JP3436247B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JP3436247B2
JP3436247B2 JP2000308747A JP2000308747A JP3436247B2 JP 3436247 B2 JP3436247 B2 JP 3436247B2 JP 2000308747 A JP2000308747 A JP 2000308747A JP 2000308747 A JP2000308747 A JP 2000308747A JP 3436247 B2 JP3436247 B2 JP 3436247B2
Authority
JP
Japan
Prior art keywords
measurement
flow
ultrasonic
flow rate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000308747A
Other languages
Japanese (ja)
Other versions
JP2002116070A (en
Inventor
茂 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000308747A priority Critical patent/JP3436247B2/en
Priority to CN018030696A priority patent/CN1217158C/en
Priority to KR10-2002-7007227A priority patent/KR100495970B1/en
Priority to TW090124975A priority patent/TW585995B/en
Priority to US10/149,100 priority patent/US6694824B2/en
Priority to PCT/JP2001/008870 priority patent/WO2002031446A1/en
Publication of JP2002116070A publication Critical patent/JP2002116070A/en
Application granted granted Critical
Publication of JP3436247B2 publication Critical patent/JP3436247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気体や液体の流量
や流速の計測を行う超音波流量計測装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow rate measuring device for measuring the flow rate and flow velocity of gas or liquid.

【0002】[0002]

【従来の技術】従来この種の流量計測装置には、例えば
特開平9−189591号公報に示す超音波式が知られ
ており、図13に示すように流体を一方から他方に流す
配管1の中心線を挟んで対向し、かつ中心線に対して所
定角度を有する周面に上流側の超音波送受信器2aと下
流側の超音波送受信器2bとを対向して設けるととも
に、配管1の流体吸入口3に配管1と同一方向の向き
に、平行に配列された複数の細管4aから構成した整流
体4を設けている。
2. Description of the Related Art Conventionally, for this type of flow rate measuring device, for example, an ultrasonic type disclosed in Japanese Patent Laid-Open No. 9-189591 is known, and as shown in FIG. 13, a pipe 1 for flowing a fluid from one side to the other side is known. The upstream ultrasonic transmitter / receiver 2a and the downstream ultrasonic transmitter / receiver 2b are provided so as to face each other across the center line and have a predetermined angle with respect to the center line, and the fluid of the pipe 1 is provided. A rectifying body 4 composed of a plurality of thin tubes 4a arranged in parallel is provided in the suction port 3 in the same direction as the piping 1.

【0003】そして、配管1を流れる流体の流速を超音
波送受信器2a、2b間で超音波を送受信して伝搬時間
差から計測し、配管1の断面積より流量を算出してい
る。このとき、配管1に入る流れは整流体4を構成する
細管4aによりその流れ方向を配管1と同一方向に規制
して、計測部での流線の傾きを低減したり渦の発生を抑
制して流れの乱れの境界面での超音波の反射や屈折によ
る超音波の受信レベルの変動を低減して測定精度の悪化
を防止している。
Then, the flow velocity of the fluid flowing through the pipe 1 is transmitted and received between the ultrasonic transmitters / receivers 2a and 2b and measured from the difference in propagation time, and the flow rate is calculated from the cross-sectional area of the pipe 1. At this time, the flow entering the pipe 1 is regulated in the same direction as that of the pipe 1 by the thin pipe 4a forming the rectifying body 4 to reduce the inclination of the streamline in the measuring section and suppress the generation of vortices. The fluctuation of the ultrasonic wave reception level due to the reflection and refraction of the ultrasonic wave at the boundary surface of the flow turbulence is reduced to prevent the deterioration of the measurement accuracy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の構
成では、整流体4と超音波伝搬路が離れて設置されると
ともに整流体4との距離が超音波送受信器2a側と超音
波送受信器2b側とで大きく異なるため整流体を通過し
た流れの発達状態に差異を生じて、計測流路に直交する
横断面での平均流速と計測流路に斜交する超音波送受信
器2a、2b間の計測断面での平均流速に違いを生じ、
真の流量を算出するためには計測値に対して流量に応じ
た補正係数が必要になる。特に、層流から乱流に移行す
る流量域では補正係数が大きく変化するため、計測断面
での流速測定に僅かな誤差があっても補正係数により誤
差が拡大されて測定精度が悪化するという課題があっ
た。
However, in the conventional configuration, the rectifying body 4 and the ultrasonic wave propagation path are installed apart from each other, and the distance between the rectifying body 4 and the ultrasonic wave transceiver 2a side and the ultrasonic wave transceiver 2b side is large. Since there is a large difference between the flow velocity and the flow velocity, a difference in the development state of the flow passing through the rectifying body is generated, and the average flow velocity in the cross section orthogonal to the measurement flow channel and the measurement between the ultrasonic transmitters / receivers 2a and 2b obliquely intersecting the measurement flow channel It makes a difference in the average flow velocity in the cross section,
In order to calculate the true flow rate, a correction coefficient corresponding to the flow rate is necessary for the measured value. In particular, since the correction coefficient greatly changes in the flow rate range where laminar flow changes to turbulent flow, even if there is a slight error in the flow velocity measurement at the measurement cross section, the correction coefficient expands the error and deteriorates the measurement accuracy. was there.

【0005】本発明は上記課題を解決するもので、流量
計測範囲の全域にわたり補正係数の変化を小さくするこ
とにより計測精度を高めることを目的とする。
The present invention is intended to solve the above problems, and it is an object of the present invention to improve the measurement accuracy by reducing the change in the correction coefficient over the entire flow rate measurement range.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、被計測流体が流れる計測流路と、前記計測
流路の上流側および下流側に設けた導入部および導出部
と、前記計測流路を超音波が横切って伝搬するように設
けた少なくとも一対の超音波送受信器と、前記超音波送
受信器間で超音波の送受信を行いその送受信信号に基づ
いて流量を算出する流量演算手段とを備え、超音波送受
信器を計測流路の中心部分に配置すると ともに、前記計
測流路の入口側には速度分布を非対称化して流速の最大
値の発生位置を計測流路の中心から一方に偏らせる非対
称流れ促進手段を設けたものである。
In order to solve the above-mentioned problems, the present invention provides a measurement flow path through which a fluid to be measured flows and the measurement.
An introduction part and a derivation part provided on the upstream side and the downstream side of the flow path, at least a pair of ultrasonic transceivers provided so that the ultrasonic wave propagates across the measurement flow path, and the ultrasonic transmission.
Ultrasonic waves are transmitted and received between receivers and based on the transmitted and received signals.
Equipped with a flow rate calculation means for calculating the flow rate
Both Placing signal device in the center portion of the measurement flow path, the meter
The velocity distribution is maximized by making the velocity distribution asymmetric at the inlet side of the measurement flow path.
Non-pair that biases the value generation position to one side from the center of the measurement flow path
It is provided with a flow promoting means.

【0007】上記発明によれば、速度分布が凸型となる
層流域では流速の最大値を偏らせて流速の遅いところを
多くして計測することにより補正係数を大きくし、速度
分布が比較的に平坦となる乱流域では流速の最大値とあ
まり違わない流速域を計測することで従来とあまり変わ
らない補正係数として層流域と乱流域との補正係数の差
を少なくし、流量計測範囲の全域にわたり補正係数の変
化を小さくすることができ、補正係数による誤差の拡大
が防止されて計測精度を高めることができる。また、流
体の動粘性係数の変化によりレイノルズ数が変化しても
補正係数の変化が小さいので計測精度が維持され、流体
温度変化や流体成分変化に対して強い計測装置を実現で
き、実用性を高めることができる。
According to the above invention, in the laminar region where the velocity distribution has a convex shape, the maximum value of the velocity is biased to increase the portion where the velocity is slow and the correction coefficient is increased to increase the velocity.
In the turbulent flow region where the distribution is relatively flat, by measuring the flow velocity region that does not differ much from the maximum value of the flow velocity, the difference between the correction factor between the laminar flow region and the turbulent flow region is reduced as a correction factor that does not differ much from the conventional one. The change of the correction coefficient can be reduced over the entire measurement range, the error due to the correction coefficient can be prevented from expanding, and the measurement accuracy can be improved. Further, even if the Reynolds number changes due to the change of the kinematic viscosity of the fluid, the change of the correction coefficient is small, so the measurement accuracy is maintained, and it is possible to realize a measuring device that is strong against changes in the fluid temperature and changes in the fluid components. Can be increased.

【0008】[0008]

【発明の実施の形態】本発明は、被計測流体が流れる計
測流路と、前記計測流路の上流側および下流側に設けた
導入部および導出部と、前記計測流路を超音波が横切っ
て伝搬するように設けた少なくとも一対の超音波送受信
器と、前記超音波送受信器間で超音波の送受信を行いそ
の送受信信号に基づいて流量を算出する流量演算手段と
を備え、超音波送受信器を計測流路の中心部分に配置す
るとともに、前記計測流路の入口側には速度分布を非対
称化して流速の最大値の発生位置を計測流路の中心から
一方に偏らせる非対称流れ促進手段を設けたものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a measurement flow path which a fluid to be measured flows, the introduction portion and outlet portion provided on the upstream side and the downstream side of the measurement flow path, the measurement flow path ultrasonic across For transmitting and receiving ultrasonic waves between at least one pair of ultrasonic transceivers that are installed to propagate
Flow rate calculation means for calculating the flow rate based on the transmitted and received signals of
, And place the ultrasonic transceiver in the center of the measurement flow path.
In addition, the velocity distribution is unpaired on the inlet side of the measurement flow path.
The position where the maximum value of the flow velocity is generated from the center of the measurement flow path
It is provided with an asymmetrical flow promoting means that biases it to one side.
It

【0009】そして、速度分布が凸型となる層流域では
流速の最大値を偏らせて流速の遅いところを多くして計
測することにより補正係数を大きくし、速度分布が比較
的に平坦となる乱流域では流速の最大値とあまり違わな
い流速域を計測することで従来とあまり変わらない補正
係数として層流域と乱流域との補正係数の差を少なく
し、流量計測範囲の全域にわたり補正係数の流量変化特
性は平坦化され計測精度の向上ができる。また、流体の
物性値変化が生じても計測精度の維持がなされ、実用
性、利便性を高めることができる。
In the laminar flow region where the velocity distribution is convex, the correction coefficient is increased by biasing the maximum value of the velocity and increasing the portion where the velocity is slow, and the velocity distribution becomes relatively flat. In the turbulent flow region, the flow velocity region that is not much different from the maximum value of the flow velocity is measured to reduce the difference between the correction factors for the laminar flow region and the turbulent flow region as a correction factor that does not differ much from the conventional one, and The flow rate change characteristic is flattened and the measurement accuracy can be improved. Further, even if the physical property value of the fluid changes, the measurement accuracy is maintained, and the practicality and convenience can be improved.

【0010】また本発明の非対称流れ促進手段は導入部
に対して計測流路を偏芯することで形成したものであ
る。そして、流路形状を簡略化でき、加工性を高めて低
コスト化できる。
Further, the asymmetrical flow promoting means of the present invention has an introduction part.
It is formed by eccentricizing the measurement flow path with respect to
It Further, the flow path shape can be simplified, the workability can be improved, and the cost can be reduced.

