JP3438734B1 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JP3438734B1
JP3438734B1 JP2002106163A JP2002106163A JP3438734B1 JP 3438734 B1 JP3438734 B1 JP 3438734B1 JP 2002106163 A JP2002106163 A JP 2002106163A JP 2002106163 A JP2002106163 A JP 2002106163A JP 3438734 B1 JP3438734 B1 JP 3438734B1
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement
flow
flow rate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002106163A
Other languages
Japanese (ja)
Other versions
JP2003302266A (en
Inventor
茂 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002106163A priority Critical patent/JP3438734B1/en
Application granted granted Critical
Publication of JP3438734B1 publication Critical patent/JP3438734B1/en
Publication of JP2003302266A publication Critical patent/JP2003302266A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【要約】 【課題】 計測した流量の補正係数の変化を小さくして
計測精度を高める。 【解決手段】 被計測流体が流れる計測流路5と、計測
流路5の上流側および下流側に設けた導入部11および
導出部12と、計測流路5の幅方向を超音波が横切って
伝搬するように設けた少なくとも一対の超音波送受信器
7、8と、計測流路5の高さ方向の速度分布を非対称化
して高さ方向の流速の最大値の発生位置を高さ中心から
一方に偏らせる非対称流れ促進手段15を備え、流速分
布が凸型となる層流域では流速の最大値を偏らせて流速
の遅いところを多くして計測して補正係数を大きくし、
流速分布が平坦化する乱流域では流速の最大値とあまり
変わらない流速域を計測することで層流域と乱流域の補
正係数の値の差を低減して、補正係数の変化が平坦な特
性を得て補正時の誤差を低減して計測精度を高める。
Abstract: PROBLEM TO BE SOLVED: To improve measurement accuracy by reducing a change in a correction coefficient of a measured flow rate. SOLUTION: An ultrasonic wave traverses a measurement flow path 5 through which a fluid to be measured flows, an introduction section 11 and an output section 12 provided on the upstream and downstream sides of the measurement flow path 5, and a width direction of the measurement flow path 5. At least a pair of ultrasonic transceivers 7 and 8 provided so as to propagate, and the velocity distribution in the height direction of the measurement flow path 5 is asymmetrical so that the position where the maximum value of the flow velocity in the height direction occurs is shifted from the height center to one side. In the laminar flow area where the flow velocity distribution is convex, the correction coefficient is increased by biasing the maximum value of the flow velocity to increase the places where the flow velocity is low,
In a turbulent flow region where the flow velocity distribution is flattened, the difference between the correction coefficient values in the laminar flow region and the turbulent flow region is reduced by measuring the flow velocity region that does not change much from the maximum value of the flow velocity, and the characteristic where the change in the correction coefficient is flat is measured. In addition, the error at the time of correction is reduced to increase the measurement accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気体や液体の流量
や流速の計測を行う流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate and flow velocity of gas or liquid.

【0002】[0002]

【従来の技術】従来この種の超音波流量計測装置には、
例えば特開平11−351926号公報が知られてお
り、図10に示すように流体を一方から他方に流す計測
流路1の幅W方向に対向し、かつ計測流路1の流れ方向
に対して所定角度を傾けて上流側の超音波送受信器2a
と下流側の超音波送受信器2bとを対向して設け、これ
らの超音波送受信器2a、2bは計測流路1に設けた凹
部3a、3bに収納するとともに、計測流路1の入口側
に整流体4を設けている。そして、計測流路1を流れる
流体の流速を超音波送受信器2a、2b間で超音波を送
受信して伝搬時間差から計測し、計測流路1の断面積よ
り流量を算出している。このとき、計測流路1に入る流
れは整流体4により規制して、計測部での流線の傾きを
低減したり渦の発生を抑制して、流れの乱れの境界面で
の超音波の反射や屈折による超音波の受信レベルの変動
を低減して測定精度の悪化を防止している。
2. Description of the Related Art Conventional ultrasonic flow rate measuring devices of this type include
For example, Japanese Unexamined Patent Publication No. 11-351926 is known, and as shown in FIG. The ultrasonic transmitter / receiver 2a on the upstream side is inclined at a predetermined angle.
And the ultrasonic transmitter / receiver 2b on the downstream side are provided so as to face each other, and these ultrasonic transmitter / receivers 2a and 2b are housed in the recesses 3a and 3b provided in the measurement flow path 1 and at the inlet side of the measurement flow path 1. A rectifying body 4 is provided. Then, the flow velocity of the fluid flowing through the measurement flow path 1 is transmitted and received between the ultrasonic wave transmitters / receivers 2a and 2b, measured from the propagation time difference, and the flow rate is calculated from the cross-sectional area of the measurement flow path 1. At this time, the flow entering the measurement flow path 1 is regulated by the rectifying body 4 to reduce the inclination of the streamline in the measurement unit and suppress the generation of vortices, and to suppress the ultrasonic waves at the boundary surface of the flow turbulence. The fluctuation of the reception level of ultrasonic waves due to reflection and refraction is reduced to prevent the deterioration of measurement accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の構
成では、整流体と超音波伝搬路が離れて設置されるとと
もに整流体との距離が超音波送受信器2a側と超音波送
受信器2b側とで大きく異なるため整流体を通過した流
れの発達状態に差異を生じること、あるいは測定管1の
幅W方向は全域計測するものの高さ方向は超音波送受信
器から発信される超音波が強度分布を持つことにより超
音波送受信器の中心軸上の流速分布を主体に計測するた
め、計測流路に直交する横断面での平均流速と計測流路
に斜交する超音波送受信器2a、2b間の計測断面での
平均流速に違いを生じ、真の流量を算出するためには計
測値に対して流量に応じた補正係数が必要になる。特
に、層流から乱流に移行する流量域では補正係数が大き
く変化するため、計測断面での流速測定に僅かな誤差が
あっても補正係数により誤差が拡大されて測定精度が悪
化するという課題があった。
However, in the conventional configuration, the rectifying body and the ultrasonic wave propagation path are set apart from each other, and the distance between the rectifying body is on the ultrasonic transmitter / receiver 2a side and the ultrasonic wave transmitter / receiver 2b side. There is a difference in the development state of the flow passing through the rectifying body because of the large difference, or the ultrasonic wave transmitted from the ultrasonic transmitter / receiver has an intensity distribution in the height direction although the entire width W direction of the measuring tube 1 is measured. By doing so, the flow velocity distribution on the central axis of the ultrasonic transmitter / receiver is mainly measured. Therefore, the average flow velocity in the cross section orthogonal to the measurement flow passage and the measurement between the ultrasonic transmitter / receivers 2a and 2b oblique to the measurement flow passage are measured. A difference occurs in the average flow velocity in the cross section, and in order to calculate the true flow rate, a correction coefficient corresponding to the flow rate is necessary for the measured value. In particular, since the correction coefficient greatly changes in the flow rate range where laminar flow changes to turbulent flow, even if there is a slight error in the flow velocity measurement at the measurement cross section, the correction coefficient expands the error and deteriorates the measurement accuracy. was there.

【0004】本発明は上記課題を解決するもので、流量
計測範囲の全域にわたり補正係数の変化を小さくするこ
とにより計測精度を高めることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to improve the measurement accuracy by reducing the change in the correction coefficient over the entire flow rate measurement range.

【0005】[0005]

【課題を解決するための手段】本発明は、被計測流体が
流れる計測流路と、前記計測流路の上流側および下流側
に設けた導入部および導出部と、前記計測流路を超音波
が横切って伝搬するように設けた少なくとも一対の超音
波送受信器と、前記超音波送受信器間で超音波の送受信
を行いその送受信信号に基づいて流量を算出する流量演
算手段とを備え、超音波送受信器を計測流路の中心部分
に配置するとともに、速度分布を非対称化して流速の最
大値の発生位置を一方に偏らせるために下流に向かって
計測流路の高さが拡大する拡大勾配部を計測流路の下流
側に設けたものである。
According to the present invention, a measurement flow path through which a fluid to be measured flows, an introduction part and a discharge part provided on the upstream side and the downstream side of the measurement flow path, and the measurement flow path are ultrasonic waves. At least a pair of ultrasonic transceivers provided so as to propagate across, and transmission and reception of ultrasonic waves between the ultrasonic transceivers.
Flow rate calculation that calculates the flow rate based on the transmitted and received signals
The ultrasonic transmitter / receiver is provided with
And the velocity distribution is made asymmetric,
In order to bias the generation position of the large value to one side, go downstream
Downstream of the measurement flow path with an enlarged slope part where the height of the measurement flow path expands
It is provided on the side.

