の流量を制御する流体制御手段の直後に配置した請求項1〜のいずれか1項に記載の超音波流量計測装置。
【請求項】入口側突出体には流れ規制体を配置した請求項1〜のいずれか1項に記載の超音波流量計測装置。
【請求項】入口側突出体および出口側突出体には流れ規制体を配置した請求項3または5または6に記載の超音波流量計測装置。
【請求項】入口側突出体および出口側突出体と、入口側および出口側の流れ規制体は同一あるいは略同一の形状とした請求項に記載の超音波流量計測装置。
【請求項10】導入部および導出部には流れ方向を屈曲させる屈曲部を配置した請求項1〜のいずれか1項に記載の超音波流量計測装置。
【請求項11】被計測流体が流れる計測流路と、前記計測流路の上流側に設けた導入部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で 超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記入口側拡大空間部への流入口からの流れが方向を変えて前記入口開孔へ流れ込み前記突出部内で整流されて前記導入部に流れ前記計測流路に供給される超音波流量計測装置。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、気体や液体の流量や流速の計測を行う流量計測装置に関するものである。
【0002】
【従来の技術】
従来この種の超音波流量計測装置には、例えば特開平11−351926号公報が知られており、図4に示すように流体を一方から他方に流す計測流路1の幅W方向に対向し、かつ計測流路1の流れ方向に対して所定角度を傾けて上流側の超音波送受信器2aと下流側の超音波送受信器2bとを設け、これらの超音波送受信器2a、2bは計測流路1に設けた凹部3a、3bに収納するとともに、計測流路1の入口側に整流体4を設けている。そして、計測流路1を流れる流体の流速を超音波送受信器2a、2b間で超音波を送受信して伝搬時間差から計測し、計測流路1の断面積より流量を算出している。このとき、計測流路1に入る流れは整流体4により規制して、計測部での流線の傾きを低減したり渦の発生を抑制して、流れの乱れの境界面での超音波の反射や屈折による超音波の受信レベルの変動を低減して測定精度の悪化を防止している。
【0003】
【発明が解決しようとする課題】
しかしながら従来の構成では、整流体4よりも上流側の管路形状によって計測流路1への流入状態が微妙に変化し、計測流路1での流速分布に違いが生じて管路形状により計測精度がばらつくという課題があった。
【0004】
本発明は上記課題を解決するもので、計測流路への流入管路形状に因らず安定した流速分布を計測流路に発生させ、計測精度を高めることを目的とする。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するために、被計測流体が流れる計測流路と、計測流路の上流側および下流側に設けた導入部および導出部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、突出部は流れを整流するように設けたものである。
【0006】
上記発明によれば、入口側拡大空間部による通路容積拡大により流体の流れ状態を安定化させて突出体の入口開孔から流入させることで安定した流れを計測流路に供給でき、また入口側拡大空間部に突出させた突出体により計測流路の導入部への助走長さを確保することでも安定した流れを計測流路に供給でき、流入側の管路形状などに因らず安定した流れを計測流路に供給して計測精度を向上できる。さらに入口側拡大空間部に突出体を配置することで管路部の小型化ができる。
【0007】
【発明の実施の形態】
本発明の実施の形態によれば、被計測流体が流れる計測流路と、計測流路の上流側に設けた導入部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記突出部は流れを整流するように設けたものである。
また、入口開孔を入口側拡大空間部の流入口と対向しない位置に設けることにより被計測流体が前記流入口から前記入口開孔に直接流れ込むのを防止したものである。
そして、入口側拡大空間部による通路容積拡大により流体の流れ状態を安定化させて突出体の入口開孔から流入させることで安定した流れを計測流路に供給でき、また入口側拡大空間部に突出させた突出体により計測流路の導入部への助走長さを確保することでも安定した流れを計測流路に供給でき、流入側の管路形状などに因らず安定した流れを計測流路に供給して計測精度を向上できる。さらに入口側拡大空間部に突出体を配置することで管路部の小型化ができる。
【0008】
また、被計測流体が流れる計測流路と、計測流路の上流側および下流側に設けた導入部および導出部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導出部の下流側に設けた出口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記導出部に接続し前記出口側拡大空間部に突出させた突出部に出口開孔を設けた出口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記突出部は整流するように設けられたものである。
【0009】
そして、順方向流れの場合は入口側拡大空間部と入口側突出体により管路容積と助走長さの確保で安定した流れを計測流路に供給でき、逆方向流れの場合は出口側拡大空間部と出口側突出体により管路容積と助走長さの確保で安定した流れを計測流路に供給し、順逆いずれの流れ状態においても上流側あるいは下流側の管路形状に因らず安定した流れを計測流路に供給して計測精度を向上でき、順逆両方向の流れに対して計測精度が安定化でき設置方向性のない利便性の高い装置を実現できる。さらに、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測精度を向上できる。
【0010】
また、入口開孔には流れ方向を変えて流入させる流入方向転換手段を設けたものである。そして、入口側拡大空間部への流入口の位置が異なっている場合でも安定した流れを入口開孔に与えて計測流路に供給し計測精度を向上できる。さらに、入口側拡大空間部への流入口の位置設定の自由度を向上でき装置の小型化あるいは製造し易い設計が可能になり低コスト化ができる。
【0011】
また、入口開孔および出口開孔には流れ方向を変えて流入させる流入方向転換手段を設けたものである。そして、順逆両方向の流れに対して計測流路により一層安定した流れを供給でき計測精度を向上できる。
【0012】
また、入口側拡大空間部は被計測流体の流量を制御する流体制御手段の直後に配置したものである。そして、流体制御手段による流れの乱れを入口側拡大空間部により緩和して安定した流れを入口側突出体に与えて計測流路に供給し計測精度を向上できる。また、流体制御手段の形状や取付位置が異なる場合でも入口側拡大空間部により流れの相違を緩和して安定した流れを入口側突出体に与えて計測流路に供給し計測精度を向上できるとともに、流体制御手段の形状や取付位置の設計の自由度が高く生産性を向上できる。
【0013】
また、入口側突出体には流れ規制体を配置したものである。そして、入口側突出体に設けた流れ規制体により計測流路の導入部への流れをより一層安定化でき、計測精度をより一層向上できる。
【0014】
また、入口側突出体および出口側突出体には流れ規制体を配置したものである。そして、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化でき、計測精度をより一層向上できる。また、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測流路に流入する流れをより一層安定化して計測精度を向上できる。
【0015】
また、入口側突出体および出口側突出体と、入口側および出口側の流れ規制体は同一あるいは略同一の形状としたものである。そして、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化するとともに計測流路内の流速分布をほぼ同じにし、順逆両方向の流れに対して計測特性を揃えることで計測精度をより一層向上できる。さらに、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測流路に流入する流れをより一層安定化して計測精度を向上できる。
【0016】
また、導入部および導出部には流れ方向を屈曲させる屈曲部を配置したものである。そして、屈曲部を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側拡大空間部と入口側あるいは出口側突出体により計測流路への流れの安定性を高めて計測精度を向上できる。
また、被計測流体が流れる計測流路と、前記計測流路の上流側に設けた導入部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備え、前記入口側拡大空間部への流入口からの流れが方向を変えて前記入口開孔へ流れ込み前記突出部内で整流されて前記導入部に流れ前記計測流路に供給されるものである。そして、流入側の管路形状などに因らず安定した流れを計測流路に供給して計測精度を向上できる。
【0017】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0018】
(実施例1)
図1は本発明の実施例1を示す超音波流量計測装置の縦断面図である。図において、5は流路壁6に囲まれた計測流路であり、7および8は互いに対向するように流路壁6に取付けた上流側および下流側の超音波送受信器である。上流側の超音波送受信器7と下流側の超音波送受信器8は計測流路5の幅W方向を横切るように距離Lを隔てるとともに計測流路5の流体の流動方向に対して角度θ傾けて設置されている。9a、9bは超音波送受信器7、8を計測流路5に臨ませる上流側および下流側の開口穴である。10は対向する超音波送受信器7および8間で送信された超音波が直接相手側に伝搬する超音波伝搬路(二点鎖線で領域を示す)である。11は計測流路5の上流側に設け被計測流体の計測流路5への入口となる導入部であり、12は計測流路5の下流側に設け被計測流体の計測流路5からの出口となる導出部である。13は計測流路5と導入部11とを連結する上流側の屈曲部であり、14は計測流路5と導出部12とを連結する下流側の屈曲部である。なお、屈曲部13、14は計測流路5の幅W方向に屈曲している図を示したが、屈曲方向は任意の方向が可能なのは言うまでもない。
【0019】
15は超音波伝搬路10の上流側に設けた流れ安定手段であり、流れ方向を整える格子状の方向規制部15aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部15bを備えている。16は超音波送受信器7,8に接続され超音波の送受信をさせる計測制御部17と、計測制御部17での信号を基に流速を計算し流量を算出する演算部18を備えた流量演算手段である。
【0020】
19は導入部11の上流側に配置した入口側拡大空間部である。20は入口側拡大空間部19内に挿入した入口側突出体である。この入口側突出体20は流路壁6の入口側取付面21から突出させた突出部22と、この突出部22の一部に穴を明けて設けた入口開孔23を備えている。24は入口側拡大空間部19への流入口であり、入口開孔23と流入口24は直接対向しないように配置している。25は流入口24に対向して配置した被計測流体の流量を制御する流体制御手段であり、この流体制御手段25は駆動部26と流入口24に対向する弁部27を備えている。28は流入口24の上流側に設けた接続口、29は導出部12に連通する接続口である。
【0021】
30は入口側突出体20に設けた流れ規制体であり、入口開孔23から流入した流れの流れ方向を整える格子状の方向規制部30a、メッシュなどの網状体で形成し流速変動を低減するように配置した変動抑制部30bを備えている。
【0022】
31は開口穴9a、9bへの流体の流れ込みを低減する流入抑制体であり、流路壁6と面一に設けるとともに超音波は透過できる微細な穴を有している。
【0023】
次に、この超音波流量計測装置の動作について説明する。接続口28から入った被計測流体は流体制御手段25の弁部27が開成すると流入口24を通過して入口側拡大空間部19に流入する。弁部27を通過して乱れた流れはこの入口側拡大空間部19の容積が拡大された空間で流れを整えられるとともに、流入口24と対向しない位置に設けた入口側突出体20の入口開孔23から突出部22内に流入し、入口側突出体20の十分な助走距離により整流された流れとなって計測流路5の上流側に設けた導入部11に流れ込む。しかも、入口側突出体20に設けた流れ規制体30を通過し、格子状の方向規制部30aによる流れ方向の整流と、網状体で形成した変動抑制部30bによる流速変動の低減により、流れがより一層安定化されて導入部11に流れ込む。導入部11に入った流れは屈曲部13で流れ方向を曲げられるが、導入部11に流入する流れが安定しているため、屈曲後も流れ状態のばらつきが少なく維持されるとともに、流れ安定手段15において流れ方向を整える格子状の方向規制部15aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部15bにより一層流れが安定化されて上流側の相違による影響が少ない流速分布が計測流路5の超音波伝搬路10部に形成される。
【0024】
次に超音波による流量計測動作を説明する。計測流路5では、計測制御部17の作用により超音波送受信器7,8間で計測流路5の流路断面の幅Wを横切るようにして超音波の送受が行われる。すなわち、上流側の超音波送受信器7から発せられた超音波が下流側の超音波送受信器8で受信されるまでの伝搬時間T1を計測する。また一方、下流側の超音波送受信器8から発せられた超音波が上流側の超音波送受信器7で受信されるまでの伝搬時間T2を計測する。このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により演算部18で流量が算出される。
【0025】
いま、計測流路5の流動方向の被計測流体の流速Vと超音波伝搬路10とのなす角度をθとし、超音波送受信器7,8間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。
【0026】
T1=L/(C+Vcosθ)
T2=L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
V=(L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。
【0027】
この流速Vと計測流路5の流れ方向に直交する横断面積Sより、流量Qは
Q=KVS
ここで、Kは横断面積Sにおける流速分布を考慮した補正係数であり、このようにして流量を求めることができる。
【0028】
このように、入口側拡大空間部19による通路容積拡大により流体の流れ状態を安定化させて突出体20の入口開孔23から流入させることで安定した流れを計測流路に供給でき、また入口側拡大空間部19に突出させた突出体20により計測流路の導入部11への助走長さを確保することでも安定した流れを計測流路に供給でき、流入側の管路形状などに因らず安定した流れを計測流路に供給して計測精度を向上できる。さらに入口側拡大空間部19に突出体20を配置することで管路部の小型化ができる。
【0029】
また、流体制御手段25による流れの乱れを入口側拡大空間部19により緩和して安定した流れを入口側突出体20に与えて計測流路に供給し計測精度を向上できる。また、流体制御手段25の形状や取付位置が異なる場合でも入口側拡大空間部19により流れの相違を緩和して安定した流れを入口側突出体20に与えて計測流路に供給し計測精度を向上できるとともに、流体制御手段25の形状や取付位置の設計の自由度が高く生産性を向上できる。
【0030】
また、入口側突出体20に設けた流れ規制体30により計測流路の導入部11への流れをより一層安定化でき、計測精度をより一層向上できる。
【0031】
また、屈曲部13,14を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側拡大空間部と入口側あるいは出口側突出体により計測流路への流れの安定性を高めて計測精度を向上できる。
【0032】
なお、流れ規制体30として格子状あるいはメッシュ状のもので説明したが、微細な穴明き板状、ハカム状、不織布状、綿状などが利用可能なのは言うまでもない。
【0033】
(実施例2)
図2は本発明の実施例2を示す超音波流量計測装置の断面図である。図2において、図1の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0034】
32は導出部12の下流側に配置した出口側拡大空間部である。33は出口側拡大空間部32内に挿入した出口側突出体である。この出口側突出体33は流路壁6の出口側取付面34から突出させた突出部35と、この突出部35の一部に穴を明けて設けた出口開孔36を備えている。37は出口側拡大空間部32からの流出口であり、出口開孔36と流出口37は直接対向しないように配置している。38は超音波伝搬路10の下流側に設けた流れ安定手段であり、流れ方向を整える格子状の方向規制部38aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部38bを備えている。出口側突出体33には入口側突出体20と同様に流れ規制体30を設けており、この流れ規制体30は流れ方向を整える格子状の方向規制部30aと、メッシュなどの網状体で形成し流速変動を低減するように配置した変動抑制部30bを備えている。
【0035】
次に、この超音波流量計測装置の動作を説明する。順方向の流れの場合は実施例1で説明したのと同じであり、ここでは省略する。次に、逆方向流れの場合は、接続口29から入った流出口37を通過して出口側拡大空間部32に流入する。この出口側拡大空間部32に入った流れは容積が拡大された空間により流れを整えられるとともに、流出口37と対向しない位置に設けた出口側突出体33の出口開孔36から突出部35内に流入し、出口側突出体33の十分な助走距離により整流された流れとなって計測流路5の下流側に設けた導出部12に流れ込む。しかも、出口側突出体33に設けた流れ規制体30を通過し、格子状の方向規制部30aによる流れ方向の整流と、網状体で形成した変動抑制部30bによる流速変動の低減により、流れがより一層安定化されて導出部12に流れ込む。導出部12に入った流れは屈曲部14で流れ方向を曲げられるが、導出部12に流入する流れが安定しているため、屈曲後も流れ状態のばらつきが少なく維持されるとともに、流れ安定手段38において流れ方向を整える格子状の方向規制部38aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部38bにより一層流れが安定化されて下流側の相違による影響が少ない流速分布が計測流路5の超音波伝搬路10部に形成される。
【0036】
また、流れに逆流を生じるような脈動がある場合では、順方向流れと逆方向流れのいずれにおいても良く似た流速分布が順逆再現できるため、計測誤差を低減した高精度の計測が可能となる。
【0037】
さらに、入口側突出体20および出口側突出体33と、入口側および出口側の流れ規制体30は同一あるいは略同一の形状とすることで、順逆いずれの方向の流れに対しても計測流路5に流入する流れの流速分布を近似させることができ、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測流路5に流入する流れの流速分布を近似させることができる。このように、順方向流れの場合は入口側拡大空間部19と入口側突出体20により管路容積と助走長さの確保で安定した流れを計測流路に供給でき、逆方向流れの場合は出口側拡大空間部32と出口側突出体33により管路容積と助走長さの確保で安定した流れを計測流路に供給し、順逆いずれの流れ状態においても上流側あるいは下流側の管路形状に因らず安定した流れを計測流路に供給して計測精度を向上でき、順逆両方向の流れに対して計測精度が安定化でき設置方向性のない利便性の高い装置を実現できる。さらに、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測精度を向上できる。
【0038】
また、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化でき、計測精度をより一層向上できる。また、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測流路に流入する流れをより一層安定化して計測精度を向上できる。
【0039】
また、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化するとともに計測流路内の流速分布をほぼ同じにし、順逆両方向の流れに対して計測特性を揃えることで計測精度をより一層向上できる。さらに、流れに逆流を生じるような脈動がある場合でも脈動時の順逆いずれの流れ状態においても計測流路に流入する流れをより一層安定化して計測精度を向上できる。
【0040】
また、屈曲部13,14を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側拡大空間部19,32と入口側あるいは出口側突出体20,33により計測流路への流れの安定性を高めて計測精度を向上できる。
【0041】
(実施例3)
図3は本発明の実施例3を示す超音波流量計測装置の断面図である。図3において、図1、図2の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0042】
39は入口開孔23、あるいは出口開孔36に流入する流体の流れ方向を変えて流入させる流入方向転換手段であり、流入方向転換手段39は入口開孔23、あるいは出口開孔36を覆うよう設置している。このため、図のように入口開孔23と流入口24とを対向した位置に設けても、流入方向転換手段39により流入口24を出た流れが直接入口開孔23に流れ込むのが防止でき、入口側拡大空間部19の拡大容積による流れの安定化効果を発揮させて計測流路5での流れ安定化による計測精度を維持できる。また、入口開孔23の位置に関わらず流入口24のいちを設計できるので、設計自由度が高まり小型化あるいは低コスト化ができる。
【0043】
さらに、逆流する場合に対して出口側突出体33の出口開孔36にも流入方向転換手段39を配置することで、逆方向流れにも順方向流れの場合と同様の効果が発揮でき、順逆両方向流れに対応できる計測精度の高い装置の小型化あるいは低コスト化ができる。
【0044】
このように、入口側拡大空間部19への流入口24の位置が異なっている場合でも安定した流れを入口開孔23に与えて計測流路に供給し計測精度を向上できる。さらに、入口側拡大空間部19への流入口24の位置設定の自由度を向上でき装置の小型化あるいは製造し易い設計が可能になり低コスト化ができる。
【0045】
また、順逆両方向の流れに対して計測流路により一層安定した流れを供給でき計測精度を向上できる。
【0046】
【発明の効果】
以上の説明から明らかなように本発明の超音波流量計測装置によれば、計測流路への流入管路形状に因らず安定した流速分布を計測流路に発生させ、計測精度を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の超音波流量計測装置の断面図
【図2】本発明の実施例2の超音波流量計測装置の断面図
【図3】本発明の実施例3の超音波流量計測装置の断面図
【図4】従来の超音波流量計測装置の構成図
【符号の説明】
5 計測流路
7、8 超音波送受信器
11 導入部
12 導出部
13、14 屈曲部
16 流量演算手段
19 入口側拡大空間部
20 入口側突出体
22、35 突出部
32 出口側拡大空間部
33 出口側突出体
39 流入方向転換手段
[Claims]
1. A measurement flow path through which a fluid to be measured flows , an introduction portion provided upstream of the measurement flow path, and at least a pair of ultrasonic transceivers provided so that ultrasonic waves propagate through the measurement flow path. An entrance-side enlarged space provided on the upstream side of the introduction portion, an entrance-side projection provided with an entrance opening in a projection connected to the introduction portion and projected to the entrance-side enlarged space, An ultrasonic flow rate measuring device comprising: a flow rate calculating means for transmitting / receiving an ultrasonic wave between ultrasonic transmitter / receivers and calculating a flow rate based on the transmitted / received signal , wherein the protrusion is provided so as to rectify the flow.
2. The apparatus according to claim 1, wherein an inlet opening is provided at a position that does not face the inlet of the enlarged space on the inlet side to prevent the fluid to be measured from flowing directly from the inlet into the inlet opening. Ultrasonic flow meter.
3. A measurement flow path through which a fluid to be measured flows, an introduction section and an output section provided on the upstream and downstream sides of the measurement flow path, and at least an ultrasonic wave propagates through the measurement flow path. A pair of ultrasonic transceivers, an entrance-side enlarged space provided upstream of the introduction section, an exit-side enlarged space provided downstream of the outlet section, and the entrance-side enlarged connected to the introduction section. An inlet-side protruding body provided with an inlet opening in a protruding part protruding into the space, and an outlet-side protruding body provided with an outlet opening in a protruding part connected to the outlet part and protruding into the outlet-side enlarged space part And an ultrasonic flow rate measuring device that transmits and receives ultrasonic waves between the ultrasonic transceivers and calculates a flow rate based on the transmitted and received signals , wherein the protrusion is provided to rectify the flow. .
4. A measurement flow path through which a fluid to be measured flows, an introduction portion provided upstream of the measurement flow path, and at least one pair of ultrasonic transceivers provided so that ultrasonic waves propagate through the measurement flow path. And an entrance-side enlarged space provided on the upstream side of the introduction section, an entrance-side projection provided with an entrance opening in a projection protruding from the entrance-side enlarged space, and between the ultrasonic transceiver. An ultrasonic wave transmission means for transmitting and receiving ultrasonic waves and calculating a flow rate based on the transmission and reception signals, and an inflow direction changing means for changing the flow direction of the fluid to be measured flowing into the inlet opening and inflowing the measured fluid Flow measurement device.
5. A measurement flow path through which a fluid to be measured flows, an introduction section and an output section provided upstream and downstream of the measurement flow path, and at least an ultrasonic wave propagates through the measurement flow path. A pair of ultrasonic transceivers, an entrance-side enlarged space provided upstream of the introduction section, an exit-side enlarged space provided downstream of the outlet section, and the entrance-side enlarged connected to the introduction section. An inlet-side protruding body provided with an inlet opening in a protruding part protruding into the space, and an outlet-side protruding body provided with an outlet opening in a protruding part connected to the outlet part and protruding into the outlet-side enlarged space part And a flow rate calculating means for transmitting / receiving ultrasonic waves between the ultrasonic transmitter / receivers and calculating a flow rate based on the transmission / reception signals, and a flow direction of the fluid to be measured flowing into the inlet opening and the outlet opening. ultrasonic flow provided the inflow direction changing means for flowing by changing the Measuring apparatus.
6. The inlet-side expansion space is ultrasonic flow measuring device according to any one of claims 1 to 5 disposed directly after the fluid control means for controlling the flow rate of the fluid to be measured.
7. The ultrasonic flow measuring device according to any one of claims 1 to 6 arranged flow regulating body on the inlet side projecting member.
8. The ultrasonic flow rate measuring device according to claim 3, wherein a flow restricting member is arranged on the inlet-side protrusion and the outlet-side protrusion.
9. A inlet-side projecting member and an outlet side projecting member, ultrasonic flow measuring device according to claim 8 inlet and outlet sides of the flow restriction member is that the same or substantially the same shape.
10. The ultrasonic flow rate measuring device according to any one of claims 1 to 9 in the introduction and deriving unit arranged bent portions bending the flow direction.
11. A measurement flow path through which a fluid to be measured flows, an introduction portion provided upstream of the measurement flow path, and at least a pair of ultrasonic transceivers provided so that ultrasonic waves propagate through the measurement flow path. An entrance-side enlarged space provided on the upstream side of the introduction portion, an entrance-side projection provided with an entrance opening in a projection connected to the introduction portion and projected to the entrance-side enlarged space, Flow rate calculating means for transmitting / receiving ultrasonic waves between the ultrasonic transmitter / receivers and calculating a flow rate based on the transmitted / received signals, wherein the flow from the inlet to the inlet-side enlarged space portion changes direction to open the inlet. An ultrasonic flow rate measuring device that flows into the hole, is rectified in the projecting portion, flows into the introduction portion, and is supplied to the measurement flow path.
DETAILED DESCRIPTION OF THE INVENTION
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a flow rate measuring device for measuring a flow rate and a flow rate of a gas or a liquid.
[0002]
[Prior art]
Conventionally, for example, Japanese Unexamined Patent Application Publication No. 11-351926 is known as this type of ultrasonic flow rate measuring device. As shown in FIG. An upstream ultrasonic transmitter / receiver 2a and a downstream ultrasonic transmitter / receiver 2b are provided at a predetermined angle with respect to the flow direction of the measurement flow path 1, and these ultrasonic transmitters / receivers 2a and 2b A rectifier 4 is provided on the inlet side of the measurement flow channel 1 while being housed in the concave portions 3 a and 3 b provided in the passage 1. Then, the flow velocity of the fluid flowing through the measurement channel 1 is transmitted and received between the ultrasonic transmitters / receivers 2a and 2b to measure the propagation time difference, and the flow rate is calculated from the cross-sectional area of the measurement channel 1. At this time, the flow entering the measurement flow path 1 is regulated by the rectifier 4 to reduce the inclination of the streamline in the measurement section or to suppress the generation of vortices, and the ultrasonic wave at the boundary surface of the turbulence of the flow. Fluctuations in the reception level of ultrasonic waves due to reflection and refraction are reduced to prevent deterioration in measurement accuracy.
[0003]
[Problems to be solved by the invention]
However, in the conventional configuration, the inflow state into the measurement flow path 1 slightly changes depending on the pipe shape upstream of the rectifier 4, and a difference occurs in the flow velocity distribution in the measurement flow path 1. There was a problem that accuracy varied.
[0004]
An object of the present invention is to solve the above-mentioned problem, and to generate a stable flow velocity distribution in a measurement flow channel regardless of the shape of an inflow conduit to the measurement flow channel, and to improve measurement accuracy.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a measurement flow path through which a fluid to be measured flows, an inlet and an outlet provided on the upstream and downstream sides of the measurement flow path, and ultrasonic waves propagate through the measurement flow path. At least a pair of ultrasonic transceivers provided as described above, an entrance-side enlarged space provided upstream of the introduction section, and an entrance opened to a projection connected to the introduction section and projected into the entrance-side enlarged space. An inlet-side projecting body provided with a hole, and a flow rate calculating means for transmitting and receiving ultrasonic waves between the ultrasonic transceivers and calculating a flow rate based on the transmitted and received signals, and the projecting portion is provided to rectify the flow. It is a thing.
[0006]
According to the above invention, a stable flow can be supplied to the measurement flow path by stabilizing the flow state of the fluid by expanding the passage volume by the inlet-side enlarged space portion and allowing the fluid to flow from the inlet opening of the projecting body. Stable flow can be supplied to the measurement flow channel by securing the approach length to the introduction part of the measurement flow channel by the projecting body protruding into the enlarged space, and stable regardless of the shape of the pipe on the inflow side The flow can be supplied to the measurement channel to improve the measurement accuracy. Further, by arranging the protruding body in the entrance-side enlarged space, the size of the conduit can be reduced.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the embodiment of the present invention, the measurement flow path through which the fluid to be measured flows , an introduction portion provided on the upstream side of the measurement flow path, and at least one pair of the measurement flow paths provided so that ultrasonic waves propagate. An ultrasonic transmitter / receiver, an entrance-side enlarged space provided upstream of the introduction section, and an entrance-side projection provided with an entrance opening at a projection connected to the introduction section and projected into the entrance-side enlarged space. A body, and a flow rate calculating means for transmitting and receiving ultrasonic waves between the ultrasonic transmitter / receiver and calculating a flow rate based on the transmitted / received signals , wherein the protrusion is provided to rectify the flow .
Further, by providing the inlet opening at a position that does not face the inlet of the inlet-side enlarged space, the measured fluid is prevented from flowing directly from the inlet into the inlet opening.
The stable flow state can be supplied to the measurement flow path by stabilizing the flow state of the fluid by expanding the passage volume by the inlet-side enlarged space and flowing the fluid through the inlet opening of the protruding body. A stable flow can be supplied to the measurement flow channel by securing the approach length to the introduction part of the measurement flow channel with the protruding protrusion, and a stable flow can be measured regardless of the shape of the conduit on the inflow side. It can be supplied to the road to improve the measurement accuracy. Further, by arranging the protruding body in the entrance-side enlarged space, the size of the conduit can be reduced.
[0008]
Also , a measurement flow path through which the fluid to be measured flows , an introduction section and an output section provided on the upstream and downstream sides of the measurement flow path, and at least one pair of ultrasonic waves provided so that ultrasonic waves propagate through the measurement flow path A transceiver, an entrance-side enlarged space provided on the upstream side of the introduction section, an exit-side enlarged space provided on the downstream side of the lead-out section, and connected to the introduction section and protruding into the entrance-side enlarged space. An inlet-side protruding body provided with an inlet opening in the protruded portion; an outlet-side protruding body provided with an outlet opening in a protruding portion connected to the outlet portion and protruding into the outlet-side enlarged space; Flow rate calculating means for transmitting and receiving ultrasonic waves between the sound wave transmitters and receivers and calculating a flow rate based on the transmitted / received signals , wherein the protrusions are provided so as to be rectified .
[0009]
In the case of forward flow, a stable flow can be supplied to the measurement flow channel by securing the pipeline volume and the approach length by the inlet-side enlarged space and the inlet-side projection, and in the case of reverse flow, the outlet-side enlarged space A stable flow is supplied to the measurement flow path by securing the pipeline volume and the approach length by the section and the exit side protrusion, and stable regardless of the upstream or downstream pipe shape in either forward or reverse flow state The flow can be supplied to the measurement flow path to improve the measurement accuracy, and the measurement accuracy can be stabilized for the flow in both the forward and reverse directions, and a highly convenient device having no installation direction can be realized. Furthermore, even when there is a pulsation that causes a reverse flow in the flow, the measurement accuracy can be improved in both forward and reverse flow states during the pulsation.
[0010]
Further , the inlet opening is provided with an inflow direction changing means for changing the flow direction and inflowing. And even when the position of the inflow port to the inlet side enlarged space part is different, a stable flow is given to the inlet opening and supplied to the measurement flow path, so that the measurement accuracy can be improved. Further, the degree of freedom in setting the position of the inflow port to the inlet-side enlarged space can be improved, and the apparatus can be reduced in size or can be designed to be easily manufactured, and the cost can be reduced.
[0011]
Further , the inlet opening and the outlet opening are provided with inflow direction changing means for changing the flow direction and inflowing. Further, a more stable flow can be supplied to the flow in both the forward and reverse directions by the measurement flow path, and the measurement accuracy can be improved.
[0012]
The enlarged space on the inlet side is disposed immediately after the fluid control means for controlling the flow rate of the fluid to be measured. Then, the disturbance of the flow by the fluid control means is reduced by the inlet-side enlarged space portion, and a stable flow is given to the inlet-side protruding body and supplied to the measurement flow path to improve the measurement accuracy. In addition, even when the shape and the mounting position of the fluid control means are different, the difference in the flow is reduced by the inlet-side enlarged space portion, and a stable flow is given to the inlet-side protruding body and supplied to the measurement flow path, so that the measurement accuracy can be improved. In addition, the degree of freedom in designing the shape and mounting position of the fluid control means is high, and the productivity can be improved.
[0013]
In addition , a flow restricting body is arranged on the inlet-side protruding body. And the flow to the introduction part of the measurement flow path can be further stabilized by the flow restricting body provided on the inlet side projection, and the measurement accuracy can be further improved.
[0014]
Further , a flow restricting body is arranged on the inlet-side protrusion and the outlet-side protrusion. In addition, the flow flowing into the measurement flow path can be further stabilized for the flow in either the forward or reverse direction, and the measurement accuracy can be further improved. In addition, even when there is a pulsation that causes a reverse flow in the flow, the flow flowing into the measurement flow path can be further stabilized and the measurement accuracy can be improved in both the forward and reverse flow states during the pulsation.
[0015]
The inlet-side protrusion and the outlet-side protrusion have the same or substantially the same shape as the inlet-side and outlet-side flow restrictors. In addition, stabilize the flow flowing into the measurement flow path for both forward and reverse flow directions, make the flow velocity distribution in the measurement flow path almost the same, and make the measurement characteristics uniform for both forward and reverse flow directions. The measurement accuracy can be further improved. Furthermore, even when there is a pulsation that causes a reverse flow in the flow, the flow flowing into the measurement flow path can be further stabilized and the measurement accuracy can be improved in both the forward and reverse flow states during the pulsation.
[0016]
In addition , a bent portion that bends the flow direction is disposed in the introduction portion and the lead-out portion. Further, by arranging the bent portion, it is possible to further reduce the size of the apparatus, and increase the stability of the flow to the measurement flow path by the entrance side or the exit side enlarged space portion and the entrance side or the exit side protrusion to perform the measurement. Accuracy can be improved.
Further, a measurement channel through which the fluid to be measured flows , an introduction portion provided on the upstream side of the measurement channel, and at least one pair of ultrasonic transceivers provided so that ultrasonic waves propagate through the measurement channel, An inlet-side enlarged space provided on the upstream side of the introduction unit, an entrance-side protrusion provided with an entrance opening in a protrusion connected to the introduction unit and projected into the entrance-side enlarged space, and Flow rate calculating means for transmitting and receiving ultrasonic waves between the vessels and calculating a flow rate based on the transmitted and received signals, wherein the flow from the inlet to the inlet-side enlarged space portion changes direction and flows into the inlet opening. The flow is rectified in the projecting portion, flows into the introduction portion, and is supplied to the measurement flow path. Then, a stable flow can be supplied to the measurement flow path regardless of the shape of the conduit on the inflow side, and the measurement accuracy can be improved.
[0017]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(Example 1)
FIG. 1 is a longitudinal sectional view of an ultrasonic flow rate measuring device according to a first embodiment of the present invention. In the figure, 5 is a measurement flow channel surrounded by a flow channel wall 6, and 7 and 8 are upstream and downstream ultrasonic transceivers mounted on the flow channel wall 6 so as to face each other. The upstream ultrasonic transmitter / receiver 7 and the downstream ultrasonic transmitter / receiver 8 are separated from each other by a distance L so as to cross the width W direction of the measurement flow channel 5 and inclined at an angle θ with respect to the flow direction of the fluid in the measurement flow channel 5. Installed. Reference numerals 9a and 9b denote opening holes on the upstream side and the downstream side, respectively, which allow the ultrasonic transceivers 7 and 8 to face the measurement flow path 5. Reference numeral 10 denotes an ultrasonic wave propagation path (indicated by a two-dot chain line) in which the ultrasonic waves transmitted between the opposing ultrasonic wave transmitters / receivers 7 and 8 propagate directly to the other party. Reference numeral 11 denotes an introduction portion provided on the upstream side of the measurement flow path 5 and serving as an inlet of the fluid to be measured into the measurement flow path 5; This is an outlet that serves as an exit. Reference numeral 13 denotes an upstream bent portion connecting the measurement flow path 5 and the introduction portion 11, and reference numeral 14 denotes a downstream bent portion connecting the measurement flow channel 5 and the lead-out portion 12. Although the bent portions 13 and 14 are shown bent in the width W direction of the measurement flow path 5, it is needless to say that the bent direction can be any direction.
[0019]
Reference numeral 15 denotes a flow stabilizing means provided on the upstream side of the ultrasonic wave propagation path 10 and includes a lattice-shaped direction regulating portion 15a for adjusting a flow direction and a fluctuation suppressing portion 15b formed of a mesh such as a mesh for reducing flow velocity fluctuation. ing. A flow rate calculation 16 includes a measurement control unit 17 connected to the ultrasonic transceivers 7 and 8 for transmitting and receiving ultrasonic waves, and a calculation unit 18 for calculating a flow rate based on a signal from the measurement control unit 17 and calculating a flow rate. Means.
[0020]
Reference numeral 19 denotes an entrance-side enlarged space disposed upstream of the introduction unit 11. Reference numeral 20 denotes an entrance-side protrusion inserted into the entrance-side enlarged space 19. The inlet-side protruding body 20 includes a protruding portion 22 protruding from the inlet-side mounting surface 21 of the flow path wall 6, and an inlet opening 23 provided with a hole in a part of the protruding portion 22. Reference numeral 24 denotes an inlet to the inlet-side enlarged space 19, and the inlet opening 23 and the inlet 24 are arranged so as not to directly face each other. Numeral 25 is a fluid control means for controlling the flow rate of the fluid to be measured which is arranged opposite to the inflow port 24. The fluid control means 25 includes a drive section 26 and a valve section 27 which faces the inflow port 24. Reference numeral 28 denotes a connection port provided on the upstream side of the inflow port 24, and reference numeral 29 denotes a connection port communicating with the lead-out section 12.
[0021]
Numeral 30 denotes a flow restricting member provided on the inlet-side protruding body 20, which is formed by a grid-like direction restricting portion 30a for adjusting the flow direction of the flow flowing from the inlet opening 23, and a mesh-like body such as a mesh to reduce flow velocity fluctuation. Is provided with the fluctuation suppressing unit 30b arranged as described above.
[0022]
Reference numeral 31 denotes an inflow suppressing body for reducing the flow of fluid into the opening holes 9a and 9b, which is provided flush with the flow path wall 6 and has fine holes through which ultrasonic waves can pass.
[0023]
Next, the operation of the ultrasonic flow measurement device will be described. The fluid to be measured entered from the connection port 28 passes through the inflow port 24 and flows into the entrance-side enlarged space 19 when the valve portion 27 of the fluid control means 25 is opened. The turbulent flow passing through the valve portion 27 is adjusted in the space where the volume of the inlet-side enlarged space portion 19 is increased, and the inlet opening of the inlet-side protrusion 20 provided at a position not opposed to the inlet 24. It flows into the protruding part 22 from the hole 23, and becomes a flow rectified by a sufficient approach distance of the inlet-side protruding body 20 and flows into the introduction part 11 provided on the upstream side of the measurement flow path 5. In addition, the flow passes through the flow restricting body 30 provided on the inlet-side protruding body 20, and the flow is rectified by the flow direction rectification by the lattice-shaped direction restricting section 30a and the flow velocity fluctuation is reduced by the fluctuation suppressing section 30b formed by the mesh body. It is further stabilized and flows into the introduction section 11. Although the flow entering the introduction portion 11 is bent at the bent portion 13, the flow flowing into the introduction portion 11 is stable, so that the variation in the flow state is kept small even after the bending, and the flow stabilizing means. The flow velocity distribution is further stabilized by a lattice-shaped direction regulating part 15a for adjusting the flow direction in 15 and a fluctuation suppressing part 15b formed of a mesh such as a mesh for reducing the flow velocity fluctuation, so that the flow velocity distribution is less affected by the difference on the upstream side. It is formed in the ultrasonic wave propagation path 10 of the measurement flow path 5.
[0024]
Next, the flow measurement operation using ultrasonic waves will be described. In the measurement channel 5, the transmission and reception of ultrasonic waves are performed between the ultrasonic transceivers 7 and 8 across the width W of the channel cross section of the measurement channel 5 by the operation of the measurement control unit 17. That is, the propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic transceiver 7 is received by the downstream ultrasonic transceiver 8 is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the downstream ultrasonic transceiver 8 is received by the upstream ultrasonic transceiver 7 is measured. Based on the propagation times T1 and T2 measured in this manner, the flow rate is calculated by the calculation unit 18 by the following calculation formula.
[0025]
Now, the angle between the flow velocity V of the fluid to be measured in the flow direction of the measurement flow path 5 and the ultrasonic wave propagation path 10 is θ, the distance between the ultrasonic transceivers 7 and 8 is L, and the sound velocity of the fluid to be measured is C. Then, the flow velocity V is calculated by the following equation.
[0026]
T1 = L / (C + Vcosθ)
T2 = L / (C−Vcos θ)
V = (L / 2 cos θ) ((1 / T1) − (1 / T2)) by eliminating the sound velocity C from the formula for subtracting the reciprocal of T2 from the reciprocal of T1.
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2.
[0027]
From the flow velocity V and the cross-sectional area S orthogonal to the flow direction of the measurement flow path 5, the flow rate Q is given by Q = KVS
Here, K is a correction coefficient in consideration of the flow velocity distribution in the cross-sectional area S, and the flow rate can be obtained in this manner.
[0028]
As described above, the flow state of the fluid is stabilized by the passage volume expansion by the inlet-side enlarged space portion 19 , and the stable flow can be supplied to the measurement flow path 5 by flowing the fluid from the inlet opening 23 of the protrusion 20. A stable flow can be supplied to the measurement flow path 5 by securing the approach length of the measurement flow path 5 to the introduction section 11 by the protruding body 20 protruding from the entrance-side enlarged space portion 19 , and the flow path shape on the inflow side Irrespective of the above, a stable flow can be supplied to the measurement flow path 5 to improve the measurement accuracy. Further, by disposing the protruding body 20 in the entrance-side enlarged space 19 , the size of the conduit can be reduced.
[0029]
In addition, the disturbance of the flow by the fluid control unit 25 is reduced by the inlet-side enlarged space portion 19 , and a stable flow is given to the inlet-side protruding body 20 and supplied to the measurement flow path 5 to improve the measurement accuracy. Even when the fluid control means 25 has a different shape or a different mounting position, the difference in the flow is reduced by the inlet-side enlarged space portion 19 and a stable flow is given to the inlet-side protruding body 20 and supplied to the measurement flow path 5 so that the measurement accuracy is improved. , And the degree of freedom in designing the shape and mounting position of the fluid control means 25 is high, so that productivity can be improved.
[0030]
In addition, the flow restricting body 30 provided on the inlet-side protruding body 20 can further stabilize the flow of the measurement flow path 5 to the introduction portion 11 , and can further improve the measurement accuracy.
[0031]
Further, the arrangement of the bent portions 13 and 14 can further reduce the size of the apparatus, and the stability of the flow to the measurement flow path 5 is increased by the enlarged space on the inlet or outlet side and the protrusion on the inlet or outlet side. And the measurement accuracy can be improved.
[0032]
Although it described as a flow restriction member 30 of the grid-shaped or mesh-like, fine perforated plate, C D cammed, non-woven fabric, such as cotton-like that available course.
[0033]
(Example 2)
Second Embodiment FIG. 2 is a cross-sectional view of an ultrasonic flow measuring device according to a second embodiment of the present invention. 2, the same members and the same functions as those of the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.
[0034]
Reference numeral 32 denotes an outlet-side enlarged space disposed downstream of the outlet 12. Reference numeral 33 denotes an outlet-side protrusion inserted into the outlet-side enlarged space 32. The outlet-side protruding body 33 includes a protruding portion 35 protruding from the outlet-side mounting surface 34 of the flow path wall 6, and an outlet opening 36 provided by making a hole in a part of the protruding portion 35. An outlet 37 from the outlet-side enlarged space 32 is arranged so that the outlet opening 36 and the outlet 37 do not directly face each other. Reference numeral 38 denotes a flow stabilizing means provided on the downstream side of the ultrasonic wave propagation path 10 and includes a lattice-like direction regulating part 38a for adjusting a flow direction and a fluctuation suppressing part 38b formed of a mesh such as a mesh for reducing flow velocity fluctuation. ing. The outlet-side protrusion 33 is provided with a flow restrictor 30 in the same manner as the inlet-side protrusion 20. The flow restrictor 30 is formed of a grid-shaped direction restricting portion 30a for adjusting the flow direction and a mesh such as a mesh. And a fluctuation suppressing unit 30b arranged to reduce the flow velocity fluctuation.
[0035]
Next, the operation of the ultrasonic flow measuring device will be described. The flow in the forward direction is the same as that described in the first embodiment, and will not be described here. Next, in the case of a reverse flow, the water flows through the outlet 37 entered through the connection port 29 and flows into the outlet-side enlarged space 32. The flow entering the outlet-side enlarged space portion 32 is adjusted by the space whose volume has been increased, and the flow from the outlet opening 36 of the outlet-side protrusion 33 provided at a position not opposed to the outlet 37 causes the flow inside the protrusion 35. And flows into the outlet 12 provided on the downstream side of the measurement flow path 5 as a flow rectified by a sufficient approach distance of the exit side projecting body 33. Moreover, the flow passes through the flow restricting body 30 provided on the outlet-side protruding body 33, and the flow is rectified by the flow direction rectification by the lattice-shaped direction restricting part 30a and the flow velocity fluctuation by the fluctuation suppressing part 30b formed by the mesh body. It is further stabilized and flows into the outlet section 12. Although the flow entering the lead-out part 12 is bent at the bent part 14, the flow flowing into the lead-out part 12 is stable, so that the variation in the flow state is kept small even after the bending, and the flow stabilizing means is provided. The flow is further stabilized by a lattice-like direction regulating portion 38a for adjusting the flow direction at 38 and a fluctuation suppressing portion 38b formed of a mesh such as a mesh for reducing the flow velocity fluctuation, so that the flow velocity distribution is less affected by the difference on the downstream side. It is formed in the ultrasonic wave propagation path 10 of the measurement flow path 5.
[0036]
In addition, when there is a pulsation that causes a reverse flow in the flow, a similar flow velocity distribution can be reproduced in both the forward flow and the reverse flow in the forward and reverse directions, so that highly accurate measurement with reduced measurement errors can be performed. .
[0037]
Further, the inlet side projecting body 20 and the outlet side projecting body 33 and the flow restricting body 30 on the inlet side and the outlet side have the same or substantially the same shape, so that the measurement flow path can be used for flow in any direction. The flow velocity distribution of the flow flowing into the measurement flow path 5 can be approximated even if there is a pulsation that causes a reverse flow in the flow, and the flow velocity distribution of the flow flowing into the measurement flow path 5 can be approximated in both the forward and reverse flow states during the pulsation. Can be done. As described above, in the case of the forward flow, a stable flow can be supplied to the measurement flow path 5 by securing the pipe volume and the approach length by the inlet-side enlarged space portion 19 and the inlet-side protrusion 20 ; Supplies a stable flow to the measurement flow path 5 by securing the pipe volume and the approach length by the outlet-side enlarged space portion 32 and the outlet-side protruding body 33 , and in either forward or reverse flow state, the upstream or downstream pipe The measurement accuracy can be improved by supplying a stable flow to the measurement flow path 5 irrespective of the road shape, the measurement accuracy can be stabilized for the flow in both forward and reverse directions, and a highly convenient device having no installation direction can be realized. . Furthermore, even when there is a pulsation that causes a reverse flow in the flow, the measurement accuracy can be improved in both forward and reverse flow states during the pulsation.
[0038]
In addition, the flow flowing into the measurement flow path 5 can be further stabilized with respect to the flow in either the forward or reverse direction, and the measurement accuracy can be further improved. In addition, even when there is a pulsation that causes a reverse flow in the flow, the flow flowing into the measurement flow path 5 can be further stabilized and the measurement accuracy can be improved in both the forward and reverse flow states during the pulsation.
[0039]
Further, the flow flowing into the measurement flow path 5 is further stabilized for the flow in either the forward or reverse direction, and the flow velocity distribution in the measurement flow path 5 is made substantially the same. Alignment can further improve measurement accuracy. Furthermore, even when there is a pulsation that causes a reverse flow in the flow, the flow flowing into the measurement flow path 5 can be further stabilized and the measurement accuracy can be improved in both the forward and reverse flow states during the pulsation.
[0040]
Further, by arranging the bent portions 13 and 14 , the size of the apparatus can be further reduced, and the measurement flow path 5 is formed by the entrance-side or exit-side enlarged spaces 19 and 32 and the entrance-side or exit-side protrusions 20 and 33. The measurement accuracy can be improved by increasing the stability of the flow to the air.
[0041]
(Example 3)
Third Embodiment FIG. 3 is a cross-sectional view of an ultrasonic flow measurement device according to a third embodiment of the present invention. 3, the same members and the same functions as those of the embodiment of FIGS. 1 and 2 are denoted by the same reference numerals, detailed description is omitted, and different points will be mainly described.
[0042]
Reference numeral 39 denotes an inflow direction changing means for changing the flow direction of the fluid flowing into the inlet opening 23 or the outlet opening 36 to flow the fluid. The inflow direction changing means 39 covers the inlet opening 23 or the outlet opening 36. Has been installed. For this reason, even if the inlet opening 23 and the inflow port 24 are provided opposite to each other as shown in the figure, the flow out of the inflow port 24 by the inflow direction changing means 39 can be prevented from directly flowing into the inlet opening 23. In addition, the effect of stabilizing the flow due to the enlarged volume of the inlet-side enlarged space 19 can be exerted to maintain the measurement accuracy by stabilizing the flow in the measurement flow path 5. Further, since one of the inlets 24 can be designed irrespective of the position of the inlet opening 23, the degree of freedom in design is increased, and the size or cost can be reduced.
[0043]
Further, by arranging the inflow direction changing means 39 also in the outlet opening 36 of the outlet side protruding body 33 in the case of the backward flow, the same effect as in the case of the forward flow can be exerted in the backward flow, and It is possible to reduce the size or cost of a device with high measurement accuracy that can cope with bidirectional flow.
[0044]
In this way, even when the position of the inlet 24 to the inlet-side enlarged space 19 is different, a stable flow is given to the inlet opening 23 and supplied to the measurement flow path 5 to improve the measurement accuracy. Further, the degree of freedom in setting the position of the inflow port 24 to the inlet-side enlarged space 19 can be improved, and the apparatus can be reduced in size or can be designed to be easily manufactured, so that the cost can be reduced.
[0045]
In addition, a more stable flow can be supplied to the flow in both the forward and reverse directions by the measurement flow path 5, and the measurement accuracy can be improved.
[0046]
【The invention's effect】
As is clear from the above description, according to the ultrasonic flow measurement device of the present invention, it is possible to generate a stable flow velocity distribution in the measurement flow path regardless of the shape of the inflow conduit to the measurement flow path, and to improve the measurement accuracy. Can be.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an ultrasonic flow measuring device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of an ultrasonic flow measuring device according to a second embodiment of the present invention. FIG. 4 is a cross-sectional view of an ultrasonic flow measuring device. FIG. 4 is a configuration diagram of a conventional ultrasonic flow measuring device.
5 Measurement flow path 7, 8 Ultrasonic transceiver 11 Introducing section 12 Outgoing section 13, 14 Bending section 16 Flow rate calculating means 19 Entrance-side enlarged space section 20 Inlet-side projecting bodies 22, 35 Projection section 32 Exit-side enlarged space section 33 Exit Side protrusion 39 Inflow direction changing means

Claims (9)

被計測流体が流れる計測流路と、計測流路の上流側および下流側に設けた導入部および導出部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計測装置。A measurement flow path through which a fluid to be measured flows, an introduction section and an output section provided on the upstream and downstream sides of the measurement flow path, and at least a pair of ultrasonic transceivers provided so that ultrasonic waves propagate through the measurement flow path An entrance-side enlarged space provided on the upstream side of the introduction portion, an entrance-side projection provided with an entrance opening in a projection connected to the introduction portion and projected to the entrance-side enlarged space, An ultrasonic flow rate measuring device comprising: a flow rate calculating means for transmitting and receiving an ultrasonic wave between ultrasonic transmitter / receivers and calculating a flow rate based on the transmitted / received signal. 被計測流体が流れる計測流路と、計測流路の上流側および下流側に設けた導入部および導出部と、前記計測流路を超音波が伝搬するように設けた少なくとも一対の超音波送受信器と、前記導入部の上流側に設けた入口側拡大空間部と、前記導出部の下流側に設けた出口側拡大空間部と、前記導入部に接続し前記入口側拡大空間部に突出させた突出部に入口開孔を設けた入口側突出体と、前記導出部に接続し前記出口側拡大空間部に突出させた突出部に出口開孔を設けた出口側突出体と、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計測装置。A measurement flow path through which a fluid to be measured flows, an introduction section and an output section provided on the upstream and downstream sides of the measurement flow path, and at least a pair of ultrasonic transceivers provided so that ultrasonic waves propagate through the measurement flow path And an entrance-side enlarged space provided on the upstream side of the introduction section, an exit-side enlarged space provided on the downstream side of the lead-out section, and connected to the introduction section and projected to the entrance-side enlarged space. An inlet-side protrusion provided with an inlet opening in the protrusion; an outlet-side protrusion provided with an outlet opening in a protrusion connected to the outlet and protruding into the outlet-side enlarged space; An ultrasonic flow rate measuring device comprising: a flow rate calculating means for transmitting and receiving ultrasonic waves between instruments and calculating a flow rate based on the transmitted and received signals. 入口開孔には流れ方向を変えて流入させる流入方向転換手段を設けた請求項1〜2のいずれか1項に記載の超音波流量計測装置。The ultrasonic flow rate measuring device according to any one of claims 1 to 2, wherein an inlet opening is provided with an inflow direction changing means for changing the flow direction to flow in. 入口開孔および出口開孔には流れ方向を変えて流入させる流入方向転換手段を設けた請求項2に記載の超音波流量計測装置。3. The ultrasonic flow rate measuring device according to claim 2, wherein the inlet opening and the outlet opening are provided with an inflow direction changing means for changing the flow direction and inflowing. 入口側拡大空間部は被計測流体の流量を制御する流体制御手段の直後に配置した請求項1〜4のいずれか1項に記載の超音波流量計測装置。The ultrasonic flow rate measuring device according to any one of claims 1 to 4, wherein the inlet-side enlarged space portion is disposed immediately after the fluid control unit that controls the flow rate of the fluid to be measured. 入口側突出体には流れ規制体を配置した請求項1〜5のいずれか1項に記載の超音波流量計測装置。The ultrasonic flow measuring device according to any one of claims 1 to 5, wherein a flow restricting body is disposed on the inlet-side protruding body. 入口側突出体および出口側突出体には流れ規制体を配置した請求項2〜5のいずれか1項に記載の超音波流量計測装置。The ultrasonic flow measuring device according to any one of claims 2 to 5, wherein a flow restrictor is disposed on the inlet-side protrusion and the outlet-side protrusion. 入口側突出体および出口側突出体と、入口側および出口側の流れ規制体は同一あるいは略同一の形状とした請求項7に記載の超音波流量計測装置。The ultrasonic flowmeter according to claim 7, wherein the inlet-side protrusion and the outlet-side protrusion have the same or substantially the same shape as the inlet-side and outlet-side flow restrictors. 導入部および導出部には流れ方向を屈曲させる屈曲部を配置した請求項1〜8のいずれか1項に記載の超音波流量計測装置。The ultrasonic flow rate measuring device according to any one of claims 1 to 8, wherein a bending portion that bends the flow direction is disposed at the introduction portion and the derivation portion.
JP2002219334A 2002-07-29 2002-07-29 Ultrasonic flow meter Expired - Lifetime JP3514259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219334A JP3514259B1 (en) 2002-07-29 2002-07-29 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219334A JP3514259B1 (en) 2002-07-29 2002-07-29 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2004061269A true JP2004061269A (en) 2004-02-26
JP3514259B1 JP3514259B1 (en) 2004-03-31

Family

ID=31940266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219334A Expired - Lifetime JP3514259B1 (en) 2002-07-29 2002-07-29 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3514259B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223800A (en) * 2015-05-27 2016-12-28 愛知時計電機株式会社 Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223800A (en) * 2015-05-27 2016-12-28 愛知時計電機株式会社 Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP3514259B1 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
WO2000055581A1 (en) Ultrasonic flowmeter
KR20020071880A (en) Flow measuring device
JP4936856B2 (en) Flowmeter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP2004061269A (en) Ultrasonic flow rate measuring apparatus
JP2009264906A (en) Flow meter
JP3922078B2 (en) Ultrasonic flow measuring device
JP3824236B2 (en) Ultrasonic flow measuring device
JP2001311636A (en) Ultrasonic flow rate-measuring device
JP2935944B2 (en) Ultrasonic flow meter unit
JP3438734B1 (en) Ultrasonic flow meter
JP3438713B2 (en) Ultrasonic flow meter
JP4084236B2 (en) Ultrasonic flow meter
JP2003065817A (en) Ultrasonic flow-measuring instrument
JP3627729B2 (en) Flow measuring device
JP2004251700A (en) Fluid measuring device
JP2008014829A (en) Ultrasonic flowmeter
JP2004191103A (en) Pressure governor and flow measuring method
JP3781424B2 (en) Ultrasonic flow measuring device
JP3922021B2 (en) Ultrasonic flow measuring device
JP4087648B2 (en) Ultrasonic fluid measuring device
JP4048871B2 (en) Ultrasonic flow measuring device
JP3217021B2 (en) Ultrasonic flow meter
JPH11351926A (en) Ultrasonic flow rate measuring device
JP2021124358A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

R151 Written notification of patent or utility model registration

Ref document number: 3514259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term