【0011】また、本発明の非対称流れ促進手段は、導
入部と計測流路とを屈曲部を介して連結することで構成
したものである。そして、屈曲部での遠心力の作用によ
り屈曲部の外周側に流れを偏らせて速度分布を非対称化
させて補正係数の流量変化特性を平坦化することがで
き、計測流路に対して入口、出口となる導入部、導出部
を屈曲させて配置することにより、幅を小さくして小型
化でき設置性を高めることができる。
Further , the asymmetrical flow promoting means of the present invention includes a guide.
Configured by connecting the inlet part and the measurement channel via the bent part
It was done. Then, the centrifugal force at the bent portion causes the flow to be biased toward the outer peripheral side of the bent portion to make the velocity distribution asymmetric.
It is possible to flatten the flow rate change characteristic of the correction coefficient, and by bending and arranging the inlet and outlet inlets and outlets with respect to the measurement channel, the width can be reduced and the size can be reduced. You can improve your sex.

【0012】また、本発明の非対称流れ促進手段は、計
測流路の入口側に設けた段差部で構成したものである。
そして、段差の大きさの調整により計測流路の最大流速
位置の偏りを維持する流量の上限値を変えることができ
るため、広い計測範囲に対して補正係数の流量変化特性
の平坦化に適応でき、計測範囲の異なる仕様への適応性
を高めることができ生産性を向上できる。
Further , the asymmetrical flow promoting means of the present invention is
It is composed of a stepped portion provided on the inlet side of the measurement channel.
Then, by adjusting the size of the step, the maximum flow velocity in the measurement channel
Since the upper limit of the flow rate that maintains the position deviation can be changed, it can be applied to the flattening of the flow rate change characteristics of the correction coefficient over a wide measurement range, and the adaptability to specifications with different measurement ranges can be improved. Productivity can be improved.

【0013】また、本発明の非対称流れ促進手段は、計
測流路の入口側の一方の端部と他方の端部の形状を異な
らせた異形状部とで構成したものである。そして、上下
両端部の形状を大きく変えることで計測流路の最大流速
位置の偏りを大きくでき、補正係数の流量変化特性の平
坦性を促進して計測精度を向上できる。
The asymmetrical flow promoting means of the present invention is
The shape of the one end and the other end on the inlet side of the measurement
The deformed shape portion is formed. Then, the maximum flow velocity of the measurement flow path can be changed by changing the shapes of the upper and lower ends.
The positional deviation can be increased, the flatness of the flow rate change characteristic of the correction coefficient can be promoted, and the measurement accuracy can be improved.

【0014】また、本発明の非対称流れ促進手段は、計
測流路の入口側に設けた段差部と、計測流路の入口側の
一方の端部と他方の端部の形状を異ならせた異形状部で
構成したものである。
The asymmetrical flow promoting means of the present invention is
The stepped part provided on the inlet side of the measurement flow path and the inlet side of the measurement flow path
With a different shape part where the shape of one end and the other end is different
It is composed.

【0015】そして、段差の大きさの調整により計測範
囲の異なる仕様に対して補正係数の流量変化特性を平坦
化できるとともに、異形状部により計測流路の最大流速
位置の偏りを拡大して補正係数の流量変化特性の平坦性
を促進して、幅広い計測範囲に対して補正係数の平坦性
を促進して計測精度を向上できる。
By adjusting the size of the step, the flow rate change characteristic of the correction coefficient can be flattened for specifications with different measurement ranges, and the maximum flow velocity of the measurement flow path can be obtained by the different shape portion.
The deviation of the position is enlarged to promote the flatness of the flow rate change characteristic of the correction coefficient, and the flatness of the correction coefficient is promoted over a wide measurement range to improve the measurement accuracy.

【0016】また、本発明の非対称流れ促進手段は、導
入部と計測流路とを接続する屈曲部と、前記屈曲部の外
周面側に連なる計測流路の入口側に設けた段差部により
構成したものである。
Further , the asymmetrical flow promoting means of the present invention includes
The bent portion that connects the inlet and the measurement flow path, and the outside of the bent portion.
Due to the stepped portion provided on the inlet side of the measurement flow path connected to the peripheral surface side
It is composed.

【0017】そして、屈曲部と段差部の相互作用により
計測流路の速度分布の非対称化を促進して幅広い計測範
囲に対して補正係数の平坦化を推進でき、計測範囲の異
なる仕様への適応性が高く小型コンパクト化な装置を実
現できる。
The interaction between the bent portion and the stepped portion promotes the asymmetry of the velocity distribution of the measurement flow path to promote the flattening of the correction coefficient over a wide measurement range, and adapts to the specifications of different measurement ranges. A highly compact and compact device can be realized.

【0018】また、本発明の非対称流れ促進手段は、導
入部と計測流路とを接続する屈曲部と、前記屈曲部の外
周面側に連なる計測流路の入口側に設けた段差部と、計
測流路の入口側の一方の端部と他方の端部の形状を異な
らせた異形状部とにより構成したものである。
Further , the asymmetrical flow promoting means of the present invention includes
The bent portion that connects the inlet and the measurement flow path, and the outside of the bent portion.
The stepped portion provided on the inlet side of the measurement flow path connected to the peripheral surface side,
The shape of the one end and the other end on the inlet side of the measurement
The deformed shape portion is formed.

【0019】そして、屈曲部と段差部と異形状部との相
互作用により幅広い計測範囲に対して補正係数の平坦化
の推進と補正係数の平坦性の向上により計測精度を高め
ることができ、小型コンパクト化による設置性の向上が
できる。
Further, the interaction of the bent portion, the step portion and the irregular shape portion promotes the flattening of the correction coefficient over a wide measurement range and improves the flatness of the correction coefficient, so that the measurement accuracy can be improved and the size is small. Installation can be improved by making it compact.

【0020】また、本発明の非対称流れ促進手段は、計
測流路の入口側に設けられ、速度分布の偏芯を促すよう
に流れ抵抗を異ならせた整流体で構成したものである。
そして、計測流路の位置による流れ抵抗を任意に異なら
せることにより速度分布の非対称化を最適化でき、補正
係数の平坦化を向上できる。
Further , the asymmetrical flow promoting means of the present invention is
It is installed on the inlet side of the measurement channel to promote eccentricity of velocity distribution.
It is composed of rectifiers with different flow resistance.
Then, by making the flow resistance depending on the position of the measurement flow path arbitrarily different, the asymmetry of the velocity distribution can be optimized, and the flattening of the correction coefficient can be improved.

【0021】また、本発明の異形状部は、計測流路の入
口側の一方の端部を階段状とし、他方の端部は曲率を有
する滑らか形状としたものである。そして、計測流路の
最大流速位置の偏りを大きくできるとともに、曲率を持
ち滑らかに変化する形状により流れの安定性を高めるこ
とができ計測精度を安定化できる。
Further, the deformed portion of the present invention is provided with an inlet for the measurement flow path.
One end on the mouth side is stepped, and the other end has a curvature.
It has a smooth shape. And of the measurement flow path
The deviation of the maximum flow velocity position can be increased, and the flow stability can be improved by the shape having a curvature and smoothly changing, and the measurement accuracy can be stabilized.

【0022】また、本発明の異形状部は、計測流路の入
口側の一方の端部と他方の端部の位置をずらして構成し
たものである。そして、計測流路の最大流速位置の偏り
一層大きくでき、補正係数の平坦性を向上できる。
Further, the deformed portion of the present invention is provided with an inlet for the measurement flow path.
It is constructed by shifting the positions of one end on the mouth side and the other end.
It is a thing. And deviation of the maximum flow velocity position of the measurement flow path
The possible further increase, thereby improving the flatness of the correction factor.

【0023】また、本発明の導入部と導出部は同軸上あ
るいは平行に配置したものである。そして、流路形状の
簡略化を一層促進して低コスト化と小型化を向上でき
る。
The introduction part and the derivation part of the present invention are coaxial.
Rui are arranged in parallel. Further, simplification of the flow path shape can be further promoted, and cost reduction and size reduction can be improved.

【0024】また、本発明の超音波送受信器は、計測流
路の中心から偏芯させて配置したものである。そして、
超音波送受信器の偏芯位置を、層流状態で流れる低流速
域における補正係数の値が乱流域の値に近い値になるよ
うに最適に偏芯させて設定でき、補正係数の変化が平坦
な領域を低流速側に拡大できる。
Further , the ultrasonic transmitter / receiver of the present invention is provided with a measuring flow.
It is arranged eccentrically from the center of the road. And
The eccentric position of the ultrasonic transmitter / receiver can be optimally eccentrically set so that the value of the correction coefficient in the low velocity region flowing in the laminar flow state is close to the value in the turbulent flow region, and the change in the correction factor is flat. This region can be expanded to the low flow velocity side.

【0025】また、超音波送受信器は、計測流路の中心
から屈曲部の外周面側に偏芯させて配置したものであ
る。そして、屈曲部での遠心力の作用により屈曲部の外
周側への流れの偏りは流量が増大するほど促進できるた
めに大流量域での補正係数を小さくでき、小流量域での
補正係数との差を縮小して広い計測範囲にわたり補正係
数の平坦性を向上できる。
The ultrasonic transmitter / receiver is located at the center of the measurement flow path.
Is eccentrically arranged on the outer peripheral surface side of the bent portion.
It Further, since the bias of the flow toward the outer peripheral side of the bent portion due to the action of the centrifugal force at the bent portion can be promoted as the flow rate increases, the correction coefficient in the large flow area can be made small and the correction coefficient in the small flow area can be reduced. It is possible to reduce the difference between the two and improve the flatness of the correction coefficient over a wide measurement range.

【0026】また、超音波送受信器は、計測流路よりも
小さい超音波放出面を設けたものである。そして、超音
波送受信器をいくらか偏芯させて配置しても超音波を有
効に超音波伝搬路へ放出でき、超音波の送受信感度の低
下を防止しS/Nを高めた計測により計測精度を向上で
きる。さらに、偏芯自由度が拡大でき、計測流路の代表
部分の領域に超音波を伝搬させて計測することで補正係
数の平坦性を向上できる。
Further , the ultrasonic transmitter / receiver is more
It is provided with a small ultrasonic wave emitting surface. And super sound
Even if the wave transceiver is arranged with some eccentricity, it is possible to effectively emit ultrasonic waves to the ultrasonic wave propagation path, prevent deterioration of ultrasonic wave transmission / reception sensitivity, and improve measurement accuracy by measurement with an increased S / N. Further, the degree of freedom of eccentricity can be increased, and the flatness of the correction coefficient can be improved by propagating the ultrasonic wave to the region of the representative portion of the measurement flow channel and performing measurement.

