JP6028215B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP6028215B2
JP6028215B2 JP2012052658A JP2012052658A JP6028215B2 JP 6028215 B2 JP6028215 B2 JP 6028215B2 JP 2012052658 A JP2012052658 A JP 2012052658A JP 2012052658 A JP2012052658 A JP 2012052658A JP 6028215 B2 JP6028215 B2 JP 6028215B2
Authority
JP
Japan
Prior art keywords
ultrasonic
propagation
measurement
wall surface
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012052658A
Other languages
Japanese (ja)
Other versions
JP2013186031A (en
Inventor
宮田 肇
肇 宮田
慎 中野
慎 中野
藤井 裕史
裕史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012052658A priority Critical patent/JP6028215B2/en
Publication of JP2013186031A publication Critical patent/JP2013186031A/en
Application granted granted Critical
Publication of JP6028215B2 publication Critical patent/JP6028215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガスなどの流量を計測する超音波流量計測に関するものである。   The present invention relates to ultrasonic flow measurement for measuring a flow rate of gas or the like.

従来のこの種の超音波流量計は、図5(a)に示すように、計測流路9と、計測流路9の上流側には流体を流入する開口部10を有する。また、計測流路9に隣接するセンサ取付け部11を備え、センサ取付け部11には一対の超音波センサ12a、12bが取付けられ、その上部に超音波センサ12a、12bで計測される伝播時間から計測流路9に流れる流体の流量を算出する流量演算回路13が設置されている。   As shown in FIG. 5A, this type of conventional ultrasonic flowmeter has a measurement channel 9 and an opening 10 through which fluid flows in on the upstream side of the measurement channel 9. In addition, a sensor mounting portion 11 adjacent to the measurement flow path 9 is provided, and a pair of ultrasonic sensors 12a and 12b are mounted on the sensor mounting portion 11, and the propagation time measured by the ultrasonic sensors 12a and 12b is provided above the sensor mounting portion 11. A flow rate calculation circuit 13 for calculating the flow rate of the fluid flowing through the measurement flow path 9 is installed.

図5(b)は図5(a)のC−C’矢視断面図で、計測流路9の超音波センサ取付け側の流路壁面を示しており、超音波センサ12a、12bの送受信用に矩形状の超音波伝播開口窓14a、14bを有している。   FIG. 5B is a cross-sectional view taken along the line CC ′ of FIG. 5A and shows the channel wall surface on the ultrasonic sensor mounting side of the measurement channel 9 for transmission / reception of the ultrasonic sensors 12a and 12b. Are provided with rectangular ultrasonic wave propagation aperture windows 14a and 14b.

そして、一対の超音波センサの一方から発信された超音波信号は、対向する壁面で反射して他方の超音波センサで受信されるように構成され、所謂、V字型の超音波伝播路15を形成している(例えば、特許文献1参照)。   The ultrasonic signal transmitted from one of the pair of ultrasonic sensors is configured to be reflected by the opposing wall surface and received by the other ultrasonic sensor, so-called V-shaped ultrasonic propagation path 15. (For example, refer to Patent Document 1).

このように超音波伝播路15をV字型とし超音波の壁面反射を利用する場合は同じ流路幅構成でも反射を利用しない場合の倍の距離を超音波が伝播するため、計測における時間分解能が上がるメリットがあり、流量計形状の小型化を図ることができる。   In this way, when the ultrasonic wave propagation path 15 is V-shaped and ultrasonic wave wall reflection is used, the ultrasonic wave propagates twice as long as the case where reflection is not used even with the same flow path width configuration. The flow meter shape can be reduced in size.

一方、図6(b)に示すように受信波形は、V字型の超音波伝播路15による超音波の伝播で生じる正規の受信波17と、これとは別に図6(a)で示す超音波伝播開口窓間の回折による伝播路16により直接伝播する不要な受信波18が生じる。   On the other hand, as shown in FIG. 6B, the received waveform is a normal received wave 17 generated by the propagation of the ultrasonic wave through the V-shaped ultrasonic wave propagation path 15, and a superposed wave shown in FIG. An unnecessary received wave 18 that propagates directly through the propagation path 16 due to diffraction between the sound wave propagation aperture windows is generated.

