JPH0349373B2 - - Google Patents

Info

Publication number
JPH0349373B2
JPH0349373B2 JP60138879A JP13887985A JPH0349373B2 JP H0349373 B2 JPH0349373 B2 JP H0349373B2 JP 60138879 A JP60138879 A JP 60138879A JP 13887985 A JP13887985 A JP 13887985A JP H0349373 B2 JPH0349373 B2 JP H0349373B2
Authority
JP
Japan
Prior art keywords
ultrasonic
transmitter
ultrasonic waves
fluid
receivers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60138879A
Other languages
Japanese (ja)
Other versions
JPS62811A (en
Inventor
Katsuro Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP60138879A priority Critical patent/JPS62811A/en
Publication of JPS62811A publication Critical patent/JPS62811A/en
Publication of JPH0349373B2 publication Critical patent/JPH0349373B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、流路管内を流れる流体の複数個所に
超音波を通過させ、その伝搬時間差から流体の流
量を測定する超音波流量計に関し、内燃機関の空
気吸入量測定等に利用されるものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an ultrasonic flowmeter that allows ultrasonic waves to pass through multiple locations in a fluid flowing in a flow pipe and measures the flow rate of the fluid from the difference in propagation time. It is used for measuring the air intake amount of internal combustion engines.

(従来の技術) 従来、流路管内を流れる気体や液体等の流体に
対し超音波を発信し、その伝搬時間の差から流体
の流速を計算して、流体流量を求めることからな
る、いわゆる超音波流量計は広く知られている
(例えば特開昭59−196423公報)。
(Prior art) Conventionally, so-called ultrasonic technology involves emitting ultrasonic waves to a fluid such as gas or liquid flowing in a flow pipe, and calculating the flow velocity of the fluid from the difference in propagation time to determine the fluid flow rate. Sonic flowmeters are widely known (for example, Japanese Patent Application Laid-open No. 1964-23-1982).

第3図は、従来の超音波流量計を示す断面図お
よび付属電気回路のブロツク図である。
FIG. 3 is a cross-sectional view of a conventional ultrasonic flowmeter and a block diagram of an associated electrical circuit.

図において、1は流体が通過する流路管、4は
流体に向けて超音波を発信する超音波発信器、5
a,5bは受信器、6は受信器5bの位置を調整
する調整ネジ、7,7a,7bはリード線、8は
整流板、9はバイパス、10は分流量調整ネジ、
11は流路管1の内壁に設けられた吸音ライニン
グである。
In the figure, 1 is a channel pipe through which fluid passes, 4 is an ultrasonic transmitter that emits ultrasonic waves toward the fluid, and 5
a, 5b are receivers, 6 is an adjustment screw for adjusting the position of the receiver 5b, 7, 7a, 7b are lead wires, 8 is a rectifier plate, 9 is a bypass, 10 is a division flow adjustment screw,
Reference numeral 11 denotes a sound absorbing lining provided on the inner wall of the flow pipe 1.

また、図における電気回路は、発信回路20、
増幅器21a,21b、波形整形器22a,22
b、位相を制御する位相器23a,23b、位相
比較器24および積分器25によつて形成されて
いる。
In addition, the electric circuit in the figure includes a transmitting circuit 20,
Amplifiers 21a, 21b, waveform shapers 22a, 22
b, phase shifters 23a and 23b that control the phase, a phase comparator 24, and an integrator 25.

このような超音波流量計においては、超音波発
信器4から発信される超音波を位置の異なる2個
の受信器5a,5bで受信し、これを増幅、位相
比較して、主流路管1内を流れる流体の流量が算
出されるのである。
In such an ultrasonic flowmeter, two receivers 5a and 5b at different positions receive ultrasonic waves emitted from an ultrasonic transmitter 4, amplify and compare the phases, and transmit the ultrasonic waves to the main flow pipe 1. The flow rate of the fluid flowing through it is calculated.

そのためには、超音波発信器4を受信器5a,
5bの中央に位置させ、流路管1の側面に垂直に
配置する必要がある。
For this purpose, the ultrasonic transmitter 4 is connected to the receiver 5a,
5b, and it is necessary to arrange it perpendicularly to the side surface of the flow path pipe 1.

また、超音波発信器4から発信された超音波
は、受信器5a,5bに対し直接到達するもの
と、流路管1の内壁を反射してから到達するもの
があり、後者を防ぐために流路管1の内壁に吸音
ライニング11が付設されている。
Furthermore, some of the ultrasonic waves emitted from the ultrasonic transmitter 4 reach the receivers 5a and 5b directly, while others reach the receivers after being reflected from the inner wall of the channel tube 1. In order to prevent the latter, the ultrasonic waves are A sound absorbing lining 11 is attached to the inner wall of the pipe 1.

しかしながら、上述した従来の超音波流量計に
あつては、低流量の場合の測定精度を向上させよ
うとすると、流路管1の内径を細くし、さらには
超音波発信器4と受信器5a,5bとの間の距離
を大きくする必要があつた。
However, in the conventional ultrasonic flowmeter described above, in order to improve measurement accuracy in the case of a low flow rate, the inner diameter of the flow pipe 1 is made thinner, and the ultrasonic transmitter 4 and the receiver 5a are , 5b needed to be increased.

そして、超音波発信器は一般に指向性が大き
く、振動面から垂直方向へ進む超音波の音圧が最
も高くなる構造となつているため、超音波発信器
4から斜め方向に受信器5a,5bへ到達する超
音波は、指向性が低く、最も有効な範囲では使わ
れていなかつた。
Ultrasonic transmitters generally have high directivity and are structured so that the sound pressure of ultrasound waves traveling in the vertical direction from the vibration surface is highest. The ultrasonic waves that reach the area have poor directivity and are not used in the most effective range.

したがつて、最も指向性の強い(音圧の高い)
範囲の超音波は、流路管1の内壁に設けられた吸
音ライニング11に吸収されてしまい、直接受信
される超音波と、反射してから受信される超音波
のレベル差が小さくなり、測定精度が劣るという
不具合があつた。
Therefore, it has the strongest directivity (highest sound pressure)
Ultrasonic waves within this range are absorbed by the sound-absorbing lining 11 provided on the inner wall of the flow pipe 1, and the difference in level between the directly received ultrasonic waves and the reflected ultrasonic waves that are received becomes small, making measurement difficult. There was a problem with the accuracy being poor.

だからといつて、このような超音波流量計にお
いては、低流量の場合の測定精度を向上するため
に流路管1の内径を小さくすることも、また超音
波発信器4と受信器5a,5bとの間の距離を大
きくすることも、構造上むつかしいという問題が
あつた。
Therefore, in such an ultrasonic flowmeter, in order to improve the measurement accuracy in the case of low flow rate, it is necessary to reduce the inner diameter of the flow pipe 1, and also to reduce the inner diameter of the ultrasonic transmitter 4, receiver 5a, There was also a problem in that it was structurally difficult to increase the distance between it and 5b.

(発明が解決しようとする課題) 本発明は、上述した従来技術の問題点を解決す
べく鋭意検討した結果、発明されたものである。
(Problems to be Solved by the Invention) The present invention was invented as a result of intensive studies to solve the problems of the prior art described above.

したがつて、本発明の目的は、流体の流量が低
い場合であつても測定精度がすぐれ、SN比を改
善すると共に、流体の管内圧損が小さい超音波流
量計を提供することにある。
Therefore, an object of the present invention is to provide an ultrasonic flowmeter that has excellent measurement accuracy even when the fluid flow rate is low, improves the signal-to-noise ratio, and has a small pressure drop in the pipe of the fluid.

(課題を解決するための手段) すなわち、本発明の超音波流量計は、流体が通
過する流路管、この流路管の側方に配置される超
音波発信器、この超音波発信器から発信された超
音波を前記超音波発信器に対し垂直に対向する位
置で受けてこれを複数方向に反射するプリズム型
の反射体、この反射体から反射された超音波を受
信する少なくとも一対の受信器とを具備すると共
に、上記流路管の超音波通過面に、流体を遮断し
超音波を通す透過箔を備えたことを特徴とする。
(Means for Solving the Problems) That is, the ultrasonic flowmeter of the present invention includes a flow pipe through which a fluid passes, an ultrasonic transmitter disposed on the side of the flow pipe, and a a prism-shaped reflector that receives emitted ultrasonic waves at a position perpendicularly opposed to the ultrasonic transmitter and reflects them in multiple directions; at least one pair of receivers that receive the ultrasonic waves reflected from the reflector; The present invention is characterized in that the ultrasonic wave passing surface of the flow path tube is provided with a transparent foil that blocks fluid and allows ultrasonic waves to pass through.

本発明の超音波流量計においては、発信器に対
し垂直に対向する位置、つまり超音波発信器から
発信された超音波を最も良い指向性の状態で受け
る位置に反射体を配置する。
In the ultrasonic flowmeter of the present invention, the reflector is arranged at a position perpendicularly facing the transmitter, that is, at a position where it receives the ultrasonic waves emitted from the ultrasonic transmitter with the best directivity.

反射体としては、複数方向、好ましくは二方向
へ超音波を反射させることができるプリズム型の
ものが用いられる。
As the reflector, a prism-type one that can reflect ultrasonic waves in multiple directions, preferably two directions is used.

また、流路管の超音波通過面に配置する透過箔
としては、目の詰まつた布等の使用が好ましい。
Further, as the transmission foil disposed on the ultrasonic wave passing surface of the channel tube, it is preferable to use a tightly woven cloth or the like.

(実施例) 以下、本発明の超音波流量計の実施例につい
て、図面を参照しつつ詳細に説明する。
(Example) Hereinafter, an example of the ultrasonic flowmeter of the present invention will be described in detail with reference to the drawings.

第1図は本発明の超音波流量計の第1実施例を
示す。
FIG. 1 shows a first embodiment of the ultrasonic flowmeter of the present invention.

すなわち、第1図において、ガス等の流体が通
過する流路管1には、その一方の側面に超音波発
信器(以下、単に発信器と呼ぶ)4が配設されて
おり、また流路管1の他方の側面には、超音波を
受信する受信器5a,5bが、上記発信器4の上
流側および下流側の等間隔位置に夫々配設されて
いる。
That is, in FIG. 1, an ultrasonic transmitter (hereinafter simply referred to as an transmitter) 4 is disposed on one side of a flow path pipe 1 through which a fluid such as gas passes, and a flow path On the other side of the tube 1, receivers 5a and 5b for receiving ultrasonic waves are arranged at equally spaced positions upstream and downstream of the transmitter 4, respectively.

発信器4に対し垂直に対向する位置には、この
発信器4から発信される超音波を、その最も指向
性の強い範囲で受けて、効率良く受信器5a,5
bへ伝搬するプリズム型の反射体が配置されてお
り、さらに流路管1の受信器5a,5b側には、
超音波の伝搬距離を等しく調整するための調整ネ
ジ6が配設されている。
At positions vertically facing the transmitter 4, there are receivers 5a, 5 that efficiently receive the ultrasonic waves emitted from the transmitter 4 in the most directional range.
A prism-shaped reflector is arranged to propagate to b, and further on the receivers 5a, 5b side of the flow pipe 1,
An adjustment screw 6 is provided for equally adjusting the propagation distance of the ultrasonic waves.

しかして、発信回路20から電気信号を受け
て、発信器4から発信された超音波は、受信器5
a,5bに対し効率的に受信され、その受信信号
は増幅器21a,21bで増幅され、波形整形器
22a,22bで波形整形された後、位相比較器
24、積分器25により流体(ガス等)流量が演
算され、出力されるようになつている。。
The ultrasonic waves transmitted from the transmitter 4 upon receiving the electric signal from the transmitter circuit 20 are transmitted to the receiver 5.
a, 5b, and the received signals are amplified by amplifiers 21a, 21b, waveform shaped by waveform shapers 22a, 22b, and then processed by a phase comparator 24 and an integrator 25 to convert fluid (gas, etc.) The flow rate is calculated and output. .

透過箔3,3a,3bは、超音波を通すが流体
を遮断し得る材質(例えば目の細かな布等)によ
り形成されており、流路管1内壁の超音波通過面
(発信器4及び受信器5a,5bに該当する個所)
に配設されている。
The transmission foils 3, 3a, and 3b are made of a material (such as fine cloth) that allows ultrasonic waves to pass through but can block fluids, and they are made of a material that can pass ultrasonic waves but block fluids (for example, fine-mesh cloth, etc.). (Places corresponding to receivers 5a and 5b)
It is located in

次に、本発明の超音波流量計の作用について説
明する。
Next, the operation of the ultrasonic flowmeter of the present invention will be explained.

まず、発信回路20から発信器4へ電気信号を
送ると、この電気信号は発信器4の共振周波数で
共振振動し、超音波に変換されて発信器4から発
信される。
First, when an electric signal is sent from the transmitter circuit 20 to the transmitter 4, this electric signal vibrates resonantly at the resonant frequency of the transmitter 4, is converted into an ultrasonic wave, and is transmitted from the transmitter 4.

そして、発信器4から発信された超音波は、プ
リズム型の反射体2によつて受信器5a,5bへ
向けて反射される。
The ultrasonic waves emitted from the transmitter 4 are reflected by the prism-shaped reflector 2 toward the receivers 5a and 5b.

このとき、超音波は発信器4に対し垂直に対向
する位置に配置された反射体2によつて、指向性
の最もレベルが高い角度から反射されるため、受
信器5a,5bに到達する超音波の音圧レベルは
強く、受信効率がすぐれている。
At this time, the ultrasonic wave is reflected from the angle with the highest level of directivity by the reflector 2 placed perpendicularly to the transmitter 4, so that the ultrasonic wave reaches the receivers 5a and 5b. The sound pressure level of the sound waves is strong and the reception efficiency is excellent.

また、低流量の場合の測定精度を向上させるた
めに、流路管1の内径を小さくしたり、発信器4
と受信器5a,5bとの間の距離を大きくする場
合でも、反射体2の角度を適切に設定することに
より高精度が得られる。
In addition, in order to improve measurement accuracy in the case of low flow rates, the inner diameter of the flow path pipe 1 may be made smaller, and the transmitter 4 may be made smaller.
Even when the distance between the reflector 2 and the receivers 5a and 5b is increased, high accuracy can be obtained by appropriately setting the angle of the reflector 2.

次に、発信器4から流路管1の上流側および下
流側へ同時に発信された超音波は、流路管1内を
通過する流体の流量に比例した時間差をもつて受
信器5a,5bへと到達する。
Next, the ultrasonic waves simultaneously transmitted from the transmitter 4 to the upstream and downstream sides of the flow pipe 1 are transmitted to the receivers 5a and 5b with a time difference proportional to the flow rate of the fluid passing through the flow pipe 1. and reach it.

そして、受信器5a,5bからの受信信号は、
増幅器21a,21bを経て、波形整形器22
a,22bで波形整形され、次いで位相比較器2
4で伝搬時間差を検出し、さらに積分器25で演
算することによつて、流体(ガス等)の流量が出
力される。
The received signals from the receivers 5a and 5b are
Via amplifiers 21a and 21b, waveform shaper 22
a, 22b, the waveform is shaped, and then the phase comparator 2
By detecting the propagation time difference in step 4 and calculating it in integrator 25, the flow rate of the fluid (gas, etc.) is output.

なお、透過箔3,3a,3bを設けることによ
つて、流体の流れが円滑化され、流路管1内の圧
力損失が小さくなる。
Note that by providing the transparent foils 3, 3a, and 3b, the fluid flow is smoothed and the pressure loss within the flow path pipe 1 is reduced.

第2図は、本発明の超音波流量計の第2実施例
を示す。
FIG. 2 shows a second embodiment of the ultrasonic flowmeter of the present invention.

この第2実施例においては、流路管1の同一側
方に発信器4および一対の受信器5a,5bを配
設すると共に、反射体2を流路管1の他方側に配
設した点が、上述した第1実施例と相違してい
る。
In this second embodiment, the transmitter 4 and the pair of receivers 5a and 5b are arranged on the same side of the flow pipe 1, and the reflector 2 is arranged on the other side of the flow pipe 1. However, this embodiment is different from the first embodiment described above.

すなわち、流路管1の一方の側方にある発信器
4から発信された超音波は、流路管1の他方の側
方における前記発信器4の垂直対向位置、つまり
最も指向性の強い位置に配置された反射体2によ
つて二方向へ反射されて、前記発信器4と同じ側
に配置された受信器5a,5bへと受信されるの
である。
That is, the ultrasonic waves emitted from the transmitter 4 on one side of the flow pipe 1 are transmitted to the vertically opposing position of the transmitter 4 on the other side of the flow pipe 1, that is, the position with the strongest directivity. The signal is reflected in two directions by a reflector 2 placed on the same side as the transmitter 4, and is received by receivers 5a and 5b placed on the same side as the transmitter 4.

なお、本発明の超音波流量計においては、発信
器および受信器を流路管の外壁の外に配置するこ
とも可能である。
In addition, in the ultrasonic flowmeter of the present invention, it is also possible to arrange the transmitter and the receiver outside the outer wall of the flow pipe.

(発明の効果) 以上説明したように、本発明の超音波流量計
は、下記のようなすぐれた効果を発揮し、内燃機
関の空気吸入量測定等の用途にとつてきわわめて
有用である。
(Effects of the Invention) As explained above, the ultrasonic flowmeter of the present invention exhibits the following excellent effects and is extremely useful for applications such as measuring the air intake amount of internal combustion engines. It is.

(イ) 発信器に対し垂直に対向する、最も音圧指向
性の強い位置にプリズム型の反射体を配置し
て、超音波を反射させるため、受信器の超音波
受信感度が高く、特に低流量の流体測定精度を
高くすることができる。
(b) A prism-shaped reflector is placed at the position vertically facing the transmitter and has the strongest sound pressure directivity to reflect the ultrasonic waves, so the ultrasonic reception sensitivity of the receiver is high, especially for low The accuracy of fluid measurement of flow rate can be increased.

(ロ) 音圧指向性の強い範囲の超音波を受信するこ
とができるため、流路管の内径を小さくした
り、また発信器と受信器との間の距離を大きく
したりしても、受信感度が高く、SN比を改善
することができる。
(b) Ultrasonic waves in a range with strong sound pressure directivity can be received, so even if the inner diameter of the flow pipe is made smaller or the distance between the transmitter and receiver is increased, The reception sensitivity is high and the SN ratio can be improved.

(ハ) 流路管の超音波通過面に透過箔を使用するこ
とにより、流体の流れが円滑になり、流路管内
の圧力損失が小さくなる。
(c) By using a transparent foil on the ultrasonic wave passing surface of the flow pipe, fluid flow becomes smooth and pressure loss within the flow pipe is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波流量計の第1実施例を
示す断面図および付属電気回路のブロツク図、第
2図は同じく第2実施例を示す断面図、第3図は
従来の超音波流量計を示す断面図および付属電気
回路のブロツク図である。 1……流路管、2……反射体、3,3a,3b
……透過箔、4……発信器、5a,5b……受信
器、21a,21b……増幅器、22a,22b
……波形調整器、24……位相比較器、25……
積分器。
Fig. 1 is a cross-sectional view and a block diagram of the attached electric circuit showing the first embodiment of the ultrasonic flowmeter of the present invention, Fig. 2 is a cross-sectional view of the second embodiment, and Fig. 3 is a conventional ultrasonic flowmeter. FIG. 3 is a cross-sectional view of the flowmeter and a block diagram of the attached electric circuit. 1... Channel pipe, 2... Reflector, 3, 3a, 3b
... Transparent foil, 4 ... Transmitter, 5a, 5b ... Receiver, 21a, 21b ... Amplifier, 22a, 22b
... Waveform adjuster, 24 ... Phase comparator, 25 ...
Integrator.

Claims (1)

【特許請求の範囲】[Claims] 1 流体が通過する流路管、この流路管の側方に
配置される超音波発信器、この超音波発信器から
発信された超音波を前記超音波発信器に対し垂直
に対向する位置で受けて、これを複数方向に反射
するプリズム型の反射体、この反射体から反射さ
れた超音波を受信する少なくとも一対の受信器と
を具備すると共に、上記流路管の超音波通過面
に、流体を遮断し超音波を通す透過箔を備えたこ
とを特徴とする超音波流量計。
1 A flow pipe through which a fluid passes, an ultrasonic transmitter placed on the side of the flow pipe, and an ultrasonic transmitter that transmits the ultrasonic waves from the ultrasonic transmitter at a position perpendicularly facing the ultrasonic transmitter. a prism-type reflector that receives the ultrasonic waves and reflects the ultrasonic waves in a plurality of directions; and at least a pair of receivers that receive the ultrasonic waves reflected from the reflector; An ultrasonic flowmeter characterized by being equipped with a transparent foil that blocks fluid and allows ultrasonic waves to pass through.
JP60138879A 1985-06-27 1985-06-27 Ultrasonic flow meter Granted JPS62811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138879A JPS62811A (en) 1985-06-27 1985-06-27 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138879A JPS62811A (en) 1985-06-27 1985-06-27 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPS62811A JPS62811A (en) 1987-01-06
JPH0349373B2 true JPH0349373B2 (en) 1991-07-29

Family

ID=15232245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138879A Granted JPS62811A (en) 1985-06-27 1985-06-27 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JPS62811A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1812774B1 (en) * 2004-11-12 2015-10-28 Xtralis Technologies Ltd Method and apparatus for determining flow
JP5712358B2 (en) * 2009-11-24 2015-05-07 パナソニックIpマネジメント株式会社 Ultrasonic fluid measuring structure and ultrasonic fluid measuring device
JP2011112378A (en) * 2009-11-24 2011-06-09 Panasonic Corp Flow channel member and ultrasonic fluid measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584075A (en) * 1981-06-30 1983-01-11 日本特殊陶業株式会社 Piezoelectric transformer for ultrasonic folw meter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751290Y2 (en) * 1976-04-30 1982-11-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584075A (en) * 1981-06-30 1983-01-11 日本特殊陶業株式会社 Piezoelectric transformer for ultrasonic folw meter

Also Published As

Publication number Publication date
JPS62811A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
KR0170815B1 (en) Ultrasonic multi circuit flowmeter
JP2002535639A (en) Clamp-on gas flow meter
US20030172743A1 (en) Clamp-on flow meter system
JPH0319491B2 (en)
JPH0532734Y2 (en)
US7806003B2 (en) Doppler type ultrasonic flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JPH0349373B2 (en)
JP3570315B2 (en) Ultrasonic flow meter and gas meter using it
JP3328505B2 (en) Ultrasonic flow meter
JP4333098B2 (en) Flow measuring device
JPH09287989A (en) Ultrasonic flowmeter
JPS6246812B2 (en)
JPH0612278B2 (en) Two-phase flow ultrasonic type flow rate measuring method and measuring apparatus
KR100321074B1 (en) Measuring method of distance between sensors of ultrasonic flowmeter
JP3584578B2 (en) Ultrasonic flowmeter and ultrasonic transmission / reception module
JPS6041726B2 (en) Ultrasonic flow velocity measuring device
JPS631217Y2 (en)
JPS5852487Y2 (en) Flow rate measurement device using correlation technology
JPS58811Y2 (en) ultrasonic flow meter
KR100317954B1 (en) Ultrasonic Flow Measurement Method Using Variable Delay
JPH07311062A (en) Ultrasonic flowmeter
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
SU1076754A1 (en) Ultrasonic flowmeter
JP2002005705A (en) Flow measuring device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term