【0027】[0027]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】(実施例1) 図1および図2は本発明の実施例1を示す超音波流量計
測装置の縦断面図および横断面図である。図において、
5は流路壁6に囲まれた計測流路であり、7および8は
互いに対向するように流路壁6に取付けた上流側および
下流側の超音波送受信器である。上流側の超音波送受信
器7と下流側の超音波送受信器8は計測流路5の幅W方
向を横切るように距離Lを隔てるとともに計測流路5の
流体の流動方向に対して角度θ傾けて設置され、計測流
路5の高さH方向に対して高さのほぼ中心に設置されて
いる。9a、9bは超音波送受信器7、8を計測流路5
に臨ませる上流側および下流側の開口穴である。10は
対向する超音波送受信器7および8間で送信された超音
波が直接相手側に伝搬する超音波伝搬路(二点鎖線で領
域を示す)である。11は計測流路5の上流側に設け被
計測流体の入口となる導入部であり、12は計測流路5
の下流側に設け被計測流体の出口となる導出部である。
13は計測流路5と導入部11とを連結する上流側の屈
曲部であり、屈曲部13は計測流路5の高さH方向に屈
曲している。14は計測流路5と導出部12とを連結す
る下流側の屈曲部であり、屈曲部14は計測流路5の高
さH方向に屈曲している。15は計測流路5の高さH方
向の速度分布Sを高さ中心に対して非対称化させて高さ
H方向の流速の最大値の発生位置Tを高さ中心から一方
に偏らせる非対称流れ促進手段である。ここでは、非対
称流れ促進手段15は上流側の屈曲部13と、計測流路
5の入口側の高さH方向に設けた段差部16と、計測流
路5の入口側の高さH方向の一方の端部17と他方の端
部18の形状を異ならせて形成した異形状部19で形成
されている。また、段差部16は上流側の屈曲部13の
外周面13a側に設けられる。さらに、異形状部19は
計測流路5の入口側の高さH方向の一方の端部17を先
端にコーナーRを設けない階段状とし、他方の端部18
は曲率を有し高さ方向に滑らかに断面が変化する滑らか
形状としている。
(Embodiment 1) FIGS. 1 and 2 are a longitudinal sectional view and a transverse sectional view of an ultrasonic flow rate measuring apparatus showing Embodiment 1 of the present invention. In the figure,
Reference numeral 5 denotes a measurement flow path surrounded by the flow path wall 6, and reference numerals 7 and 8 denote upstream and downstream ultrasonic transmitter / receivers attached to the flow path wall 6 so as to face each other. The upstream ultrasonic transmitter / receiver 7 and the downstream ultrasonic transmitter / receiver 8 are separated from each other by a distance L so as to cross the width W direction of the measurement flow path 5 and inclined by an angle θ with respect to the flow direction of the fluid in the measurement flow path 5. The measurement flow path 5 is installed at approximately the center of the height H direction. Reference numerals 9a and 9b denote ultrasonic transmitters / receivers 7 and 8 for measuring the flow path 5.
These are the opening holes on the upstream side and the downstream side that are exposed to. Reference numeral 10 denotes an ultrasonic wave propagation path (indicated by a chain double-dashed line) in which ultrasonic waves transmitted between the ultrasonic wave transmitters / receivers 7 and 8 which oppose each other propagate directly to the other party. Reference numeral 11 is an introduction portion that is provided on the upstream side of the measurement flow path 5 and serves as an inlet for the fluid to be measured, and 12 is the measurement flow path 5
It is a lead-out portion which is provided on the downstream side of and serves as an outlet for the fluid to be measured.
Reference numeral 13 is an upstream bent portion that connects the measurement flow path 5 and the introduction portion 11, and the bent portion 13 is bent in the height H direction of the measurement flow path 5. Reference numeral 14 is a downstream bent portion that connects the measurement flow path 5 and the lead-out portion 12, and the bent portion 14 is bent in the height H direction of the measurement flow path 5. Reference numeral 15 is an asymmetric flow in which the velocity distribution S in the height H direction of the measurement flow path 5 is made asymmetric with respect to the height center and the generation position T of the maximum value of the flow velocity in the height H direction is biased to one side from the height center. It is a means of promotion. Here, the asymmetrical flow promoting means 15 includes a bent portion 13 on the upstream side, a step portion 16 provided in the height H direction on the inlet side of the measurement flow path 5, and a height H direction on the inlet side of the measurement flow path 5. The one end 17 and the other end 18 are formed of differently shaped portions 19 formed differently. Further, the step portion 16 is provided on the outer peripheral surface 13a side of the bent portion 13 on the upstream side. Further, the irregular shape portion 19 has one end 17 in the height H direction on the inlet side of the measurement flow path 5 which has a stepped shape with no corner R at the tip, and the other end 18
Has a smooth shape with a curvature and a smoothly changing cross section in the height direction.

【0029】20は非対称流れ促進手段15と超音波伝
搬路10との間に設けた流れ安定手段であり、計測流路
5の断面を分割して流れ方向を整える格子状の方向規制
部20aと流速変動を低減するメッシュなどの網状体で
形成した変動抑制部20bを備えている。流れ安定手段
20は非対称流れ促進手段15により非対称化した速度
分布を保持させるとともに、流れ方向や速度変動を整え
て超音波伝搬路10に流れを送り込むものである。21
は超音波送受信器7,8に接続され超音波の送受信をさ
せる計測制御部22と、計測制御部22での信号を基に
流速を計算し流量を算出する演算部23を備えた流量演
算手段である。
Reference numeral 20 denotes a flow stabilizing means provided between the asymmetrical flow promoting means 15 and the ultrasonic wave propagation path 10, and a lattice-shaped direction regulating portion 20a for dividing the cross section of the measurement flow path 5 to adjust the flow direction. A fluctuation suppressing portion 20b formed of a mesh-like body such as a mesh for reducing fluctuations in flow velocity is provided. The flow stabilizing means 20 holds the velocity distribution asymmetrical by the asymmetrical flow promoting means 15 and adjusts the flow direction and velocity fluctuation to send the flow to the ultrasonic wave propagation path 10. 21
Is a flow rate calculation means including a measurement control unit 22 connected to the ultrasonic wave transmitters / receivers 7 and 8 for transmitting and receiving ultrasonic waves, and a calculation unit 23 for calculating a flow rate based on a signal from the measurement control unit 22 to calculate a flow rate. Is.

【0030】次に、この超音波流量計測装置の動作につ
いて説明する。導入部11から流入した被計測流体は計
測流路5の入口側に設けられた非対称流れ促進手段15
により計測流路5の高さH方向の速度分布が高さ中央に
対して略対称ではなく非対称形をした形状となる。すな
わち、計測流路5の流れが層流域あるいは層流から乱流
に変わりつつある遷移域では、図1の速度分布Sで示す
ように壁面から遠ざかるにつれて順次速度が大きくなる
放物線状の凸型であり最大流速の発生位置Tが高さの中
央付近よりわずかに一方側(図面下方)に偏っている。
これに対して計測流路5を流れる流量が多くなり乱流域
になると、図3(乱流域の速度分布を示す超音波流量計
測装置の縦断面図)の速度分布Rで示すように高さ方向
の速度変化は少なくなり比較的平坦な高原状であるが最
大流速の発生位置Uは高さの中央付近より一方側(図面
下方)に偏っている。非対称流れ促進手段15により生
じた非対称化された速度分布は、流れ安定手段20によ
り流れ方向を整えられるとともに速度変動を安定化され
て超音波伝搬路10に達するまでその速度分布形状を保
持させるものである。
Next, the operation of this ultrasonic flow rate measuring device will be described. The fluid to be measured that has flowed in from the introduction section 11 is an asymmetrical flow promoting means 15 provided on the inlet side of the measurement flow path 5.
As a result, the velocity distribution in the height H direction of the measurement flow path 5 is not substantially symmetrical with respect to the height center but has an asymmetric shape. That is, in the transition region in which the flow of the measurement flow path 5 is changing from the laminar flow region or the laminar flow to the turbulent flow, as shown by the velocity distribution S in FIG. 1, a parabolic convex shape in which the velocity gradually increases as the distance from the wall surface increases. Yes The position T where the maximum flow velocity is generated is slightly deviated to one side (downward in the drawing) from the vicinity of the center of the height.
On the other hand, when the flow rate flowing through the measurement flow path 5 increases and becomes a turbulent flow region, as shown by a velocity distribution R in FIG. 3 (a longitudinal sectional view of the ultrasonic flow rate measuring device showing the velocity distribution in the turbulent flow region), The velocity change is small and the plateau is relatively flat, but the position U where the maximum flow velocity is generated is biased to one side (downward in the drawing) from the vicinity of the center of the height. The asymmetrical velocity distribution generated by the asymmetrical flow promoting means 15 has its flow direction regulated by the flow stabilizing means 20 and its velocity fluctuation is stabilized to maintain its velocity distribution shape until it reaches the ultrasonic wave propagation path 10. Is.

【0031】次に超音波による流量計測動作を説明す
る。計測流路5では、高さ方向の速度分布を非対称化し
た流れに対して計測制御部22の作用により超音波送受
信器7,8間で計測流路5の流路断面の幅Wを横切るよ
うにして超音波の送受が行われる。すなわち、上流側の
超音波送受信器7から発せられた超音波が下流側の超音
波送受信器8で受信されるまでの伝搬時間T1を計測す
る。また一方、下流側の超音波送受信器8から発せられ
た超音波が上流側の超音波送受信器7で受信されるまで
の伝搬時間T2を計測する。
Next, the flow rate measuring operation using ultrasonic waves will be described. In the measurement flow path 5, the measurement controller 22 acts so as to cross the width W of the flow path cross section of the measurement flow path 5 between the ultrasonic transceivers 7 and 8 with respect to the flow in which the velocity distribution in the height direction is asymmetrical. Then, ultrasonic waves are transmitted and received. That is, the propagation time T1 until the ultrasonic waves emitted from the upstream ultrasonic transceiver 7 are received by the downstream ultrasonic transceiver 8 is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the ultrasonic wave transmitter / receiver 8 on the downstream side is received by the ultrasonic wave transmitter / receiver 7 on the upstream side is measured.

【0032】このようにして測定された伝搬時間T1お
よびT2を基に、以下の演算式により演算部23で流量
が算出される。
Based on the propagation times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 23 by the following calculation formula.

【0033】いま、計測流路5の流動方向の被計測流体
の流速Vと超音波伝搬路10とのなす角度をθとし、超
音波送受信器7,8間の距離をL、被測定流体の音速を
Cとすると、流速Vは以下の式にて算出される。
Now, the angle formed by the flow velocity V of the fluid to be measured in the flow direction of the measurement flow path 5 and the ultrasonic wave propagation path 10 is θ, the distance between the ultrasonic wave transmitters / receivers 7 and 8 is L, and the distance of the fluid to be measured is L. When the speed of sound is C, the flow velocity V is calculated by the following formula.

【0034】T1=L/(C+Vcosθ) T2=L/(C−Vcosθ) T1の逆数からT2の逆数を引き算する式より音速Cを
消去して V=(L/2cosθ)((1/T1)−(1/T2)) θおよびLは既知なのでT1およびT2の値より流速V
が算出できる。いま、空気の流量を計ることを考え、角
度θ=45度、距離L=70mm、音速C=340m/s、
流速V=8m/sを想定すると、T1=2.0×10-4
秒、T2=2.1×10-4秒であり、瞬時計測ができ
る。
T1 = L / (C + Vcosθ) T2 = L / (C-Vcosθ) By subtracting the reciprocal of T2 from the reciprocal of T1, the sound velocity C is eliminated and V = (L / 2cosθ) ((1 / T1) -(1 / T2)) Since θ and L are known, the flow velocity V is calculated from the values of T1 and T2.
Can be calculated. Considering to measure the flow rate of air, angle θ = 45 degrees, distance L = 70 mm, sound velocity C = 340 m / s,
Assuming a flow velocity V = 8 m / s, T1 = 2.0 × 10 -4
Second, T2=2.1.times.10@-4 second, and instantaneous measurement is possible.

【0035】ところが、ここで求めた流速Vは計測流路
5を斜めに横切る超音波伝搬路10で計測したものであ
り、超音波伝搬路10で計測した平均流速は断面位置に
より流れの発達状態が違うとともに高さH方向の断面で
は流路全域を計測していないため計測流路5に直交する
横断面全域から求めた平均流速とに差を生じる。しか
も、超音波伝搬路10内の超音波の強度分布は超音波送
受信器7、8の中心軸側である中央が強くなる特性を持
つため、超音波伝搬路10内の高さ方向の中心部を主体
に計測することになる。
However, the flow velocity V obtained here is measured by the ultrasonic wave propagation path 10 that obliquely crosses the measurement flow path 5, and the average flow speed measured by the ultrasonic wave propagation path 10 is the state of flow development depending on the cross-sectional position. However, since the entire flow passage is not measured in the cross section in the height H direction, there is a difference in the average flow velocity obtained from the entire cross section orthogonal to the measurement flow passage 5. Moreover, since the intensity distribution of the ultrasonic waves in the ultrasonic wave propagation path 10 has a characteristic that the center of the ultrasonic wave transmitters / receivers 7, 8 which is on the central axis side becomes strong, the central portion of the ultrasonic wave propagation path 10 in the height direction is Will be measured mainly.