受信波18は計測には必要無いものであり、正規の受信波17と到達時間が近接している場合は、ノイズとなり計測に影響するため、直接伝播する不要な受信波18に対しては、正規の受信波17と時間的に分離できるよう時間差を生じるように構成するか、できるだけ小さくするかの必要がある。   The received wave 18 is not necessary for measurement. When the arrival time is close to the regular received wave 17, it becomes noise and affects the measurement. For the unnecessary received wave 18 that propagates directly, It is necessary to make a time difference so that it can be separated from the regular received wave 17 in terms of time, or to make it as small as possible.

従来においては、時間差を持たせるために超音波伝播開口窓の位置を調整し、正規の受信波に影響しないように超音波伝播開口窓の位置等を工夫している。   Conventionally, the position of the ultrasonic wave propagation aperture window is adjusted so as to have a time difference, and the position of the ultrasonic wave propagation aperture window is devised so as not to affect the regular received wave.

特開平11−201791号公報Japanese Patent Laid-Open No. 11-201791

しかしながら、前記従来の構成では、前記した不要な受信波を避けようとしても、計測流路の超音波伝播開口窓の位置や大きさ、或いは、超音波センサの特性や計測流路の仕様に制限が生じ、例えば、伝播経路を長くする必要がある場合には、超音波センサの感度アップや、計測回路の消費電力の増加などの課題があった。また、計測流路部の小型化や計測システムとしての最適化を行う上でも制限を受けるという課題を有していた。   However, in the conventional configuration, even if it is attempted to avoid the unnecessary received wave, the position and size of the ultrasonic wave propagation aperture window of the measurement channel, or the characteristics of the ultrasonic sensor and the specification of the measurement channel are limited. For example, when it is necessary to lengthen the propagation path, there are problems such as an increase in sensitivity of the ultrasonic sensor and an increase in power consumption of the measurement circuit. In addition, there has been a problem that the measurement channel section is limited in size and optimization as a measurement system.

また、上記の課題を解決しようとして、超音波入出口の超音波伝播開口窓の流れ方向の
長さを著しく大きくすると、流体の流れが、この超音波伝播開口窓より入り込んで、流速分布に影響を与え、測定が不安定になっていた。
In addition, if the length of the ultrasonic propagation aperture window in the ultrasonic inlet / outlet is significantly increased in order to solve the above problem, the flow of fluid enters the ultrasonic propagation aperture window and affects the flow velocity distribution. The measurement was unstable.

本発明は、前記従来の課題を解決するもので、超音波伝播開口窓間の直接伝播波(不要な受信波)の影響を少なくし、構成の簡易化・小型化を図り、かつ低コストの超音波流量計を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, reduces the influence of direct propagation waves (unnecessary received waves) between the ultrasonic propagation aperture windows, simplifies and downsizes the structure, and reduces the cost. An object is to provide an ultrasonic flow meter.

前記従来の課題を解決するために、本発明の超音波流量計は、超音波入出口の超音波伝播開口窓に関し、この超音波伝播開口窓が計測流路の流れ方向に平行な対向する2つの直線と前記両直線を円弧で繋げた輪郭形状であることを特徴とする超音波流量計である。
In order to solve the above-described conventional problems, the ultrasonic flowmeter of the present invention relates to an ultrasonic wave propagation opening window at an ultrasonic wave inlet / outlet, and this ultrasonic wave propagation opening window faces 2 parallel to the flow direction of the measurement channel. It is an ultrasonic flowmeter characterized by having an outline shape in which two straight lines and the two straight lines are connected by an arc .

これによって、超音波伝播開口窓間で直接伝播する伝播波が一定の方向に集約されることが無くなることで、一定距離・一定時間で伝播する事が無くなり、受信される不要伝播波が減少し、正確に流速を計測することができる。   As a result, the propagation waves directly propagating between the ultrasonic propagation aperture windows are not concentrated in a certain direction, so that they are not propagated at a certain distance and time, and the received unnecessary propagation waves are reduced. The flow rate can be measured accurately.

