JPS63265117A - Ultrasonic wave flowmeter - Google Patents

Ultrasonic wave flowmeter

Info

Publication number
JPS63265117A
JPS63265117A JP62100639A JP10063987A JPS63265117A JP S63265117 A JPS63265117 A JP S63265117A JP 62100639 A JP62100639 A JP 62100639A JP 10063987 A JP10063987 A JP 10063987A JP S63265117 A JPS63265117 A JP S63265117A
Authority
JP
Japan
Prior art keywords
horn
oscillator
sound wave
receiver
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62100639A
Other languages
Japanese (ja)
Inventor
Katsuaki Yasui
克明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62100639A priority Critical patent/JPS63265117A/en
Publication of JPS63265117A publication Critical patent/JPS63265117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To receive intense sound waves and to improve an S/N ratio, by attaching a horn having a slit-shaped opening part in an oscillator to a waveguide, which has an arc-shaped bottom surface with the opening part of the horn as a central axis. CONSTITUTION:A flat horn 3, to which an oscillator 2 is attached, is attached on a waveguide 1 in the flowing direction of fluid in a slant state. The width of the slit shaped opening part 4 of the horn 3 is less than the half wavelength of a sound wave used, and the length of the part 4 is more than one wavelength. An opening part 4 of the horn 3 is attached to the waveguide 1 so that the opening part is positioned at the central axis of an arc shaped bottom surface 1a. The sound wave, which is emitted from the oscillator 2, does not have directivity in a plane perpendicular to the axis of the waveguide 1. Therefore, the sound wave expands in the radial pattern. The sound wave is reflected by the bottom surface 1a and collected in the direction of the central axis. In a plane in the direction of the radius of the waveguide 1, directivity is provided. Therefore, the sound wave is reflected at the bottom surface 1a and reaches a receiver 5. Therefore, the intense sound wave is received in the receiver 5, and the S/N ratio is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超音波の移流効果を用いて流体の流速や流
量を測定する超音波流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic flow meter that measures the flow velocity and flow rate of a fluid using the advection effect of ultrasonic waves.

〔従来の技術〕[Conventional technology]

第7図は例えば特開昭58−32121号公報に記載さ
れた従来の超音波流量計のブロック図を含む構成図であ
って、図において、7は流体が流れる導管、8,9は導
管7に対角線状に設は几1対の発振器と受信器、10.
11は同じく対角線状に設けた他の1対の発振器と受信
器である。12は信号発生器、13は変調器、14は流
体温度を検出する温度センサ、15は温度センサエ2に
より検出され次温度を補正要因として補正量を発生する
補正関数発生器、16は変調信号発生器、17゜18は
上記受信器9,11に接続されたプリアンプ、19.2
0はこのプリアンプ17.18に接続された復調器、2
1は復調器17.18の復調出力の位相差を検出する位
相検波器、22は低周波フィルタ、23は出力端子であ
る。
FIG. 7 is a configuration diagram including a block diagram of a conventional ultrasonic flowmeter described in, for example, Japanese Patent Application Laid-Open No. 58-32121. In the figure, 7 is a conduit through which fluid flows, and 8 and 9 are conduits 7. 10. A pair of oscillators and receivers are arranged diagonally.
Reference numeral 11 designates another pair of oscillator and receiver, which are also diagonally arranged. 12 is a signal generator, 13 is a modulator, 14 is a temperature sensor that detects the fluid temperature, 15 is a correction function generator that generates a correction amount using the temperature detected by the temperature sensor 2 as a correction factor, and 16 is a modulation signal generator. 17. 18 is a preamplifier connected to the receivers 9 and 11, 19.2
0 is a demodulator connected to this preamplifier 17, 18, 2
1 is a phase detector that detects a phase difference between demodulated outputs of demodulators 17 and 18, 22 is a low frequency filter, and 23 is an output terminal.

次に動作について説明する。発振器8,1oがら発生す
る超音波は信号発生器12から発生する超音波信号を変
調器13で変調したものである。
Next, the operation will be explained. The ultrasonic waves generated by the oscillators 8 and 1o are obtained by modulating the ultrasonic signals generated by the signal generator 12 with the modulator 13.

変調器13に入る変調信号は温度センサ14の出力を1
つのパラメータとして補正関数発生器15で補正関数を
つくり、変調信号発生器16で生成したものである。こ
の変調された超音波は発振器8.10から放射されたの
ち、一方は流れと同一方向に、他方は流れと反対方向に
伝搬してそれぞれ受信器9.11で受信される。この受
信信号はプリアンプ17.18でそれぞれ増幅され、復
調器19.20で復調され位相検波器21で2系統の復
調信号の位相差が検出される。したがって被計測流体の
流速はこの位相差に比例するので、位相差から流速を求
めることができる。
The modulation signal entering the modulator 13 changes the output of the temperature sensor 14 to 1
A correction function is generated by a correction function generator 15 as two parameters, and a correction function is generated by a modulation signal generator 16. After the modulated ultrasonic waves are emitted from the oscillator 8.10, one propagates in the same direction as the flow and the other propagates in the opposite direction to the flow and is received by the receiver 9.11. The received signals are each amplified by preamplifiers 17 and 18, demodulated by demodulators 19 and 20, and a phase detector 21 detects the phase difference between the two systems of demodulated signals. Therefore, since the flow velocity of the fluid to be measured is proportional to this phase difference, the flow velocity can be determined from the phase difference.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超音波流量計は以上のように構成されているので
、発振器8.10から直接受信器9.11に達する音波
が弱く、導管7の壁面で1度以上反射した残響波や、他
の雑音も受信されるために鞠比が悪く、誤動作の原因に
なるという問題があった。
Since the conventional ultrasonic flowmeter is configured as described above, the sound waves directly reaching the receiver 9.11 from the oscillator 8.10 are weak, and there are reverberant waves reflected more than once on the wall of the conduit 7 and other waves. There was a problem in that noise was also received, resulting in a poor performance ratio and causing malfunctions.

この発明は上記のような問題点を解消するためになされ
友もので、残響波や他の雑音の影響を受けに<<、誤動
作のない安定した性能を有する超音波流量計を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and the purpose is to obtain an ultrasonic flowmeter that is not affected by reverberant waves or other noise and has stable performance without malfunction. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超音波流量計は、音波の発振器にスリッ
ト状の開口部を有するホーンを、このホーンの開口部を
中心軸とする円弧状面の底面を有する導管に取付け、発
振器の上流または下流の導管部分に受信器を備えたもの
である。
The ultrasonic flowmeter according to the present invention includes a horn having a slit-shaped opening in a sonic oscillator, which is attached to a conduit having an arcuate bottom surface with the opening of the horn as the center axis, and A receiver is installed in the conduit section.

〔作 用〕[For production]

この発明においては、発振器から発生した音波はホーン
により導管の半径方向に指向性を有し、導管の底面で斜
めに反射されて受信器に強い音波が受信される。導管内
に流れがあるときは流れの方向が発振器側から受信器側
へ向かっていれば超音波の位相は進められ、逆であれば
位相は遅らされるので、発振側の位相と受信側の位相と
を比較することで流体の流速や流量を測定することがで
きる。
In this invention, the sound waves generated from the oscillator have directivity in the radial direction of the conduit by the horn, are reflected obliquely at the bottom of the conduit, and the strong sound waves are received by the receiver. When there is a flow in a conduit, if the direction of the flow is from the oscillator side to the receiver side, the phase of the ultrasonic wave will be advanced, and if the direction is opposite, the phase will be delayed, so the phase on the oscillating side and the receiving side The flow velocity and flow rate of the fluid can be measured by comparing the phase with the phase.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明による超音波流量計の側断面図、第2図は
平面図、第3図は第1図の■−■線における断面図であ
って、1は被測定流体の流れる導管で、円弧状面1aと
側面1bとからなりほぼ扇形に形成されている。2は音
波を発生する発振器、3はこの発振器2を取付けた扁平
なホーンで、導管1上に流体の流れ方向に傾斜状に取付
けである。4は幅が使用音波の半波長以下で、長さが1
波長以上あるスリット状のホーン3の開口部であり、上
記ホーン3はその開口部4が円弧状面の底面1a沖ひ軸
に位置するように導管1に取付けである。5は導管1上
で発振器2より下流側において上記底面1aの中心軸の
導管部分に取付けた受信器である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a side sectional view of the ultrasonic flowmeter according to the present invention, FIG. 2 is a plan view, and FIG. 3 is a sectional view taken along the line ■-■ in FIG. 1, where 1 is a conduit through which the fluid to be measured flows; It is formed into a substantially fan shape, consisting of an arcuate surface 1a and a side surface 1b. 2 is an oscillator that generates sound waves; 3 is a flat horn to which the oscillator 2 is attached; the oscillator 2 is mounted on the conduit 1 in an inclined manner in the flow direction of the fluid. 4 has a width less than half the wavelength of the sound wave used and a length of 1
This is the opening of a slit-shaped horn 3 whose size is longer than the wavelength, and the horn 3 is attached to the conduit 1 so that the opening 4 is located on the horizontal axis of the bottom surface 1a of the arcuate surface. Reference numeral 5 denotes a receiver attached to the conduit portion of the central axis of the bottom surface 1a on the downstream side of the oscillator 2 on the conduit 1.

この発明の超音波流量計は上記のように構成され、発振
器2から放射された音波はホーン3の開口部4から導管
1内に放射される。そしてこの音波は導管1の軸と垂直
方向の面内では指向性をもたないので第3図の矢印のよ
うに放射状に広がシ、底面1aで反射して中心軸方向へ
集音されるが、導管1の半径方向の面内では指向性を有
するので第2図の矢印のように底面1aに反射し受信器
5へ到達する。したがって、受信器5には強い音波が受
信され、S/N比がよくなる。
The ultrasonic flowmeter of the present invention is constructed as described above, and the sound waves emitted from the oscillator 2 are emitted into the conduit 1 from the opening 4 of the horn 3. Since this sound wave has no directivity in the plane perpendicular to the axis of the conduit 1, it spreads radially as shown by the arrow in Figure 3, is reflected by the bottom surface 1a, and is collected in the direction of the central axis. However, since it has directivity within the radial plane of the conduit 1, it is reflected from the bottom surface 1a as shown by the arrow in FIG. 2 and reaches the receiver 5. Therefore, a strong sound wave is received by the receiver 5, and the S/N ratio is improved.

かくして、導管1内に流体の流れがあるとき、流れの方
向が発振器2側から受信器5側へ向っていれば音波の位
相は進められ、逆に流れ方向が受信器5側から発振器2
側へ向っていれば音波の位相が遅れるので、発振器側の
位相と受信器側との位相を比較することによシ、流体の
流速および流量を測定することができる。
Thus, when there is fluid flow in the conduit 1, if the flow direction is from the oscillator 2 side to the receiver 5 side, the phase of the sound wave will be advanced;
If it is directed to the side, the phase of the sound wave will be delayed, so by comparing the phase on the oscillator side and the phase on the receiver side, the flow velocity and flow rate of the fluid can be measured.

なお、この発明の超音波流量計の他の実施例として第4
図〜第6図に示すように受信器5側にもホーン6を備え
ることにより、発振器2からの音波のみを受信器5へ導
くことができ、これによって雑音の影響をさらに抑制す
ることができる。しかも、ホーン3は反射面6を設けて
屈曲する形状にしてもよい。
In addition, as another embodiment of the ultrasonic flowmeter of the present invention, the fourth embodiment
By providing a horn 6 on the receiver 5 side as shown in Figures 6 to 6, only the sound waves from the oscillator 2 can be guided to the receiver 5, thereby further suppressing the influence of noise. . Furthermore, the horn 3 may be provided with a reflective surface 6 and have a bent shape.

また、図示しないが発振器と受信器を2組、流れの方向
に逆向きに設置して音速変化を補償できるようにしても
よい。この場合は、2組を同じ位置に設置することはホ
ーンの開口部の幅の分だけ中心からずれるが、音波の波
長に対してずれが十分小さければ問題ない。
Although not shown, two sets of oscillators and receivers may be installed in opposite directions to the flow direction to compensate for changes in the speed of sound. In this case, if the two sets are installed at the same position, they will be shifted from the center by the width of the horn opening, but this will not be a problem as long as the shift is small enough with respect to the wavelength of the sound wave.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、音波の発振器に
スリット状の開口部を有するホーンを、このホーンの開
口部を中心軸とする円弧状面の底面を有する導管に取付
け、発振器の上流ま几は下流の導管部分に受信器を備え
るようにしたので、受信器に強い音波が受信でき、ガル
を向上させることができる。これにより、残響波や他の
雑音の影響を受けにくく誤動作の生じない信頼性の高い
超音波流量計となる。
As explained above, according to the present invention, a horn having a slit-shaped opening in a sound wave oscillator is attached to a conduit having an arcuate bottom surface with the opening of the horn as the center axis, and Since the receiver is equipped with a receiver in the downstream conduit section, the receiver can receive strong sound waves and improve the galling. This results in a highly reliable ultrasonic flowmeter that is less susceptible to reverberant waves and other noise and does not malfunction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による超音波流量計の側断
面図、第2図は同じく平面図、第3図は第1図の■−■
線における断面図、第4図〜第6図はこの発明の他の実
施例による超音波流量計の側断面図と平面図および第4
図の■−■線における断面図、第7図は従来の超音波流
量計の構■図である。 1・・・導管、la・・・底面、2・・・発振器、3・
・・ホーン、4・・・ホーン開口部、5・・・受信器、
6・・・反射面。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a side cross-sectional view of an ultrasonic flowmeter according to an embodiment of the present invention, FIG. 2 is a plan view of the same, and FIG.
4 to 6 are side sectional views and plan views of ultrasonic flowmeters according to other embodiments of the present invention.
FIG. 7, which is a sectional view taken along the line ■-■ in the figure, is a structural diagram of a conventional ultrasonic flowmeter. 1... Conduit, la... Bottom surface, 2... Oscillator, 3.
... Horn, 4 ... Horn opening, 5 ... Receiver,
6... Reflective surface. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)音波の発振器と、この発振器に幅が使用音波の半
波長以下で、長さが1波長以上あるスリット状の開口部
を有するホーンと、上記開口部をほぼ中心軸とする円弧
状面の底面を有する断面が扇形等の形状の導管と、上記
発振器の上流または下流の上記中心軸の導管部分に音波
の入口をもつ受信器を備えたことを特徴とする超音波流
量計。
(1) A sound wave oscillator, a horn in which the oscillator has a slit-shaped opening whose width is less than half the wavelength of the sound wave used and whose length is more than one wavelength, and an arc-shaped surface whose central axis is approximately the said opening. 1. An ultrasonic flowmeter comprising: a conduit having a fan-shaped cross section having a bottom surface; and a receiver having a sound wave inlet at a conduit portion of the central axis upstream or downstream of the oscillator.
(2)受信器にスリット状の開口部を有するホーンを備
えたことを特徴とする特許請求の範囲第1項記載の超音
波流量計。
(2) The ultrasonic flowmeter according to claim 1, wherein the receiver is provided with a horn having a slit-shaped opening.
(3)ホーンに反射面を形成したことを特徴とする特許
請求の範囲第1項または第2項に記載の超音波流量計。
(3) The ultrasonic flowmeter according to claim 1 or 2, characterized in that a reflective surface is formed on the horn.
(4)発振器と受信器の対を被測定流体の流れ方向に沿
つて反対方向に2組を備えたことを特徴とする特許請求
の範囲第1項〜第3項のいずれかに記載の超音波流量計
(4) The ultrasonic device according to any one of claims 1 to 3, characterized in that two pairs of an oscillator and a receiver are provided in opposite directions along the flow direction of the fluid to be measured. Sonic flow meter.
JP62100639A 1987-04-22 1987-04-22 Ultrasonic wave flowmeter Pending JPS63265117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100639A JPS63265117A (en) 1987-04-22 1987-04-22 Ultrasonic wave flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100639A JPS63265117A (en) 1987-04-22 1987-04-22 Ultrasonic wave flowmeter

Publications (1)

Publication Number Publication Date
JPS63265117A true JPS63265117A (en) 1988-11-01

Family

ID=14279396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100639A Pending JPS63265117A (en) 1987-04-22 1987-04-22 Ultrasonic wave flowmeter

Country Status (1)

Country Link
JP (1) JPS63265117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017639A (en) * 2004-07-02 2006-01-19 Ricoh Elemex Corp Ultrasonic flowmeter
DE102007037512A1 (en) * 2007-08-08 2009-02-19 Continental Automotive Gmbh Air mass sensor for use in internal combustion engine, has ultrasonic transducers arranged coaxially opposite to each other in pipe under angle to pipe central axis, and is coupled over coupling sound channel to surrounding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017639A (en) * 2004-07-02 2006-01-19 Ricoh Elemex Corp Ultrasonic flowmeter
DE102007037512A1 (en) * 2007-08-08 2009-02-19 Continental Automotive Gmbh Air mass sensor for use in internal combustion engine, has ultrasonic transducers arranged coaxially opposite to each other in pipe under angle to pipe central axis, and is coupled over coupling sound channel to surrounding
DE102007037512B4 (en) * 2007-08-08 2009-06-10 Continental Automotive Gmbh Air mass sensor

Similar Documents

Publication Publication Date Title
JP2002535639A (en) Clamp-on gas flow meter
JPH0319491B2 (en)
US4924710A (en) Vortex flowmeter
JPS63265117A (en) Ultrasonic wave flowmeter
JPH0221528B2 (en)
JPS5852487Y2 (en) Flow rate measurement device using correlation technology
JP4069222B2 (en) Ultrasonic vortex flowmeter
JPH02107924A (en) Two-phase flow ultrasonic type flow rate measuring method and apparatus
JP3077570B2 (en) Ultrasonic fluid flow meter
JP3183133B2 (en) Vortex flow meter
JP2710399B2 (en) Flow measurement method
JPS63241310A (en) Karman vortex flowmeter
JPH0324607B2 (en)
JP3036800B2 (en) Vortex flow meter
JP3186569B2 (en) Vortex flow meter
JPS5910576Y2 (en) Karman vortex flowmeter
JPH0610255Y2 (en) Ultrasonic transceiver
JPH11316244A (en) Ultrasonic flowmeter using frequency modulating signal
JPS63133019A (en) Flow rate measuring apparatus
JPS5819450Y2 (en) Karman vortex flowmeter
JPH0128421Y2 (en)
JPH0792396B2 (en) Vortex flowmeter
JPS62811A (en) Ultrasonic flow meter
JPS6076678A (en) Ultrasonic doppler speedometer
JP2000230844A (en) Ultrasonic system vortex flowmeter