【0036】このため、補正係数を加えて流量を算出
し、計測流路5の流れ方向に直交する横断面積Sより、
流量Qは Q=KVS ここで、Kは横断面積Sにおける速度分布を考慮した補
正係数である。
Therefore, the flow rate is calculated by adding the correction coefficient, and from the cross-sectional area S orthogonal to the flow direction of the measurement flow channel 5,
The flow rate Q is Q = KVS, where K is a correction coefficient considering the velocity distribution in the cross-sectional area S.

【0037】このようにして演算部23で流量を求める
ことができる。
In this way, the calculation unit 23 can determine the flow rate.

【0038】特に、非対称流れ促進手段15が無い場合
では、層流域では放物線状の凸型となった最大流速部が
超音波伝搬路10内の高さ方向の中央部に位置するた
め、補正係数は乱流域に比べてかなり小さい値となる。
従って、図4(非対称流れ促進手段が無い場合の補正係
数の特性図)に示すように層流域から乱流域に移行する
遷移域において補正係数が大きく変化し、計測流量に誤
差ΔQmの発生により補正係数がΔK1と大きく変わる
ことにより誤差が拡大される。この誤差は流体の温度変
化あるいは流体の組成割合の変化などにより動粘性係数
が変わり、レイノルズ数の違いにより流れ状態の違いに
より発生したりする。とくに、都市ガス、LPG(液化
石油ガス)等の流量を計測する場合では、季節あるいは
地域の違いによるガス組成の変化が考えられる場合は考
慮する必要がある。
In particular, in the case where the asymmetrical flow promoting means 15 is not provided, the maximum flow velocity portion having a parabolic convex shape is located in the central portion of the ultrasonic wave propagation path 10 in the height direction in the laminar flow region. Is considerably smaller than that in the turbulent region.
Therefore, as shown in FIG. 4 (characteristic diagram of the correction coefficient when there is no asymmetrical flow promoting means), the correction coefficient greatly changes in the transition region where the laminar flow region changes to the turbulent flow region, and the measurement flow rate is corrected by the error ΔQm. The error is magnified because the coefficient greatly changes from ΔK1. This error may occur due to a difference in flow state due to a difference in Reynolds number due to a change in kinematic viscosity coefficient due to a change in fluid temperature or a change in fluid composition ratio. In particular, when measuring the flow rate of city gas, LPG (liquefied petroleum gas), etc., it is necessary to consider when the gas composition change due to the difference of seasons or regions.

【0039】図5は計測流路5の入口側に非対称流れ促
進手段15を設置した場合の補正係数の流量変化特性を
示したものであり、計測流路5の高さ方向の速度分布を
中心より一方に偏らせることにより、高さ方向の速度分
布が凸型となる層流域では流速の最大値を偏らせて流速
の遅いところを多くして計測することにより補正係数を
大きくし、高さ方向の速度分布が比較的に平坦となる乱
流域では流速の最大値とあまり違わない流速域を計測す
ることで従来とあまり変わらない補正係数として層流域
と乱流域との補正係数の差を少なくでき、流速の大きい
本来乱流域の補正係数との差が小さくでき、層流から乱
流へ移行する遷移域でも補正係数の変化は小さく、補正
係数の平坦化がなされる。従って、計測流量に誤差ΔQ
mを生じても補正係数の変化はΔK2(K2<K1)と
十分小さくでき、計測精度を高めた計測ができる。温度
変化あるいは流体の組成変化が有る場合は補正係数の平
坦化は有効であり、特に組成変化および温度変化が考え
られる都市ガス、LPGなどの燃料ガスの流量を計測す
る場合はより一層精度を高めた計測が実現できる。
FIG. 5 shows the flow rate change characteristics of the correction coefficient when the asymmetrical flow promoting means 15 is installed on the inlet side of the measurement flow path 5, centering on the velocity distribution in the height direction of the measurement flow path 5. In the laminar flow area where the velocity distribution in the height direction is convex by biasing it toward one side, the maximum correction value of the velocity is biased and the slow velocity is increased to increase the correction coefficient. In the turbulent flow region where the velocity distribution in the direction is relatively flat, by measuring the flow velocity region that is not much different from the maximum value of the flow velocity, the difference between the correction factor between the laminar flow region and the turbulent flow region is reduced as a correction factor that does not differ much from the conventional one. Therefore, the difference from the correction coefficient in the originally turbulent flow area where the flow velocity is high can be made small, and the change in the correction coefficient is small even in the transition region where the laminar flow changes to the turbulent flow, and the correction coefficient is flattened. Therefore, the measured flow rate has an error ΔQ.
Even if m is generated, the change in the correction coefficient can be made sufficiently small as ΔK2 (K2 <K1), and measurement with high measurement accuracy can be performed. It is effective to flatten the correction coefficient when there is a temperature change or composition change of the fluid. Especially, when measuring the flow rate of fuel gas such as city gas or LPG where composition change and temperature change are considered, the accuracy is further improved. Measurement can be realized.

【0040】このように、高さ方向の速度分布が凸型と
なる層流域では流速の最大値を偏らせて流速の遅いとこ
ろを多くして計測することにより補正係数を大きくし、
高さ方向の速度分布が比較的に平坦となる乱流域では流
速の最大値とあまり違わない流速域を計測することで従
来とあまり変わらない補正係数として層流域と乱流域と
の補正係数の差を少なくし、流量計測範囲の全域にわた
り補正係数の変化を小さくすることができ、補正係数に
よる誤差の拡大が防止されて計測精度を高めることがで
きる。また、流体の動粘性係数の変化によりレイノルズ
数が変化しても補正係数の変化が小さいので計測精度が
維持され、流体温度変化や流体成分変化に対して強い計
測装置を実現でき、実用性を高めることができる。
As described above, in the laminar flow region in which the velocity distribution in the height direction is convex, the maximum value of the flow velocity is biased to increase the correction factor by increasing the portion where the flow velocity is slow,
In the turbulent flow region where the velocity distribution in the height direction is relatively flat, by measuring the flow velocity region that is not much different from the maximum value of the flow velocity, the difference between the correction factors of the laminar flow region and the turbulent flow region is the same as before. Therefore, it is possible to reduce the change in the correction coefficient over the entire flow rate measurement range, prevent the error from increasing due to the correction coefficient, and improve the measurement accuracy. Further, even if the Reynolds number changes due to the change of the kinematic viscosity of the fluid, the change of the correction coefficient is small, so the measurement accuracy is maintained, and it is possible to realize a measuring device that is strong against changes in the fluid temperature and changes in the fluid components. Can be increased.

【0041】また、非対称流れ促進手段15は導入部1
1と計測流路5とを計測流路5の高さ方向に屈曲する屈
曲部13を介して連結することで形成することにより、
屈曲部13での遠心力の作用により屈曲部13の外周面
13a側の計測流路5の流路壁6aに流れを偏らせて高
さ方向の速度分布の非対称化させる。そして、補正係数
の流量変化特性を平坦化することができ、計測流路に対
して入口、出口となる導入部、導出部を屈曲させて配置
することにより、幅を小さくして小型化でき設置性を高
めることができる。
Further, the asymmetrical flow promoting means 15 has the introduction part 1
1 and the measurement flow channel 5 are formed by connecting the measurement flow channel 5 via the bent portion 13 that bends in the height direction of the measurement flow channel 5,
By the action of the centrifugal force in the bent portion 13, the flow is biased to the flow passage wall 6a of the measurement flow passage 5 on the outer peripheral surface 13a side of the bent portion 13 to make the velocity distribution in the height direction asymmetric. The flow rate change characteristics of the correction coefficient can be flattened, and the inlet and outlet inlets and outlets can be bent and arranged with respect to the measurement channel to reduce the width and reduce the size. You can improve your sex.

【0042】また、非対称流れ促進手段15は計測流路
5の入口側の高さ方向に設けた段差部16で形成するこ
とにより、段差により流れに縮流を発生させて速度分布
を偏らせるとともに、段差の大きさの調整により図3に
示した乱流域での計測流路15の高さ方向の最大流速位
置の偏りを維持する流量の上限値を変えることができ、
段差を大きくすることにより流量係数を平坦化できる流
量の上限値を高められ、計測範囲の要求仕様に応じて段
差の大きさを設定できる。このため広い計測範囲に対し
て補正係数の流量変化特性の平坦化に適応でき、計測範
囲の異なる仕様への適応性を高めることができ生産性を
向上できる。
Further, the asymmetrical flow promoting means 15 is formed by the step portion 16 provided in the height direction on the inlet side of the measurement flow path 5, so that the step causes a contraction in the flow and biases the velocity distribution. By adjusting the size of the step, it is possible to change the upper limit value of the flow rate that maintains the bias of the maximum flow velocity position in the height direction of the measurement flow channel 15 in the turbulent flow region shown in FIG.
By increasing the step, the upper limit of the flow rate at which the flow coefficient can be flattened can be increased, and the step size can be set according to the required specifications of the measurement range. Therefore, it is possible to adapt to the flattening of the flow rate change characteristic of the correction coefficient over a wide measurement range, and it is possible to improve the adaptability to the specifications with different measurement ranges and improve the productivity.

【0043】また、非対称流れ促進手段15は計測流路
5の入口側の高さ方向の一方の端部17と他方の端部1
8の形状を異ならせて形成した異形状部19とすること
により、図中の上下の両端部の形状を大きく変えること
で計測流路5の高さ方向での最大流速位置の偏りを大き
くでき、補正係数の流量変化特性の平坦性を促進して計
測精度を向上できる。
The asymmetrical flow promoting means 15 includes one end 17 in the height direction on the inlet side of the measurement flow path 5 and the other end 1 in the height direction.
By using the differently shaped portions 19 formed by making the shapes of 8 different, it is possible to largely deviate the maximum flow velocity position in the height direction of the measurement flow path 5 by largely changing the shapes of the upper and lower end portions in the figure. Therefore, the flatness of the flow rate change characteristic of the correction coefficient can be promoted to improve the measurement accuracy.

【0044】また、非対称流れ促進手段15は、計測流
路5の入口側の高さ方向に設けた段差部16と、計測流
路5の入口側の高さ方向の一方の端部17と他方の端部
18を異ならせて形成した異形状部19で形成すること
により、段差の大きさの調整により計測範囲の異なる仕
様に対して補正係数の流量変化特性を平坦化できるとと
もに、異形状部19により計測流路5の高さ方向での最
大流速位置の偏りを拡大して補正係数の流量変化特性の
平坦性を促進して、幅広い計測範囲に対して補正係数の
平坦性を促進して計測精度を向上できる。
The asymmetrical flow promoting means 15 includes a step portion 16 provided in the height direction on the inlet side of the measurement flow path 5, one end 17 in the height direction on the inlet side of the measurement flow path 5, and the other. By forming the end portion 18 of the different shape with the different shape portion 19, the flow rate change characteristic of the correction coefficient can be flattened for the specifications with different measurement ranges by adjusting the size of the step, and the different shape portion can be formed. The deviation of the maximum flow velocity position in the height direction of the measurement flow path 5 is expanded by 19 to promote the flatness of the flow rate change characteristic of the correction coefficient, and to promote the flatness of the correction coefficient over a wide measurement range. The measurement accuracy can be improved.

【0045】図6は他の実施例の超音波流量計測装置の
縦断面部分図で、導入部11と計測流路5を平行あるい
は同軸上に配置し、計測流路5の入口側の高さ方向の両
端に段差部16を設けるとともに、一方の端部17と他
方の端部18の形状を異ならせて形成した異形状部19
で非対称流れ促進手段15を形成しているもので、被計
測流体の入口である導入部11と計測流路5とを短く接
続してコンパクトな流路構成ができる。
FIG. 6 is a vertical cross-sectional partial view of an ultrasonic flow rate measuring device according to another embodiment, in which the introduction portion 11 and the measurement flow path 5 are arranged in parallel or coaxially, and the height of the measurement flow path 5 on the inlet side is set. The stepped portions 16 are provided at both ends in the direction, and the one-sided end portion 17 and the other-sided end portion 18 are formed to have different shapes.
Since the asymmetrical flow promoting means 15 is formed in this way, the introduction part 11 which is the inlet of the fluid to be measured and the measurement flow path 5 can be connected in a short manner to form a compact flow path structure.

【0046】また、非対称流れ促進手段15は、導入部
11と計測流路5とを接続する計測流路の高さ方向に屈
曲する屈曲部13と、屈曲部13の外周面13a側に連
なる計測流路5の入口側に設けた段差部16により形成
したものである。そして、屈曲部と段差部の相互作用に
より計測流路高さ方向の速度分布は非対称化が促進さ
れ、乱流化が進む大流量域においても非対称形が維持で
きるため幅広い計測範囲に対して補正係数の平坦化を推
進でき、計測範囲の異なる仕様への適応性が高く小型コ
ンパクト化な装置を実現できる。
The asymmetrical flow promoting means 15 is connected to the bent portion 13 that bends in the height direction of the measurement flow passage that connects the introduction portion 11 and the measurement flow passage 5, and the measurement continuous to the outer peripheral surface 13a side of the bent portion 13. It is formed by the step portion 16 provided on the inlet side of the flow path 5. The velocity distribution in the height direction of the measurement channel is promoted to be asymmetrical due to the interaction between the bent part and the stepped part, and the asymmetrical shape can be maintained even in the large flow rate region where turbulent flow is advancing. It is possible to promote the flattening of the coefficient and realize a compact and compact device that is highly adaptable to specifications with different measurement ranges.

【0047】また、非対称流れ促進手段15は、導入部
11と計測流路5とを接続する計測流路の高さ方向に屈
曲する屈曲部13と、屈曲部13の外周面13a側に連
なる計測流路5の入口側に設けた段差部16と、計測流
路5の入口側の高さ方向の一方の端部17と他方の端部
18を異ならせて形成した異形状部19とにより形成し
たものである。そして、屈曲部13と段差部16と異形
状部19との相互作用により大流量域における非対称形
の維持および拡大と最大流速位置の偏りの拡大を促進し
て、幅広い計測範囲に対して補正係数の平坦化の推進と
補正係数の平坦性の向上により計測精度を高めることが
でき、小型コンパクト化による設置性の向上ができる。
The asymmetrical flow promoting means 15 is connected to the bent portion 13 that bends in the height direction of the measurement flow path that connects the introduction portion 11 and the measurement flow path 5, and the measurement that is continuous to the outer peripheral surface 13a side of the bent portion 13. Formed by a step portion 16 provided on the inlet side of the flow channel 5, and a different-shaped portion 19 formed by making one end 17 and the other end 18 in the height direction on the inlet side of the measurement flow channel 5 different from each other. It was done. The interaction between the bent portion 13, the step portion 16, and the irregular shape portion 19 promotes the maintenance and expansion of the asymmetric shape in the large flow rate region and the expansion of the deviation of the maximum flow velocity position, and the correction coefficient for a wide measurement range. The measurement accuracy can be improved by promoting the flattening and the flatness of the correction coefficient, and the installability can be improved by downsizing.

【0048】また、異形状部19は計測流路5の入口側
の高さ方向の一方の端部17を階段状の段差部16と
し、他方の端部18は曲率を有する滑らか形状としたも
のである。そして、計測流路5の入口側の端部形状の違
いにより対称な速度分布とはならず階段状の段差により
縮流を発生させて計測流路高さ方向での最大流速位置の
偏りを大きくできるとともに、他方の端部を曲率を持ち
滑らかに変化する形状とすることにより流れの安定性を
高めることができて計測精度を安定化できる。
Further, in the irregularly shaped portion 19, one end portion 17 in the height direction on the inlet side of the measurement flow path 5 is a stepped step portion 16 and the other end portion 18 has a smooth shape having a curvature. Is. Further, due to the difference in the shape of the end portion on the inlet side of the measurement flow path 5, a symmetrical velocity distribution is not formed, and a contraction flow is generated by a stepped step, thereby increasing the deviation of the maximum flow velocity position in the measurement flow path height direction. In addition, it is possible to improve the stability of the flow and stabilize the measurement accuracy by forming the other end into a shape having a curvature and smoothly changing.

【0049】図7は他の実施例で超音波流量計測装置の
縦断面部分図を示し、また、異形状部19は計測流路5
の入口側の高さ方向の一方の端部17と他方の端部18
の流れ方向の位置をΔXずらして形成したものである。
そして、計測流路の高さ方向の流入端部の位置が異なる
ため高さ方向の最大流速位置の偏りを一層大きくでき、
層流域となる低流量時の補正係数の増大と乱流域となる
大流量時の補正係数の低減により補正係数の平坦性を向
上できる。なお、ここでは一方の端部17を階段状とし
他方の端部18には曲率を設けた場合を示したが、どち
らの端部17、18もともに階段状としても良く、また
どちらの端部17、18もともに曲率を設けたても良い
のは言うまでもない。
FIG. 7 is a vertical cross-sectional partial view of an ultrasonic flow rate measuring device according to another embodiment, and the irregular shape portion 19 is the measuring flow path 5.
One end 17 and the other end 18 in the height direction on the inlet side of the
Is formed by shifting the position in the flow direction of ΔX.
And since the position of the inflow end portion in the height direction of the measurement flow path is different, the deviation of the maximum flow velocity position in the height direction can be further increased,
The flatness of the correction coefficient can be improved by increasing the correction coefficient when the flow rate is low in the laminar flow area and decreasing the correction coefficient when the flow rate is high in the turbulent flow area. Although one end 17 is stepped and the other end 18 is provided with a curvature here, both ends 17 and 18 may be stepped, and either end 17 may be stepped. It goes without saying that both 17 and 18 may have a curvature.

【0050】図8は他の実施例で超音波流量計測装置の
縦断面部分図を示し、24は計測流路15の入口側に設
けた整流体であり、この整流体24は計測流路5の断面
を分割する格子状となった流れ方向に長さの異なる方向
規制部24aと流速変動を低減するためにメッシュなど
の網状体で形成した変動抑制部24bを備えることによ
り非対称流れ促進手段15を形成している。このように
方向規制部24aの流れ方向の長さを計測流路15の高
さ方向に対して変化させることにより計測流路5の高さ
方向で流れ抵抗を異ならせたものであり、計測流路5の
高さ方向の位置による流れ抵抗を任意に異ならせること
により高さ方向の速度分布の非対称化を最適化でき、補
正係数の平坦化を向上できる。なお、非対称流れ促進手
段15は高さ方向で流れ抵抗を異ならせた整流体24の
みで形成する場合を示したが、整流体24と前述の屈曲
部13や段差部16あるいは異形状部19と組合せるこ
とでより一層高さ方向の非対称化を促進でき補正係数の
平坦化を促進できるのは言うまでもない。また、方向規
制部24aの長さではなく格子の大きさを変化させて流
れ抵抗を異ならせても良く、変動抑制部24bの開口部
の細かさを計測流路5の高さ方向で変えることにより流
れ抵抗を異ならせても良いのは言うまでもない。
FIG. 8 is a vertical sectional partial view of an ultrasonic flow rate measuring device according to another embodiment, in which 24 is a rectifying body provided on the inlet side of the measuring flow path 15, and this rectifying body 24 is the measuring flow path 5. The asymmetrical flow promoting means 15 is provided with a lattice-like direction regulating part 24a having a different length in the flow direction and a fluctuation suppressing part 24b formed of a mesh body such as a mesh to reduce flow velocity fluctuations. Is formed. As described above, the flow resistance in the height direction of the measurement flow path 5 is changed by changing the length of the direction restricting portion 24a in the flow direction with respect to the height direction of the measurement flow path 15. By arbitrarily varying the flow resistance depending on the position of the path 5 in the height direction, the asymmetry of the velocity distribution in the height direction can be optimized, and the flattening of the correction coefficient can be improved. Although the asymmetrical flow promoting means 15 is formed only by the rectifying body 24 having different flow resistances in the height direction, the rectifying body 24 and the above-described bent portion 13, step portion 16 or differently shaped portion 19 are shown. It goes without saying that the combination can further promote the asymmetry in the height direction and the flattening of the correction coefficient. The flow resistance may be changed by changing the size of the lattice instead of the length of the direction regulating portion 24a, and the fineness of the opening of the fluctuation suppressing portion 24b may be changed in the height direction of the measurement flow path 5. It goes without saying that the flow resistance may be different depending on.

【0051】以上において、計測流路5の流路の断面は
幅W、高さHの矩形の場合で説明したが、矩形のコーナ
ー部に僅かなRを設けた略矩形や、台形、円形あるいは
楕円などの断面形状であっても良いのは言うまでもな
い。また、屈曲部は計測流路の高さ方向でかつ直角に曲
がる例を示したが、必ずしも直角に曲がる必要は無く曲
がりにより流体に遠心力が作用する程度の角度であれば
良く、さらに屈曲部は計測流路の幅方向にも傾きを持っ
ていても良いのは言うまでもない。
In the above description, the cross section of the flow path of the measurement flow path 5 has been described as a rectangular shape having a width W and a height H. However, a substantially rectangular shape having a slight R at the corner portion of the rectangular shape, a trapezoidal shape, a circular shape, or a rectangular shape. It goes without saying that the cross-sectional shape may be an ellipse or the like. In addition, although the bent portion is an example of bending in the height direction of the measurement flow path and at a right angle, it is not always necessary to bend at a right angle, and it is sufficient if the angle is such that centrifugal force acts on the fluid due to the bend. Needless to say, may have an inclination in the width direction of the measurement channel.

【0052】(実施例2) 図9は本発明の実施例2を示す超音波流量計測装置の断
面図である。図9において、図1〜図8の実施例と同一
部材、同一機能は同一符号を付し詳細な説明は省略し、
異なるところを中心に説明する。
(Embodiment 2) FIG. 9 is a sectional view of an ultrasonic flow rate measuring apparatus showing Embodiment 2 of the present invention. 9, the same members and functions as those of the embodiment of FIGS. 1 to 8 are designated by the same reference numerals, and detailed description thereof will be omitted.
The different points will be mainly explained.

【0053】同軸上に配置した導入部11と導出部12
の中心軸である接続軸25に対して計測流路5の中心軸
である計測流路軸26を高さ方向に偏芯して配置し、計
測流路5の入口側の一方の端部17に偏芯壁27を形成
して非対称流れ促進手段15としたものである。偏芯壁
27には計測流路5の高さ方向に対して滑らかに変化す
る曲率が設けられている。なお、導入部11と導出部1
2の中心軸である接続軸25は同軸上に配置した場合を
示したが、同軸上ではなく平行に配置しても偏芯部27
を同様に形成できるのは言うまでもなく、また計測流路
5の入口側の一方の端部17だけでなく他方の端部に大
きさの異なる偏芯壁(図示せず)を設けて良いのは言う
までもない。
Introducing section 11 and deriving section 12 arranged coaxially
The measurement flow path axis 26, which is the central axis of the measurement flow path 5, is arranged eccentrically in the height direction with respect to the connection axis 25 that is the central axis of the measurement flow path 5, and the one end 17 on the inlet side of the measurement flow path 5 is provided. An eccentric wall 27 is formed on the inner wall to form the asymmetrical flow promoting means 15. The eccentric wall 27 is provided with a curvature that changes smoothly in the height direction of the measurement flow path 5. The introduction unit 11 and the derivation unit 1
Although the connecting shaft 25, which is the central axis of the second shaft, is arranged on the same axis, the eccentric portion 27 may be arranged not on the same shaft but in parallel.
Needless to say, it is also possible to provide eccentric walls (not shown) of different sizes not only on the one end 17 on the inlet side of the measurement flow path 5 but also on the other end. Needless to say.

【0054】次に、この超音波流量計測装置の動作につ
いて説明する。導入部11から流入した被計測流体の一
部は計測流路5の入口側に形成された偏芯壁27に衝突
して計測流路5に流入し、計測流路5の入口側の高さ方
向の他方側では導入部11から流入した被計測流体が壁
面に衝突することなく流入して、計測流路5内の高さ方
向流れ分布は中心軸である計測流路軸26に対して非対
称となる。
Next, the operation of this ultrasonic flow rate measuring device will be described. A part of the fluid to be measured that has flowed in from the introduction part 11 collides with the eccentric wall 27 formed on the inlet side of the measurement flow path 5 and flows into the measurement flow path 5, and the height of the measurement flow path 5 on the inlet side. On the other side of the direction, the fluid to be measured that has flowed in from the introduction part 11 flows in without colliding with the wall surface, and the flow distribution in the height direction in the measurement flow path 5 is asymmetric with respect to the measurement flow path axis 26 that is the central axis. Becomes

【0055】このため、層流域では流速の最大値を偏ら
せて流速の遅いところを多くして計測することにより補
正係数を大きくし、高さ方向の速度分布が比較的に平坦
となる乱流域では流速の最大値とあまり違わない流速域
を計測することで従来とあまり変わらない補正係数とし
て層流域と乱流域との補正係数の差を少なくし、流量補
正係数の流量変化特性を平坦化でき、非対称流れ促進手
段は導入部に対して計測流路を偏芯させて配置して流路
形状を簡略化でき、計測流路5と導入部11を近接配置
した小型化構成が可能となり、流路形状の簡略化と小型
化構成により加工性を高めて低コスト化できる。
For this reason, in the laminar flow region, the maximum value of the flow velocity is biased to increase the portion where the flow velocity is slow and the correction coefficient is increased to make the velocity distribution in the height direction relatively flat. By measuring the flow velocity region that is not much different from the maximum value of the flow velocity, the difference between the correction factors of the laminar flow region and the turbulent flow region can be reduced as a correction factor that does not differ much from the conventional value, and the flow rate change characteristics of the flow rate correction factor can be flattened. The asymmetrical flow promoting means can simplify the flow path shape by arranging the measurement flow path eccentrically with respect to the introduction part, and the measurement flow path 5 and the introduction part 11 can be arranged close to each other to achieve a compact structure. The road shape can be simplified and the size can be reduced to improve the workability and reduce the cost.

【0056】また、導入部と導出部は同軸上あるいは平
行に配置することにより、流路形状の簡略化を一層促進
し、導入部11と導出部12とを近接配置でき、低コス
ト化と小型化を向上できる。
Further, by disposing the introducing part and the extracting part coaxially or in parallel, it is possible to further facilitate the simplification of the flow path shape, and to arrange the introducing part 11 and the extracting part 12 close to each other, thereby reducing the cost and the size. Can be improved.

【0057】図10は他の実施例の超音波流量計測装置
の縦断面図を示し、導入部11の中心軸である接続軸2
5に対して計測流路5の中心軸である計測流路軸26を
偏芯して配置し、計測流路5の入口側の一方の端部17
に偏芯壁28を形成して非対称流れ促進手段15とした
ものであり、偏芯壁28は計測流路5の高さ方向に対し
て階段状の段差が設けられている。導出部12の中心軸
は計測流路5の中心軸である計測流路軸26と同軸とし
ている。ここで、階段状の段差となっている偏芯壁28
により計測流路5に流入する流れは計測流路5の高さ方
向の中心に対して非対称化が促進されて補正係数の平坦
性を向上でき、計測流路5と導出部12の中心軸は同軸
としているので流路形状の簡略化と小型化を向上でき
る。
FIG. 10 is a longitudinal sectional view of an ultrasonic flow rate measuring device according to another embodiment, in which the connecting shaft 2 which is the central axis of the introducing portion 11 is shown.
5, the measurement flow path axis 26, which is the central axis of the measurement flow path 5, is arranged eccentrically, and one end 17 on the inlet side of the measurement flow path 5 is provided.
The eccentric wall 28 is formed in the asymmetrical flow promoting means 15, and the eccentric wall 28 is provided with a step-like step in the height direction of the measurement flow path 5. The center axis of the lead-out portion 12 is coaxial with the measurement channel axis 26 which is the center axis of the measurement channel 5. Here, the eccentric wall 28 having a step-like step
As a result, the flow that flows into the measurement flow path 5 is promoted to be asymmetric with respect to the center of the measurement flow path 5 in the height direction, and the flatness of the correction coefficient can be improved. Since they are coaxial, the flow path shape can be simplified and the size can be improved.

【0058】(実施例3) 図11は本発明の実施例3を示す超音波流量計測装置の
断面図である。図11において、図1〜図10の実施例
と同一部材、同一機能は同一符号を付し詳細な説明は省
略し、異なるところを中心に説明する。
(Embodiment 3) FIG. 11 is a sectional view of an ultrasonic flow rate measuring apparatus showing Embodiment 3 of the present invention. 11, the same members and functions as those of the embodiment of FIGS. 1 to 10 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0059】28は超音波送受信器7、8の中心軸であ
る送受信軸であり、この送受信軸28は計測流路5の中
心軸である計測流路軸26に対して図面下方にΔYだけ
偏芯させて配置している。ここで、超音波送受信器7、
8はその送受信軸28の偏芯方向を、速度分布Rで示す
ように最大流速の発生位置Uが存在する図面下方の方向
としたものである。図面下方の方向に最大流速の発生位
置Uが存在するのは、計測流路5の入口側の屈曲部13
による遠心力作用により流れが外周面13a側に偏るた
めであり、さらに外周面13a側に設けた段差部16と
外周面13a側を階段状にした異形状部19によってそ
の流れの偏りが大きくなるとともに大流量時でも流れの
偏りが維持されている。
Reference numeral 28 denotes a transmission / reception axis which is the central axis of the ultrasonic wave transmitters / receivers 7 and 8, and the transmission / reception axis 28 is deviated from the measurement channel axis 26, which is the central axis of the measurement channel 5, by ΔY in the lower part of the drawing. It is arranged with the core. Here, the ultrasonic transceiver 7,
Reference numeral 8 indicates the direction of eccentricity of the transmission / reception shaft 28, as shown by the velocity distribution R, in the direction below the drawing in which the maximum flow velocity generation position U is present. The generation position U of the maximum flow velocity exists in the downward direction of the drawing because the bent portion 13 on the inlet side of the measurement flow path 5 is present.
This is because the flow is biased toward the outer peripheral surface 13a side by the centrifugal force action due to the stepped portion 16 provided on the outer peripheral surface 13a side and the irregular shaped portion 19 in which the outer peripheral surface 13a side is stepped. At the same time, the flow deviation is maintained even when the flow rate is large.

【0060】図12は超音波送受信器7と計測流路5の
取付部の高さ関係を示した断面図である。図12におい
て、29はその内部に設けた圧電体30を気密に収納す
るケース、31はケース29の外壁面に固定された音響
整合層、32はケース29と接合した封止体、33は封
止体32に設けた端子、34は圧電体30と端子33と
を接続するリード線、35は支持部36を挟み込むよう
に保持し流路壁6に気密にかつ防振して取付ける振動伝
達抑止体、37は振動伝達抑止体35が流路壁6から脱
落しないように押さえる固定体である。ここで、超音波
送受信器7は計測流路5の高さ方向に対して偏芯して配
置されるとともに、超音波を被計測流体中に放出する音
響整合層31の超音波放出面38は計測流路5の高さ寸
法Hよりも小さくしている。なお、下流側の超音波送受
信器8についても同様であるので説明は省略する。
FIG. 12 is a sectional view showing the height relationship between the ultrasonic transmitter / receiver 7 and the mounting portion of the measurement flow path 5. In FIG. 12, 29 is a case for hermetically housing the piezoelectric body 30 provided therein, 31 is an acoustic matching layer fixed to the outer wall surface of the case 29, 32 is a sealing body joined to the case 29, and 33 is a seal. Terminals provided on the stopper 32, 34 are lead wires connecting the piezoelectric body 30 and the terminals 33, 35 are holding the supporting portion 36 so as to be sandwiched, and are vibration-tight to the passage wall 6 The body 37 is a fixed body that holds the vibration transmission restraining body 35 so as not to fall off the flow path wall 6. Here, the ultrasonic wave transmitter / receiver 7 is arranged eccentrically with respect to the height direction of the measurement flow path 5, and the ultrasonic wave emission surface 38 of the acoustic matching layer 31 that emits ultrasonic waves into the fluid to be measured is It is smaller than the height dimension H of the measurement flow path 5. Since the same applies to the ultrasonic transmitter / receiver 8 on the downstream side, the description thereof will be omitted.

【0061】次に動作を説明する。超音波送受信器7、
8は計測流路5の高さ方向の中心から偏芯させることに
より、速度分布形状が凸型となる低流速の層流域におい
ては超音波伝搬路10の高さ中心を最大流速値の発生位
置から遠ざかるため補正係数の値は大きくなり、大流量
時の乱流域の値に近づくように超音波送受信器7、8の
高さ方向の偏芯位置を設定して補正係数の変化が平坦な
領域を低流速側である低流量域に拡大できる。また、超
音波送受信器7、8の偏芯方向は高さ方向速度分布にお
いて最大値が存在する方向とすることで、速度分布形状
が凸型となる層流域や遷移域では最大流速値の位置と壁
面との間の流速変化をより急峻にでき、超音波送受信器
7、8の高さ位置を僅かに調節することにより補正係数
の値を容易に変化させて低流量側へ補正係数の変化が平
坦な領域を拡大することができる。さらに、大流量側で
は流速の大きいところを計測して補正係数の値を小さく
なるようにして大流量側と低流量側の補正係数値の差を
低減して平坦性を向上でき、低流量域から大流量域の幅
広い流量域に対して補正係数の変化を平坦化できる。
Next, the operation will be described. Ultrasonic transceiver 7,
8 is eccentric from the center of the measurement flow path 5 in the height direction, so that in the laminar flow region of low flow velocity where the velocity distribution shape is convex, the height center of the ultrasonic wave propagation path 10 is the position where the maximum flow velocity value is generated. The value of the correction coefficient increases as the distance from the position increases, and the eccentric position in the height direction of the ultrasonic transmitters / receivers 7 and 8 is set so as to approach the value of the turbulent flow area at the time of large flow rate, and the change in the correction coefficient is flat. Can be expanded to a low flow rate region on the low flow velocity side. In addition, the eccentric direction of the ultrasonic transmitters / receivers 7 and 8 is set such that the maximum value exists in the velocity distribution in the height direction, and thus the position of the maximum velocity value in the laminar flow region or transition region where the velocity distribution shape is convex. The flow velocity between the wall and the wall can be made steeper, and the height of the ultrasonic transmitters / receivers 7 and 8 can be slightly adjusted to easily change the value of the correction coefficient to change the correction coefficient to the low flow rate side. The flat area can be enlarged. Further, on the large flow rate side, the place where the flow velocity is large is measured and the value of the correction coefficient is reduced to reduce the difference between the correction coefficient values on the large flow rate side and the low flow rate side, and the flatness can be improved. Therefore, the change of the correction coefficient can be flattened over a wide flow range of a large flow range.

【0062】また、超音波送受信器7、8は計測流路5
の高さ方向の中心から屈曲部13の外周面13a側に偏
芯させて配置することで、屈曲部13での遠心力の作用
により屈曲部13の外周面13a側への流れの偏りは流
量が増大するほど促進でき、高さ方向に偏芯させた超音
波伝搬路10に流速の大きい領域の割合を高めて大流量
域での補正係数を小さくでき、しかもより一層大きい流
量値において補正係数値を低減でき、より広い計測範囲
にわたり補正係数の平坦性を向上できる。また、超音波
送受信器7、8は計測流路5の高さ寸法Hよりも小さい
超音波放出面38を設けたもので、超音波送受信器7、
8を多少偏芯させても超音波放出面38が流路壁6に隠
されないように計測流路5に対して設置できるため、超
音波を有効に超音波伝搬路10へ放出でき、超音波の送
受信感度の低下を防止することでS/Nを高めた超音波
の送受信により計測精度を向上できる。さらに、超音波
送受信器7、8の送受信感度が低下しない偏芯域が拡大
できて偏芯の自由度が大きくできるため、計測流路の高
さ方向の代表部分の領域に超音波を伝搬させて計測する
ことができ、補正係数の平坦性を向上できる。
The ultrasonic transmitters / receivers 7 and 8 are connected to the measurement channel 5.
By eccentrically arranging from the center in the height direction to the outer peripheral surface 13a side of the bending portion 13, the centrifugal force in the bending portion 13 causes the flow to be biased toward the outer peripheral surface 13a side by the centrifugal force. Is increased, the proportion of the region having a large flow velocity in the ultrasonic wave propagation path 10 decentered in the height direction can be increased to reduce the correction coefficient in the large flow amount region, and the correction coefficient can be increased at a larger flow amount value. The number can be reduced and the flatness of the correction coefficient can be improved over a wider measurement range. Further, the ultrasonic wave transmitters / receivers 7, 8 are provided with an ultrasonic wave emitting surface 38 smaller than the height dimension H of the measurement flow path 5, and the ultrasonic wave transmitter / receivers 7, 8 are
Since the ultrasonic wave emitting surface 38 can be installed in the measurement flow path 5 so as not to be hidden by the flow path wall 6 even if 8 is slightly eccentric, the ultrasonic wave can be effectively emitted to the ultrasonic wave propagation path 10, and the ultrasonic wave It is possible to improve the measurement accuracy by transmitting and receiving ultrasonic waves having an improved S / N by preventing the transmission / reception sensitivity from decreasing. Further, since the eccentricity region where the transmission / reception sensitivity of the ultrasonic wave transmitters / receivers 7 and 8 does not decrease can be expanded and the degree of freedom of the eccentricity can be increased, the ultrasonic wave is propagated to the region of the representative portion in the height direction of the measurement flow path. It is possible to improve the flatness of the correction coefficient.

【0063】このように、超音波送受信器は計測流路の
高さ方向の中心から偏芯させて配置したものである。そ
して、超音波送受信器の高さ方向の偏芯位置を、層流状
態で流れる低流速域における補正係数の値が乱流域の値
に近い値になるように最適に偏芯させて設定でき、補正
係数の変化が平坦な領域を低流速側に拡大できる。
As described above, the ultrasonic transmitter / receiver is arranged so as to be eccentric from the center of the measurement flow path in the height direction. Then, the eccentric position in the height direction of the ultrasonic transceiver can be optimally eccentrically set so that the value of the correction coefficient in the low flow velocity region flowing in the laminar flow state becomes a value close to the value of the turbulent flow region, A region where the change in the correction coefficient is flat can be expanded to the low flow velocity side.

【0064】また、超音波送受信器の偏芯方向は高さ方
向速度分布において最大値が存在する方向としたもので
ある。そして、最大流速値を示す高さ位置と計測流路の
壁面との間でより急峻な流速変化が得られるため、超音
波送受信器の高さ位置の変化による補正係数の調節が容
易にでき、補正係数の変化が平坦な領域を低流量側によ
り一層拡大できる。さらに、乱流となる大流量側では流
速の大きいところを計測するため補正係数の値を低減で
き、大流量側と低流量側の補正係数値の差を小さくして
平坦性を向上できるとともに、幅広い流量域に対して補
正係数の変化を平坦化できる。
The eccentric direction of the ultrasonic transmitter / receiver is the direction in which the maximum value exists in the velocity distribution in the height direction. Then, since a sharper flow velocity change can be obtained between the height position indicating the maximum flow velocity value and the wall surface of the measurement flow path, the correction coefficient can be easily adjusted by the change in the height position of the ultrasonic transceiver, A region where the change of the correction coefficient is flat can be further expanded to the low flow rate side. Further, since the large flow rate side, which is a turbulent flow, measures a large flow velocity, the value of the correction coefficient can be reduced, and the difference between the correction coefficient values on the large flow rate side and the low flow rate side can be reduced to improve the flatness. The change in the correction coefficient can be flattened over a wide flow rate range.

【0065】また、超音波送受信器は計測流路の高さ方
向の中心から屈曲部の外周面側に偏芯させて配置したも
のである。そして、屈曲部での遠心力の作用により屈曲
部の外周側への流れの偏りは流量が増大するほど促進で
きるために大流量域での補正係数を小さくでき、小流量
域での補正係数との差を縮小して広い計測範囲にわたり
補正係数の平坦性を向上できる。
The ultrasonic transmitter / receiver is arranged so as to be eccentric from the center of the measurement channel in the height direction to the outer peripheral surface side of the bent portion. Further, since the bias of the flow toward the outer peripheral side of the bent portion due to the action of the centrifugal force at the bent portion can be promoted as the flow rate increases, the correction coefficient in the large flow area can be made small and the correction coefficient in the small flow area can be reduced. It is possible to reduce the difference between the two and improve the flatness of the correction coefficient over a wide measurement range.

【0066】また、超音波送受信器は計測流路の高さ寸
法よりも小さい超音波放出面を設けたものである。そし
て、計測流路の高さ方向に超音波送受信器をいくらか偏
芯させて配置しても超音波を有効に超音波伝搬路へ放出
でき、超音波の送受信感度の低下を防止しS/Nを高め
た計測により計測精度を向上できる。さらに、偏芯自由
度が拡大でき、計測流路の高さ方向の代表部分の領域に
超音波を伝搬させて計測することで補正係数の平坦性を
向上できる。
Further, the ultrasonic transmitter / receiver is provided with an ultrasonic wave emitting surface smaller than the height dimension of the measurement flow path. Even if the ultrasonic transmitter / receiver is arranged with some eccentricity in the height direction of the measurement flow path, the ultrasonic wave can be effectively emitted to the ultrasonic wave propagation path, and the deterioration of the ultrasonic wave transmission / reception sensitivity can be prevented and the S / N ratio can be improved. The measurement accuracy can be improved by the increased measurement. Further, the degree of freedom of eccentricity can be increased, and the flatness of the correction coefficient can be improved by propagating the ultrasonic wave to the region of the representative portion in the height direction of the measurement flow path and performing the measurement.

【0067】[0067]

【発明の効果】以上の説明から明らかなように本発明の
超音波流量計測装置によれば、次の効果が得られる。
As is apparent from the above description, according to the ultrasonic flow rate measuring device of the present invention, the following effects can be obtained.

【0068】被計測流体が流れる計測流路と、前記計測
流路の上流側および下流側に設けた導入部および導出部
と、前記計測流路を超音波が横切って伝搬するように設
けた少なくとも一対の超音波送受信器と、前記超音波送
受信器間で超音波の送受信を行いその送受信信号に基づ
いて流量を算出する流量演算手段とを備え、超音波送受
信器を計測流路の中心部分に配置するとともに、前記計
測流路の入口側には速度分布を非対称化して流速の最大
値の発生位置を計測流路の中心から一方に偏らせる非対
称流れ促進手段を設けているので、速度分布が凸型とな
る層流域では流速の最大値を偏らせて流速の遅いところ
を多くして計測することにより補正係数を大きくし、
度分布が比較的に平坦となる乱流域では流速の最大値と
あまり違わない流速域を計測することで従来とあまり変
わらない補正係数として層流域と乱流域との補正係数の
差を少なくし、流量計測範囲の全域にわたり補正係数の
流量変化特性は平坦化され計測精度の向上ができるとい
う効果があり、流体の物性値変化が生じても計測精度の
維持がなされ、実用性、利便性を高めることができると
いう効果がある。
A measurement flow path through which the fluid to be measured flows, an introduction part and a discharge part provided on the upstream side and the downstream side of the measurement flow path, and at least an ultrasonic wave which propagates across the measurement flow path. and a flow rate calculation means for calculating a pair of ultrasonic transducers, the flow rate on the basis of the transmission and reception signals to send and receive ultrasonic waves between the ultrasonic transducers, ultrasonic transmitting and receiving
Place the receiver in the center of the measurement flow path and
The velocity distribution is maximized by making the velocity distribution asymmetric at the inlet side of the measurement flow path.
Non-pair that biases the value generation position to one side from the center of the measurement flow path
Since there is provided a universal flow promoting means, in the laminar flow region the velocity distribution becomes convex to increase the correction coefficient by measuring by many places slow flow rate to bias the maximum flow rate, fast
In the turbulent flow region where the degree distribution is relatively flat, by measuring the flow velocity region that does not differ much from the maximum value of the flow velocity, the difference between the correction factor between the laminar flow region and the turbulent flow region is reduced as a correction factor that does not differ much from the conventional one. There is an effect that the flow rate change characteristic of the correction coefficient is flattened over the entire flow rate measurement range and the measurement accuracy can be improved. Even if the physical property value of the fluid changes, the measurement accuracy is maintained and the practicality and convenience are improved. The effect is that you can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の超音波流量計測装置の縦断
面図
FIG. 1 is a vertical sectional view of an ultrasonic flow rate measuring device according to a first embodiment of the present invention.

【図2】本発明の実施例1の超音波流量計測装置の横断
面図
FIG. 2 is a cross-sectional view of the ultrasonic flow rate measuring device according to the first embodiment of the present invention.

【図3】乱流域の速度分布を示す実施例1の超音波流量
計測装置の縦断面図
FIG. 3 is a vertical cross-sectional view of the ultrasonic flow rate measuring device according to the first embodiment showing a velocity distribution in a turbulent flow region.

【図4】非対称流れ促進手段が無い場合の補正係数の特
性図
FIG. 4 is a characteristic diagram of a correction coefficient when there is no asymmetrical flow promoting means.

【図5】非対称流れ促進手段が有る場合の補正係数の特
性図
FIG. 5 is a characteristic diagram of a correction coefficient when there is an asymmetrical flow promoting means.

【図6】他の実施例を示す超音波流量計測装置の縦断面
部分図
FIG. 6 is a partial vertical cross-sectional view of an ultrasonic flow rate measuring device showing another embodiment.

【図7】他の実施例を示す超音波流量計測装置の縦断面
部分図
FIG. 7 is a partial vertical cross-sectional view of an ultrasonic flow rate measuring device showing another embodiment.

【図8】他の実施例を示す超音波流量計測装置の縦断面
部分図
FIG. 8 is a partial vertical cross-sectional view of an ultrasonic flow rate measuring device showing another embodiment.

【図9】本発明の実施例2の超音波流量計測装置の縦断
面図
FIG. 9 is a vertical sectional view of an ultrasonic flow rate measuring device according to a second embodiment of the present invention.

【図10】他の実施例を示す超音波流量計測装置の縦断
面図
FIG. 10 is a vertical cross-sectional view of an ultrasonic flow rate measuring device showing another embodiment.

【図11】本発明の実施例3の超音波流量計測装置の縦
断面図
FIG. 11 is a vertical sectional view of an ultrasonic flow rate measuring apparatus according to a third embodiment of the present invention.

【図12】実施例3における超音波送受信器部の縦断面
FIG. 12 is a vertical sectional view of an ultrasonic transmitter / receiver unit according to a third embodiment.

【図13】従来の超音波流量計測装置の構成図FIG. 13 is a configuration diagram of a conventional ultrasonic flow rate measuring device.

【符号の説明】[Explanation of symbols]

5 計測流路 7、8 超音波送受信器 11 導入部 12 導出部 13 屈曲部 15 非対称流れ促進手段 16 段差部 19 異形状部 21 流量演算手段 38 超音波放出面 5 measurement channels 7, 8 Ultrasonic transceiver 11 Introduction 12 Derivation part 13 Bend 15 Asymmetric flow promoting means 16 step 19 Deformed portion 21 Flow rate calculation means 38 Ultrasonic wave emitting surface

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被計測流体が流れる計測流路と、前記計
測流路の上流側および下流側に設けた導入部および導出
部と、前記計測流路を超音波が横切って伝搬するように
設けた少なくとも一対の超音波送受信器と、前記超音波
送受信器間で超音波の送受信を行いその送受信信号に基
づいて流量を算出する流量演算手段とを備え、超音波送
受信器を計測流路の中心部分に配置するとともに、前記
計測流路の入口側には速度分布を非対称化して流速の最
大値の発生位置を計測流路の中心から一方に偏らせる非
対称流れ促進手段を設けた超音波流量計測装置。
1. A measurement flow path through which a fluid to be measured flows, an introduction part and a derivation part provided on the upstream side and the downstream side of the measurement flow path, and an ultrasonic wave which propagates across the measurement flow path. at least a pair of ultrasonic transducers have the a flow rate calculating means for calculating a flow rate based on the transmission and reception signals to send and receive ultrasonic waves between the ultrasonic transducers, feed ultrasonic
The receiver is arranged in the central part of the measurement channel, and
The velocity distribution is asymmetrical at the inlet side of the measurement flow path,
Do not bias the generation position of large values from the center of the measurement channel to one side
An ultrasonic flow rate measuring device provided with a symmetrical flow promoting means .
【請求項2】 非対称流れ促進手段は導入部に対して計
測流路を偏芯させて配置することで形成した請求項1記
載の超音波流量計側装置。
2. The ultrasonic flowmeter-side device according to claim 1, wherein the asymmetrical flow promoting means is formed by arranging the measurement flow path eccentrically with respect to the introduction portion.
【請求項3】 非対称流れ促進手段は、導入部と計測流
路とを屈曲部を介して連結することで構成した請求項1
記載の超音波流量計測装置。
3. The asymmetrical flow promoting means is constituted by connecting the introduction part and the measurement flow path through a bent part.
The ultrasonic flow rate measuring device described.
【請求項4】 非対称流れ促進手段は、計測流路の入口
に設けた段差部で構成した請求項1記載の超音波流量
計測装置。
4. The ultrasonic flow rate measuring device according to claim 1 , wherein the asymmetrical flow promoting means comprises a stepped portion provided on the inlet side of the measurement flow path.
【請求項5】 非対称流れ促進手段は、計測流路の入口
側の一方の端部と他方の端部の形状を異ならせた異形状
部で構成した請求項1記載の超音波流量計測装置。
5. The asymmetrical flow promoting means has a different shape in which one end and the other end on the inlet side of the measurement flow path have different shapes.
The ultrasonic flow rate measurement device according to claim 1, wherein the ultrasonic flow rate measurement device is configured by a unit.
【請求項6】 非対称流れ促進手段は、計測流路の入口
に設けた段差部と、計測流路の入口側の一方の端部と
他方の端部の形状を異ならせた異形状部で構成した請求
項1記載の超音波流量計測装置。
6. The asymmetrical flow promoting means includes a step portion provided on the inlet side of the measurement flow passage, and one end portion on the inlet side of the measurement flow passage.
Claim consisting of differently shaped parts with different shapes at the other end
Item 2. The ultrasonic flow rate measuring device according to Item 1 .
【請求項7】 非対称流れ促進手段は、導入部と計測流
路とを接続する屈曲部と、前記屈曲部の外周面側に連な
る計測流路の入口側に設けた段差部により構成した請求
項1記載の超音波流量計測装置。
7. The asymmetrical flow promoting means is constituted by a bent portion connecting the introduction portion and the measurement flow passage, and a step portion provided on the inlet side of the measurement flow passage connected to the outer peripheral surface side of the bent portion. 1. The ultrasonic flow rate measuring device according to 1.
【請求項8】 非対称流れ促進手段は、導入部と計測流
路とを接続する屈曲部と、前記屈曲部の外周面側に連な
る計測流路の入口側に設けた段差部と、計測流路の入口
の一方の端部と他方の端部の形状を異ならせた異形状
部とにより構成した請求項1記載の超音波流量計測装
置。
8. The asymmetrical flow promoting means includes a bent portion connecting the introduction portion and the measurement flow passage, a step portion provided on the inlet side of the measurement flow passage connected to the outer peripheral surface side of the bent portion, and the measurement flow passage. Different shape with one end on the inlet side and the other end being different
The ultrasonic flow rate measurement device according to claim 1, wherein the ultrasonic flow rate measurement device is configured by:
【請求項9】 非対称流れ促進手段は、計測流路の入口
側に設けられ、速度分布の偏芯を促すように流れ抵抗を
異ならせた整流体で構成した請求項1記載の超音波流量
計測装置。
9. The asymmetrical flow promoting means is provided on the inlet side of the measurement flow passage and has a flow resistance for promoting eccentricity of the velocity distribution.
The ultrasonic flow rate measuring device according to claim 1 , wherein the rectifying bodies are different from each other .
【請求項10】 異形状部は、計測流路の入口側の一方10. The deformed portion is one of the inlet side of the measurement flow path.
の端部を階段状とし、他方の端部は曲率を有する滑らかThe end of the is stepped and the other end is smooth with curvature
形状とした請求項5、6、8のいずれか1項に記載の超The shape according to any one of claims 5, 6 and 8
音波流量計測装置。Acoustic wave flow rate measuring device.
【請求項11】 異形状部は、計測流路の入口側の一方
の端部と他方の端部の位置をずらして形成した請求項
5、6、8、10のいずれか1項に記載の超音波流量計
測装置。
11. The deformed portion is one of the inlet side of the measurement flow path.
The ultrasonic flow rate measuring device according to any one of claims 5, 6, 8, and 10, wherein the positions of the end and the other end are offset from each other.
【請求項12】 導入部と導出部は同軸上あるいは平行
に配置した請求項2、4、5、6のいずれか1項に記載
の超音波流量計測装置。
12. The ultrasonic flow rate measuring device according to claim 2, wherein the introducing part and the extracting part are arranged coaxially or in parallel.
【請求項13】 超音波送受信器は、計測流路の中心か
偏芯させて配置した請求項1から12のいずれか1項
に記載の超音波流量計測装置。
13. The ultrasonic transmitter / receiver is at the center of the measurement flow path.
Any one of claims 1 arranged by Luo eccentric 12 of item 1
The ultrasonic flow rate measuring device described in.
【請求項14】 超音波送受信器は、計測流路の中心か
ら屈曲部の外周面側に偏芯させて配置した請求項3、
7、8のいずれか1項に記載の超音波流量計測装置。
14. The ultrasonic transmitter / receiver is at the center of the measurement channel.
The outer peripheral surface of the bent portion is eccentrically arranged.
7. The ultrasonic flow rate measuring device according to any one of 7 and 8.
【請求項15】 超音波送受信器は、計測流路よりも小
さい超音波放出面を設けた請求項1記載の超音波流量計
測装置。
15. The ultrasonic transmitter / receiver is smaller than the measurement flow path.
The ultrasonic flow rate measuring device according to claim 1, further comprising a supersonic wave emitting surface .
JP2000308747A 2000-10-10 2000-10-10 Ultrasonic flow meter Expired - Fee Related JP3436247B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000308747A JP3436247B2 (en) 2000-10-10 2000-10-10 Ultrasonic flow meter
CN018030696A CN1217158C (en) 2000-10-10 2001-10-09 Flow measuring device
KR10-2002-7007227A KR100495970B1 (en) 2000-10-10 2001-10-09 Flow measuring device
TW090124975A TW585995B (en) 2000-10-10 2001-10-09 Flow meter
US10/149,100 US6694824B2 (en) 2000-10-10 2001-10-09 Flow measuring device
PCT/JP2001/008870 WO2002031446A1 (en) 2000-10-10 2001-10-09 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308747A JP3436247B2 (en) 2000-10-10 2000-10-10 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2002116070A JP2002116070A (en) 2002-04-19
JP3436247B2 true JP3436247B2 (en) 2003-08-11

Family

ID=18789005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308747A Expired - Fee Related JP3436247B2 (en) 2000-10-10 2000-10-10 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3436247B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926519B2 (en) * 2006-03-29 2012-05-09 東京瓦斯株式会社 Gas flow measurement structure of ultrasonic gas meter
JP5069141B2 (en) * 2008-02-08 2012-11-07 東洋ガスメーター株式会社 Gas meter manufacturing method

Also Published As

Publication number Publication date
JP2002116070A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP5479605B2 (en) Ultrasonic flow sensor for detecting the flow rate of fluid medium
CN102713529B (en) Sonac, effusion meter and method
WO2012137489A1 (en) Ultrasonic flow rate measurement device
WO2000055581A1 (en) Ultrasonic flowmeter
JP2010164558A (en) Device for measuring flow of fluid
WO2002031446A1 (en) Flow measuring device
JP4936856B2 (en) Flowmeter
JP3436247B2 (en) Ultrasonic flow meter
JP3438713B2 (en) Ultrasonic flow meter
JP5816831B2 (en) Ultrasonic flow meter
JP2009264906A (en) Flow meter
JP3438734B1 (en) Ultrasonic flow meter
JP3438716B2 (en) Ultrasonic flow meter
JP4333098B2 (en) Flow measuring device
JP3824236B2 (en) Ultrasonic flow measuring device
JP3518538B2 (en) Ultrasonic flow meter
JP3922233B2 (en) Ultrasonic flow measuring device
JP2003344129A (en) Ultrasonic flowmeter
JP3627729B2 (en) Flow measuring device
JP2008014833A (en) Ultrasonic flowmeter
JP2003202254A5 (en)
JP3781424B2 (en) Ultrasonic flow measuring device
JP4165240B2 (en) Ultrasonic flow meter
JP2004219290A (en) Ultrasonic flowmeter
JP2004198372A (en) Fluid measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees