JPS63135821A - Karman vortex flowmeter - Google Patents

Karman vortex flowmeter

Info

Publication number
JPS63135821A
JPS63135821A JP28341186A JP28341186A JPS63135821A JP S63135821 A JPS63135821 A JP S63135821A JP 28341186 A JP28341186 A JP 28341186A JP 28341186 A JP28341186 A JP 28341186A JP S63135821 A JPS63135821 A JP S63135821A
Authority
JP
Japan
Prior art keywords
receiver
oscillator
karman vortex
conduit
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28341186A
Other languages
Japanese (ja)
Inventor
Katsuaki Yasui
克明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28341186A priority Critical patent/JPS63135821A/en
Publication of JPS63135821A publication Critical patent/JPS63135821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the S/N ratio of the receiving signal of a receiver and to prevent the generation of malfunction, by providing the receiver at the position opposed to a super-directional oscillator generating an ultrasonic wave so as to locate the same slightly before or behind said oscillator. CONSTITUTION:When a main stream 5 flows through a conduit 1, a Karman vortex 6 is generated behind a vortex generating column 2 and the flow vertical to the main stream 5 and cyclically reversed in direction is generated. A super-directional oscillator 3 emits a primary ultrasonic wave 7 of which the sound flux is throttled only in the direction of a receiver 4. By this constitution, when the direction of the primary ultrasonic wave 7 coincides with the direction of the flow vertical to the main stream 5, the phase of the primary ultrasonic wave 7 received by the receiver 4 is allowed to advance and, when the flow direction is reverse, the phase is delayed. By measuring this phase difference, the Karman vortex 6 is detected and the flow rate of the main stream can be calculated. Herein, the reflected wave 8 generated by the wall of the conduit 1 in the periphery of the receiver 4 or by the receiver 4 also holds directionality to be reflected in a diagonally backward direction. Therefore, the reflected wave 8 in noise is not incident again on the receiver 4 and a S/N ratio is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば自動車のエンジンの吸気流量測定等
に利用されているカルマン渦流量計に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a Karman vortex flow meter that is used, for example, to measure the intake air flow rate of an automobile engine.

〔従来の技術〕[Conventional technology]

第3図は例えば実公昭59−10576号公報に示され
ている従来のカルマン渦流量計を示す断面図であシ、図
において、1は流体の流れる導管、2は導管1内に設け
られた渦発生柱、3は渦発生柱2の後方の導管l壁面に
取付けた発振器、4は発振器3と対向して導管1壁面に
取付けた受信器である。5は導管1内を一流れる主流、
6は渦発生柱2により発生したカルマン渦、7は発振器
3よシ受信器4に向けて発生した超音波、8は導管1の
壁面または受信器4で一度以上反射した反射波である。
FIG. 3 is a cross-sectional view showing a conventional Karman vortex flow meter shown in, for example, Japanese Utility Model Publication No. 59-10576. The vortex generating column 3 is an oscillator attached to the wall of the conduit l behind the vortex generating column 2, and the receiver 4 is attached to the wall of the conduit 1 facing the oscillator 3. 5 is the main flow flowing through the conduit 1;
6 is a Karman vortex generated by the vortex generating column 2; 7 is an ultrasonic wave generated from the oscillator 3 toward the receiver 4; and 8 is a reflected wave reflected one or more times from the wall of the conduit 1 or the receiver 4.

次に動作について説明する。導管1内に主流5が流れる
と渦発生柱2の背後にカルマン渦6が発生し、これによ
り導管1内に主流5と垂直で周期的に方向の逆転する流
れが発生する。−万、発振器3よ)発生した超音波7は
受信器4で伝播するが、この伝播方向と主流と垂直方向
の流れの方向が一致するときは受信器4の受ける超音波
7の位相が進められ、また流れの方向が逆のときは位相
が遅らされる。この位相変化を測定することにょシカル
マ/渦6を検出することができる。カルマン渦6の周期
は主流5の速度に比例するため、この周期を測定するこ
とにより流量を求めることができる。
Next, the operation will be explained. When the main stream 5 flows in the conduit 1, a Karman vortex 6 is generated behind the vortex generating column 2, thereby generating a flow in the conduit 1 that is perpendicular to the main stream 5 and whose direction is periodically reversed. - 10,000, oscillator 3) The generated ultrasonic waves 7 propagate in the receiver 4, but when this propagation direction and the direction of the flow perpendicular to the main flow match, the phase of the ultrasonic waves 7 received by the receiver 4 advances. and the phase is delayed when the direction of flow is reversed. By measuring this phase change, the solar karma/vortex 6 can be detected. Since the period of the Karman vortex 6 is proportional to the speed of the main stream 5, the flow rate can be determined by measuring this period.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のカルマン渦流量計は以上のように構成されている
が、発振器3で発生した一次超音波7は広がシながら伝
播するため、受信器4に直接達する一次超音波7の音舎
エネルギーは小さい。また、波面の広が9のために受信
器4の周囲の導管1の壁面に達した超音波の一部が他の
壁面や受信器4で反射して反射波8となシ、さらに数回
反射した後に雑音として受信器4に至る。これが受信信
号のS/N比を悪化させてカルマン渦流量計を誤動作さ
せる原因となっていた。
The conventional Karman vortex flowmeter is configured as described above, but since the primary ultrasonic wave 7 generated by the oscillator 3 propagates while spreading, the sound wave energy of the primary ultrasonic wave 7 that directly reaches the receiver 4 is small. In addition, due to the spread of the wavefront 9, a part of the ultrasonic wave that reaches the wall surface of the conduit 1 around the receiver 4 is reflected by other walls and the receiver 4, resulting in a reflected wave 8, and then several more times. After being reflected, it reaches the receiver 4 as noise. This deteriorated the S/N ratio of the received signal and caused the Karman vortex flowmeter to malfunction.

この発明は上記のよりな問題点を解消するためになされ
たもので、受信器の受信信号のS/N比がよくかつ、誤
動作の生じないカルマン渦流量計を得ることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a Karman vortex flowmeter that has a good signal-to-noise ratio of a signal received by a receiver and does not malfunction.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るカルマンm#t、量計は、超音波を発生
する発振器として超指向性発振器を用い、この発振器と
対向する位置に発振器よシやや前方あるいは後方に受信
器を備えたものである。
The Karman m#t meter according to the present invention uses a super-directional oscillator as an oscillator for generating ultrasonic waves, and is equipped with a receiver at a position facing the oscillator, slightly in front or behind the oscillator. .

〔作 用〕[For production]

この発明においては、指向性の大きい発振器から発した
超音波の広がシが小さく、大部分は直接受信器に達する
。また、受信器や受信器周辺の導管壁面で反射した音波
も・指向性の高さを維持しているため、受信器が発振器
よ勺前方ならばさらに前方へ、後方ならばさらに後方へ
反射し、受信器へ雑音として受信されることはない。
In this invention, the spread of the ultrasonic waves emitted from the oscillator with high directivity is small, and most of them reach the receiver directly. In addition, the sound waves reflected from the receiver and the wall of the conduit around the receiver maintain a high level of directivity, so if the receiver is in front of the oscillator, it will be reflected further forward, and if it is behind the oscillator, it will be reflected further back. , will not be received by the receiver as noise.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はカルマン渦流量計の横断平面図を示し、図において
、lは流体の流れる導管、2は導管1内に設置された渦
発生柱、3は渦発生柱2の直後の導管l壁面に散付けら
れた超指向性発振器、4はこの発振器3と対向する導管
l壁面で、該発振器3よシやや後方に取付けられた受信
器である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a cross-sectional plan view of a Karman vortex flowmeter, in which l is a conduit through which fluid flows, 2 is a vortex generating column installed in conduit 1, and 3 is scattered on the wall of conduit l immediately after vortex generating column 2. The attached superdirectional oscillator 4 is a receiver mounted slightly behind the oscillator 3 on the wall of the conduit 1 facing the oscillator 3.

5は導管l内を流れる主流、6は渦発生柱2と主流5の
相互作用により生じるカルマン渦、7は発振器3から発
し受信器4に至る一次超音波、8は反射波である。
Reference numeral 5 indicates the main stream flowing in the conduit 1, 6 indicates a Karman vortex generated by the interaction between the vortex generation column 2 and the main stream 5, 7 indicates a primary ultrasonic wave emitted from the oscillator 3 and reaches the receiver 4, and 8 indicates a reflected wave.

第2図は超指向性発振器3の構成を示し、9は密閉箱l
O内に設けた発振子、11はこの発振子9に接続された
振動子、12は使用超音波の波長λ/2の距離内に等間
隔に直接配列された5つの音源孔、13は各音源孔12
と密閉箱10とを連通した導波管である。
FIG. 2 shows the configuration of the superdirectional oscillator 3, and 9 is a sealed box l.
11 is an oscillator connected to this oscillator 9, 12 is five sound source holes arranged directly at equal intervals within a distance of wavelength λ/2 of the ultrasonic wave used, and 13 is each Sound source hole 12
This is a waveguide that communicates the airtight box 10 with the airtight box 10.

上記したカルマン渦流量計は、導管1内に主流5が流れ
ると渦発生柱2の後方にカルマン渦6が発生し、これK
より主流5と垂直で周期的に方向の逆転する流れが発生
する。−万、超指向性発振器3は公知のフエイズドアレ
イの原理を用い、導波管13の長さ、太さによってそれ
ぞれの音源孔12から発射する音波の位相、振@を調整
することによ多党信器4の方向のみに音束を絞った1次
超音波7を発射するようにしである。これによって、−
次超膏波7と主流5に垂直方向の流れの方向が一致した
ときには受信器4の受ける一次超音波7の位相が進めら
れ、方向が逆のときKは位相が遅らされる。この位相変
化を測定することによりカルマン渦6を検出することが
でき、カルマン渦60周期は主流5の流速に比例するた
め、この周期を求めることにより主流5の流速、流tを
求めることかできる。
In the Karman vortex flowmeter described above, when the main stream 5 flows in the conduit 1, a Karman vortex 6 is generated behind the vortex generation column 2, and this K
A flow that is perpendicular to the main flow 5 and whose direction is periodically reversed is generated. - The superdirectional oscillator 3 uses the well-known phased array principle to adjust the phase and amplitude of the sound waves emitted from each sound source hole 12 according to the length and thickness of the waveguide 13. The primary ultrasonic wave 7 with a narrowed sound beam is emitted only in the direction of the transmitter 4. By this, −
When the vertical flow directions of the secondary ultrasonic wave 7 and the main flow 5 match, the phase of the primary ultrasonic wave 7 received by the receiver 4 is advanced, and when the directions are opposite, the phase of K is delayed. By measuring this phase change, the Karman vortex 6 can be detected, and since the period of the Karman vortex 60 is proportional to the flow velocity of the main stream 5, the flow velocity of the main stream 5, flow t, can be obtained by determining this period. .

かくして超指向性発振器3から発生した一次超音波7の
エネルギーの大部分は受信器4に達するが、受信器40
周辺の導管1壁あるいは受信器によって反射波8が生じ
る。しかしこの反射波8も指向性を保っており、−次超
音波7が斜め前方から入射してくるために斜め後方に反
射する。このため反射波8が再び雑音として受信器4に
入射することがなく、S/N比が向上する。
Thus, most of the energy of the primary ultrasound 7 generated from the superdirectional oscillator 3 reaches the receiver 4;
A reflected wave 8 is generated by the peripheral wall of the conduit 1 or by the receiver. However, this reflected wave 8 also maintains its directivity, and since the -order ultrasonic wave 7 enters obliquely from the front, it is reflected obliquely backward. Therefore, the reflected wave 8 does not enter the receiver 4 again as noise, and the S/N ratio improves.

なお、実施例では超指向性発振器として5つの点音源を
直線的に並べたものを示したが、指向性を高めるために
は点音源の数は多い方がよく、また構造を簡単にするた
めに点音源の数は3つにまで少なくすることができる。
In addition, in the example, five point sound sources are arranged linearly as a superdirectional oscillator, but in order to improve directivity, it is better to have a large number of point sound sources, and to simplify the structure. The number of point sources can be reduced to three.

また、点音源を二次元的に多数並べてもよく、このよう
にすると前後方向だけでなく上下方向にも指向性が得ら
れて性能がよくなる。さらに、受信器4の取付は位置は
発振器よシ受信器の受圧面の幅だけ後方へずらすのがよ
く、また超指向性音源としては発振器3の振動板11の
表裏から位相がπradだけずれた超音波を取出して交
互に並べるよりにしてもよい。また、受信器4も指向性
のあるものを用いてもよく、導管1の内壁に吸音材を張
ってもよい。
Further, a large number of point sound sources may be arranged two-dimensionally. In this way, directivity can be obtained not only in the front-rear direction but also in the up-down direction, improving performance. Furthermore, the mounting position of the receiver 4 should be shifted backward by the width of the receiver's pressure receiving surface from the oscillator, and as a superdirectional sound source, the phase should be shifted by πrad from the front and back of the diaphragm 11 of the oscillator 3. It is also possible to take out the ultrasonic waves and arrange them alternately. Further, the receiver 4 may also be directional, and the inner wall of the conduit 1 may be covered with a sound absorbing material.

〔発明の効果〕〔Effect of the invention〕

以上説明したよりにこの発明によれば、発振器として超
指向性発振器を用い、発振器と対向する位置で発振器よ
りやや前方あるいは後方に受信器を取付けるようにした
ので、受振器からの超音波の音替エネルギーを′受信器
に集中させることができ、しかもS/N 比が向上し誤
動作のないカルマン渦流を計となる。
As explained above, according to the present invention, a super-directional oscillator is used as the oscillator, and the receiver is installed slightly in front or behind the oscillator at a position facing the oscillator, so that the ultrasonic sound from the receiver is The switching energy can be concentrated in the receiver, the S/N ratio is improved, and the Karman vortex flow can be measured without malfunction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるカルマン渦流量計の
横断平面図、第2図は超指向性発振器の構成図、第3図
は従来のカルマン渦流を一計の横断平面図である。 1・・・導管、2・・・渦発生柱、3用超指向性発振器
、4・・・受信器、9・・・発振子、11・・・振動板
、12・・・音源孔、13・・・導波管。 なお、図中同一符号は同−又は相轟部分を示す。 代理人   大  岩  増  雄 第1図 第2図 I2;昔婚、多し ゛  第3図 手続補正書(自発)
FIG. 1 is a cross-sectional plan view of a Karman vortex flowmeter according to an embodiment of the present invention, FIG. 2 is a block diagram of a superdirectional oscillator, and FIG. 3 is a cross-sectional plan view of a conventional Karman vortex flow meter. DESCRIPTION OF SYMBOLS 1... Conduit, 2... Vortex generating column, 3 super-directional oscillator, 4... Receiver, 9... Oscillator, 11... Diaphragm, 12... Sound source hole, 13 ...Waveguide. Note that the same reference numerals in the drawings indicate the same or similar parts. Agent Masuo Oiwa Figure 1 Figure 2 I2; Long-ago marriage, many Figure 3 Procedural amendment (voluntary)

Claims (6)

【特許請求の範囲】[Claims] (1)測定流体を流す導管と、この導管内にカルマン渦
を発生させる渦発生柱と、この渦発生柱の直後の導管壁
面にフエイズドアレイの原理により受信器の方向のみに
超音波を発生する超指向性発振器と、この発振器と対向
する導管壁面に、上記発振器のやや後方あるいはやや前
方に受信器とを備えたことを特徴とするカルマン渦流量
計。
(1) A conduit through which the measurement fluid flows, a vortex generation column that generates Karman vortices in this conduit, and an ultrasonic wave that generates ultrasonic waves only in the direction of the receiver using the phased array principle on the conduit wall immediately after the vortex generation column. A Karman vortex flowmeter comprising a directional oscillator and a receiver on a conduit wall facing the oscillator, slightly behind or slightly in front of the oscillator.
(2)超指向性発振器は交互に逆位相の3つ以上の点音
源を直接的に配置したことを特徴とする特許請求の範囲
第1項記載のカルマン渦流量計。
(2) The Karman vortex flowmeter according to claim 1, characterized in that the superdirectional oscillator is directly arranged with three or more point sound sources having opposite phases alternately.
(3)超指向性発振器は多数の点音源を二次元的に配置
したことを特徴とする特許請求の範囲第1項記載のカル
マン渦流量計。
(3) The Karman vortex flowmeter according to claim 1, characterized in that the superdirectional oscillator has a large number of point sound sources arranged two-dimensionally.
(4)受信器の取付け位置を超指向性発振器の取付け位
置より受信器の受圧面の幅だけ後方へずらしたことを特
徴とする特許請求の範囲第1項記載のカルマン渦流量計
(4) The Karman vortex flowmeter according to claim 1, wherein the mounting position of the receiver is shifted backward by the width of the pressure receiving surface of the receiver from the mounting position of the superdirectional oscillator.
(5)発振器の振動板の表裏から位相がπradだけず
れた超音波を取出して交互に並べることにより超指向性
音源を構成したことを特徴とする特許請求の範囲第1項
記載のカルマン渦流量計。
(5) The Karman vortex flow rate according to claim 1, characterized in that the superdirectional sound source is constructed by extracting ultrasonic waves whose phase is shifted by π rad from the front and back of the diaphragm of the oscillator and arranging them alternately. Total.
(6)受信器が指向性受信器であることを特徴とする特
許請求の範囲第1項および第4項記載のカルマン渦流量
計。
(6) The Karman vortex flowmeter according to claims 1 and 4, wherein the receiver is a directional receiver.
JP28341186A 1986-11-27 1986-11-27 Karman vortex flowmeter Pending JPS63135821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28341186A JPS63135821A (en) 1986-11-27 1986-11-27 Karman vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28341186A JPS63135821A (en) 1986-11-27 1986-11-27 Karman vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS63135821A true JPS63135821A (en) 1988-06-08

Family

ID=17665180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28341186A Pending JPS63135821A (en) 1986-11-27 1986-11-27 Karman vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS63135821A (en)

Similar Documents

Publication Publication Date Title
JPS5819970B2 (en) vortex flow meter
JP2017125701A (en) Gas meter
CA2557099A1 (en) Doppler type ultrasonic flow meter
JPS63135821A (en) Karman vortex flowmeter
JP3570315B2 (en) Ultrasonic flow meter and gas meter using it
JP3328505B2 (en) Ultrasonic flow meter
JPS63241310A (en) Karman vortex flowmeter
JP3653829B2 (en) Anemometer
JPH0221528B2 (en)
JPH09189589A (en) Flow rate measuring apparatus
JPH0349373B2 (en)
JPH10274551A (en) Ultrasonic flow meter
JP3584578B2 (en) Ultrasonic flowmeter and ultrasonic transmission / reception module
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP3480711B2 (en) Ultrasonic vortex flowmeter
JPS5819450Y2 (en) Karman vortex flowmeter
JPS63265117A (en) Ultrasonic wave flowmeter
JPH0843421A (en) Ultrasonic type anemometer
JPS631217Y2 (en)
JPS6015518A (en) Vortex flowmeter
JPS6041726B2 (en) Ultrasonic flow velocity measuring device
JPH081455Y2 (en) Vortex flowmeter
JPH0128421Y2 (en)
JPH09318411A (en) Ultrasonic flowmeter
JP3360458B2 (en) Flow meter