【0006】上記発明によれば、高さ方向の速度分布が
凸型となる層流域では流速の最大値を偏らせて流速の遅
いところを多くして計測することにより補正係数を大き
くし、高さ方向の速度分布が比較的に平坦となる乱流域
では流速の最大値側を計測するようにして従来では層流
域より大きくなっていた補正係数を少し小さくすること
で、層流域と乱流域との補正係数の差を少なくし、流量
計測範囲の全域にわたり補正係数の変化を小さくするこ
とができ、補正係数による誤差の拡大が防止されて計測
精度を高めることができる。また、流体の動粘性係数の
変化によりレイノルズ数が変化しても補正係数の変化が
小さいので計測精度が維持され、流体温度変化や流体成
分変化に対して強い計測装置を実現でき、実用性を高め
ることができる。
According to the above invention, in the laminar flow region in which the velocity distribution in the height direction is convex, the maximum value of the flow velocity is biased and the slow velocity region is measured in many places to increase the correction coefficient to increase the high velocity. In the turbulent flow region where the velocity distribution in the depth direction is relatively flat, the maximum value of the flow velocity is measured and the correction coefficient, which was larger than the laminar flow region in the past, is made slightly smaller. It is possible to reduce the difference between the correction coefficients and reduce the change in the correction coefficient over the entire flow rate measurement range, prevent the error from being increased by the correction coefficient, and improve the measurement accuracy. Further, even if the Reynolds number changes due to the change of the kinematic viscosity of the fluid, the change of the correction coefficient is small, so the measurement accuracy is maintained, and it is possible to realize a measuring device that is strong against changes in the fluid temperature and changes in the fluid components. Can be increased.

【0007】[0007]

【発明の実施の形態】本発明は、被計測流体が流れる計
測流路と、前記計測流路の上流側および下流 側に設けた
導入部および導出部と、前記計測流路を超音波が横切っ
て伝搬するように設けた少なくとも一対の超音波送受信
器と、前記超音波送受信器間で超音波の送受信を行いそ
の送受信信号に基づいて流量を算出する流量演算手段と
を備え、超音波送受信器を計測流路の中心部分に配置す
るとともに、速度分布を非対称化して流速の最大値の発
生位置を一方に偏らせるために下流に向かって計測流路
の高さが拡大する拡大勾配部を計測流路の下流側に設け
たものである。そして、高さ方向の速度分布が凸型とな
る層流域では流速の最大値を偏らせて流速の遅いところ
を多くして計測することにより補正係数を大きくし、高
さ方向の速度分布が比較的に平坦となる乱流域では流速
の最大値側を計測するようにして従来では層流域より大
きくなっていた補正係数を少し小さくすることで、層流
域と乱流域との補正係数の差を少なくし、流量計測範囲
の全域にわたり補正係数の流量変化特性は平坦化され計
測精度の向上ができる。また、流体の物性値変化が生じ
ても計測精度の維持がなされ、実用性、利便性を高める
ことができる。そして、拡大勾配部において流速分布の
最大値の発生位置を高さが拡大する方向に偏らせること
ができ、超音波伝搬路での流速分布の偏りの発生方向お
よび偏りの大きさを制御できるので、補正係数の流量変
化特性の平坦性を高めるとともに超音波送受信器の高さ
方向の設置位置の自由度を向上でき、計測流路の壁面に
勾配を設けるだけの簡単な形状付与により、構成の簡略
化と加工性の向上ができ低コスト化できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a meter in which a fluid to be measured flows.
The measurement channel and the upstream and downstream sides of the measurement channel
Ultrasound crosses the inlet and outlet and the measurement channel.
Transmission and reception of at least one pair of ultrasonic waves
The ultrasonic wave is transmitted and received between the ultrasonic wave transmitter and the ultrasonic wave transmitter / receiver.
Flow rate calculation means for calculating the flow rate based on the transmitted and received signals of
, And place the ultrasonic transceiver in the center of the measurement flow path.
In addition, the velocity distribution is made asymmetric and the maximum velocity is generated.
Measurement channel toward the downstream to bias the raw position to one side
An expansion slope part that expands the height of the
It is a thing. Then, in the laminar region where the velocity distribution in the height direction is convex, the maximum correction value of the velocity is biased to increase the correction factor by increasing the number of places where the velocity is slow, and comparing the velocity distribution in the height direction. In the turbulent flow area, which is generally flat, the maximum value of the flow velocity is measured, and the correction coefficient, which was conventionally larger than the laminar flow area, is made slightly smaller to reduce the difference in the correction coefficient between the laminar flow area and the turbulent flow area. However, the flow rate change characteristic of the correction coefficient is flattened over the entire flow rate measurement range, and the measurement accuracy can be improved. Further, even if the physical property value of the fluid changes, the measurement accuracy is maintained, and the practicality and convenience can be improved. Then, the flow velocity distribution
Biasing the position where the maximum value occurs in the direction in which the height increases
And the direction of the deviation of the flow velocity distribution in the ultrasonic wave propagation path.
And the amount of deviation can be controlled, so the flow rate
Height of the ultrasonic transmitter / receiver while increasing the flatness of the conversion characteristics
The degree of freedom of the installation position in the direction can be improved, and
Simplify the structure by simply adding a gradient
It is possible to improve the processability and processability and reduce the cost.

【0008】本発明の拡大勾配部は高さ方向の片面に勾
配部を配置することで形成したものである。そして、計
測流路の屈曲を小さくして小型化できるとともに構成の
簡略化を一層向上して低コスト化できる。
The enlarged slope portion of the present invention is provided on one side in the height direction.
It is formed by arranging the distribution portion. In addition, the bending of the measurement flow path can be reduced to reduce the size, and the simplification of the configuration can be further improved to reduce the cost.

【0009】本発明の拡大勾配部は高さ方向の両面に勾
配部を配置することで形成したものである。そして、計
測流路の屈曲量を大きくして流速分布の最大値の偏り量
を大きくでき、補正係数の流量変化特性の平坦性を促進
して計測精度を向上できる。
The expansion slope portion of the present invention is provided on both sides in the height direction.
It is formed by arranging the distribution portion. Then, the bending amount of the measurement flow path can be increased to increase the deviation amount of the maximum value of the flow velocity distribution, the flatness of the flow rate change characteristic of the correction coefficient can be promoted, and the measurement accuracy can be improved.

【0010】また、超音波送受信器を計測流路の中心か
ら一方に偏芯させたものであり、 拡大勾配部は超音波送
受信器を偏芯させた側に拡大させたものである。そし
て、超音波送受信器の高さ方向の偏芯位置を層流状態で
流れる低流速域における補正係数の値が乱流状態で流れ
る大流速域の値に近くなるように最適に偏芯設定でき、
さらに流速分布の最大値が偏る方向に偏芯配置すること
により流速の大きい領域を主体に計測させて大流速域で
の補正係数を低流速域での値に近づけることができ、補
正係数の変化が平坦な領域を低流速側に拡大できる。
In addition, whether the ultrasonic transmitter / receiver is at the center of the measurement flow path or not.
It is eccentric to one side, and the magnifying gradient part transmits ultrasonic waves.
The receiver is enlarged to the eccentric side. The eccentric position in the height direction of the ultrasonic transmitter / receiver can be optimally eccentrically set so that the value of the correction coefficient in the low velocity region flowing in the laminar flow state is close to the value in the large velocity region flowing in the turbulent state. ,
Furthermore, by eccentrically arranging in a direction in which the maximum value of the flow velocity distribution is biased, the region where the flow velocity is large can be measured mainly, and the correction coefficient in the large flow velocity region can be made close to the value in the low flow velocity region. The flat region can be expanded to the low flow velocity side.

【0011】また本発明は、被計測流体が流れる計測流
路と、前記計測流路の上流側および下流側に設けた導入
部および導出部と、前記計測流路を超音波が横切って伝
搬するように設けた少なくとも一対の超音波送受信器
と、前記超音波送受信器間で超音波の送受信を行いその
送受信信号に基づいて流量を算出する流量演算手段とを
備え、超音波送受信器を計測流路の中心部分に配置する
とともに、速度分布を非対称化して流速の最大値の発生
位置を一方に偏らせるために同一角度で勾配する計測流
路屈曲部を下流側に設けたものである。
The present invention also provides a measurement flow in which a fluid to be measured flows.
And the introduction provided on the upstream side and the downstream side of the measurement flow path.
Section and outlet section, and ultrasonic waves are transmitted across the measurement flow path.
At least a pair of ultrasonic transceivers provided so as to be carried
And transmitting and receiving ultrasonic waves between the ultrasonic transmitters and receivers
Flow rate calculation means that calculates the flow rate based on the transmitted and received signals
And arrange the ultrasonic transmitter / receiver in the center of the measurement channel.
At the same time, the velocity distribution is made asymmetric and the maximum value of the flow velocity is generated.
Measurement flow that inclines at the same angle to bias the position to one side
The curved road portion is provided on the downstream side.

【0012】そして、屈曲部により超音波伝搬路での流
速分布の偏りを発生させて補正係数の流量変化特性の平
坦性を促進するとともに、計測流路の横断面積は一定に
維持することで断面積変化による誤差発生を低減して計
測精度を向上できる。
[0012] Then, the bending portion causes a deviation of the flow velocity distribution in the ultrasonic wave propagation path to promote the flatness of the flow rate change characteristic of the correction coefficient, and at the same time, keeps the cross-sectional area of the measurement channel constant. It is possible to reduce the occurrence of errors due to area changes and improve the measurement accuracy.