本発明の超音波流量計は、超音波伝播開口窓間で直接伝播する不要伝播波を低減することにより、正確な流速計測を行うことができる。   The ultrasonic flowmeter of the present invention can perform accurate flow velocity measurement by reducing unnecessary propagation waves that propagate directly between the ultrasonic propagation aperture windows.

(a)本発明の実施の形態1における超音波流量計の断面図、(b)同超音波流量計の側面図(A) Cross-sectional view of the ultrasonic flowmeter in Embodiment 1 of the present invention, (b) Side view of the ultrasonic flowmeter 本発明の実施の形態1における超音波流量計の動作説明図Operational explanatory diagram of the ultrasonic flowmeter in Embodiment 1 of the present invention (a)図1におけるA−A’矢視断面の超音波伝播開口窓の輪郭形状を示す図、(b)同超音波伝播開口窓の他の輪郭形状を示す図(A) The figure which shows the outline shape of the ultrasonic propagation opening window of the A-A 'arrow cross section in FIG. 1, (b) The figure which shows the other outline shape of the same ultrasonic propagation opening window (a)本発明の実施の形態2における超音波流量計の超音波伝播開口窓間の波型形状部を示す図、(b)図4(a)のB−B’矢視断面図(A) The figure which shows the waveform type part between the ultrasonic propagation aperture windows of the ultrasonic flowmeter in Embodiment 2 of this invention, (b) B-B 'arrow sectional drawing of Fig.4 (a) (a)従来の超音波流量計の構成図、(b)図5(a)のC−C’矢視図(A) The block diagram of the conventional ultrasonic flowmeter, (b) C-C 'arrow line view of Fig.5 (a) (a)従来の超音波流量計の超音波伝播路を示す図、(b)従来の超音波流量計の超音波受信波を示す図(A) The figure which shows the ultrasonic propagation path of the conventional ultrasonic flowmeter, (b) The figure which shows the ultrasonic received wave of the conventional ultrasonic flowmeter

第1の発明は、矩形断面を有する計測流路と、前記計測流路の同一壁面側に設置され、対向側の壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、前記超音波センサの設置側の壁面に設けた超音波信号が出入りする為の2つの超音波伝播開口窓と、前記超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する流量演算手段と、を有し、前記2つの超音波伝播開口窓は、前記計測流路の流れ方向に平行な対向する2つの直線と前記両直線を円弧で繋げた輪郭形状としたことを特徴とすることで、超音波伝播開口窓からの回折伝播波が一定の距離で他の超音波伝播開口窓に伝播する事が無くなるため、不要伝播波が減少し、正確に流速を計測することができる。
A first invention is a pair of a measurement channel having a rectangular cross-section and a pair of ultrasonic channels that are installed on the same wall surface side of the measurement channel and that use reflection on the opposite wall surface. Flow rate based on ultrasonic sensor, two ultrasonic wave propagation opening windows for ultrasonic signals provided on the wall surface on the installation side of the ultrasonic sensor, and ultrasonic wave propagation time by transmission / reception of the ultrasonic sensor The two ultrasonic wave propagation aperture windows have a contour shape in which two straight lines parallel to the flow direction of the measurement flow path and the two straight lines are connected by an arc . This feature prevents diffracted propagation waves from the ultrasonic propagation aperture window from propagating to other ultrasonic propagation aperture windows at a fixed distance, reducing unnecessary propagation waves and accurately measuring the flow velocity. can do.

の発明は、特に第の発明において、前記超音波伝播開口窓を形成する前記2つの直線の間隔は、前記超音波センサ設置側の流路幅と同一としたことで、回折波の抑止とともに超音波の伝播路が流体計測部において短辺方向の全域を計測するため計測値の補正が無くても正確な、計測が可能である。
According to a second aspect of the invention, in particular, in the first aspect of the invention, the interval between the two straight lines forming the ultrasonic wave propagation aperture window is the same as the channel width on the ultrasonic sensor installation side. In addition to the suppression, the ultrasonic wave propagation path measures the entire area in the short side direction in the fluid measurement unit, so that accurate measurement is possible without correction of the measurement value.

の発明は、特に第1または2の発明において、前記超音波伝播開口窓間の計測流路の壁面は、流体が流れる方向に対して垂直な断面形状を波型に形成したことで、超音波伝播開口窓で発生した回折波に、壁面の高さの違いにより時間差が発生し、より回折波の受信レベルを下げることが可能となる。
According to a third aspect of the invention, in particular, in the first or second aspect of the invention, the wall surface of the measurement flow path between the ultrasonic wave propagation aperture windows is formed in a corrugated cross-sectional shape perpendicular to the direction in which the fluid flows. A time difference occurs in the diffracted wave generated in the ultrasonic wave propagation aperture window due to the difference in the height of the wall surface, and the reception level of the diffracted wave can be further lowered.

の発明は、特に第の発明において、前記超音波伝播開口窓間の計測流路の断面積
と、前記超音波伝播開口窓間以外の計測流路の断面積とが一致するようにしたことで、計測流路の断面積が超音波の伝播路で変化しないため、波型の壁面を有しても、計測性能への影響を最小限に抑えることができる。
In a fourth aspect of the invention, particularly in the third aspect of the invention, the cross-sectional area of the measurement flow path between the ultrasonic wave propagation aperture windows and the cross-sectional area of the measurement flow path other than between the ultrasonic wave propagation aperture windows coincide with each other. As a result, since the cross-sectional area of the measurement channel does not change in the propagation path of the ultrasonic wave, even if it has a corrugated wall surface, the influence on the measurement performance can be minimized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態である超音波流量計の断面図を示す。
(Embodiment 1)
FIG. 1 is a sectional view of an ultrasonic flowmeter according to the first embodiment of the present invention.

図1(a)は側面断面図、(b)は流体の流入側からみた側面図であり、図において、超音波流量計1は、計測流路2と、計測流路2の上流側に流体を流入する流入路1aで構成された開口部3を有する。また、計測流路2に隣接するセンサ取付け部4を備え、センサ取付け部4には一対の超音波センサ5a、5bが取付けられ、その上部に超音波センサにより得られた伝播時間から流量を算出する流量演算手段としての流量演算回路6が設置されている。   FIG. 1A is a side sectional view, and FIG. 1B is a side view as seen from the fluid inflow side. In the figure, the ultrasonic flowmeter 1 includes a measurement channel 2 and a fluid upstream of the measurement channel 2. It has the opening part 3 comprised by the inflow path 1a which flows in. In addition, a sensor mounting portion 4 adjacent to the measurement flow path 2 is provided, and a pair of ultrasonic sensors 5a and 5b is mounted on the sensor mounting portion 4, and the flow rate is calculated from the propagation time obtained by the ultrasonic sensor above the sensor mounting portion 4. A flow rate calculation circuit 6 is installed as a flow rate calculation means.

また、図(b)に示すように、計測流路2の流体が流れる流路断面は矩形に構成されている。   Further, as shown in FIG. 2B, the cross section of the flow path through which the fluid of the measurement flow path 2 flows is formed in a rectangular shape.

なお、流量演算回路6に関しては計測流路及びセンサ取付け部に隣接されない構成でも構わない。   The flow rate calculation circuit 6 may be configured not to be adjacent to the measurement flow path and the sensor mounting portion.

次に、超音波による流量計測動作を説明する。図2に示すように本発明においては一対の超音波センサ5a、5bを計測流路2の矩形断面の同一面上(図1では、矩形断面の短辺側)に配置する構成とするため、超音波の送受信の伝播経路は対向壁面で反射させたV字型の伝播路となり、この上流、下流の超音波センサ間で超音波の送受が行われる。   Next, a flow measurement operation using ultrasonic waves will be described. As shown in FIG. 2, in the present invention, a pair of ultrasonic sensors 5a and 5b are arranged on the same plane of the rectangular cross section of the measurement channel 2 (in FIG. 1, the short side of the rectangular cross section) The ultrasonic wave transmission / reception propagation path is a V-shaped propagation path reflected by the opposing wall surface, and ultrasonic waves are transmitted and received between the upstream and downstream ultrasonic sensors.

この構成において、上流側の超音波センサ5aから発せられた超音波が下流側の超音波センサ5bで受信されるまでの伝播時間T1を計測する。また一方、下流側の超音波センサ5bから発せられた超音波が上流側の超音波センサ5aで受信されるまでの伝播時間T2を計測する。   In this configuration, the propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic sensor 5a is received by the downstream ultrasonic sensor 5b is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the downstream ultrasonic sensor 5b is received by the upstream ultrasonic sensor 5a is measured.

このようにして測定された伝播時間T1およびT2を基に、以下の演算式により流量演算回路6で流速が算出される。   Based on the propagation times T1 and T2 thus measured, the flow rate calculation circuit 6 calculates the flow velocity by the following calculation formula.

いま、計測流路の流動方向の被計測流体の流速Vと超音波伝播路とのなす角度をθとし、超音波センサ間の距離を2×L、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。   If the angle between the flow velocity V of the fluid to be measured in the flow direction of the measurement channel and the ultrasonic propagation path is θ, the distance between the ultrasonic sensors is 2 × L, and the sound velocity of the fluid to be measured is C, the flow velocity V is calculated by the following equation.

式(1) T1=2×L/(C+Vcosθ)
式(2) T2=2×L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
式(3) V=(2×L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なので伝播時間T1およびT2の値より流速Vが算出できる。いま、空気の流量を計ることを考え、角度θ=45度、距離L=35mm、音速C=340m/s、流速V=8m/sを想定すると、T1=2.0×10−4秒、T2=2.1×10−4秒であり、瞬時計測ができる。
Formula (1) T1 = 2 × L / (C + V cos θ)
Formula (2) T2 = 2 × L / (C−V cos θ)
The speed of sound C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1. Equation (3) V = (2 × L / 2 cos θ) ((1 / T1) − (1 / T2))
Since θ and L are known, the flow velocity V can be calculated from the values of the propagation times T1 and T2. Assuming that the air flow rate is measured, assuming that the angle θ = 45 degrees, the distance L = 35 mm, the sound velocity C = 340 m / s, and the flow velocity V = 8 m / s, T1 = 2.0 × 10 −4 seconds, T2 = 2.1 × 10 −4 seconds, and instantaneous measurement is possible.

図3は本発明の特徴である超音波の入出口である超音波伝播開口窓の形状を示す図で、図1の計測流路の超音波センサ取付け側の壁面のA−A’矢視図であり、7a、7bは図1の超音波センサ5a、5bの超音波送受信のための超音波伝播開口窓である。   FIG. 3 is a diagram showing the shape of an ultrasonic wave propagation aperture window that is an ultrasonic wave entrance / exit, which is a feature of the present invention, and is a view taken along the line AA ′ of the wall surface of the measurement flow channel of FIG. 7a and 7b are ultrasonic propagation aperture windows for ultrasonic transmission / reception of the ultrasonic sensors 5a and 5b in FIG.

従来例で前述したように、V字の伝播路の流路では、一方の超音波センサから発信された超音波はセンサ取付け部と対向する壁面で反射し、もう一方の超音波センサで受信される伝播経路を構成するが、2つの超音波伝播開口窓間において、一部の超音波が回折して超音波センサからの信号がもう一方の超音波センサに直接伝播する経路を有する。この直接伝播の受信波が正規の伝播路(即ち、V字の伝播路)を経て来た受信波と時間的に近接する場合、計測ロジックの誤動作や、受信波のノイズとなり計測性能に悪影響をもたらす可能性がる。   As described above in the conventional example, in the flow path of the V-shaped propagation path, the ultrasonic wave transmitted from one ultrasonic sensor is reflected by the wall surface facing the sensor mounting portion and received by the other ultrasonic sensor. However, a part of the ultrasonic wave is diffracted between the two ultrasonic wave propagation aperture windows, and a signal from the ultrasonic sensor directly propagates to the other ultrasonic sensor. If this directly propagated received wave is close in time to a received wave that has passed through a regular propagation path (that is, a V-shaped propagation path), measurement logic malfunctions and the received wave becomes noise, which adversely affects measurement performance. There is a possibility to bring.

本実施の形態では、図3(a)に示すように2つの超音波伝播開口窓7a、7bで回折を起こす流路短編側の外形状が曲線で構成されているため、従来例(図5,6)で示したように一定方向に回折せず、回折による伝播波は、曲線に対し法線状に拡散することでその伝播経路が分散されるため、他方の超音波センサが受ける不要な受信波のレベルは大きく低減される。   In the present embodiment, as shown in FIG. 3 (a), the outer shape of the short channel side that causes diffraction in the two ultrasonic wave propagation aperture windows 7a and 7b is configured by a curve, and thus the conventional example (FIG. 5). 6), the propagation wave caused by diffraction is not diffracted in a certain direction, and the propagation path is dispersed by diffusing in a normal line with respect to the curve, so that the other ultrasonic sensor does not need to receive it. The level of the received wave is greatly reduced.

これによって、従来の超音波伝播開口窓形状ではV字の伝播路や超音波伝播開口窓の位置や大きさにより直接伝播の受信波が正規の伝播路を経て来た受信波と時間的に近接しないように、流量計測部の仕様に落とし込む必要があったが、回折による直接伝播波のレベルを小さくすることができ、流量計の設計自由度が上がるため、例えば、計測流路を小型化する、計測性能を上げるなど目的に応じた流路設計の最適仕様に落とし込むことが可能となる。   As a result, in the conventional ultrasonic wave propagation aperture shape, the directly propagated received wave is close in time to the received wave that has passed through the normal propagation path due to the position and size of the V-shaped propagation path and the ultrasonic propagation aperture window. In order to avoid this, it was necessary to reduce the specifications of the flow measurement unit, but the level of direct propagation waves due to diffraction can be reduced and the design freedom of the flow meter is increased. It is possible to reduce the measurement performance to the optimum specifications for the flow path design according to the purpose.

なお、計測に悪影響を及ぼす回析波は超音波伝播開口窓の互いに近い側で発生する為、図3(b)に示すように、超音波伝播開口窓7a’、7b’の輪郭形状において、円弧に形成するのは、互いに近い側に位置する方のみでよく、他方は従来のように直線としても同様の効果を得ることができる。   In addition, since the diffracted waves that adversely affect the measurement are generated on the sides close to each other of the ultrasonic propagation aperture windows, as shown in FIG. 3B, in the contour shapes of the ultrasonic propagation aperture windows 7a ′ and 7b ′, The arc may be formed only on the side closer to each other, and the same effect can be obtained even if the other is a straight line as in the prior art.

(実施の形態2)
図4は本発明の第2の実施の形態を示す図で、図4(a)は図1のA−A’方向の流路壁の矢視図、図4(b)は図4(a)のB−B’方向の計測流路(F)の断面図を示す。図4に示すように2つの超音波伝播開口窓の間の壁面8の流体流れに対して垂直な断面を波型形状8aにすることで、超音波伝播開口窓で回折の起こる位置が波型の高さで変わるため伝播距離が変わり分散が更に助長されるため、直接伝播波の影響がより小さくなる。
(Embodiment 2)
FIG. 4 is a view showing a second embodiment of the present invention, FIG. 4 (a) is an arrow view of the flow path wall in the AA ′ direction of FIG. 1, and FIG. 4 (b) is FIG. ) Shows a cross-sectional view of the measurement flow path (F) in the BB ′ direction. As shown in FIG. 4, the cross section perpendicular to the fluid flow on the wall surface 8 between the two ultrasonic wave propagation aperture windows is formed into the wave shape 8a, so that the position where diffraction occurs in the ultrasonic wave propagation aperture window is corrugated. Since the propagation distance changes and dispersion is further promoted because of the change in height, the influence of the direct propagation wave becomes smaller.

なお、本実施の形態では図4(b)示すよう波型を三角形状で構成しているが、凸凹状のものであれば特に減されるものではなく、また凸凹の間隔が均等なものでなくても構成は可能である。   In this embodiment, as shown in FIG. 4 (b), the wave shape is a triangular shape. However, it is not particularly reduced if it is uneven, and the interval between the unevenness is uniform. A configuration is possible without it.

また、本実施の形態では、波型の高さh1を、超音波伝播開口窓7aの上流側の流路(
E)の流路断面積と波型を有する計測流路(F)の流路断面積が同じとなるようにしている。なお、超音波伝播開口窓7bの下流側の計測流路(G)の流路断面積とも同じであることは言うまでもない。
Further, in the present embodiment, the corrugated height h1 is set to a flow path (upstream side of the ultrasonic wave propagation aperture window 7a (
The channel cross-sectional area of E) and the channel cross-sectional area of the measurement channel (F) having a corrugated shape are made the same. Needless to say, the channel cross-sectional area of the measurement channel (G) on the downstream side of the ultrasonic wave propagation window 7b is the same.

例えば、本実施の形態においては、波型が三角波でありその山と谷の位置の平均h2を超音波伝播開口窓7aの上流側(E)の流路高さh3と同じとすることで、流量断面積が同じになるように構成している。   For example, in the present embodiment, the waveform is a triangular wave, and the average h2 of the peak and valley positions is the same as the flow path height h3 on the upstream side (E) of the ultrasonic wave propagation aperture window 7a. The flow cross-sectional areas are the same.

なお、超音波センサ取付け側の壁面が全面波型を有する構成でも構わない。   The wall surface on the ultrasonic sensor mounting side may have a full-surface wave shape.

以上のように、本発明にかかる超音波流量計は、計測流路と計測流路の同一壁面側に設置され対向側の計測流路壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する流量演算回路を有し、超音波入出の超音波伝播開口窓に関し、計測流路断面の短辺方向の超音波伝播開口窓の形状が計測流路の流れ方向に対して垂直な直線部を有さない形状であることを特徴とし、超音波伝播開口窓からの回折波が一定の距離でもう一方の超音波伝播開口窓に伝播する事が無くなるため、不要伝播波が減少し、正確に流速を計測することができ、計測の精度を向上しつつ、設計の自由度が増し、小型、低コスト化が可能なためガスメータをはじめとして種々の流量計として応用展開が可能である。   As described above, the ultrasonic flowmeter according to the present invention is configured on the same wall surface side of the measurement flow channel and the measurement flow channel and constitutes an ultrasonic propagation path using reflection on the opposite measurement flow channel wall surface. A pair of ultrasonic sensors arranged in such a manner, and a flow rate calculation circuit for detecting a flow rate based on the propagation time of ultrasonic waves transmitted and received by the ultrasonic sensors. The shape of the ultrasonic wave propagation aperture window in the short side direction is a shape that does not have a straight portion perpendicular to the flow direction of the measurement flow path, and the diffracted wave from the ultrasonic wave propagation aperture window is constant. Since it does not propagate to the other ultrasonic wave propagation aperture window at a distance, unnecessary propagation waves can be reduced, the flow velocity can be measured accurately, the measurement accuracy is improved, and the degree of freedom in design increases. Since it is small and low in cost, it can be used for gas meters. It is applicable deployed as various flowmeter.

1 超音波流量計
2 計測流路
5a、5b 超音波センサ
6 流量演算回路(流量演算手段)
7a、7b、7a’、7b’ 超音波伝播開口窓
DESCRIPTION OF SYMBOLS 1 Ultrasonic flowmeter 2 Measurement flow path 5a, 5b Ultrasonic sensor 6 Flow rate calculation circuit (flow rate calculation means)
7a, 7b, 7a ', 7b' Ultrasonic wave propagation aperture window

Claims (4)

矩形断面を有する計測流路と、
前記計測流路の同一壁面側に設置され、対向側の壁面での反射を利用した超音波の伝播路を構成するよう配置した一対の超音波センサと、
前記超音波センサの設置側の壁面に設けた超音波信号が出入りする為の2つの超音波伝播開口窓と、
前記超音波センサの送受信による超音波の伝播時間に基づいて流量を検出する流量演算手段と、を有し、
前記2つの超音波伝播開口窓は、前記計測流路の流れ方向に平行な対向する2つの直線と前記両直線を円弧で繋げた輪郭形状としたことを特徴とする超音波流量計。
A measurement channel having a rectangular cross-section;
A pair of ultrasonic sensors installed on the same wall surface side of the measurement flow channel and arranged to constitute an ultrasonic wave propagation path utilizing reflection on the opposite wall surface;
Two ultrasonic wave propagation aperture windows for entering and exiting an ultrasonic signal provided on the wall surface on the installation side of the ultrasonic sensor;
Flow rate calculation means for detecting a flow rate based on the propagation time of ultrasonic waves by transmission and reception of the ultrasonic sensor,
The ultrasonic flowmeter according to claim 2, wherein the two ultrasonic wave propagation aperture windows have a contour shape in which two opposing straight lines parallel to the flow direction of the measurement flow path and the two straight lines are connected by an arc .
前記超音波伝播開口窓を形成する前記2つの直線の間隔は、前記超音波センサ設置側の流路幅と同一とした請求項に記載の超音波流量計。 The distance between the two straight lines forming the ultrasonic wave propagation opening windows, ultrasonic flow meter according to claim 1 which is the same as the channel width of the ultrasonic sensor installation side. 前記超音波伝播開口窓間の計測流路の壁面は、流体が流れる方向に対して垂直な断面形状を波型に形成した請求項1または2に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1 or 2 , wherein the wall surface of the measurement flow path between the ultrasonic propagation aperture windows has a corrugated cross-sectional shape perpendicular to the direction in which the fluid flows. 前記超音波伝播開口窓間の計測流路の断面積と、前記超音波伝播開口窓間以外の計測流路の断面積とが一致するようにした請求項に記載の超音波流量計。 The ultrasonic flowmeter according to claim 3 , wherein a cross-sectional area of the measurement flow path between the ultrasonic propagation aperture windows matches a cross-sectional area of the measurement flow path other than between the ultrasonic propagation aperture windows.
JP2012052658A 2012-03-09 2012-03-09 Ultrasonic flow meter Active JP6028215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052658A JP6028215B2 (en) 2012-03-09 2012-03-09 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052658A JP6028215B2 (en) 2012-03-09 2012-03-09 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2013186031A JP2013186031A (en) 2013-09-19
JP6028215B2 true JP6028215B2 (en) 2016-11-16

Family

ID=49387566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052658A Active JP6028215B2 (en) 2012-03-09 2012-03-09 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP6028215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7126048B2 (en) * 2018-08-08 2022-08-26 パナソニックIpマネジメント株式会社 ultrasonic flow meter
JP2020024180A (en) * 2018-08-09 2020-02-13 パナソニックIpマネジメント株式会社 Ultrasonic flow meter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098117A (en) * 1977-04-29 1978-07-04 Joseph Baumoel Open channel flow transducer for sewerage system
JP3217021B2 (en) * 1998-01-16 2001-10-09 経済産業省産業技術総合研究所長 Ultrasonic flow meter
JP3821571B2 (en) * 1998-03-19 2006-09-13 株式会社オーバル Ultrasonic flow meter
JP2006017639A (en) * 2004-07-02 2006-01-19 Ricoh Elemex Corp Ultrasonic flowmeter
JP4793916B2 (en) * 2005-11-18 2011-10-12 リコーエレメックス株式会社 Ultrasonic flow meter sensor mounting structure

Also Published As

Publication number Publication date
JP2013186031A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP2010164558A (en) Device for measuring flow of fluid
WO2012063437A1 (en) Ultrasonic flow rate measurement device
WO2012086156A1 (en) Ultrasonic flowmeter
JP5974307B2 (en) Ultrasonic flow meter
WO2014057673A1 (en) Flowmeter
JPWO2012137489A1 (en) Ultrasonic flow measuring device
US20210270650A1 (en) Ultrasonic flowmeter
WO2017122239A1 (en) Gas meter
JP6028215B2 (en) Ultrasonic flow meter
JP2020024149A (en) Ultrasonic flowmeter
WO2020031622A1 (en) Ultrasonic flow meter
JP2010117201A (en) Flowmeter
JP7209139B2 (en) ultrasonic flow meter
JP5816831B2 (en) Ultrasonic flow meter
JP6134899B2 (en) Flow measurement unit
JP2014077750A (en) Ultrasonic meter
JP2009264906A (en) Flow meter
JP6982737B2 (en) Ultrasonic flow meter
JP2008298560A (en) Ultrasonic flow meter and flow rate measurement method
JP7462271B2 (en) Ultrasonic Flow Meter
JP2008014829A (en) Ultrasonic flowmeter
JP4084236B2 (en) Ultrasonic flow meter
JP7373772B2 (en) Physical quantity measuring device
JP4453341B2 (en) Ultrasonic flow meter
JP3217021B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6028215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151