JP2006017639A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2006017639A
JP2006017639A JP2004197304A JP2004197304A JP2006017639A JP 2006017639 A JP2006017639 A JP 2006017639A JP 2004197304 A JP2004197304 A JP 2004197304A JP 2004197304 A JP2004197304 A JP 2004197304A JP 2006017639 A JP2006017639 A JP 2006017639A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow
sensor
transmission
sensor mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197304A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2004197304A priority Critical patent/JP2006017639A/en
Publication of JP2006017639A publication Critical patent/JP2006017639A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of improving lowering of an S/N ratio caused by wall face reflection, and capable of securing a stable reception sound wave along a flow direction, without being accompanied with a problem of increasing a power consumption, a cost or the like. <P>SOLUTION: This flowmeter is provided with a flow pipe 10 having a cross-section perpendicular to a gas flowing direction, and sensor attaching recesses 10a, 10b are provided in a form to be opened to a flow passage 1, in an upstream and a downstream of a position corresponding to a short side 10r of the cross-section. Ultrasonic sensors 2a, 2b are attached to the sensor attaching recesses 10a, 10b to be positioned in a place where all of ultrasonic transmitting and receiving faces 2ap, 2bp are separated by at least a distance H from the flow passage 1. When a reference axis OH is defined to penetrate perpendicularly the substantial center of the ultrasonic transmitting and receiving faces 2ap, 2bp of the ultrasonic sensors 2a, 2b, a distance Dh from inner circumferential faces 10ap, 10bp of the sensor attaching recesses 10a, 10b up to the reference axis OH is gradually made long between the transmitting and receiving faces 2ap, 2bp of the ultrasonic sensors 2a, 2b to the flow passage 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波流量計に関する。   The present invention relates to an ultrasonic flow meter.

従来、都市ガス、水などの流体の流量を計測する装置として、超音波流量計がある。超音波流量計において、流体が流通する流通管の側壁での超音波の反射が、しばしばS/N低下の原因、すなわち計測精度にとって障害となることが知られている。こうした問題に対応するため、従来から、異なる特性の複数の圧電素子を積層した構造を持つ超音波センサや、異なる特性の圧電素子をアレー状に配列させた構造を持つ超音波センサを採用することが行なわれている。
特開2000−346685号公報
Conventionally, there is an ultrasonic flow meter as a device for measuring the flow rate of a fluid such as city gas or water. In an ultrasonic flowmeter, it is known that reflection of ultrasonic waves on the side wall of a flow pipe through which fluid flows often becomes a cause of S / N reduction, that is, an obstacle to measurement accuracy. In order to deal with these problems, conventionally, an ultrasonic sensor having a structure in which a plurality of piezoelectric elements having different characteristics are stacked, or an ultrasonic sensor having a structure in which piezoelectric elements having different characteristics are arranged in an array are employed. Has been done.
JP 2000-346685 A

ところで、都市ガス用途等の超音波流量計においては、流通管の外側に超音波センサを取り付ける、いわゆるクランプオン式を採用することが技術的に難しく、超音波センサを被計測流体(ガス)の通路に直接露出させる構造を採用する。そのため、超音波センサに割けるスペースや配置に制約があり、複数の圧電素子を持つような超音波センサを採用しづらい。また、圧電素子を複数持つ超音波センサを採用すると、制御や補正が複雑化するし、コスト高となる問題もある。制御や補正の複雑化は、計測精度向上の妨げになる。また、制御の複雑化は消費電力増を招くので、電池駆動が要求される超音波流量計にとって好ましくない。   By the way, in ultrasonic flowmeters for city gas applications, it is technically difficult to employ a so-called clamp-on type in which an ultrasonic sensor is attached to the outside of the distribution pipe, and the ultrasonic sensor is used for the fluid to be measured (gas). A structure that is directly exposed to the passage is adopted. For this reason, there are restrictions on the space and arrangement available for the ultrasonic sensor, and it is difficult to employ an ultrasonic sensor having a plurality of piezoelectric elements. In addition, when an ultrasonic sensor having a plurality of piezoelectric elements is employed, there is a problem in that control and correction become complicated and cost increases. Complicated control and correction hinder measurement accuracy improvement. Moreover, since complicated control leads to an increase in power consumption, it is not preferable for an ultrasonic flowmeter that requires battery driving.

本発明の課題は、消費電力増やコスト増等の問題を伴うことなく、壁面反射によるS/N低下を改善でき、流れ方向では安定した受信音波が確保された超音波流量計を提供することにある。   An object of the present invention is to provide an ultrasonic flowmeter that can improve the S / N decrease due to wall surface reflection without causing problems such as an increase in power consumption and cost, and in which a stable received sound wave is secured in the flow direction. It is in.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の超音波流量計の第一は、流量が計測される流体の流通方向と垂直な断面が矩形状の流通管を備え、その断面の短辺にあたる位置の上流側と下流側とに筒状のセンサ取り付け部が流路に開口する形で設けられ、センサ取り付け部には超音波の送信面または受信面(送受信面という)の全部が流路から少なくとも距離Hだけ離れたところに位置するように超音波センサが取り付けられており、その超音波センサの送受信面の略中心を垂直に貫く基準軸線を定義したとき、センサ取り付け部の内周面から基準軸線までの距離が、送受信面から流路に至るまでの間、次第に大きくなっていることを主要な特徴とする。   In order to solve the above problems, the first of the ultrasonic flowmeter of the present invention is provided with a flow pipe having a rectangular cross section perpendicular to the flow direction of the fluid whose flow rate is measured, and upstream of the position corresponding to the short side of the cross section. Cylindrical sensor attachment portions are provided on the side and downstream sides so as to open to the flow path, and the ultrasonic transmission surface or reception surface (referred to as transmission / reception surface) is at least a distance H from the flow passage in the sensor attachment portion. The ultrasonic sensor is mounted so that it is located only at a distance, and when defining a reference axis that penetrates substantially the center of the transmitting / receiving surface of the ultrasonic sensor vertically, from the inner peripheral surface of the sensor mounting portion to the reference axis The main feature is that the distance between the transmission and reception surfaces gradually increases from the transmission / reception surface to the flow path.

同じく課題を解決するために本発明の超音波流量計の第二は、流量が計測される流体の流通方向と垂直な断面が矩形状の流通管を備え、その断面の短辺にあたる位置の上流側と下流側とに筒状のセンサ取り付け部が流路に開口する形で設けられ、センサ取り付け部には流体の流通方向に対して超音波の送信面または受信面(送受信面という)が傾いた姿勢で超音波センサが取り付けられており、その超音波センサの送受信面の略中心を垂直に貫く基準軸線を定義したとき、センサ取り付け部の内周面から基準軸線までの距離が、送受信面から流路に至るまでの間、次第に大きくなっていることを特徴とする。   Similarly, in order to solve the problem, the second of the ultrasonic flowmeter of the present invention includes a flow pipe having a rectangular cross section perpendicular to the flow direction of the fluid whose flow rate is measured, and upstream of the position corresponding to the short side of the cross section. A cylindrical sensor mounting portion is provided on the side and the downstream side so as to open to the flow path, and an ultrasonic transmission surface or reception surface (referred to as a transmission / reception surface) is inclined with respect to the fluid flow direction in the sensor mounting portion. When the ultrasonic sensor is mounted in a different posture and a reference axis that passes through substantially the center of the transmission / reception surface of the ultrasonic sensor is defined vertically, the distance from the inner peripheral surface of the sensor mounting portion to the reference axis is the transmission / reception surface. It is characterized by gradually increasing from the point to the channel.

同じく課題を解決するために本発明の超音波流量計の第三は、流量が計測される流体の流通方向と垂直な断面が矩形状の流通管を備え、その断面の短辺にあたる位置の上流側と下流側とに筒状のセンサ取り付け部が流路に開口する形で設けられ、センサ取り付け部には超音波の送信面または受信面(送受信面という)の全部が流路から少なくとも距離Hだけ離れたところに位置するように超音波センサが取り付けられており、送受信面から流路に至るまでの間、センサ取り付け部が流路に向かうにつれて次第に拡径していることを主要な特徴とする。   Similarly, in order to solve the problem, the third of the ultrasonic flowmeter of the present invention includes a flow pipe having a rectangular cross section perpendicular to the flow direction of the fluid whose flow rate is measured, and upstream of the position corresponding to the short side of the cross section. Cylindrical sensor attachment portions are provided on the side and downstream sides so as to open to the flow path, and the ultrasonic transmission surface or reception surface (referred to as transmission / reception surface) is at least a distance H from the flow passage in the sensor attachment portion. The main feature is that the ultrasonic sensor is mounted so that it is located only at a distance, and the diameter of the sensor mounting part gradually increases as it goes to the flow path from the transmission / reception surface to the flow path. To do.

上記した本発明によれば、壁面反射の影響があっても、超音波センサと流路までの近距離音場の調整により、擬似的な開放空間により近い挙動を実現可能になる。具体低には、超音波センサを流路から適切量オフセットさせるとともに、センサ取り付け部の形も、流路側に進むにつれて徐々に広口となるようにする。こうした構成を採用すると、断面が矩形状の流通管の短辺方向寸法(要するに幅)を狭めても、開放空間の挙動が確保されるので安定な計測が実現でき、流通管自体の寸法を小さく抑えることが可能となり、装置全体を小型化できる。しかも本発明によれば、構造的な工夫により擬似的な開放空間に近い挙動を得ようとするものだから、制御の複雑化、ひいては消費電力増を招くことがない。したがって、電池駆動式の超音波流量計に特に好適である。また、本発明の構成によれば、流路幅の狭い方向(流通管の短辺方向)での指向性利得を低下できる。とによって、流通管の側璧方向への音のエネルギーを低減できる。つまり、側壁方向への不要ノイズを低減し、S/N向上に一役買う。この場合、検出再現性の向上も期待でき、微小流量時の高精度な流量検出を行なえるようになる。   According to the above-described present invention, even if there is an influence of wall surface reflection, a behavior closer to a pseudo open space can be realized by adjusting the near field from the ultrasonic sensor to the flow path. Specifically, the ultrasonic sensor is offset by an appropriate amount from the flow path, and the shape of the sensor mounting portion is gradually widened as it moves toward the flow path. By adopting such a configuration, even if the short side dimension (in short, width) of the distribution pipe having a rectangular cross section is narrowed, the behavior of the open space is ensured, so that stable measurement can be realized, and the dimensions of the distribution pipe itself can be reduced. This makes it possible to reduce the size of the entire apparatus. In addition, according to the present invention, a behavior close to that of a pseudo open space is obtained by structural ingenuity, so that the control is not complicated, and the power consumption is not increased. Therefore, it is particularly suitable for a battery-driven ultrasonic flow meter. Moreover, according to the structure of this invention, the directivity gain in the direction where the flow path width is narrow (the short side direction of the flow pipe) can be reduced. Therefore, the energy of sound in the direction of the side wall of the distribution pipe can be reduced. In other words, unnecessary noise in the side wall direction is reduced, and it plays a role in improving S / N. In this case, improvement in detection reproducibility can be expected, and highly accurate flow rate detection at a minute flow rate can be performed.

また、上記第一発明、第二発明に関していうと、流体の流通方向に平行かつ基準軸線を含む断面において、センサ取り付け部の内周面が曲線を呈していることが好適である。このような構成によれば、超音波の指向性の制御が容易である。   Further, regarding the first invention and the second invention, it is preferable that the inner peripheral surface of the sensor mounting portion is curved in a cross section parallel to the fluid flow direction and including the reference axis. According to such a configuration, it is easy to control the directivity of ultrasonic waves.

ところで、大流量が計測可能な超音波流量計を考えた場合、流通管の断面積を大きくする必要がある。流通管の断面積を大きくすると、圧力損失を生じさせずに流体を流すことが可能になるからである。しかしながら、流通管の断面積を大きくしたことにより、平均流速、単位断面積あたりの平均流量が小さくなる。このような構成の超音波流量計においては、低流速、小流量時の計測精度を確保することが難しい。それを補うために、超音波センサ間の距離を長くすることが考えられる。超音波センサ間の距離を長くすると、超音波が流体の流れによる流速、流量にさらされる時間が長くなるので、小流量時の計測精度を確保しやすいからである。   By the way, when an ultrasonic flowmeter capable of measuring a large flow rate is considered, it is necessary to increase the cross-sectional area of the flow pipe. This is because if the cross-sectional area of the flow pipe is increased, it is possible to flow the fluid without causing pressure loss. However, by increasing the cross-sectional area of the flow pipe, the average flow velocity and the average flow rate per unit cross-sectional area are reduced. In the ultrasonic flowmeter having such a configuration, it is difficult to ensure measurement accuracy at a low flow rate and a small flow rate. In order to compensate for this, it is conceivable to increase the distance between the ultrasonic sensors. This is because if the distance between the ultrasonic sensors is increased, the time during which the ultrasonic waves are exposed to the flow velocity and flow rate due to the flow of the fluid becomes longer, so it is easy to ensure measurement accuracy at a small flow rate.

したがって、流通管とセンサ取り付け部との接続位置において、流通管の断面の短辺寸法Wよりも、センサ取り付け部の幅Dの方が大となるように、流通管およびセンサ取り付け部の寸法調整を行なうことができる。このような構成によれば、流通管の幅(短辺方向長さ)を小さく抑えることが可能であり、超音波センサ間の距離を長く取るのに有利である。 Therefore, in the connection position between the flow pipe and the sensor mounting portion, than the short side dimension W of the cross section of the flow pipe, as towards the width D 3 of the sensor attachment portion is large, the size of the flow tube and the sensor mounting portion Adjustments can be made. According to such a configuration, it is possible to reduce the width (length in the short side direction) of the flow pipe, which is advantageous for increasing the distance between the ultrasonic sensors.

予め設定した閾値電圧を超える、または下回る波形部分をトリガ波とし、このトリガ波の振幅がゼロとなるゼロクロス点を検出することに基づいて超音波の伝搬時間を求める一方、低流量時には高流量時よりも後段のゼロクロス点を使用するように構成された流量計測部をさらに設けることができる。高流量時と低流量時とで比較すると、低流量時の方が反射波の影響をより強く受けやすい。したがって、流速(流量)が予め定めた値以上の場合と、そうでない場合とで、使用するゼロクロス点を変化させれば、より高精度な検出が期待できる。   Waveforms that exceed or fall below a preset threshold voltage are used as trigger waves, and the ultrasonic wave propagation time is obtained based on detecting the zero cross point where the amplitude of this trigger wave is zero. In addition, a flow rate measuring unit configured to use a zero cross point at a later stage can be further provided. Compared with high flow rate and low flow rate, the low flow rate is more easily affected by reflected waves. Therefore, more accurate detection can be expected by changing the zero cross point to be used depending on whether the flow velocity (flow rate) is equal to or higher than a predetermined value.

以下、添付の図面を参照しつつ本発明の実施形態について説明する。
図1は、一般住宅用ガスメータ等として用いられる超音波流量計100の基本構成を示す。流通管10には、流路1が形成されている。流路1には、ガスが流れ方向軸線Oに沿って図示の流れ方向に流通(平均流速V)する。流通管10の上流側と下流側には、流通管10に連通する一対のセンサ取り付け凹部10a,10bが形成されている。センサ取り付け凹部10a,10bには、超音波センサ2a,2bが個別に取り付けられている。超音波センサ2a,2bは、センサ取り付け凹部10a,10bによって形成された近距離音場FEを介して、流路1を流れるガスと直接接する配置となっている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a basic configuration of an ultrasonic flow meter 100 used as a general residential gas meter or the like. A flow path 1 is formed in the circulation pipe 10. In the flow path 1, the gas flows in the flow direction shown in the drawing along the flow direction axis O (average flow velocity V). A pair of sensor mounting recesses 10 a and 10 b communicating with the flow pipe 10 are formed on the upstream side and the downstream side of the flow pipe 10. Ultrasonic sensors 2a and 2b are individually attached to the sensor attachment recesses 10a and 10b. The ultrasonic sensors 2a and 2b are arranged in direct contact with the gas flowing through the flow path 1 through the short-range sound field FE formed by the sensor mounting recesses 10a and 10b.

図1の実施形態では、超音波センサ2aと超音波センサ2bとは、流路1を隔てて反対側に位置しているが、図4の模式図に示すごとく、同じ側に位置する形態もある。図4の形態のように、超音波センサ2a,2bをV字型の配置とすれば、流通管の幅が同じであれば伝播長を2倍に稼げるというメリットがある。逆に言えば、伝搬長が同じでも流通管の幅を広くできる。すると、流通管の側壁での超音波の反射を抑制できるため、S/N向上に有利である。   In the embodiment of FIG. 1, the ultrasonic sensor 2 a and the ultrasonic sensor 2 b are located on the opposite side across the flow path 1. However, as shown in the schematic diagram of FIG. 4, the ultrasonic sensor 2 a and the ultrasonic sensor 2 b may be located on the same side. is there. If the ultrasonic sensors 2a and 2b are arranged in a V shape as shown in FIG. 4, there is an advantage that the propagation length can be doubled if the width of the flow pipe is the same. In other words, the width of the distribution pipe can be widened even if the propagation length is the same. Then, since reflection of the ultrasonic wave in the side wall of a flow pipe can be suppressed, it is advantageous for S / N improvement.

図1から分かるように、流通管10は、超音波センサ2a−超音波センサ2b間において流れ方向軸線Oが直線状であり、軸断面の形状および断面積が流れ方向において同一に形成されている。本実施形態において流通管10は、流れ方向軸Oと垂直な断面が矩形状としている。別角度からみた図3に示すごとく、流通管10の断面のうち、超音波センサ2a,2bの位置する辺が短辺10r,10rとなっている。短辺10rと平行な方向は、短辺方向WL(幅方向WLともいう)とされる。なお、流通管10の断面形状を正方形とすることも可能であるが、超音波センサ2a,2b間の距離を稼ぐという観点において、短辺と長辺を有する矩形であることが好適である。   As can be seen from FIG. 1, in the flow tube 10, the flow direction axis O is linear between the ultrasonic sensor 2 a and the ultrasonic sensor 2 b, and the shape and cross-sectional area of the axial cross section are the same in the flow direction. . In the present embodiment, the flow pipe 10 has a rectangular cross section perpendicular to the flow direction axis O. As shown in FIG. 3 from another angle, the sides where the ultrasonic sensors 2a and 2b are located in the cross section of the flow tube 10 are the short sides 10r and 10r. The direction parallel to the short side 10r is the short side direction WL (also referred to as the width direction WL). In addition, although the cross-sectional shape of the flow pipe 10 can be a square, it is preferable that the rectangular shape has a short side and a long side in terms of increasing the distance between the ultrasonic sensors 2a and 2b.

超音波センサ2a,2bは、圧電素子や音響整合層等で構成されたトランスデューサであり、これら超音波センサ2a,2bを発振させるための駆動電圧回路等から構成される送信手段22、あるいは超音波センサ2a,2bの発生電圧を検出するための電圧検出回路等から構成される受信手段32に接続される。超音波センサ2a,2bの接続先の切り替えは、アナログスイッチ等で構成される切替手段3によって行なわれる。切替手段3は、マイクロコンピュータ9によって制御される。たとえば、流れ方向上流側(超音波センサ2a側)から流れ方向下流側(超音波センサ2b側)に向けて超音波を送信する場合には、超音波センサ2aが送信側(発振元)となるので、切替手段3は、始め、送信手段22と超音波センサ2aとを接続し、受信手段32と超音波センサ2bとを接続することとなる。   The ultrasonic sensors 2a and 2b are transducers composed of piezoelectric elements, acoustic matching layers, etc., and transmitting means 22 composed of a drive voltage circuit or the like for oscillating these ultrasonic sensors 2a and 2b, or ultrasonic waves It is connected to receiving means 32 comprising a voltage detection circuit for detecting the voltage generated by the sensors 2a, 2b. Switching of the connection destinations of the ultrasonic sensors 2a and 2b is performed by a switching unit 3 constituted by an analog switch or the like. The switching means 3 is controlled by the microcomputer 9. For example, when transmitting an ultrasonic wave from the upstream side in the flow direction (ultrasonic sensor 2a side) to the downstream side in the flow direction (ultrasonic sensor 2b side), the ultrasonic sensor 2a becomes the transmission side (oscillation source). Therefore, the switching unit 3 first connects the transmission unit 22 and the ultrasonic sensor 2a, and connects the reception unit 32 and the ultrasonic sensor 2b.

超音波流量計100は、流量計測部として、超音波センサ2a,2bにより得られる超音波受信出力を増幅する増幅器4と、ゼロクロス法により出力波形から超音波到達時点を検出するゼロクロスポイント検出部6と、マイクロコンピュータ9とを備える。受信波が増幅器4で増幅され、ゼロクロスポイント検出部6に入力される。ゼロクロスポイント検出部6は、超音波センサ2a,2bの一方で発振された超音波が、他方で受信されたか否か検出する。ゼロクロスポイント検出部6は、受信波を検出した旨の信号をマイクロコンピュータ9に入力する。時間計測手段としてのマイクロコンピュータ9は、ゼロクロスポイント検出部6から信号取得に基づいて、超音波センサ2a,2bの一方が超音波を発振してから、他方がその超音波を受信するまでの直接到達時間を計測し、該計測結果より流量演算を行なう。   The ultrasonic flowmeter 100 includes, as a flow measurement unit, an amplifier 4 that amplifies ultrasonic reception output obtained by the ultrasonic sensors 2a and 2b, and a zero cross point detection unit 6 that detects an ultrasonic arrival time from an output waveform by a zero cross method. And a microcomputer 9. The received wave is amplified by the amplifier 4 and input to the zero cross point detector 6. The zero cross point detector 6 detects whether or not the ultrasonic wave oscillated by one of the ultrasonic sensors 2a and 2b has been received by the other. The zero cross point detector 6 inputs a signal indicating that the received wave has been detected to the microcomputer 9. The microcomputer 9 serving as a time measuring means is based on the signal acquisition from the zero cross point detection unit 6 and directly from when one of the ultrasonic sensors 2a and 2b oscillates an ultrasonic wave until the other receives the ultrasonic wave. The arrival time is measured, and the flow rate is calculated from the measurement result.

ゼロクロス法は、差動型コンパレータ22(図2参照)に入力設定されたしきい値VTHを超える(又は下回る)波形部分をトリガ波とし、このトリガ波の振幅(又は位相)がゼロとなるゼロクロス点を、増幅信号Va(又はその派生信号)の波形上でゼロクロスポイントパルス発生回路24により検出する方法である。 In the zero-cross method, a waveform portion that exceeds (or falls below) a threshold value V TH input and set to the differential comparator 22 (see FIG. 2) is used as a trigger wave, and the amplitude (or phase) of this trigger wave becomes zero. In this method, the zero cross point is detected by the zero cross point pulse generation circuit 24 on the waveform of the amplified signal Va (or a derivative signal thereof).

図2のブロック図に示すごとく、超音波センサ2a、2bによる超音波受信出力は、増幅器4(たとえばオペアンプ)で電圧増幅(たとえば非反転増幅)され、増幅信号Vaがゼロクロスポイント検出部6に入力される。ゼロクロスポイント検出部6において、増幅信号Vaはゼロクロス型コンパレータ21(第一コンパレータ)に入力(例えば非反転入力)され、差動型コンパレータ22(第二コンパレータ)に入力(例えば反転入力)される。コンパレータ出力Vb,Vcは、RSフリップフロップ回路23のポート#S,#Rへ各々入力される。RSフリップフロップ回路23のポート#Q出力Vdにより、単安定マルチバイブレータ等で構成されるゼロクロスポイントパルス発生回路24が出力波形Vaにおける超音波到達時点を検出し、ゼロクロスポイント検出信号Veを時間計測手段たるマイクロコンピュータ9に向けて出力する。マイクロコンピュータ9は、ゼロクロスポイント検出信号Veの入力によって、超音波の伝搬時間を知る。   As shown in the block diagram of FIG. 2, the ultrasonic reception outputs by the ultrasonic sensors 2 a and 2 b are voltage amplified (for example, non-inverted amplification) by an amplifier 4 (for example, an operational amplifier), and the amplified signal Va is input to the zero cross point detection unit 6. Is done. In the zero cross point detector 6, the amplified signal Va is input (for example, non-inverted input) to the zero cross type comparator 21 (first comparator) and input (for example, inverted input) to the differential type comparator 22 (second comparator). The comparator outputs Vb and Vc are input to the ports #S and #R of the RS flip-flop circuit 23, respectively. By means of the port #Q output Vd of the RS flip-flop circuit 23, the zero cross point pulse generation circuit 24 constituted by a monostable multivibrator or the like detects the arrival time of the ultrasonic wave in the output waveform Va, and the zero cross point detection signal Ve is time measuring means. The output is directed to the microcomputer 9. The microcomputer 9 knows the propagation time of the ultrasonic wave by inputting the zero cross point detection signal Ve.

超音波流量計100は、伝搬時間逆数差法により流量を計測する装置として構成されている。図1において、ガスの平均流速をV、ガス中を伝搬する音速をc、超音波の進行方向(超音波センサ2a,2bを結ぶライン)とガスの流れ方向(流れ方向軸線O)とのなす角をθ、超音波センサ2a−超音波センサ2b間の距離をLとすると、超音波が距離Lだけ伝搬するときの順方向到達時間Tdおよび逆方向到達時間Tuはそれぞれ次のように表わされる。
Td=L/(c+V・cosθ)…(1)
Tu=L/(c−V・cosθ)…(2)
(1)、(2)式の逆数をとり、その差をとれば次式が得られる。
1/Td−1/Tu=2V・cosθ/L…(3)
したがって、順方向到達時間Tdと逆方向到達時間Tuの測定から、ガスの平均流速Vと流量Qが次式により求められる。“A”は流路1の断面積である。
V=(1/2Td−1/2Tu)L/cosθ…(4)
Q=V・A…(5)
このように、ガスの温度・含有成分等に依存する音速cを(4)式から消去することで、測定値(到達時間Td,Tu)と一定値(L,θ)とから流速Vが得られる利点を有している。
The ultrasonic flowmeter 100 is configured as a device that measures a flow rate by a reciprocal propagation time difference method. In FIG. 1, the average flow velocity of gas is V, the velocity of sound propagating through the gas is c, the ultrasonic traveling direction (line connecting the ultrasonic sensors 2a and 2b) and the gas flow direction (flow direction axis O). When the angle is θ and the distance between the ultrasonic sensor 2a and the ultrasonic sensor 2b is L, the forward arrival time Td and the reverse arrival time Tu when the ultrasonic wave propagates by the distance L are respectively expressed as follows. .
Td = L / (c + V · cos θ) (1)
Tu = L / (c−V · cos θ) (2)
Taking the reciprocal of equations (1) and (2) and taking the difference, the following equation is obtained.
1 / Td−1 / Tu = 2V · cos θ / L (3)
Therefore, from the measurement of the forward arrival time Td and the reverse arrival time Tu, the average gas flow velocity V and flow rate Q are obtained by the following equations. “A” is a cross-sectional area of the flow path 1.
V = (1 / 2Td−1 / 2Tu) L / cos θ (4)
Q = V · A (5)
In this way, by eliminating the sound velocity c depending on the gas temperature / containing component from the equation (4), the flow velocity V is obtained from the measured values (arrival times Td, Tu) and the constant values (L, θ). Has the advantage of being

図1に示すごとく、超音波流量計1のセンサ取り付け凹部10a,10bは、流通管10と同一素材、たとえばステンレス鋼やアルミニウム合金からなる筒状部材で構成されており、溶接等により流通管10と一体に設けられている。そして、流路1にセンサ取り付け凹部10a,10bが開口する形となっている。図5は、図1の超音波流量計100について、ガスの流通方向に平行であって尚且つ超音波センサ2a,2bの送受信面2ap,2bpの略中心を垂直に貫く基準軸線OHを含む断面を模式的に表わしたものである。図5(a)が全体図、図5(b)が拡大図である。   As shown in FIG. 1, the sensor mounting recesses 10a and 10b of the ultrasonic flowmeter 1 are made of a cylindrical member made of the same material as that of the flow pipe 10, for example, stainless steel or aluminum alloy. And is provided integrally. The sensor mounting recesses 10 a and 10 b are opened in the flow path 1. FIG. 5 is a cross section of the ultrasonic flow meter 100 of FIG. 1 including a reference axis OH that is parallel to the gas flow direction and penetrates substantially the center of the transmission / reception surfaces 2ap and 2bp of the ultrasonic sensors 2a and 2b. Is schematically represented. FIG. 5A is an overall view, and FIG. 5B is an enlarged view.

図5(a)に示すごとく、超音波センサ2a,2bは、超音波を送受信する面(以下、送受信面2ap,2bpという)の全部が流路1の上面または下面、つまり流通管10の短辺10rをなす面から少なくとも距離Hだけ離れたところに位置するようにセンサ取り付け凹部10a,10bに取り付けられている。本実施形態では、ガスの流れ方向軸線Oに対して超音波の送受信面2ap,2bpが傾斜した取り付け姿勢を採用しているが、送受信面2ap,2bpの法線方向とガスの流れ方向軸線Oとが平行な形態も考え得る。   As shown in FIG. 5 (a), the ultrasonic sensors 2a and 2b are configured so that all of the surfaces (hereinafter referred to as transmission / reception surfaces 2ap and 2bp) for transmitting and receiving ultrasonic waves are short on the upper surface or the lower surface of the flow channel 1, that is, the flow pipe 10. The sensor mounting recesses 10a and 10b are attached so as to be located at least a distance H from the surface forming the side 10r. In this embodiment, the mounting posture in which the ultrasonic transmission / reception surfaces 2ap and 2bp are inclined with respect to the gas flow direction axis O is employed, but the normal direction of the transmission / reception surfaces 2ap and 2bp and the gas flow direction axis O It is also possible to consider a form in which the

図1および図3から理解できるように、センサ取り付け凹部10a,10bは、基準軸線OHに垂直な断面では円形を示し、流れ方向軸線Oと短辺方向WLとの双方に平行な断面では楕円形を示す構造となっており、超音波センサ10a,10b側から流通管10側に向かうにつれて徐々に拡径している。つまり、図5(b)の断面図に示すように、センサ取り付け凹部10a,10bの内周面10ap,10bpは滑らかな曲線を描いており、その内周面10ap,10bpから基準軸線OHまでの距離Dhが、超音波センサ2a,2bの送受信面2ap,2bpから流路1に至るまでのあいだ、連続的に増大している。   As can be understood from FIGS. 1 and 3, the sensor mounting recesses 10 a and 10 b have a circular shape in a cross section perpendicular to the reference axis OH, and an oval shape in a cross section parallel to both the flow direction axis O and the short side direction WL. The diameter gradually increases from the ultrasonic sensor 10a, 10b side toward the flow pipe 10 side. That is, as shown in the cross-sectional view of FIG. 5B, the inner peripheral surfaces 10ap and 10bp of the sensor mounting recesses 10a and 10b draw a smooth curve, from the inner peripheral surfaces 10ap and 10bp to the reference axis OH. The distance Dh continuously increases from the transmission / reception surfaces 2ap and 2bp of the ultrasonic sensors 2a and 2b to the flow path 1.

上記のごとく、流通管10側に徐々に拡径したセンサ取り付け凹部10a,10bと採用すると、ストレートな円筒形状のセンサ取り付け凹部を採用する場合に比べて、流通管10の幅方向WL(短辺方向)への超音波ビームを絞ることができる。さらに、図5(a)等に示すごとく、流路1から適度に奥まったところに超音波センサ2a,2bを配置すること、つまり流路1から送受信面2ap,2bpまでの距離H(オフセット量Hともいう)を調整することで、超音波の指向性を制御し、幅方向WLに一様な平面波を流路1内に伝搬させることが可能となる。   As described above, when the sensor mounting recesses 10a and 10b that are gradually expanded in diameter on the flow pipe 10 side are employed, the width direction WL (short side) of the flow pipe 10 is larger than when a straight cylindrical sensor mounting recess is employed. Direction) can be focused. Furthermore, as shown in FIG. 5A and the like, the ultrasonic sensors 2a and 2b are disposed at a position that is moderately deep from the flow path 1, that is, the distance H (offset amount) from the flow path 1 to the transmission / reception surfaces 2ap and 2bp. By adjusting H), it is possible to control the directivity of the ultrasonic wave and propagate a plane wave uniform in the width direction WL into the flow path 1.

具体的に、センサ取り付け凹部10a,10bは、エクスポネンシャル型のホーン形状とすることが望ましい。図5(b)で説明すると、エクスポネンシャル型のセンサ取り付け凹部10a,10bの場合、図中の距離Dhは、送受信面2ap,2bpからの距離xを使って、Dh=exp(ax)+αで表わすことができる。“α”は、超音波センサ2a,2bの送受信面2ap,2bpが位置するところでの距離Dhの初期値であり、“a”は設計に応じて変わる定数である。   Specifically, it is desirable that the sensor mounting recesses 10a and 10b have an exponential horn shape. Referring to FIG. 5B, in the case of the exponential type sensor mounting recesses 10a and 10b, the distance Dh in the figure is Dh = exp (ax) + α using the distance x from the transmission / reception surfaces 2ap and 2bp. It can be expressed as “Α” is an initial value of the distance Dh where the transmission / reception surfaces 2ap and 2bp of the ultrasonic sensors 2a and 2b are located, and “a” is a constant that varies depending on the design.

図13の模式図に示すごとく、径が同一のホーン(センサ取り付け凹部)であれば、ホーンが長い方(図13では長さHよりも長さHが大)が超音波の広がりを抑制できるとともに、超音波を同位相の波面を持つ平面波により近づけることができる。すると、流通管10の壁面での反射を低減できるうえ、音圧が集中するため減衰も小さくなる。エクスポネンシャル型のホーンの場合には、超音波を最も効率よく収束でき、上記の効果を最大限に得ることが可能となる。 As shown in the schematic diagram of FIG. 13, if the diameter is the same horn (sensor mounting recess), horn longer (length H 2 than in FIG. 13 length H 1 is large) is ultrasonic spread In addition to being able to suppress, the ultrasonic wave can be brought closer to a plane wave having the same phase wavefront. Then, the reflection on the wall surface of the flow pipe 10 can be reduced, and the sound pressure is concentrated, so that the attenuation is also reduced. In the case of an exponential horn, the ultrasonic wave can be converged most efficiently, and the above-described effect can be obtained to the maximum.

また、図3に示すように、本実施形態では、流通管10とセンサ取り付け凹部10a,10bとの接続位置において、流通管10の断面の幅W(短辺寸法)よりも、センサ取り付け凹部10a,10bの幅Dの方が大としている。超音波の伝搬距離Lをなるべく長くすることと、流量が少なくても比較的安定した流速が出るように断面を小さくすることを両立させるためには、図1や図3に示すようにセンサ取り付け凹部10a,10bが流通管10bの短辺方向に張り出すような形とすることが好適である。 In addition, as shown in FIG. 3, in this embodiment, the sensor mounting recess 10a is larger than the width W (short side dimension) of the cross section of the flow tube 10 at the connection position between the flow tube 10 and the sensor mounting recesses 10a and 10b. Trip width D 3 of 10b is large. In order to make both the propagation distance L of the ultrasonic wave as long as possible and the cross section small so that a relatively stable flow velocity can be obtained even if the flow rate is small, a sensor is attached as shown in FIGS. It is preferable that the recesses 10a and 10b are shaped so as to protrude in the short side direction of the flow pipe 10b.

なお、図5等に示す本実施形態では、超音波センサ2a,2bの送受信面2ap,2bpを含み基準軸線OHと直交する断面が、円形を示すような筒状部材にてセンサ取り付け凹部10a,10bを構成している。図9(a)に示すように、超音波センサ2a,2bの送受信面2ap,2bpの径をD、センサ取り付け凹部10a,10bの内径をDとしたとき、D/D=0.8〜1.5、また、図3に示したDとの関係では、D/D=1.0〜2.5とすれば、指向性を制御しやすい構成となる。なお、D<Dを許容するのは、超音波センサ2a,2bの送受信面2ap,2bpの端のほうは、振動にあまり寄与しておらず、ある程度ならセンサ取り付け凹部に覆われていても良いという理由に基づく。 In the present embodiment shown in FIG. 5 and the like, the sensor mounting recess 10a, which is a cylindrical member in which the cross section including the transmitting / receiving surfaces 2ap, 2bp of the ultrasonic sensors 2a, 2b and perpendicular to the reference axis OH is circular is shown. 10b. As shown in FIG. 9 (a), when the ultrasonic sensor 2a, 2b of the transmitting and receiving surface 2ap, D 1 the diameter of 2 bp, sensor mounting recess 10a, the inner diameter of 10b was D 2, D 2 / D 1 = 0 .8~1.5, in the relationship with the D 3 shown in FIG. 3, if D 3 / D 2 = 1.0~2.5, the easy configuration control directivity. Note that D 2 <D 1 is allowed because the ends of the transmission / reception surfaces 2ap and 2bp of the ultrasonic sensors 2a and 2b do not contribute much to vibration and are covered to some extent by sensor mounting recesses. Also based on good reasons.

また、この他にも種々の形態を採用することができる。たとえば、図9(b)に示すように、超音波センサの送受信面を含み基準軸線OHと直交する断面が楕円形を示すような筒状部材で構成したセンサ取り付け凹部を採用することも可能である。図9(b)の実施形態では、超音波センサの送受信面は図9(a)の場合と同様に円形としている。この形態においては、流通管10の短辺方向WLと楕円の長径方向とが一致するようにセンサ取り付け凹部を設けると、擬似的な開放空間の挙動を得やすくなるので好適である。楕円形のセンサ取り付け凹部は、長径をDとし短径をDとした場合、D/D=1.5〜4.0とすることが適切である。このようにすれば、擬似的な開放空間の挙動を実現しつつもセンサ取り付け凹部の大きくなりすぎない。 In addition, various forms can be adopted. For example, as shown in FIG. 9 (b), it is possible to employ a sensor mounting recess composed of a cylindrical member that includes an ultrasonic sensor transmission / reception surface and whose cross section perpendicular to the reference axis OH is elliptical. is there. In the embodiment of FIG. 9B, the transmission / reception surface of the ultrasonic sensor is circular as in the case of FIG. In this embodiment, it is preferable to provide the sensor mounting recess so that the short side direction WL of the flow pipe 10 and the major axis direction of the ellipse coincide with each other because it becomes easy to obtain a pseudo open space behavior. It is appropriate that the elliptical sensor mounting recess has D 4 / D 5 = 1.5 to 4.0 when the major axis is D 4 and the minor axis is D 5 . In this way, the sensor mounting recess does not become too large while realizing a pseudo open space behavior.

他にも、基準軸線OHと直交する断面が長方形ないし正方形を示すような筒状部材で構成したセンサ取り付け凹部を採用することも可能である。また、超音波センサに関していえば、送受信面が円形に限定されるわけではなく、たとえば図9(c)に示すごとく楕円形を有するものや、長方形などの種々の形状を有するものを好適に採用できる。   In addition, it is also possible to employ a sensor mounting recess formed of a cylindrical member whose cross section perpendicular to the reference axis OH is rectangular or square. Further, regarding the ultrasonic sensor, the transmission / reception surface is not limited to a circular shape, and for example, those having an elliptical shape as shown in FIG. 9C and those having various shapes such as a rectangle are suitably employed. it can.

また、センサ取り付け凹部には、図6に示すような形態を採用することができる。たとえば、図6(a)に示すように、円錐形状を有するセンサ取り付け凹部10cを採用することもできる。この場合、センサ取り付け凹部10cの内周面10cpは、断面において略直線を示す。また、図6(b)(c)に示すように、オフセット量Hをゼロとし、流通管10とセンサ取り付け凹部10a,10bの接続位置に、超音波センサ2a,2bの端が一致する構成としてもよい。ただし、図6(b)(c)の構成であっても、センサ取り付け凹部10d,10eの内周面10dp,10epは、直線的または曲線的に流路1に向かうにつれて拡がっていく形としている。   Moreover, a form as shown in FIG. 6 is employable as a sensor attachment recessed part. For example, as shown to Fig.6 (a), the sensor attachment recessed part 10c which has a cone shape is also employable. In this case, the inner peripheral surface 10cp of the sensor mounting recess 10c shows a substantially straight line in the cross section. Further, as shown in FIGS. 6B and 6C, the offset amount H is set to zero, and the ends of the ultrasonic sensors 2a and 2b coincide with the connection positions of the flow pipe 10 and the sensor mounting recesses 10a and 10b. Also good. However, even in the configurations of FIGS. 6B and 6C, the inner peripheral surfaces 10dp and 10ep of the sensor mounting recesses 10d and 10e are shaped to expand linearly or curvedly toward the flow path 1. .

さて、図8に示すのは、図5(a)に記すオフセット量Hがゼロの配置と、12mmの配置とで超音波(200KHz)の指向性がどのように変化するのかを計算機シミュレーションによって調べた結果を示すグラフである。このシミュレーションでは、ストレートな円筒形状のセンサ取り付け凹部を条件とした。また、オフセット量Hがゼロとは、近距離音場FEと流路1との境界に送受信面2ap,2bpが差し掛かるまで超音波センサ2a,2bを流路1寄りに配置した場合を意味する。   FIG. 8 shows how the directivity of the ultrasonic wave (200 KHz) changes between the arrangement where the offset amount H shown in FIG. 5A is zero and the arrangement of 12 mm by computer simulation. It is a graph which shows the result. In this simulation, a straight cylindrical sensor mounting recess was used as a condition. Also, the offset amount H being zero means that the ultrasonic sensors 2a and 2b are arranged closer to the flow path 1 until the transmission / reception surfaces 2ap and 2bp reach the boundary between the near field FE and the flow path 1. .

この結果からも明白であるように、オフセット量Hを適切に調整することにより、超音波ビームの指向性を鋭くできる。具体的には、オフセット量Hがゼロの場合には指向角(θ/2)が約15°であるが、オフセット量Hが12mmの場合には指向角(θ/2)が約7°〜12°まで変化した。このように、オフセット量Hを制御することにより、超音波の指向性を制御することができる。 As is clear from this result, the directivity of the ultrasonic beam can be sharpened by appropriately adjusting the offset amount H. Specifically, when the offset amount H is zero, the directivity angle (θ B / 2) is about 15 °, but when the offset amount H is 12 mm, the directivity angle (θ B / 2) is about 7 °. It changed from ° to 12 °. Thus, by controlling the offset amount H, the directivity of the ultrasonic wave can be controlled.

次に、流通管10の短辺寸法Wと超音波センサ2a,2bのオフセット量Hとを変化させたときのゼロクロス点の推移を実験的に調べた結果を、図7に示す。ゼロクロス検出の基準時間は、流通管10の短辺寸法Wが6mmの場合とした。また、検出ポイントは、第2ゼロクロスと第3ゼロクロスの両方について調べた。オフセット量Hは、0mm、6mm、9mm、11.5mmとした。また、超音波の周波数は200KHzとした。   Next, FIG. 7 shows the result of experimentally examining the transition of the zero cross point when the short side dimension W of the flow pipe 10 and the offset amount H of the ultrasonic sensors 2a and 2b are changed. The reference time for zero-cross detection was set to the case where the short side dimension W of the flow tube 10 was 6 mm. The detection points were examined for both the second zero cross and the third zero cross. The offset amount H was 0 mm, 6 mm, 9 mm, and 11.5 mm. The frequency of ultrasonic waves was 200 KHz.

図7のグラフにおいては、ゼロクロス検出のズレ時間の変化が大きい場合には反射波の影響を強く受けていることを意味する。すなわち、図7のグラフから下記(1)(2)の情報を読み取ることができる。
(1)流通管の短辺寸法Wが6mm〜11mm、オフセット量Hが6mm、9mm、11.5mmのときは、全体的にズレ時間の変化が小さい。流通管の短辺寸法Wが変化してもゼロクロス検出に大きな影響が出ないということは、擬似的な開放空間の挙動が実現されていることを意味する。
(2)流通管の短辺寸法Wを十分大きくした場合(たとえば15mm以上)オフセット量Hに拠らず、比較的安定したゼロクロス検出を行なえる。
In the graph of FIG. 7, when the change in the deviation time of the zero cross detection is large, it means that it is strongly influenced by the reflected wave. That is, the following information (1) and (2) can be read from the graph of FIG.
(1) When the short side dimension W of the flow pipe is 6 mm to 11 mm and the offset amount H is 6 mm, 9 mm, and 11.5 mm, the change in the shift time is small as a whole. The fact that the zero cross detection is not greatly affected even if the short side dimension W of the flow pipe changes means that a pseudo open space behavior is realized.
(2) When the short side dimension W of the flow pipe is sufficiently large (for example, 15 mm or more), relatively stable zero-cross detection can be performed regardless of the offset amount H.

ここで、現実の製品では流通管10の短辺寸法Wを広く取れないという実情を勘案すると、安定したゼロクロス検出を実現するためには、上記(1)の手法、すなわち本発明の構成を採用することが好適であることが分かる。   Here, in consideration of the fact that the short side dimension W of the distribution pipe 10 cannot be made wide in an actual product, the above-described method (1), that is, the configuration of the present invention is adopted in order to realize stable zero cross detection. It turns out that it is suitable.

また、図10のグラフは、流通管10の短辺寸法Wを変化させたときに、流路内で1回反射した波が何処に重なるのかを計算機シミュレーションによって調べた結果を示すグラフである。計算機シミュレーションは、オフセット量Hがそれぞれ0mm、6mm、9mm、11.5mmの場合について行なった。超音波の周波数は200KHz、媒質は空気、温度20℃とした。たとえば、オフセット量Hが0mmのときには、短辺寸法8mm〜10.5mmで第1ゼロクロス(位相角0.8π〜1.4π)に、短辺寸法12.0mm〜14.0mmで第2ゼロクロス(位相角1.8π〜2.4π)に、短辺寸法15.0mm〜17.0mmで第3ゼロクロス(位相角2.8π〜3.4π)に反射波が重なっている様子を図10のグラフから読み取ることができる。   Moreover, the graph of FIG. 10 is a graph which shows the result of having investigated by computer simulation where the wave reflected once in the flow path overlaps when the short side dimension W of the flow pipe 10 is changed. The computer simulation was performed when the offset amount H was 0 mm, 6 mm, 9 mm, and 11.5 mm, respectively. The frequency of the ultrasonic wave was 200 KHz, the medium was air, and the temperature was 20 ° C. For example, when the offset amount H is 0 mm, the first zero cross with a short side dimension of 8 mm to 10.5 mm (phase angle 0.8π to 1.4π) and the second zero cross with a short side dimension of 12.0 mm to 14.0 mm ( The graph of FIG. 10 shows a state in which the reflected wave overlaps with the third zero cross (phase angle 2.8π to 3.4π) with a short side dimension of 15.0 mm to 17.0 mm and a phase angle of 1.8π to 2.4π). Can be read from.

一般に、計測する流体がガスのとき、短辺寸法Wを少なくとも6.0mm程度確保する必要がある。図10のグラフにおいて、位相角Δθが0.8π、つまり直接到達波の第1ゼロクロスに影響が出始める短辺寸法Wは、オフセット量Hが大きくなるほど大きくなっている。オフセット量Hを適度に大きく取ることで、設計上許容される短辺寸法Wの範囲も広くなることが分かる。   In general, when the fluid to be measured is a gas, it is necessary to secure the short side dimension W of at least about 6.0 mm. In the graph of FIG. 10, the phase angle Δθ is 0.8π, that is, the short side dimension W at which the first zero cross of the direct reaching wave starts to be affected increases as the offset amount H increases. It can be seen that the range of the short side dimension W allowed in design is widened by taking the offset amount H appropriately large.

また、同様の計算機シミュレーションを超音波の周波数を160KHz、オフセット量Hを12.0mmとして行なった。他の条件は先のシミュレーションと同じである。結果を図11のグラフに示す。このグラフより、最初に到来する受信音波の0〜0.8πのエリアに反射波が重畳し、これらがπ毎に加算されることが分かる。周波数を低周波数化し、オフセット量を大きくし、さらに検出ポイントである、ゼロクロスポイントを後方にするほど、反射波の影響を受けても擬似的開放空間と同様な挙動を示す流路幅方向に余裕が得られる。このことと計算機シミュレーションの結果より、流通管10の短辺寸法Wを、W=6mm〜9mm(好ましくは7mm〜8mm)に設定すれば、その近傍で流路長のバラつき、温度により部品寸法が変化した場合でも、微少流量時の検出に対して高精度を維持できる。   A similar computer simulation was performed with an ultrasonic frequency of 160 KHz and an offset amount H of 12.0 mm. Other conditions are the same as in the previous simulation. The results are shown in the graph of FIG. From this graph, it can be seen that the reflected wave is superimposed on the 0 to 0.8π area of the first incoming received sound wave, and these are added for each π. The lower the frequency, the greater the offset amount, and the further the zero cross point that is the detection point, the more room in the channel width direction that shows the same behavior as a pseudo open space even if it is affected by reflected waves. Is obtained. From this and the result of computer simulation, if the short side dimension W of the flow pipe 10 is set to W = 6 mm to 9 mm (preferably 7 mm to 8 mm), the flow path length varies in the vicinity thereof, and the part dimensions depend on the temperature. Even when it changes, high accuracy can be maintained for detection at a minute flow rate.

上記のように、使用する周波数が低い場合(たとえば100KHz〜200KHz)であっても、超音波センサ2a,2bのオフセット量Hを適切に設定し、検出するゼロクロスポイントを後方にするほど、反射波の影響を受けても擬似的開放空間と同様な挙動を得やすくなる。すなわち、流量に応じて検出するゼロクロスポイントを変化させることが望ましい。具体的には、図11(b)に示すごとく、大流量時は前方のゼロクロスポイント(第1または第2ゼロクロスポイント)を検出するようにし、低流量時は後方のゼロクロスポイント(第3、第4、第5または第6ゼロクロスポイント)を検出するようにする。   As described above, even when the frequency to be used is low (for example, 100 KHz to 200 KHz), the reflected wave increases as the offset amount H of the ultrasonic sensors 2a and 2b is appropriately set and the zero cross point to be detected is set backward. Even under the influence of, it becomes easy to obtain the same behavior as a pseudo open space. That is, it is desirable to change the zero cross point detected according to the flow rate. Specifically, as shown in FIG. 11 (b), the front zero cross point (first or second zero cross point) is detected when the flow rate is large, and the rear zero cross point (third, third) is detected when the flow rate is low. 4th, 5th or 6th zero cross point).

また、送信側の超音波センサから受信側の超音波センサに直接到達する超音波と、流通管10の壁面による反射波の位相差Δθは下記(i)式で表わされる。
Δθ=2π*(f*ΔL)/V…(i) (ただし、f:超音波の周波数、V:流速)
Further, the phase difference Δθ between the ultrasonic wave that directly reaches the reception-side ultrasonic sensor from the transmission-side ultrasonic sensor and the reflected wave from the wall surface of the flow tube 10 is expressed by the following equation (i).
Δθ = 2π * (f 0 * ΔL) / V (i) (where f 0 is the ultrasonic frequency, V is the flow velocity)

位相差Δθは、周波数と伝搬長による行路差ΔLに依存するため、超音波センサ2a,2bの特性バラツキや使用時の温度変化によってΔLやVが変化しても、それを補正するために駆動周波数fを約±40KHz程度の範囲内で変化させて微調整を行ない、これにより安定したゼロクロス検出を行なえるようにするとよい。駆動周波数を変化させる場合、超音波センサ2a,2bを構成する圧電素子には、機械的共振尖鋭度Qが比較的低いものを使用することが望ましい。具体的には、Q=4〜7の単一共振を有する圧電素子が好適である。 Since the phase difference Δθ depends on the path difference ΔL depending on the frequency and the propagation length, even if ΔL and V change due to characteristic variations of the ultrasonic sensors 2a and 2b and temperature changes during use, the phase difference Δθ is driven to correct it. It is preferable that fine adjustment is performed by changing the frequency f 0 within a range of about ± 40 KHz so that stable zero-cross detection can be performed. When the driving frequency is changed, it is desirable to use a piezoelectric element constituting the ultrasonic sensors 2a and 2b having a relatively low mechanical resonance sharpness Q. Specifically, a piezoelectric element having a single resonance of Q = 4 to 7 is suitable.

また、図4で少し触れた、超音波センサ2a,2bを流路1の同じ側に位置する形態について詳しく説明する。図4に示すごとく、超音波の伝搬経路がV字をなすように、超音波センサ2a,2bを配置する形態は、伝搬長を長く取れるということの他にも次のようなメリットがある。まず、図1に示すようなZ型配置の場合、壁面(短辺)方向への反射は面反射となる。この反射波は直接到達波に遅れて受信側の超音波センサに到達し、ゼロクロス検出に大きな影響を及ぼす。他方、図14に示すように、V型配置の場合には、壁面での超音波の反射はコーナでの線反射に近い形となる。この場合、反射波がゼロクロス検出に及ぼす影響は、面反射の場合に比べて著しく低下する。こうしたことから、反射波の影響を小さくしてS/N向上を図るには、Z型配置よりもV型配置の方が有利であるといえる。   In addition, the mode in which the ultrasonic sensors 2a and 2b, which are touched slightly in FIG. As shown in FIG. 4, the configuration in which the ultrasonic sensors 2 a and 2 b are arranged so that the ultrasonic propagation path is V-shaped has the following merits in addition to the fact that the propagation length can be increased. First, in the case of the Z-type arrangement as shown in FIG. 1, the reflection in the wall surface (short side) direction is a surface reflection. This reflected wave arrives at the ultrasonic sensor on the receiving side with a delay from the direct arrival wave, and has a great influence on zero cross detection. On the other hand, as shown in FIG. 14, in the case of the V-shaped arrangement, the reflection of the ultrasonic wave on the wall surface is close to the line reflection at the corner. In this case, the influence of the reflected wave on the zero cross detection is significantly reduced as compared with the case of surface reflection. For this reason, it can be said that the V-type arrangement is more advantageous than the Z-type arrangement in order to reduce the influence of the reflected wave and improve the S / N ratio.

ただし、超音波の周波数を数100KHz(たとえば500KHz程度)に設定する場合、検出感度の問題から伝搬長Lを大きくしづらい。したがって、図4のようなV型配置は、計測する対象がガスのような気体であり、且つ使用する超音波の周波数が100KHz〜200KHz程度の低周波数の場合に最も好適な形態である。   However, when the ultrasonic frequency is set to several hundred KHz (for example, about 500 KHz), it is difficult to increase the propagation length L due to the problem of detection sensitivity. Therefore, the V-shaped arrangement as shown in FIG. 4 is the most suitable form when the object to be measured is a gas such as gas and the frequency of the ultrasonic wave used is a low frequency of about 100 KHz to 200 KHz.

本発明の超音波流量計の基本構成を示す説明図。Explanatory drawing which shows the basic composition of the ultrasonic flowmeter of this invention. 増幅器、ゼロクロスポイント検出部を備える流量計測部のブロック図。The block diagram of a flow measurement part provided with an amplifier and a zero crossing point detection part. 流通管の断面斜視図。The cross-sectional perspective view of a distribution pipe. 超音波センサを流路の同一側に配置する形態を説明する模式図。The schematic diagram explaining the form which arrange | positions an ultrasonic sensor in the same side of a flow path. センサ取り付け凹部の形状と超音波センサの取り付け位置を説明する断面図。Sectional drawing explaining the shape of a sensor attachment recessed part, and the attachment position of an ultrasonic sensor. センサ取り付け凹部の他の形態を説明する模式図。The schematic diagram explaining the other form of a sensor attachment recessed part. 流通管の短辺寸法Wとオフセット量とを変化させたときのゼロクロス点の推移(検出時間のズレ)を調べた実験の結果を示すグラフ。The graph which shows the result of the experiment which investigated the transition (deviation of detection time) of the zero crossing point when changing the short side dimension W and offset amount of a flow pipe. 超音波の指向性を計算機シミュレーションによって調べた結果を示すグラフ。The graph which shows the result of having investigated the directivity of an ultrasonic wave by computer simulation. 各部品の寸法関係を説明するための模式図。The schematic diagram for demonstrating the dimensional relationship of each component. 反射波がゼロクロスポイントの何処に重なるかを計算機シミュレーションにて調べた結果を示すグラフ。The graph which shows the result of having investigated in the computer simulation where the reflected wave overlaps with the zero cross point. 図10に続くグラフ。The graph following FIG. ゼロクロス検出を説明する図。The figure explaining zero cross detection. ホーンの長さに対する超音波の収束効果を説明する模式図。The schematic diagram explaining the convergence effect of the ultrasonic wave with respect to the length of a horn. V型配置を採用したときの超音波の反射を説明する模式図。The schematic diagram explaining reflection of an ultrasonic wave when a V type arrangement is adopted.

符号の説明Explanation of symbols

1 流路
2a,2b 超音波センサ
2ap,2bp 送受信面
10 流通管
10a,10b センサ取り付け凹部(センサ取り付け部)
10aq,10bq センサ取り付け凹部の内周面
10r 流通管の短辺
100 超音波流量計
O 流れ方向軸線
OH 基準軸線
WL 流通管の短辺方向
1 Flow path 2a, 2b Ultrasonic sensor 2ap, 2bp Transmission / reception surface 10 Flow pipe 10a, 10b Sensor mounting recess (sensor mounting portion)
10aq, 10bq Inner peripheral surface 10r of sensor mounting recess Short side 100 of flow pipe Ultrasonic flow meter O Flow direction axis OH Reference axis WL Short side direction of flow pipe

Claims (7)

流量が計測される流体の流通方向と垂直な断面が矩形状の流通管を備え、その断面の短辺にあたる位置の上流側と下流側とに筒状のセンサ取り付け部が流路に開口する形で設けられ、前記センサ取り付け部には超音波の送信面または受信面(送受信面という)の全部が前記流路から少なくとも距離Hだけ離れたところに位置するように超音波センサが取り付けられており、その超音波センサの前記送受信面の略中心を垂直に貫く基準軸線を定義したとき、前記センサ取り付け部の内周面から前記基準軸線までの距離が、前記送受信面から前記流路に至るまでの間、次第に大きくなっていることを特徴とする超音波流量計。   A flow pipe having a rectangular cross section perpendicular to the flow direction of the fluid whose flow rate is to be measured is provided, and a cylindrical sensor mounting portion opens into the flow path on the upstream side and the downstream side of the position corresponding to the short side of the cross section. An ultrasonic sensor is attached to the sensor mounting portion so that the entire ultrasonic transmission surface or reception surface (referred to as a transmission / reception surface) is located at a distance H from the flow path. When a reference axis that penetrates substantially the center of the transmission / reception surface of the ultrasonic sensor perpendicularly is defined, the distance from the inner peripheral surface of the sensor mounting portion to the reference axis reaches the flow path from the transmission / reception surface. Ultrasonic flowmeter characterized by gradually increasing during the period. 流量が計測される流体の流通方向と垂直な断面が矩形状の流通管を備え、その断面の短辺にあたる位置の上流側と下流側とに筒状のセンサ取り付け部が流路に開口する形で設けられ、前記センサ取り付け部には前記流体の流通方向に対して超音波の送信面または受信面(送受信面という)が傾いた姿勢で前記超音波センサが取り付けられており、その超音波センサの前記送受信面の略中心を垂直に貫く基準軸線を定義したとき、前記センサ取り付け部の内周面から前記基準軸線までの距離が、前記送受信面から前記流路に至るまでの間、次第に大きくなっていることを特徴とする超音波流量計。   A flow pipe having a rectangular cross section perpendicular to the flow direction of the fluid whose flow rate is to be measured is provided, and a cylindrical sensor mounting portion opens into the flow path on the upstream side and the downstream side of the position corresponding to the short side of the cross section. The ultrasonic sensor is attached to the sensor mounting portion in a posture in which an ultrasonic transmission surface or a reception surface (referred to as a transmission / reception surface) is inclined with respect to the fluid flow direction. When a reference axis that penetrates substantially the center of the transmission / reception surface is defined vertically, the distance from the inner peripheral surface of the sensor mounting portion to the reference axis gradually increases from the transmission / reception surface to the flow path. An ultrasonic flowmeter characterized by 前記流体の流通方向に平行かつ前記基準軸線を含む断面において、前記センサ取り付け部の内周面が曲線を呈している請求項1または2記載の超音波流量計。   3. The ultrasonic flowmeter according to claim 1, wherein an inner peripheral surface of the sensor mounting portion is curved in a cross section parallel to the fluid flow direction and including the reference axis. 流量が計測される流体の流通方向と垂直な断面が矩形状の流通管を備え、その断面の短辺にあたる位置の上流側と下流側とに筒状のセンサ取り付け部が流路に開口する形で設けられ、前記センサ取り付け部には超音波の送信面または受信面(送受信面という)の全部が前記流路から少なくとも距離Hだけ離れたところに位置するように超音波センサが取り付けられており、前記送受信面から前記流路に至るまでの間、前記センサ取り付け部が前記流路に向かうにつれて次第に拡径していることを特徴とする超音波流量計。   A flow pipe having a rectangular cross section perpendicular to the flow direction of the fluid whose flow rate is to be measured is provided, and a cylindrical sensor mounting portion opens into the flow path on the upstream side and the downstream side of the position corresponding to the short side of the cross section. An ultrasonic sensor is attached to the sensor mounting portion so that the entire ultrasonic transmission surface or reception surface (referred to as a transmission / reception surface) is located at a distance H from the flow path. The ultrasonic flowmeter is characterized in that the diameter of the sensor mounting portion gradually increases as it goes from the transmitting / receiving surface to the flow path toward the flow path. 前記流通管と前記センサ取り付け部との接続位置において、前記流通管の前記断面の短辺寸法Wよりも、前記センサ取り付け部の幅Dの方が大である請求項1ないし4のいずれか1項に記載の超音波流量計。 5. The width D 3 of the sensor attachment part is larger than the short side dimension W of the cross section of the circulation pipe at the connection position between the circulation pipe and the sensor attachment part. The ultrasonic flowmeter according to item 1. 前記センサ取り付け部は、エクスポネンシャル型のホーン形状を有するものである請求項1ないし5のいずれか1項に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the sensor attachment portion has an exponential horn shape. 予め設定した閾値電圧を超える、または下回る波形部分をトリガ波とし、このトリガ波の振幅がゼロとなるゼロクロス点を検出することに基づいて超音波の伝搬時間を求める一方、低流量時には高流量時よりも後段の前記ゼロクロス点を使用するように構成された流量計測部を備える請求項1ないし6のいずれか1項に記載の超音波流量計。   Waveforms that exceed or fall below a preset threshold voltage are used as trigger waves, and the ultrasonic wave propagation time is obtained based on detecting the zero cross point where the amplitude of this trigger wave is zero. The ultrasonic flowmeter according to any one of claims 1 to 6, further comprising a flow rate measurement unit configured to use the zero cross point at a later stage.
JP2004197304A 2004-07-02 2004-07-02 Ultrasonic flowmeter Pending JP2006017639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197304A JP2006017639A (en) 2004-07-02 2004-07-02 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197304A JP2006017639A (en) 2004-07-02 2004-07-02 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2006017639A true JP2006017639A (en) 2006-01-19

Family

ID=35792059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197304A Pending JP2006017639A (en) 2004-07-02 2004-07-02 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2006017639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309700A (en) * 2007-06-15 2008-12-25 Yoshitane Tamura Ultrasonic flowmeter
JP2009031134A (en) * 2007-07-27 2009-02-12 Ricoh Elemex Corp Ultrasonic flowmeter
JP2013186031A (en) * 2012-03-09 2013-09-19 Panasonic Corp Ultrasonic flowmeter
WO2024021879A1 (en) * 2022-07-27 2024-02-01 杭州思筑智能设备有限公司 Reflection-type flat flow channel with gradually changing strip-shaped grid cells, and flowmeter system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117176Y2 (en) * 1975-04-14 1976-05-10
JPS61234698A (en) * 1985-04-10 1986-10-18 Tdk Corp Ultrasonic transmitter and receiver
JPS63265117A (en) * 1987-04-22 1988-11-01 Mitsubishi Electric Corp Ultrasonic wave flowmeter
JPH1038649A (en) * 1996-07-22 1998-02-13 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2000283820A (en) * 1999-03-30 2000-10-13 Aichi Tokei Denki Co Ltd Gas meter
JP2004144701A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter and ultrasonic transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117176Y2 (en) * 1975-04-14 1976-05-10
JPS61234698A (en) * 1985-04-10 1986-10-18 Tdk Corp Ultrasonic transmitter and receiver
JPS63265117A (en) * 1987-04-22 1988-11-01 Mitsubishi Electric Corp Ultrasonic wave flowmeter
JPH1038649A (en) * 1996-07-22 1998-02-13 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2000283820A (en) * 1999-03-30 2000-10-13 Aichi Tokei Denki Co Ltd Gas meter
JP2004144701A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter and ultrasonic transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309700A (en) * 2007-06-15 2008-12-25 Yoshitane Tamura Ultrasonic flowmeter
JP2009031134A (en) * 2007-07-27 2009-02-12 Ricoh Elemex Corp Ultrasonic flowmeter
JP2013186031A (en) * 2012-03-09 2013-09-19 Panasonic Corp Ultrasonic flowmeter
WO2024021879A1 (en) * 2022-07-27 2024-02-01 杭州思筑智能设备有限公司 Reflection-type flat flow channel with gradually changing strip-shaped grid cells, and flowmeter system

Similar Documents

Publication Publication Date Title
JP2895704B2 (en) Ultrasonic flow meter
JPH0660832B2 (en) Vortex flowmeter
JP2006017639A (en) Ultrasonic flowmeter
JP6093229B2 (en) Ultrasonic flow measurement system
JP7151311B2 (en) ultrasonic flow meter
JP4368591B2 (en) Ultrasonic flow meter
US8408071B1 (en) Enhanced vortex-shedding flowmeter
RU2672815C1 (en) Measuring flow in ultrasound
JP2005345445A (en) Ultrasonic flowmeter
JP2005083751A (en) Ultrasonic fluid measuring device
JP4212374B2 (en) Ultrasonic flow meter
JP4561071B2 (en) Flow measuring device
JP4531426B2 (en) Ultrasonic flow meter
US20210310839A1 (en) Flowmeter
JP4341252B2 (en) Ultrasonic flow meter
JPH09287990A (en) Ultrasonic flowmeter
JP4114424B2 (en) Ultrasonic transducer
JPS5880525A (en) Karman vortex flowmeter
JP2000193674A (en) Bevel type ultrasonic sensor, ultrasonic flow velocity measuring device using the same and flow velocity measuring method
JP2008014833A (en) Ultrasonic flowmeter
JP2000249581A (en) Ultrasonic flowmeter
JPS6326731Y2 (en)
JP2004198339A (en) Ultrasonic flow meter
JPH0710252Y2 (en) Ultrasonic probe
JPH11271113A (en) Ultrasonic vortex flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100726