【0013】また、超音波送受信器を計測流路の中心か
ら一方に偏芯させたものであり、計測流路屈曲部は超音
波送受信器を偏芯させた側に屈曲させたものである。そ
して、計測流路屈曲部により流速分布の偏りは流量が増
大するほど促進できることと流速分布の速い側に超音波
送受信器を偏芯させているため大流量域での補正係数を
層流状態となる低流速域に近づけることができ、計測流
路の横断面積は一定に維持することで断面積変化による
誤差発生の低減による計測精度の向上と、低流速域から
大流速域までの広い計測範囲にわたる補正係数の平坦性
を向上できる。
Also, the ultrasonic transmitter / receiver should be placed at the center of the measurement flow path.
The other part is eccentric to the other side , and the measurement flow path bent part is the part where the ultrasonic transceiver is bent to the eccentric side. Moreover, the deviation of the flow velocity distribution due to the bent portion of the measurement flow path can be promoted as the flow rate increases, and since the ultrasonic transmitter / receiver is eccentric to the side where the flow velocity distribution is fast, the correction coefficient in the large flow rate region can be set to the laminar flow state. It is possible to get close to the low flow velocity region, and the cross-sectional area of the measurement flow path is kept constant to improve the measurement accuracy by reducing the occurrence of errors due to cross-sectional area changes, and a wide measurement range from the low flow velocity region to the large flow velocity region. The flatness of the correction coefficient can be improved.

【0014】[0014]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】(実施例1) 図1および図2は本発明の実施例1を示す超音波流量計
測装置の縦断面図および横断面図である。図において、
5は流路壁6に囲まれた計測流路であり、7および8は
互いに対向するように流路壁6に取付けた上流側および
下流側の超音波送受信器である。上流側の超音波送受信
器7と下流側の超音波送受信器8は計測流路5の幅W方
向を横切るように距離Lを隔てるとともに計測流路5の
流体の流動方向に対して角度θ傾けて設置され、計測流
路5の高さH方向に対して高さのほぼ中心に設置されて
いる。9a、9bは超音波送受信器7、8を計測流路5
に臨ませる上流側および下流側の開口穴である。10は
対向する超音波送受信器7および8間で送信された超音
波が直接相手側に伝搬する超音波伝搬路(二点鎖線で領
域を示す)である。11は計測流路5の上流側に設け被
計測流体の入口となる導入部であり、12は計測流路5
の下流側に設け被計測流体の出口となる導出部である。
13は計測流路5と導入部11とを連結する上流側の屈
曲部であり、屈曲部13は計測流路5の高さH方向に屈
曲している。14は計測流路5と導出部12とを連結す
る下流側の屈曲部であり、屈曲部14は計測流路5の高
さH方向に屈曲している。
(Embodiment 1) FIGS. 1 and 2 are a longitudinal sectional view and a transverse sectional view of an ultrasonic flow rate measuring apparatus showing Embodiment 1 of the present invention. In the figure,
Reference numeral 5 denotes a measurement flow path surrounded by the flow path wall 6, and reference numerals 7 and 8 denote upstream and downstream ultrasonic transmitter / receivers attached to the flow path wall 6 so as to face each other. The upstream ultrasonic transmitter / receiver 7 and the downstream ultrasonic transmitter / receiver 8 are separated from each other by a distance L so as to cross the width W direction of the measurement flow path 5 and inclined by an angle θ with respect to the flow direction of the fluid in the measurement flow path 5. The measurement flow path 5 is installed at approximately the center of the height H direction. Reference numerals 9a and 9b denote ultrasonic transmitters / receivers 7 and 8 for measuring the flow path 5.
These are the opening holes on the upstream side and the downstream side that are exposed to. Reference numeral 10 denotes an ultrasonic wave propagation path (indicated by a chain double-dashed line) in which ultrasonic waves transmitted between the ultrasonic wave transmitters / receivers 7 and 8 which oppose each other propagate directly to the other party. Reference numeral 11 is an introduction portion that is provided on the upstream side of the measurement flow path 5 and serves as an inlet for the fluid to be measured, and 12 is the measurement flow path 5
It is a lead-out portion which is provided on the downstream side of and serves as an outlet for the fluid to be measured.
Reference numeral 13 is an upstream bent portion that connects the measurement flow path 5 and the introduction portion 11, and the bent portion 13 is bent in the height H direction of the measurement flow path 5. Reference numeral 14 is a downstream bent portion that connects the measurement flow path 5 and the lead-out portion 12, and the bent portion 14 is bent in the height H direction of the measurement flow path 5.

【0016】15は計測流路5の高さH方向の速度分布
Sを高さ中心に対して非対称化させて高さH方向の流速
の最大値の発生位置Tを高さ中心から一方に偏らせる非
対称流れ促進手段である。この非対称流れ促進手段15
は計測流路5の下流側に設けた拡大勾配部16で形成し
たものであり、ここでは高さ方向の上側に設け下流側に
向けて角度αの勾配を設けた上側の勾配部17と高さ方
向の下側に設け下流側に向けて角度β(α>β)の勾配
を設けた下側の勾配部18により計測流路5の高さが順
次拡大する拡大勾配部16が形成されている。この拡大
勾配部16により計測流路5の高さ方向の流速分布の偏
りを発生させる。19は上流側の屈曲部13の外周面1
3a側に設けらた段差部である。
Reference numeral 15 indicates that the velocity distribution S in the height H direction of the measurement flow path 5 is made asymmetric with respect to the height center so that the generation position T of the maximum value of the flow velocity in the height H direction is biased to one side from the height center. This is an asymmetrical flow promoting means. This asymmetrical flow promoting means 15
Is formed by the enlarged slope portion 16 provided on the downstream side of the measurement flow path 5, and here, the slope portion 17 and the upper slope portion 17 provided on the upper side in the height direction are provided with a slope of an angle α toward the downstream side. An enlarged sloped portion 16 in which the height of the measurement flow path 5 is sequentially increased is formed by a lower sloped portion 18 provided on the lower side in the depth direction and having a slope of an angle β (α> β) toward the downstream side. There is. The expansion gradient portion 16 causes a deviation in the flow velocity distribution in the height direction of the measurement flow path 5. 19 is the outer peripheral surface 1 of the bent portion 13 on the upstream side.
It is a stepped portion provided on the 3a side.

【0017】20は非対称流れ促進手段15と超音波伝
搬路10との間に設けた流れ安定手段であり、計測流路
5の断面を分割して流れ方向を整える格子状の方向規制
部20aと流速変動を低減するメッシュなどの網状体で
形成した変動抑制部20bを備えている。21は超音波
送受信器7,8に接続され超音波の送受信をさせる計測
制御部22と、計測制御部22での信号を基に流速を計
算し流量を算出する演算部23を備えた流量演算手段で
ある。
Reference numeral 20 denotes a flow stabilizing means provided between the asymmetrical flow promoting means 15 and the ultrasonic wave propagation path 10, and a grid-like direction regulating portion 20a for dividing the cross section of the measurement flow path 5 to adjust the flow direction. A fluctuation suppressing portion 20b formed of a mesh-like body such as a mesh for reducing fluctuations in flow velocity is provided. Reference numeral 21 is a flow rate calculation provided with a measurement control section 22 connected to the ultrasonic wave transmitters / receivers 7 and 8 for transmitting and receiving ultrasonic waves, and a calculation section 23 for calculating a flow rate based on a signal from the measurement control section 22 to calculate a flow rate. It is a means.

【0018】次に、この超音波流量計測装置の動作につ
いて説明する。導入部11から流入した被計測流体は計
測流路5の入口側に設けられた非対称流れ促進手段15
により計測流路5の高さH方向の速度分布が高さ中央に
対して略対称ではなく非対称形をした形状となる。すな
わち、計測流路5の流れが層流域あるいは層流から乱流
に変わりつつある遷移域では、図1の速度分布Sで示す
ように壁面から遠ざかるにつれて順次速度が大きくなる
放物線状の凸型であり最大流速の発生位置Tが高さの中
央付近よりわずかに一方側(図面上方)に偏っている。
これに対して計測流路5を流れる流量が多くなり乱流域
になると、図3の速度分布Rで示すように高さ方向の速
度変化は少なくなり比較的平坦な高原状であるが最大流
速の発生位置Uは高さの中央付近より一方側(図面上
方)に偏っている。
Next, the operation of this ultrasonic flow rate measuring device will be described. The fluid to be measured that has flowed in from the introduction section 11 is an asymmetrical flow promoting means 15 provided on the inlet side of the measurement flow path 5.
As a result, the velocity distribution in the height H direction of the measurement flow path 5 is not substantially symmetrical with respect to the height center but has an asymmetric shape. That is, in the transition region in which the flow of the measurement flow path 5 is changing from the laminar flow region or the laminar flow to the turbulent flow, as shown by the velocity distribution S in FIG. 1, a parabolic convex shape in which the velocity gradually increases as the distance from the wall surface increases. Yes The position T at which the maximum flow velocity is generated is slightly biased to one side (upper in the drawing) from the vicinity of the center of the height.
On the other hand, when the flow rate flowing through the measurement flow path 5 increases and enters the turbulent flow region, the speed change in the height direction decreases as shown by the speed distribution R in FIG. The generation position U is biased to one side (upward in the drawing) from the vicinity of the center of height.

【0019】次に超音波による流量計測動作を説明す
る。計測流路5では、高さ方向の速度分布を非対称化し
た流れに対して計測制御部22の作用により超音波送受
信器7,8間で計測流路5の流路断面の幅Wを横切るよ
うにして超音波の送受が行われる。すなわち、上流側の
超音波送受信器7から発せられた超音波が下流側の超音
波送受信器8で受信されるまでの伝搬時間T1を計測す
る。また一方、下流側の超音波送受信器8から発せられ
た超音波が上流側の超音波送受信器7で受信されるまで
の伝搬時間T2を計測する。
Next, the flow rate measuring operation using ultrasonic waves will be described. In the measurement flow path 5, the measurement controller 22 acts so as to cross the width W of the flow path cross section of the measurement flow path 5 between the ultrasonic transceivers 7 and 8 with respect to the flow in which the velocity distribution in the height direction is asymmetrical. Then, ultrasonic waves are transmitted and received. That is, the propagation time T1 until the ultrasonic waves emitted from the upstream ultrasonic transceiver 7 are received by the downstream ultrasonic transceiver 8 is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the ultrasonic wave transmitter / receiver 8 on the downstream side is received by the ultrasonic wave transmitter / receiver 7 on the upstream side is measured.

【0020】このようにして測定された伝搬時間T1お
よびT2を基に、以下の演算式により演算部23で流量
が算出される。
Based on the propagation times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 23 by the following calculation formula.

【0021】いま、計測流路5の流動方向の被計測流体
の流速Vと超音波伝搬路10とのなす角度をθとし、超
音波送受信器7,8間の距離をL、被測定流体の音速を
Cとすると、流速Vは以下の式にて算出される。
Now, the angle formed by the flow velocity V of the fluid to be measured in the flow direction of the measurement flow path 5 and the ultrasonic wave propagation path 10 is θ, the distance between the ultrasonic transceivers 7 and 8 is L, and the distance of the fluid to be measured is L. When the speed of sound is C, the flow velocity V is calculated by the following formula.

【0022】T1=L/(C+Vcosθ) T2=L/(C−Vcosθ) T1の逆数からT2の逆数を引き算する式より音速Cを
消去して V=(L/2cosθ)((1/T1)−(1/T2)) θおよびLは既知なのでT1およびT2の値より流速V
が算出できる。
T1 = L / (C + Vcosθ) T2 = L / (C-Vcosθ) V = (L / 2cosθ) ((1 / T1) by eliminating the sound velocity C from the equation of subtracting the inverse of T2 from the inverse of T1. -(1 / T2)) Since θ and L are known, the flow velocity V is calculated from the values of T1 and T2.
Can be calculated.

【0023】ところが、ここで求めた流速Vは計測流路
5を斜めに横切る超音波伝搬路10で計測したものであ
り、超音波伝搬路10で計測した平均流速は断面位置に
より流れの発達状態が違うとともに高さH方向の断面で
は流路全域を計測していないため計測流路5に直交する
横断面全域から求めた平均流速とに差を生じる。しか
も、超音波伝搬路10内の超音波の強度分布は超音波送
受信器7、8の中心軸側である中央が強くなる特性を持
つため、超音波伝搬路10内の高さ方向の中心部を主体
に計測することになる。
However, the flow velocity V obtained here is measured by the ultrasonic wave propagation path 10 that obliquely crosses the measurement flow path 5, and the average flow speed measured by the ultrasonic wave propagation path 10 is a state of flow development depending on the cross-sectional position. However, since the entire flow passage is not measured in the cross section in the height H direction, there is a difference in the average flow velocity obtained from the entire cross section orthogonal to the measurement flow passage 5. Moreover, since the intensity distribution of the ultrasonic waves in the ultrasonic wave propagation path 10 has a characteristic that the center of the ultrasonic wave transmitters / receivers 7, 8 which is on the central axis side becomes strong, the central portion of the ultrasonic wave propagation path 10 in the height direction is Will be measured mainly.

【0024】このため、補正係数を加えて流量を算出
し、計測流路5の流れ方向に直交する横断面積Sより、
流量Qは Q=KVS ここで、Kは横断面積Sにおける流速分布を考慮した補
正係数である。
For this reason, the flow rate is calculated by adding the correction coefficient, and from the cross-sectional area S orthogonal to the flow direction of the measurement flow path 5,
The flow rate Q is Q = KVS, where K is a correction coefficient considering the flow velocity distribution in the cross-sectional area S.

【0025】このようにして演算部23で流量を求める
ことができる。
In this way, the calculation unit 23 can determine the flow rate.

【0026】特に、非対称流れ促進手段15が無い場合
では、層流域では放物線状の凸型となった最大流速部が
超音波伝搬路10内の高さ方向の中央部に位置するた
め、補正係数は乱流域に比べてかなり小さい値となる。
従って、図4に示すように層流域から乱流域に移行する
遷移域において補正係数が大きく変化し、計測流量に誤
差ΔQmの発生により補正係数がΔK1と大きく変わる
ことにより誤差が拡大される。この誤差は流体の温度変
化あるいは流体の組成割合の変化などにより動粘性係数
が変わり、レイノルズ数の違いにより流れ状態の違いに
より発生したりする。とくに、都市ガス、LPG(液化
石油ガス)等の流量を計測する場合では、季節あるいは
地域の違いによるガス組成の変化が考えられる場合は考
慮する必要がある。
Particularly, in the case where the asymmetrical flow promoting means 15 is not provided, in the laminar flow region, the parabolic convex maximum flow velocity portion is located at the central portion in the height direction within the ultrasonic wave propagation path 10. Is considerably smaller than that in the turbulent region.
Therefore, as shown in FIG. 4, the correction coefficient greatly changes in the transition region where the laminar flow region transitions to the turbulent flow region, and the correction coefficient greatly changes to ΔK1 due to the occurrence of the error ΔQm in the measured flow rate, so that the error is magnified. This error may occur due to a difference in flow state due to a difference in Reynolds number due to a change in kinematic viscosity coefficient due to a change in fluid temperature or a change in fluid composition ratio. In particular, when measuring the flow rate of city gas, LPG (liquefied petroleum gas), etc., it is necessary to consider when the gas composition change due to the difference of seasons or regions.

【0027】図5は計測流路5に非対称流れ促進手段1
5を設置した場合の補正係数の流量変化特性を示したも
のであり、計測流路5の高さ方向の速度分布を中心より
一方に偏らせることにより、高さ方向の速度分布が凸型
となる層流域では流速の最大値を偏らせて流速の遅いと
ころを多くして計測することにより補正係数を大きく
し、高さ方向の速度分布が比較的に平坦となる乱流域で
は流速の最大値側を計測するようにして従来では層流域
より大きくなっていた補正係数を少し小さくすること
で、層流域と乱流域との補正係数の差を少なくでき、流
速の大きい本来乱流域の補正係数との差が小さくでき、
層流から乱流へ移行する遷移域でも補正係数の変化は小
さく、補正係数の平坦化がなされる。従って、計測流量
に誤差ΔQmを生じても補正係数の変化はΔK2(K2
<K1)と十分小さくでき、計測精度を高めた計測がで
きる。温度変化あるいは流体の組成変化が有る場合は補
正係数の平坦化は有効であり、特に組成変化および温度
変化が考えられる都市ガス、LPGなどの燃料ガスの流
量を計測する場合はより一層精度を高めた計測が実現で
きる。
FIG. 5 shows an asymmetrical flow promoting means 1 in the measurement channel 5.
5 shows the flow rate change characteristic of the correction coefficient when 5 is installed. By biasing the velocity distribution in the height direction of the measurement flow path 5 to one side from the center, the velocity distribution in the height direction becomes convex. In the laminar flow region, the maximum flow velocity is biased to increase the correction coefficient by increasing the number of slow flow velocity areas, and the maximum flow velocity is obtained in the turbulent flow region where the velocity distribution in the height direction is relatively flat. By measuring the side, by slightly reducing the correction coefficient that was conventionally larger than the laminar flow area, it is possible to reduce the difference in the correction coefficient between the laminar flow area and the turbulent flow area, and Difference can be reduced,
Even in the transition region where the laminar flow changes to the turbulent flow, the change of the correction coefficient is small, and the correction coefficient is flattened. Therefore, even if an error ΔQm occurs in the measured flow rate, the change in the correction coefficient is ΔK2 (K2
It can be made sufficiently small as <K1), and measurement with high measurement accuracy can be performed. It is effective to flatten the correction coefficient when there is a temperature change or composition change of the fluid. Especially, when measuring the flow rate of fuel gas such as city gas or LPG where composition change and temperature change are considered, the accuracy is further improved. Measurement can be realized.

【0028】このように、計測流路の高さ方向の速度分
布を非対称化して高さ方向の流速の最大値の発生位置を
高さ中心から一方に偏らせる非対称流れ促進手段によ
り、高さ方向の速度分布が凸型となる層流域では流速の
最大値を偏らせて流速の遅いところを多くして計測する
ことにより補正係数を大きくし、高さ方向の速度分布が
比較的に平坦となる乱流域では流速の最大値側を計測す
るようにして従来では層流域より大きくなっていた補正
係数を少し小さくすることで、層流域と乱流域との補正
係数の差を少なくし、流量計測範囲の全域にわたり補正
係数の変化を小さくすることができ、補正係数による誤
差の拡大が防止されて計測精度を高めることができる。
さらに、流体の動粘性係数の変化によりレイノルズ数が
変化しても補正係数の変化が小さいので計測精度が維持
され、流体温度変化や流体成分変化に対して強い計測装
置を実現でき、実用性を高めることができる。
As described above, the asymmetric flow promoting means for making the velocity distribution in the height direction of the measurement flow path asymmetric so that the generation position of the maximum value of the flow velocity in the height direction is deviated from the height center to one side, In a laminar region where the velocity distribution is convex, the maximum velocity is biased to increase the correction factor by increasing the number of slow velocity regions and making the velocity distribution relatively flat in the height direction. In the turbulent flow region, the maximum value of the flow velocity is measured so that the correction coefficient that was conventionally larger than that in the laminar flow region is slightly reduced to reduce the difference in the correction coefficient between the laminar flow region and the turbulent flow region, and the flow rate measurement range. It is possible to reduce the change in the correction coefficient over the entire area, and it is possible to prevent the error from increasing due to the correction coefficient and improve the measurement accuracy.
Furthermore, even if the Reynolds number changes due to the change in the kinematic viscosity of the fluid, the change in the correction coefficient is small, so the measurement accuracy is maintained, and a measuring device that is robust against changes in the fluid temperature and changes in the fluid components can be realized. Can be increased.

【0029】また、本実施例のように非対称流れ促進手
段15は下流側に向かって計測流路5の高さが順次拡大
する拡大勾配部16とすることで、流速分布の最大値の
発生位置を高さが拡大する方向に偏らせることができ、
超音波伝搬路10での流速分布の偏りの発生方向および
偏りの大きさを拡大勾配部の大きさや勾配を開始する位
置で制御できるので、補正係数の流量変化特性の平坦性
を高めるとともに超音波送受信器7、8の高さ方向の設
置位置の自由度を向上でき、計測流路5の壁面に勾配を
設けるだけの簡単な形状付与により、構成の簡略化と加
工性の向上ができ低コスト化できる。
Further, as in the present embodiment, the asymmetrical flow promoting means 15 is provided with the expansion slope portion 16 in which the height of the measurement flow path 5 is gradually increased toward the downstream side, so that the position where the maximum value of the flow velocity distribution is generated is generated. Can be biased in the direction in which the height increases,
Since the generation direction and the magnitude of the deviation of the flow velocity distribution in the ultrasonic wave propagation path 10 can be controlled by the size of the enlarged gradient portion and the position where the gradient starts, the flatness of the flow rate change characteristic of the correction coefficient is increased and the ultrasonic wave is generated. The degree of freedom in the installation position of the transceivers 7 and 8 in the height direction can be improved, and a simple shape can be provided only by providing a gradient on the wall surface of the measurement flow path 5, so that the configuration can be simplified and the workability can be improved, and the cost can be reduced. Can be converted.

【0030】また、本実施例の構成から計測流路5の高
さ方向の下側に角度βの勾配を設けた下側勾配部18を
取り除いて、拡大勾配部16は計測流路5の高さ方向の
上側に設けた上側勾配部17だけの片面に勾配部を配置
することで形成することにより、計測流路の屈曲を小さ
くして小型化できるとともに構成の簡略化を一層向上し
て低コスト化できる。
Further, in the structure of this embodiment, the lower slope portion 18 provided with a slope of the angle β on the lower side in the height direction of the measurement flow path 5 is removed, and the enlarged slope portion 16 is provided with the height of the measurement flow path 5. By forming the inclined portion on one surface of only the upper inclined portion 17 provided on the upper side in the vertical direction, the bending of the measurement flow path can be reduced and downsized, and the simplification of the configuration can be further improved and reduced. Cost can be reduced.

【0031】また、本実施例のように、拡大勾配部16
は高さ方向の両面に勾配部17、18を配置して形成す
ることにより、計測流路5の屈曲を大きくしても断面積
の拡大量を上下の角度α、βの差で適正値を維持でき、
計測流路の屈曲量を大きくして流速分布の最大値の偏り
量を大きくでき、補正係数の流量変化特性の平坦性を促
進して計測精度を向上できる。
Further, as in this embodiment, the expansion gradient part 16
Is formed by arranging the sloped portions 17 and 18 on both sides in the height direction, the amount of expansion of the cross-sectional area is set to an appropriate value by the difference between the upper and lower angles α and β even if the bending of the measurement flow path 5 is increased. Can be maintained
It is possible to increase the bending amount of the measurement flow path to increase the deviation amount of the maximum value of the flow velocity distribution, promote the flatness of the flow rate change characteristic of the correction coefficient, and improve the measurement accuracy.

【0032】なお、拡大勾配部16の勾配の開始点は超
音波伝搬路10の途中から始まる例を示したが、超音波
伝搬路10が終了してから設けても同様の作用効果が得
られるとともに、超音波伝搬路10における計測流路の
横断面積を一定に出来るので計測精度を向上できる。ま
た、拡大勾配部16の勾配の開始点は超音波伝搬路10
の上流側に設けることにより流速分布の最大値の位置を
大きく変位させることができ、補正係数の平坦性向上あ
るいは補正係数の流量変化特性の形状に対する自由度を
高めることができる。
Although the start point of the gradient of the expanded gradient section 16 starts in the middle of the ultrasonic wave propagation path 10, the same operational effect can be obtained even if it is provided after the ultrasonic wave propagation path 10 is finished. At the same time, since the cross-sectional area of the measurement flow path in the ultrasonic wave propagation path 10 can be made constant, the measurement accuracy can be improved. Further, the start point of the gradient of the expansion gradient section 16 is the ultrasonic propagation path 10
The position of the maximum value of the flow velocity distribution can be largely displaced by providing it on the upstream side of, and it is possible to improve the flatness of the correction coefficient or increase the degree of freedom in the shape of the flow rate change characteristic of the correction coefficient.

【0033】(実施例2) 図6は本発明の実施例2を示す超音波流量計測装置の断
面図である。図6において、図1〜図5の実施例と同一
部材、同一機能は同一符号を付し詳細な説明は省略し、
異なるところを中心に説明する。
(Embodiment 2) FIG. 6 is a sectional view of an ultrasonic flow rate measuring apparatus showing Embodiment 2 of the present invention. 6, the same members and functions as those of the embodiment of FIGS. 1 to 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
The different points will be mainly explained.

【0034】24は計測流路5の超音波伝搬路10の途
中に設けた計測流路屈曲部であり、この計測流路屈曲部
24は高さ方向Hの上側および下側に下流側に向けて角
度γの勾配を同一方向に設けた上側および下側の勾配部
17、18により計測流路5が高さ方向に屈曲するよう
に設けて非対称流れ促進手段15を形成している。
Reference numeral 24 denotes a measurement flow path bent portion provided in the ultrasonic flow path 10 of the measurement flow path 5, and the measurement flow path bent portion 24 is directed to the upper side and the lower side in the height direction H toward the downstream side. The asymmetrical flow promoting means 15 is formed by bending the measurement flow path 5 in the height direction by the upper and lower slope portions 17 and 18 provided with the gradient of the angle γ in the same direction.

【0035】次に、この超音波流量計測装置の動作を説
明する。導入部11から流入した被計測流体は計測流路
屈曲部24により図面上方向に曲げられ、流速分布の最
大値の高さ方向位置に偏りが発生し、超音波伝搬路10
では高さ方向の流速分布が非対称化される。このため、
実施例1で説明したように層流域から乱流域にわたり流
量値の補正係数の変化が低減され、平坦な補正係数の流
量変化特性が得られる。
Next, the operation of this ultrasonic flow rate measuring device will be described. The fluid to be measured that has flowed in from the introduction portion 11 is bent in the upward direction in the drawing by the measurement flow path bending portion 24, and a deviation occurs in the height direction position of the maximum value of the flow velocity distribution.
In, the velocity distribution in the height direction is made asymmetric. For this reason,
As described in the first embodiment, the change in the correction coefficient of the flow rate value is reduced from the laminar flow area to the turbulent flow area, and the flow rate change characteristic of the flat correction coefficient is obtained.

【0036】このように、非対称流れ促進手段15は計
測流路5を高さ方向に屈曲させた計測流路屈曲部で形成
したものである。そして、屈曲部により超音波伝搬路で
の流速分布の偏りを発生させて補正係数の流量変化特性
の平坦性を促進するとともに、計測流路の横断面積は一
定に維持することで断面積変化による誤差発生を低減し
て計測精度を向上できる。
As described above, the asymmetrical flow promoting means 15 is formed by the measurement flow path bent portion in which the measurement flow path 5 is bent in the height direction. Then, the bending portion causes a bias in the flow velocity distribution in the ultrasonic wave propagation path to promote the flatness of the flow rate change characteristic of the correction coefficient, and the cross-sectional area of the measurement flow path is kept constant to change the cross-sectional area. It is possible to reduce error generation and improve measurement accuracy.

【0037】なお、計測流路屈曲部24の屈曲の開始点
は超音波伝搬路10の途中から始まる例を示したが、超
音波伝搬路10が終了してから設けても同様の作用効果
が得られるとともに、超音波伝搬路10における計測流
路の横断面積を一定に出来るので計測精度を向上でき
る。また、計測流路屈曲部24の屈曲の開始点は超音波
伝搬路10の上流側に設けることにより流速分布の最大
値の位置を大きく変位させることができ、補正係数の平
坦性向上あるいは補正係数の流量変化特性の形状に対す
る自由度を高めることができる。
Although the bending start point of the measurement flow path bending portion 24 is shown to start from the middle of the ultrasonic wave propagation path 10, the same operational effect can be obtained even if the measurement flow path bending part 24 is provided after the ultrasonic wave propagation path 10 is finished. In addition to being obtained, the cross-sectional area of the measurement flow path in the ultrasonic wave propagation path 10 can be made constant, so that the measurement accuracy can be improved. Further, by providing the bending start point of the measurement flow path bending portion 24 on the upstream side of the ultrasonic wave propagation path 10, the position of the maximum value of the flow velocity distribution can be largely displaced, and the flatness of the correction coefficient or the correction coefficient can be improved. The degree of freedom with respect to the shape of the flow rate change characteristic can be increased.

【0038】(実施例3) 図7、図8は本発明の実施例3を示す超音波流量計測装
置の断面図である。図7および図8において、図1〜図
6の実施例と同一部材、同一機能は同一符号を付し詳細
な説明は省略し、異なるところを中心に説明する。
Example 3 FIGS. 7 and 8 are sectional views of an ultrasonic flow rate measuring apparatus showing Example 3 of the present invention. 7 and 8, the same members and functions as those of the embodiment shown in FIGS. 1 to 6 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0039】25は超音波送受信器7、8の中心軸であ
る送受信軸であり、この送受信軸25は計測流路5の高
さ方向の中心軸である計測流路軸26に対して図面上方
にΔYだけ偏芯させて配置している。
Reference numeral 25 denotes a transmission / reception axis which is a central axis of the ultrasonic wave transmitters / receivers 7 and 8. The transmission / reception axis 25 is located above the measurement flow path axis 26, which is the central axis in the height direction of the measurement flow path 5, above the drawing. Is eccentric by ΔY.

【0040】ここで、超音波送受信器7、8はその送受
信軸25の偏芯方向を、層流域を示す図7および乱流域
を示す図8のように、速度分布SおよびRで示した最大
流速の発生位置TおよびUが存在する図面上方の方向と
したものである。
Here, the ultrasonic transmitters / receivers 7 and 8 have the maximum eccentric directions indicated by velocity distributions S and R in the eccentric direction of the transmission / reception shaft 25 as shown in FIG. 7 showing a laminar flow region and FIG. 8 showing a turbulent flow region. This is the upper direction of the drawing in which the flow velocity generation positions T and U exist.

【0041】図面上方の方向に最大流速の発生位置Tお
よびUが存在するのは、計測流路5の下流側に設けた図
面上方の方向に勾配を設けた拡大勾配部16からなる非
対称流れ促進手段15によるもので、さらに計測流路5
の下流側が屈曲部14により拡大勾配部16と同一方向
の図面上方に屈曲させているので、その流れの偏りが大
きくなるとともに大流量時でも流れの偏りが維持されて
いる。
The positions T and U at which the maximum flow velocity is generated are present in the upward direction of the drawing because the asymmetrical flow is promoted by the enlarged gradient portion 16 provided on the downstream side of the measurement flow path 5 and having a gradient in the upward direction of the drawing. By the means 15, the measurement flow path 5
Since the downstream side is bent by the bent portion 14 upward in the drawing in the same direction as the enlarged gradient portion 16, the deviation of the flow becomes large and the deviation of the flow is maintained even at a large flow rate.

【0042】次に動作を説明する。超音波送受信器7、
8は計測流路5の高さ方向の中心から偏芯させることに
より、速度分布形状が凸型となる低流速の層流域におい
ては超音波伝搬路10の高さ中心を最大流速値の発生位
置から遠ざかるため補正係数の値は大きくなり、大流量
時の乱流域の値に近づくように超音波送受信器7、8の
高さ方向の偏芯位置を設定して補正係数の変化が平坦な
領域を低流速側である低流量域に拡大できる。
Next, the operation will be described. Ultrasonic transceiver 7,
8 is eccentric from the center of the measurement flow path 5 in the height direction, so that in the laminar flow region of low flow velocity where the velocity distribution shape is convex, the height center of the ultrasonic wave propagation path 10 is the position where the maximum flow velocity value is generated. The value of the correction coefficient increases as the distance from the position increases, and the eccentric position in the height direction of the ultrasonic transmitters / receivers 7 and 8 is set so as to approach the value of the turbulent flow area at the time of large flow rate, and the change in the correction coefficient is flat. Can be expanded to a low flow rate region on the low flow velocity side.

【0043】また、超音波送受信器7、8の偏芯方向は
高さ方向速度分布において最大値が存在する方向とする
ことで、流速分布形状が凸型となる層流域や遷移域では
最大流速値の位置と壁面との間の流速変化をより急峻に
でき、超音波送受信器7、8の高さ位置を僅かに調節す
ることにより補正係数の値を容易に変化させて低流量側
へ補正係数の変化が平坦な領域を拡大することができ
る。さらに、大流量側では流速の大きいところを計測し
て補正係数の値を小さくなるようにして大流量側と低流
量側の補正係数値の差を低減して平坦性を向上でき、低
流量域から大流量域の幅広い流量域に対して補正係数の
変化を平坦化できる。
The eccentric direction of the ultrasonic transmitters / receivers 7 and 8 is set such that the maximum value exists in the velocity distribution in the height direction, so that the maximum flow velocity is obtained in the laminar flow region or transition region where the flow velocity distribution shape is convex. The flow velocity change between the position of the value and the wall surface can be made steeper, and the height position of the ultrasonic transmitters / receivers 7, 8 can be slightly adjusted to easily change the value of the correction coefficient to correct to the low flow rate side. It is possible to enlarge a region where the coefficient changes are flat. Further, on the large flow rate side, the place where the flow velocity is large is measured and the value of the correction coefficient is reduced to reduce the difference between the correction coefficient values on the large flow rate side and the low flow rate side, and the flatness can be improved. Therefore, the change of the correction coefficient can be flattened over a wide flow range of a large flow range.

【0044】また、超音波送受信器7、8は計測流路5
の高さ方向の中心から偏芯させるとともに、拡大勾配部
16は超音波送受信器7、8を偏芯させた方向に勾配を
付与して拡大させたことで、層流状態で流れる低流速域
における補正係数の値が乱流状態で流れる大流速域の値
に近くなるように最適に偏芯設定でき、さらに流速分布
の最大値が偏る方向に偏芯配置することにより流速の大
きい領域を主体に計測させて大流速域での補正係数を低
流速域での値に近づけることができ、補正係数の変化が
平坦な領域を低流速側に拡大できる。
The ultrasonic transmitters / receivers 7 and 8 are used for the measurement flow path 5.
In addition to eccentricity from the center of the height direction, the expansion gradient section 16 imparts a gradient in the direction in which the ultrasonic transmitters / receivers 7 and 8 are eccentrically expanded to expand the low-velocity region flowing in a laminar state. The eccentricity can be optimally set so that the value of the correction coefficient at is close to the value in the large flow velocity region that flows in the turbulent state. It is possible to make the correction coefficient in the large flow velocity region close to the value in the low flow velocity region by measuring the value in the above manner, and the region where the change of the correction coefficient is flat can be expanded to the low flow velocity side.

【0045】さらに、計測流路5の下流側の屈曲部14
の屈曲方向側に拡大勾配部16の勾配方向を設定するこ
とで、流れの偏りは流量が増大するほど促進でき、高さ
方向に偏芯させた超音波伝搬路10に流速の大きい領域
の割合を高めて大流量域での補正係数を小さくでき、し
かもより一層大きい流量値において補正係数値を低減で
き、より広い計測範囲にわたり補正係数の平坦性を向上
できる。
Further, the bent portion 14 on the downstream side of the measurement flow path 5
By setting the gradient direction of the enlarged gradient portion 16 on the bending direction side of the, the flow deviation can be promoted as the flow rate increases, and the ratio of the region of high velocity in the ultrasonic propagation path 10 decentered in the height direction. Can be increased to reduce the correction coefficient in the large flow rate range, and the correction coefficient value can be reduced at a larger flow rate value, and the flatness of the correction coefficient can be improved over a wider measurement range.

【0046】図9は超音波送受信器7、8を計測流路5
の高さ方向の中心から偏芯させる他の実施例を示したも
ので、計測流路5の下流側に設けた非対称流れ促進手段
15は計測流路屈曲部24で形成したものであり、超音
波送受信器7、8は計測流路屈曲部24を屈曲させた側
に計測流路5の高さH方向の中心からΔYだけ偏芯させ
て配置している。
FIG. 9 shows the ultrasonic transceivers 7 and 8 connected to the measurement channel 5.
Another example is shown in which the center is eccentric from the center of the height direction of the measurement flow path. The asymmetric flow promoting means 15 provided on the downstream side of the measurement flow path 5 is formed by the measurement flow path bent portion 24, and The sound wave transmitters / receivers 7 and 8 are arranged on the side where the measurement flow path bending portion 24 is bent, with eccentricity ΔY from the center of the measurement flow path 5 in the height H direction.

【0047】前述の拡大勾配部16の場合と同様に、非
対称流れ促進手段15となる計測流路屈曲部24により
流速分布の最大値位置の高さ方向偏りによる補正係数の
平坦化ができるとともに、計測流路5の横断面積が一定
である計測流路屈曲部24のため、断面積変化による誤
差発生が低減でき計測精度の向上ができる。
As in the case of the above-described enlarged gradient portion 16, the measurement flow path bent portion 24 serving as the asymmetrical flow promoting means 15 can flatten the correction coefficient by biasing the maximum value position of the flow velocity distribution in the height direction. Since the measurement flow path bent portion 24 has a constant cross-sectional area of the measurement flow path 5, it is possible to reduce an error caused by a change in cross-sectional area and improve the measurement accuracy.

【0048】また、超音波送受信器7、8は計測流路5
の高さ方向の中心からΔYだけ偏芯させるとともに、計
測流路屈曲部24は超音波送受信器7、8を偏芯させた
方向に屈曲させたことで、層流状態で流れる低流速域に
おける補正係数の値が乱流状態で流れる大流速域の値に
近くなるように最適に偏芯設定でき、さらに流速分布の
最大値が偏る方向に偏芯配置することにより流速の大き
い領域を主体に計測させて大流速域での補正係数を低流
速域での値に近づけることができ、補正係数の変化が平
坦な領域を低流速側に拡大できる。
The ultrasonic wave transmitters / receivers 7 and 8 are used for the measurement channel 5.
In the low flow velocity region flowing in a laminar flow state, the measurement flow path bending portion 24 is bent in the direction in which the ultrasonic transceivers 7 and 8 are eccentric while being eccentric by ΔY from the center in the height direction. Optimum eccentricity can be set so that the value of the correction coefficient is close to the value in the large flow velocity range flowing in the turbulent state.Furthermore, by eccentrically arranging in the direction in which the maximum value of the flow velocity distribution is deviated, mainly in the region of large flow velocity The correction coefficient in the large flow velocity region can be measured to be close to the value in the low flow velocity region, and the region where the change of the correction coefficient is flat can be expanded to the low flow velocity side.

【0049】このように、超音波送受信器7、8は計測
流路5の高さ方向中央から一方に偏芯させるとともに計
測流路屈曲部24は超音波送受信器7、8を偏芯させた
側に屈曲させて、計測流路屈曲部24により流速分布の
偏りは流量が増大するほど促進でき、流速分布の速い側
に超音波送受信器7、8を偏芯させているため大流量域
での補正係数を層流状態となる低流速域に近づけること
ができる。さらに、計測流路5の横断面積は一定に維持
することで断面積変化による誤差発生の低減による計測
精度の向上と、低流速域から大流速域までの広い計測範
囲にわたる補正係数の平坦性を向上できる。
In this way, the ultrasonic wave transmitters / receivers 7, 8 are eccentric to the one side from the center of the measurement flow path 5 in the height direction, and the measurement flow path bent portion 24 makes the ultrasonic wave transmitters / receivers 7, 8 eccentric. When the flow rate distribution is biased toward the side, the deviation of the flow velocity distribution can be promoted as the flow rate increases, and the ultrasonic transmitters / receivers 7, 8 are eccentric to the side where the flow velocity distribution is fast, so that the flow rate distribution is large. The correction coefficient of can be brought close to the low flow velocity region where a laminar flow is achieved. Further, by maintaining the cross-sectional area of the measurement flow path 5 constant, it is possible to improve the measurement accuracy by reducing the error occurrence due to the change in cross-sectional area and to improve the flatness of the correction coefficient over a wide measurement range from the low flow velocity region to the large flow velocity region. Can be improved.

【0050】また、計測流路5の下流側の屈曲部14の
屈曲方向側に計測流路屈曲部24の方向を設定すること
で、流れの偏りは流量が増大するほど促進でき、高さ方
向に偏芯させた超音波伝搬路10に流速の大きい領域の
割合を高めて大流量域での補正係数を小さくでき、しか
もより一層大きい流量値において補正係数値を低減で
き、より広い計測範囲にわたり補正係数の平坦性を向上
できる。
Further, by setting the direction of the measurement flow path bent portion 24 on the bending direction side of the flow path bent portion 14 on the downstream side of the measurement flow path 5, the flow deviation can be promoted as the flow rate increases, and the height direction can be increased. It is possible to increase the proportion of a region having a large flow velocity in the ultrasonic propagation path 10 that is eccentric to, and reduce the correction coefficient in a large flow rate range, and further reduce the correction coefficient value at a larger flow rate value, and to cover a wider measurement range. The flatness of the correction coefficient can be improved.

【0051】なお、拡大勾配部16および計測流路屈曲
部24の屈曲の開始点は超音波伝搬路10の途中から始
まる例を示したが、超音波伝搬路10が終了してから設
けても同様の作用効果が得られるとともに、超音波伝搬
路10における計測流路の横断面積を一定に出来るので
計測精度を向上できる。また、拡大勾配部16および計
測流路屈曲部24の屈曲の開始点を超音波伝搬路10の
上流側に設けることにより流速分布の最大値の位置を大
きく変位させることができ、補正係数の平坦性向上ある
いは補正係数の流量変化特性の形状に対する自由度を高
めることができる。
Although the start point of the bending of the enlarged gradient portion 16 and the measurement flow path bending portion 24 starts in the middle of the ultrasonic wave propagation path 10, it is provided even after the ultrasonic wave propagation path 10 is finished. The same effect can be obtained, and the cross-sectional area of the measurement flow path in the ultrasonic wave propagation path 10 can be made constant, so that the measurement accuracy can be improved. Further, by providing the bending start points of the enlarged gradient portion 16 and the measurement flow path bending portion 24 on the upstream side of the ultrasonic wave propagation path 10, the position of the maximum value of the flow velocity distribution can be largely displaced, and the correction coefficient is flat. It is possible to improve the flexibility or the degree of freedom of the shape of the flow rate change characteristic of the correction coefficient.

【0052】[0052]

【発明の効果】以上の説明から明らかなように本発明の
超音波流量計測装置によれば、流量計測範囲の全域にわ
たり補正係数の変化を小さくすることにより計測精度を
高めることができる。
As is apparent from the above description, according to the ultrasonic flow rate measuring apparatus of the present invention, the measurement accuracy can be improved by reducing the change of the correction coefficient over the entire flow rate measuring range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の超音波流量計測装置の縦断
面図
FIG. 1 is a vertical sectional view of an ultrasonic flow rate measuring device according to a first embodiment of the present invention.

【図2】本発明の実施例1の超音波流量計測装置の横断
面図
FIG. 2 is a cross-sectional view of the ultrasonic flow rate measuring device according to the first embodiment of the present invention.

【図3】乱流域の速度分布を示す実施例1の超音波流量
計測装置の縦断面図
FIG. 3 is a vertical cross-sectional view of the ultrasonic flow rate measuring device according to the first embodiment showing a velocity distribution in a turbulent flow region.

【図4】非対称流れ促進手段が無い場合の補正係数の特
性図
FIG. 4 is a characteristic diagram of a correction coefficient when there is no asymmetrical flow promoting means.

【図5】非対称流れ促進手段が有る場合の補正係数の特
性図
FIG. 5 is a characteristic diagram of a correction coefficient when there is an asymmetrical flow promoting means.

【図6】本発明の実施例2を示す超音波流量計測装置の
縦断面図
FIG. 6 is a vertical cross-sectional view of an ultrasonic flow rate measurement apparatus showing Embodiment 2 of the present invention.

【図7】本発明の実施例3を示す超音波流量計測装置の
縦断面図
FIG. 7 is a vertical cross-sectional view of an ultrasonic flow rate measurement apparatus showing Embodiment 3 of the present invention.

【図8】乱流域の速度分布を示す実施例3の超音波流量
計測装置の縦断面図
FIG. 8 is a vertical cross-sectional view of an ultrasonic flow rate measuring device according to a third embodiment showing a velocity distribution in a turbulent flow region.

【図9】他の実施例を示す超音波流量計測装置の縦断面
FIG. 9 is a vertical cross-sectional view of an ultrasonic flow rate measuring device showing another embodiment.

【図10】従来の超音波流量計測装置の構成図FIG. 10 is a configuration diagram of a conventional ultrasonic flow rate measuring device.

【符号の説明】[Explanation of symbols]

5 計測流路 7、8 超音波送受信器 11 導入部 12 導出部 13 屈曲部 15 非対称流れ促進手段 16 拡大勾配部 17、18 勾配部 21 流量演算手段 24 計測流路屈曲部 5 measurement channels 7, 8 Ultrasonic transceiver 11 Introduction 12 Derivation part 13 Bend 15 Asymmetric flow promoting means 16 Expanding slope section 17, 18 Gradient section 21 Flow rate calculation means 24 Measurement channel bend

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被計測流体が流れる計測流路と、前記計
測流路の上流側および下流側に設けた導入部および導出
部と、前記計測流路を超音波が横切って伝搬するように
設けた少なくとも一対の超音波送受信器と、前記超音波
送受信器間で超音波の送受信を行いその送受信信号に基
づいて流量を算出する流量演算手段とを備え、超音波送
受信器を計測流路の中心部分に配置するとともに、速度
分布を非対称化して流速の最大値の発生位置を一方に偏
らせるために下流に向かって計測流路の高さが拡大する
拡大勾配部を計測流路の下流側に設けた超音波流量計測
装置。
1. A measurement flow path through which a fluid to be measured flows, an introduction part and a derivation part provided on the upstream side and the downstream side of the measurement flow path, and an ultrasonic wave which propagates across the measurement flow path. At least a pair of ultrasonic transceivers, and the ultrasonic wave
Ultrasonic waves are transmitted and received between the transmitter and receiver, and based on the transmitted and received signals.
Flow rate calculation means for calculating the flow rate based on
Place the receiver in the center of the measurement channel and
The distribution is made asymmetric, and the position where the maximum velocity is generated is biased to one side.
To increase the height of the measurement flow path downstream
An ultrasonic flow rate measuring device in which an enlarged gradient part is provided on the downstream side of the measurement flow path .
【請求項2】 拡大勾配部は高さ方向の片面に勾配部を
配置することで形成した請求項1記載の超音波流量計測
装置。
2. The enlarged slope portion has a slope portion on one side in the height direction.
The ultrasonic flow rate measuring apparatus according to claim 1, wherein the ultrasonic flow rate measuring apparatus is formed by disposing the ultrasonic flow rate measuring apparatus.
【請求項3】 拡大勾配部は高さ方向の両面に勾配部を
配置することで形成した請求項1記載の超音波流量計測
装置。
3. The enlarged slope part has slope parts on both sides in the height direction.
The ultrasonic flow rate measuring apparatus according to claim 1, wherein the ultrasonic flow rate measuring apparatus is formed by disposing the ultrasonic flow rate measuring apparatus.
【請求項4】 超音波送受信器を計測流路の中心から一
方に偏芯させた請求項1から3のいずれか1項に記載の
超音波流量計測装置。
4. An ultrasonic wave transmitter / receiver is placed from the center of the measurement channel.
The ultrasonic flow rate measuring device according to any one of claims 1 to 3, which is eccentric to one side .
【請求項5】 拡大勾配部は超音波送受信器を偏芯させ
た側に拡大させた請求項1から3のいずれか1項に記載
超音波流量計測装置。
5. The magnifying gradient portion decenters the ultrasonic transceiver.
The method according to any one of claims 1 to 3, which is enlarged to the side
Ultrasonic flow measuring device.
【請求項6】 被計測流体が流れる計測流路と、前記計
測流路の上流側および下流側に設けた導入部および導出
部と、前記計測流路を超音波が横切って伝搬するように
設けた少なくとも一対の超音波送受信器と、前記超音波
送受信器間で超音波の送受信を行いその送受信信号に基
づいて流量を算出する流量演算手段とを備え、超音波送
受信器を計測流路の中心部分に配置するとともに、速度
分布を非対称化して流速の最大値の発生位置を一方に偏
らせるために同一角度で勾配する計測流路屈曲部を下流
側に設けた超音波流量計測装置。
6. A measuring flow path through which a fluid to be measured flows, and the measuring device.
Introducing parts and outlets provided on the upstream and downstream sides of the measurement flow path
Section so that ultrasonic waves propagate across the measurement channel.
At least a pair of ultrasonic transceivers provided, and the ultrasonic wave
Ultrasonic waves are transmitted and received between the transmitter and receiver, and based on the transmitted and received signals.
Flow rate calculation means for calculating the flow rate based on
Place the receiver in the center of the measurement channel and
The distribution is made asymmetric, and the position where the maximum velocity is generated is biased to one side.
Downstream of the bent portion of the measurement channel that inclines at the same angle to allow
Ultrasonic flow rate measuring device installed on the side .
【請求項7】 超音波送受信器を計測流路の中心から一
方に偏芯させた請求項6記載の 超音波流量計測装置。
7. The ultrasonic transmitter / receiver is located one from the center of the measurement flow path.
The ultrasonic flow rate measuring device according to claim 6, which is eccentric to one side .
【請求項8】 計測流路屈曲部は超音波送受信器を偏芯
させた側に屈曲させた 請求項6記載の 超音波流量計測装
置。
8. An ultrasonic transmitter / receiver is eccentric to the bent portion of the measurement flow path.
The ultrasonic flow rate measuring device according to claim 6, wherein the ultrasonic flow rate measuring device is bent to the side where it is made .
JP2002106163A 2002-04-09 2002-04-09 Ultrasonic flow meter Expired - Fee Related JP3438734B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106163A JP3438734B1 (en) 2002-04-09 2002-04-09 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106163A JP3438734B1 (en) 2002-04-09 2002-04-09 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP3438734B1 true JP3438734B1 (en) 2003-08-18
JP2003302266A JP2003302266A (en) 2003-10-24

Family

ID=27785567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106163A Expired - Fee Related JP3438734B1 (en) 2002-04-09 2002-04-09 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3438734B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698141A (en) * 2023-07-28 2023-09-05 山东大学 Speed measurement error correction method and system for ultrasonic flowmeter under different working conditions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068870B2 (en) * 2013-02-27 2015-06-30 Daniel Measurement And Control, Inc. Ultrasonic flow metering with laminar to turbulent transition flow control
WO2023089582A1 (en) * 2021-11-21 2023-05-25 Abb Schweiz Ag Method and system for flowrate measurement correction of a flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698141A (en) * 2023-07-28 2023-09-05 山东大学 Speed measurement error correction method and system for ultrasonic flowmeter under different working conditions
CN116698141B (en) * 2023-07-28 2023-10-27 山东大学 Speed measurement error correction method and system for ultrasonic flowmeter under different working conditions

Also Published As

Publication number Publication date
JP2003302266A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
US7363174B2 (en) Apparatus and method for measuring a fluid flow rate profile using acoustic doppler effect
WO2000055581A1 (en) Ultrasonic flowmeter
US9279708B2 (en) Ultrasonic flowmeter
WO2002031446A1 (en) Flow measuring device
US7806003B2 (en) Doppler type ultrasonic flow meter
JP4936856B2 (en) Flowmeter
JP3438734B1 (en) Ultrasonic flow meter
JP3438713B2 (en) Ultrasonic flow meter
JP2009264906A (en) Flow meter
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP3436247B2 (en) Ultrasonic flow meter
JP3438716B2 (en) Ultrasonic flow meter
JP2008014833A (en) Ultrasonic flowmeter
JP2004061269A (en) Ultrasonic flow rate measuring apparatus
JP2004251700A (en) Fluid measuring device
JP4084236B2 (en) Ultrasonic flow meter
JP2003344129A (en) Ultrasonic flowmeter
JP4561071B2 (en) Flow measuring device
JPH06300599A (en) Ultrasonic flowmeter unit
JP2004069529A (en) Flow rate measuring device
JP4092977B2 (en) Flow measuring device
JPH07139982A (en) Ultrasonic flowmeter
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JP4048871B2 (en) Ultrasonic flow measuring device
JP2004069526A (en) Flow rate measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees