JP3821571B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP3821571B2
JP3821571B2 JP07068998A JP7068998A JP3821571B2 JP 3821571 B2 JP3821571 B2 JP 3821571B2 JP 07068998 A JP07068998 A JP 07068998A JP 7068998 A JP7068998 A JP 7068998A JP 3821571 B2 JP3821571 B2 JP 3821571B2
Authority
JP
Japan
Prior art keywords
detector
flow
detection end
upstream
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07068998A
Other languages
Japanese (ja)
Other versions
JPH11271117A (en
Inventor
哲也 川田
大一 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP07068998A priority Critical patent/JP3821571B2/en
Publication of JPH11271117A publication Critical patent/JPH11271117A/en
Application granted granted Critical
Publication of JP3821571B2 publication Critical patent/JP3821571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計に関し、より詳細には、流管の内壁に沿って進む信号成分を抑えることにより検出信号のSN比を改善する超音波流量計に関する。
【0002】
【従来の技術】
超音波流量計で広く使用される測定原理として伝搬時間逆数差法(周波数差法)が周知である。この伝搬時間逆数差法は、流体の測定流速Vを流体中の超音波の伝搬速度の変化、すなわち伝搬時間の逆数である周波数の差Δfとして計測し、既知の流水断面積Aと乗算することにより流量Qを測定する方法である。
【0003】
前記時間差法が適用される超音波流量測定の例として、超音波パルスを測定管内面で一回反射させるV法(反射法)が知られている。
【0004】
図6は、V法による流量測定の原理を説明するための超音波流量計の機器系統図で、測定管の上流側に検出端(即ち、超音波の送受信を行う装置の終端…以下、同じ)Puを、その下流側に検出端Pdを取り付け、変換器Tの送信回路より発振された送信パルスが専用ケーブルCを経て検出端Puに設置された図示しない振動子を励振する。振動子は送信パルス(電気信号)を超音波パルス(音響信号)に変換し流体中へ発射する。
【0005】
流体中を伝搬した超音波パルスは管材で反射し、検出端Pdに到達し、検出端Pdの振動子を励振する。振動子は超音波パルスを受信し、受信パルス(電気信号)に変換し、専用ケーブルを経て、変換器Tの受信回路に帰還する。この電気信号と音響信号が一巡するサイクル、送信回路→専用ケーブル→検出端Pu→流体→管材(反射)→流体→検出端Pd→専用ケーブル→受信回路で、流れに沿ったPu→Pd方向(順方向)の伝搬時間tdが測定できる。伝搬時間tdの測定が終了すると、直ちに次の測定動作である流れに逆らったPd→Pu方向(逆方向)の伝搬時間tuの測定を行う。即ち、送信回路→専用ケーブル→検出端Pd→流体→管材(反射)→流体→検出端Pu→専用ケーブル→受信回路で、流れに逆らった方向の伝搬時間tuが測定できる。
【0006】
流体中の超音波パルスの伝搬経路長のうち、検出端Pd→管材の反射面までの経路長をLとすれば、反射面→検出端Puまでの経路長はLとなるので、検出端Pdから検出端Puまでの伝搬経路長は2Lである。流体固有の音速をC、超音波の伝搬経路と管軸のなす角をθとすると、検出端PuとPdとの間を往き来する超音波パルスの音速C0は流速Vの影響を受け
0=C±Vcosθ
となる。
【0007】
ここで、超音波パルスの流体中の伝播時間を、順方向(Pu→Pd)のときをtdL、逆方向(Pd→Pu)のときをtuLとすると、tdLとtuLはそれぞれ
tdL=2L/C0=2L/(C+Vcosθ)
tuL=2L/C0=2L/(C−Vcosθ)
となる。
【0008】
ここに、伝搬時間tdL,tuLの逆数に比例した測定回路上の周波数fd,fuを考えると、
fd=N/tdL
fu=N/tuL
ここで、Nは測定回路上の定数(倍数)であり、これらの周波数差Δfをとると、
【0009】
【数1】

Figure 0003821571
【0010】
で表される。よって、測定流速Vは、
【0011】
【数2】
Figure 0003821571
【0012】
となり、従って、測定流速に平均流速に換算するための流量補正係数と流管断面積を演算することにより、流量を求めることができる。
【0013】
また、上述の伝搬時間逆数差法の他に伝播時間差法により流量を求めることもできる。
【0014】
図7は、上述の測定原理が適用される超音波流量計の検出器取付部の断面構成図で、図中、1は流管、2は流管1に設置された検出器取付部である。該検出器取付部2は円筒形状を成し、一方の端部は後述する検出器が挿入される開口部2aとそれに連なるフランジ2bを有して開口し、他方の端部は流管1に穿たれた穴部3により流路内に連通するとともに所定の角度θをもって溶接により流管1に固着されている。
【0015】
図8は、検出器の側面図で、図中、4は検出器、5は有底の円筒部、6は検出器4の検出端、7は該円筒部5を前記フランジ2bに留める鍔部、8は円筒部5に設けられたケーブルコネクタである。前記円筒部5内には図示しない振動子が設置されており、図示しないリード線によりケーブルコネクタ8に接続されている。9は図示しない変換器に接続される専用ケーブルである。l1(エル)は円筒部5の長さを表わす。
【0016】
図9は、検出器4が検出器取付部2に設置された状態を示す図で、検出器4の円筒部5が検出器取付部2の開口部2aからその中空部に挿入され、フランジ2bに鍔部7が留まるように設置され、ねじ10により固着される。なお、流体は矢印に従い、右側(上流側)から左側(下流側)へと流れる。l2は検出器取付部2の長さを表わし、Sは前記穴部3に設定された流管1の内壁面を延長した仮想ラインである。また、参照番号は上流側検出器のみに付し、下流側検出器は上流側検出器と同じであるので付与を省略する。
【0017】
【発明が解決しようとする課題】
検出器取付部2の長さl2と検出器4の円筒部5の長さl1との関係は、規格化されているわけではなく、製造メーカが自由に決めている。このため、通常は、円筒部5の長さ方向の中心線が検出端6の中心と仮想ラインSで一致するような取り付け位置関係になっているのが実情である。図9は、このような寸法関係により検出器4が検出器取付部2に取り付けられている状態を示している。つまり、検出端6は流路に臨み、その角部が流路内に露出する。この結果、超音波の発射信号は前述の経路長2Lを辿るほか、流管1の内壁を這うようにして進む信号Gがあることがわかっている。
【0018】
この信号は、所謂ゴースト信号であり、検出信号のSN比を悪化させる要因となるものである。これを改善する技術として、特開平9−287990号公報に開示された技術があるが、狭い管路内に様々な加工を施さなければならず、実用上難点があった。
【0019】
本発明は、上述のような実情に鑑みてなされたもので、簡単な構成により、流管の内壁に沿って進む信号成分を抑え、検出信号のSN比を改善した超音波流量計を提供するものである。
【0020】
【課題を解決するための手段】
請求項1の発明は、被測定流体が流れる流管の上流側と下流側にそれぞれ、前記流管に所定の傾斜角度を有して設置された検出器の取り付け空間部を有する検出器取付部と前記空間部に設置された検出器を有し、V法による流量測定を行う超音波流量計において、下流側の前記検出器を該検出器の検出端が前記流管内の流路から出る位置に設置し、上流側の前記検出器を該検出器の検出端が前記流路から離間する位置に設置したことを特徴とし、もって、発信器から流管の内壁に沿って直接受信器で受信される信号成分を抑制し、検出信号のSN比を改善したものである。
【0021】
請求項2の発明は、請求項1の発明において、上流側の前記検出器の検出端が前記流路から離間する位置を、上流側の前記検出器取付部と上流側の前記検出器により挟持されるスペーサにより調整することを特徴とし、もって、色々な寸法の検出器取付部に対応して検出器の位置調整を容易に行うことができるようにしたものである。
【0022】
【発明の実施の形態】
図1は、本発明が適用される超音波流量計の検出器取付部の断面構造図で、図中、図9の構成部分と同じ部分には同一参照番号を付し説明を省略する。
【0023】
本発明は、上流側の検出器4の円筒部5の寸法を短くし又は取り付け位置を変化させるなどして位置調整を行い、検出器4の検出端6が流路内に露出しないよう流路から離間したものである。
【0024】
図2は、検出器の取り付け位置調整をスペーサにより行う状況を示す図で、11はフランジ2bと検出器4の鍔部7により挾持されるスペーサである。該スペーサ11により、検出器4の検出端6が流路から離間するように検出器4の取り付け位置の調整を行う。
【0025】
図3は、上流側検出器の円筒部5の先端の角部が前記ラインSから10mm後退した位置になるよう検出器4を取り付け、下流側検出器の取り付け位置は従来のままとしたときの超音波受信波の波形図であり、左側波形はゴースト波として受信された波形、右側波形は正規の経路を経て受信された波形を示す。ちなみに、図5は、従来技術における受信波の波形を示しており、これらを比較すると明らかにゴースト波の影響が改善されていることがわかる。
【0026】
改善の理由として、円筒部5の底面,仮想ラインS及び検出器取付部2の壁により構成される断面略三角形状の空間部のうち、前記検出器取付部2の壁の部分が送信器から受信器に直接流管の内壁に沿って進む信号成分の遮蔽の役割を果たすためと考えられる。
【0027】
なお、波形は、フルスケールの125%流量における受信波であり、試験条件は、流量…290m3/h、流速…37.5m/sであった。また、図3〜図5において、電圧値は、ゴースト波形においては最大波における中央値、信号波においては第3番目の信号波における中央値を表わす。
【0028】
図3から明らかなように、下流側検出器の検出器の取り付け位置は、ゴースト波の影響改善には殆ど寄与していない。
【0029】
そこで、発明者らは、更に実験を重ね、上流側及び下流側検出器とも、検出器取り付け位置を後退させ、ゴースト波の変化状態を測定した。図4は、その結果を示したものであり、改善状況は図3とほぼ同じであるが、正規の経路を経て受信された波形は、小さくなるという不都合も判明した。
【0030】
前述のように、超音波流量計においては、上流側及び下流側検出器は、送信と受信を交互に繰り返すので、同一構造にしておくのが望ましい。もし、構造が異なれば、送信の場合と受信の場合のために2組の検出装置を設けなければならなくなるためである。したがって、上流側と下流側とで円筒部5の長さを変えた検出器4を使用するのでなく、スペーサにより同じ構成にするのが良い。
【0031】
【発明の効果】
請求項1の発明によれば、被測定流体が流れる流管の上流側と下流側にそれぞれ、前記流管に所定の傾斜角度を有して設置された検出器の取り付け空間部を有する検出器取付部と前記空間部に設置された検出器を有し、V法による流量測定を行う超音波流量計において、下流側の前記検出器を該検出器の検出端が前記流管内の流路から出る位置に設置し、上流側の前記検出器を該検出器の検出端が前記流路から離間する位置に設置したので、発信器から流管の内壁に沿って直接受信器に到達する信号成分を抑制し、検出信号のSN比を改善することができる。
【0032】
請求項2の発明によれば、請求項1の発明の効果に加えて、上流側の前記検出器の検出端が前記流路から離間する位置を、上流側の前記検出器取付部と上流側の前記検出器により挟持されるスペーサにより調整するので、色々な寸法の検出器取付部に対応して検出器の位置調整を容易に行うことができる。
【図面の簡単な説明】
【図1】 本発明が適用される超音波流量計の検出器取付部の断面構造図である。
【図2】 検出器の取り付け位置調整をスペーサにより行う状況を示す図である。
【図3】 上流側検出器の検出端を流路から離間したときの受信波の波形図である。
【図4】 上流側及び下流側検出器とも、検出端を流路から離間したときの受信波の波形図である。
【図5】 従来技術における受信波の波形図である。
【図6】 反射法による流量測定の原理を説明するための超音波流量計の機器系統図である。
【図7】 超音波流量計の検出器取付部の断面構成図である。
【図8】 検出器の側面図である。
【図9】 従来技術による検出器の取り付け状態を示す図である。
【符号の説明】
1…流管、2…検出器取付部、2a…開口部、2b…フランジ、3…穴部、4…検出器、5…円筒部、6…検出端、7…鍔部、8…ケーブルコネクタ、9…専用ケーブル、10…ねじ、l1…円筒部の長さ、l2…検出器取付部の長さ、S…仮想ライン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flow meter, and more particularly to an ultrasonic flow meter that improves the signal-to-noise ratio of a detection signal by suppressing signal components that travel along an inner wall of a flow tube.
[0002]
[Prior art]
The propagation time reciprocal difference method (frequency difference method) is well known as a measurement principle widely used in ultrasonic flowmeters. In this inverse propagation time difference method, the measured flow velocity V of the fluid is measured as a change in the propagation velocity of the ultrasonic wave in the fluid, that is, as a frequency difference Δf that is the inverse of the propagation time, and is multiplied by a known flowing water cross section A. This is a method of measuring the flow rate Q.
[0003]
As an example of ultrasonic flow measurement to which the time difference method is applied, a V method (reflection method) is known in which an ultrasonic pulse is reflected once on the inner surface of a measurement tube.
[0004]
FIG. 6 is an equipment flow diagram of an ultrasonic flowmeter for explaining the principle of flow measurement by the V method. The detection end (that is, the end of a device that transmits and receives ultrasonic waves) is connected to the upstream side of the measurement tube. ) A detection end Pd is attached downstream of Pu, and a transmission pulse oscillated from the transmission circuit of the converter T excites a transducer (not shown) installed at the detection end Pu via the dedicated cable C. The transducer converts the transmission pulse (electric signal) into an ultrasonic pulse (acoustic signal) and emits it into the fluid.
[0005]
The ultrasonic pulse propagated in the fluid is reflected by the tube material, reaches the detection end Pd, and excites the transducer at the detection end Pd. The vibrator receives the ultrasonic pulse, converts it into a received pulse (electric signal), and feeds it back to the receiving circuit of the converter T via a dedicated cable. A cycle in which the electrical signal and the acoustic signal go round, in a transmission circuit → dedicated cable → detection end Pu → fluid → pipe material (reflection) → fluid → detection end Pd → dedicated cable → receiving circuit, Pu → Pd direction along the flow ( The propagation time td in the forward direction can be measured. When the measurement of the propagation time td is completed, the propagation time tu in the Pd → Pu direction (reverse direction) against the flow, which is the next measurement operation, is immediately measured. That is, the transmission time tu in the direction opposite to the flow can be measured in the transmission circuit → dedicated cable → detection end Pd → fluid → pipe material (reflection) → fluid → detection end Pu → dedicated cable → reception circuit.
[0006]
Of the propagation path length of the ultrasonic pulse in the fluid, if the path length from the detection end Pd to the reflection surface of the tube material is L, the path length from the reflection surface to the detection end Pu is L. Therefore, the detection end Pd To the detection end Pu is 2L. Assuming that the sound speed peculiar to the fluid is C and the angle between the ultrasonic wave propagation path and the tube axis is θ, the sound speed C 0 of the ultrasonic pulse traveling between the detection ends Pu and Pd is affected by the flow velocity V and C 0 = C ± V cos θ
It becomes.
[0007]
Here, when the propagation time of the ultrasonic pulse in the fluid is tdL in the forward direction (Pu → Pd) and tuL in the reverse direction (Pd → Pu), tdL and tuL are tdL = 2L / C, respectively. 0 = 2L / (C + V cos θ)
tuL = 2L / C 0 = 2L / (C−V cos θ)
It becomes.
[0008]
Here, considering the frequencies fd and fu on the measurement circuit proportional to the reciprocals of the propagation times tdL and tuL,
fd = N / tdL
fu = N / tuL
Here, N is a constant (multiple) on the measurement circuit, and when these frequency differences Δf are taken,
[0009]
[Expression 1]
Figure 0003821571
[0010]
It is represented by Therefore, the measured flow velocity V is
[0011]
[Expression 2]
Figure 0003821571
[0012]
Therefore, the flow rate can be obtained by calculating the flow rate correction coefficient for converting the measured flow rate to the average flow rate and the cross-sectional area of the flow tube.
[0013]
Further, the flow rate can be obtained by the propagation time difference method in addition to the above-described propagation time reciprocal difference method.
[0014]
FIG. 7 is a cross-sectional configuration diagram of a detector mounting portion of an ultrasonic flowmeter to which the above-described measurement principle is applied, in which 1 is a flow tube and 2 is a detector mounting portion installed in the flow tube 1. . The detector mounting portion 2 has a cylindrical shape, and one end portion has an opening portion 2a into which a detector to be described later is inserted and a flange 2b connected thereto, and the other end portion is connected to the flow tube 1. The perforated hole 3 communicates with the flow path and is fixed to the flow tube 1 by welding at a predetermined angle θ.
[0015]
FIG. 8 is a side view of the detector, in which 4 is a detector, 5 is a bottomed cylindrical portion, 6 is a detection end of the detector 4, and 7 is a flange portion that holds the cylindrical portion 5 to the flange 2b. , 8 are cable connectors provided in the cylindrical portion 5. A vibrator (not shown) is installed in the cylindrical portion 5 and is connected to the cable connector 8 by a lead wire (not shown). Reference numeral 9 denotes a dedicated cable connected to a converter (not shown). l 1 (el) represents the length of the cylindrical portion 5.
[0016]
FIG. 9 is a diagram showing a state in which the detector 4 is installed on the detector mounting portion 2. The cylindrical portion 5 of the detector 4 is inserted into the hollow portion from the opening 2a of the detector mounting portion 2, and the flange 2b. It is installed so that the collar part 7 stays, and is fixed by a screw 10. The fluid follows the arrow and flows from the right side (upstream side) to the left side (downstream side). l 2 represents the length of the detector mounting portion 2, and S is a virtual line extending the inner wall surface of the flow tube 1 set in the hole portion 3. Further, the reference number is attached only to the upstream detector, and the downstream detector is the same as the upstream detector, so that the provision is omitted.
[0017]
[Problems to be solved by the invention]
Relationship between the length l 1 of the cylindrical portion 5 of the detector of the mounting portion 2 length l 2 and the detector 4 is not necessarily are standardized, manufacturers are freely decided. For this reason, the actual situation is that the mounting position relationship is such that the center line in the length direction of the cylindrical portion 5 is coincident with the center of the detection end 6 at the virtual line S. FIG. 9 shows a state in which the detector 4 is attached to the detector attachment portion 2 with such a dimensional relationship. That is, the detection end 6 faces the flow path, and the corner portion is exposed in the flow path. As a result, it is known that the ultrasonic emission signal has a signal G that travels along the inner wall of the flow tube 1 in addition to the above-described path length 2L.
[0018]
This signal is a so-called ghost signal, which causes a deterioration in the S / N ratio of the detection signal. As a technique for improving this, there is a technique disclosed in Japanese Patent Application Laid-Open No. 9-287990. However, various processes have to be performed in a narrow pipe line, which is difficult in practice.
[0019]
The present invention has been made in view of the above circumstances, and provides an ultrasonic flowmeter with a simple configuration that suppresses signal components that travel along the inner wall of the flow tube and improves the SN ratio of the detection signal. Is.
[0020]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a detector mounting portion having a detector mounting space portion installed at a predetermined inclination angle in the flow tube on the upstream side and the downstream side of the flow tube through which the fluid to be measured flows. If, possess the installed detector in the space portion, the ultrasonic flow meter the flow rate measurement by V method, the detection end of the detector the detector downstream from the flow path of the flow pipe The upstream detector is installed at a position where the detection end of the detector is separated from the flow path, and the receiver is directly connected along the inner wall of the flow tube from the transmitter. The signal component received by is suppressed and the SN ratio of the detection signal is improved.
[0021]
Clamping of the invention of claim 2, in the invention of claim 1, the position where the detection end of the detector on the upstream side away from the flow path, by the detector mounting portion of the upstream side and the upstream side of the detector The position of the detector can be easily adjusted in accordance with the detector mounting portion of various dimensions.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional structural view of a detector mounting portion of an ultrasonic flowmeter to which the present invention is applied. In the figure, the same parts as those in FIG.
[0023]
The present invention adjusts the position by shortening the size of the cylindrical portion 5 of the upstream detector 4 or changing the mounting position, so that the detection end 6 of the detector 4 is not exposed in the flow channel. It is separated from.
[0024]
FIG. 2 is a diagram showing a situation where the attachment position adjustment of the detector is performed by the spacer, and 11 is a spacer held by the flange 2 b and the flange portion 7 of the detector 4. The mounting position of the detector 4 is adjusted by the spacer 11 so that the detection end 6 of the detector 4 is separated from the flow path.
[0025]
FIG. 3 shows a case where the detector 4 is mounted so that the corner of the tip of the cylindrical portion 5 of the upstream detector is set back by 10 mm from the line S, and the mounting position of the downstream detector remains unchanged. It is a wave form diagram of an ultrasonic wave reception, the left side waveform shows the waveform received as a ghost wave, and the right side waveform shows the waveform received via the regular path. Incidentally, FIG. 5 shows the waveform of the received wave in the prior art, and it can be seen that the effect of the ghost wave is clearly improved by comparing these waveforms.
[0026]
The reason for the improvement is that the wall portion of the detector mounting portion 2 is separated from the transmitter among the space portion having a substantially triangular cross section constituted by the bottom surface of the cylindrical portion 5, the virtual line S and the wall of the detector mounting portion 2. This is thought to be due to the shielding of signal components that travel directly along the inner wall of the flow tube to the receiver.
[0027]
The waveform was a received wave at a full-scale 125% flow rate, and the test conditions were flow rate 290 m 3 / h, flow rate 37.5 m / s. 3 to 5, the voltage value represents the median value in the maximum wave in the ghost waveform and the median value in the third signal wave in the signal wave.
[0028]
As is clear from FIG. 3, the detector mounting position of the downstream detector hardly contributes to the improvement of the influence of the ghost wave.
[0029]
Therefore, the inventors conducted further experiments and measured the change state of the ghost wave by retreating the detector mounting positions of both the upstream and downstream detectors. FIG. 4 shows the result, and the improvement situation is almost the same as in FIG. 3, but the inconvenience that the waveform received via the regular path becomes smaller is also found.
[0030]
As described above, in the ultrasonic flowmeter, the upstream and downstream detectors repeat transmission and reception alternately, so it is desirable to have the same structure. This is because if the structure is different, two sets of detection devices must be provided for transmission and reception. Therefore, it is preferable to use the same configuration with the spacers instead of using the detector 4 in which the length of the cylindrical portion 5 is changed between the upstream side and the downstream side.
[0031]
【The invention's effect】
According to the first aspect of the present invention, a detector having a mounting space portion of a detector installed at a predetermined inclination angle in the flow tube on the upstream side and the downstream side of the flow tube through which the fluid to be measured flows. a mounting portion, said possess the installed detector in the space, in the ultrasonic flowmeter to perform flow measurement with V method, downstream the detector flow detection end of the detection device of the flow tube to the Since the detector on the upstream side is installed at a position where the detection end of the detector is separated from the flow path, it reaches the receiver directly from the transmitter along the inner wall of the flow tube. The signal component can be suppressed and the SN ratio of the detection signal can be improved.
[0032]
According to the second aspect of the invention, in addition to the effect of the invention of claim 1, the position where the detection end of the detector on the upstream side away from the flow path, the detector mounting portion of the upstream side and the upstream side since adjusted by spacers sandwiched by the detector, it is possible to easily adjust the position of the detector in response to the detector mounting section of various dimensions.
[Brief description of the drawings]
FIG. 1 is a cross-sectional structure diagram of a detector mounting portion of an ultrasonic flowmeter to which the present invention is applied.
FIG. 2 is a diagram illustrating a situation in which the attachment position of a detector is adjusted by a spacer.
FIG. 3 is a waveform diagram of a received wave when a detection end of an upstream detector is separated from a flow path.
FIG. 4 is a waveform diagram of a received wave when the detection end is separated from the flow path for both the upstream side detector and the downstream side detector.
FIG. 5 is a waveform diagram of a received wave in the prior art.
FIG. 6 is an equipment flow diagram of an ultrasonic flow meter for explaining the principle of flow measurement by a reflection method.
FIG. 7 is a cross-sectional configuration diagram of a detector mounting portion of an ultrasonic flowmeter.
FIG. 8 is a side view of the detector.
FIG. 9 is a view showing a state of attachment of a detector according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flow tube, 2 ... Detector mounting part, 2a ... Opening part, 2b ... Flange, 3 ... Hole part, 4 ... Detector, 5 ... Cylindrical part, 6 ... Detection end, 7 ... Gutter part, 8 ... Cable connector , 9 ... Dedicated cable, 10 ... Screw, l 1 ... Length of cylindrical part, l 2 ... Length of detector mounting part, S ... Virtual line.

Claims (2)

被測定流体が流れる流管の上流側と下流側にそれぞれ、
前記流管に所定の傾斜角度を有して設置された検出器の取り付け空間部を有する検出器取付部と
前記空間部に設置された検出器を有し、V法による流量測定を行う超音波流量計において、
下流側の前記検出器を該検出器の検出端が前記流管内の流路から出る位置に設置し、
上流側の前記検出器を該検出器の検出端が前記流路から離間する位置に設置したことを特徴とする超音波流量計。
On the upstream side and downstream side of the flow tube through which the fluid to be measured flows ,
A detector mounting portion having a mounting space of the detector placed with a predetermined inclination angle to the flow tube,
Possess the installed detector in the space portion, the ultrasonic flow meter the flow rate measurement by V method,
Installing the downstream detector at a position where the detection end of the detector exits the flow path in the flow tube;
An ultrasonic flowmeter, wherein the upstream detector is installed at a position where a detection end of the detector is separated from the flow path.
上流側の前記検出器の検出端が前記流路から離間する位置を、上流側の前記検出器取付部と上流側の前記検出器により挟持されるスペーサにより調整することを特徴とする請求項1に記載の超音波流量計。 2. The position at which the detection end of the upstream detector is separated from the flow path is adjusted by a spacer sandwiched between the upstream detector mounting portion and the upstream detector. The ultrasonic flowmeter described in 1.
JP07068998A 1998-03-19 1998-03-19 Ultrasonic flow meter Expired - Fee Related JP3821571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07068998A JP3821571B2 (en) 1998-03-19 1998-03-19 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07068998A JP3821571B2 (en) 1998-03-19 1998-03-19 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH11271117A JPH11271117A (en) 1999-10-05
JP3821571B2 true JP3821571B2 (en) 2006-09-13

Family

ID=13438871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07068998A Expired - Fee Related JP3821571B2 (en) 1998-03-19 1998-03-19 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3821571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858762A (en) * 2010-05-19 2010-10-13 邓鲁坚 Tube wall reflection type ultrasonic flow sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028215B2 (en) * 2012-03-09 2016-11-16 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
JP6089550B2 (en) * 2012-10-09 2017-03-08 富士電機株式会社 Wind direction and wind speed measuring device
KR101327182B1 (en) * 2012-12-28 2013-11-06 (주)와이즈산전 Structure of combing duct with ultrasonic oscillator and ultrasonics wave flowmeter using the same of
JP2020024180A (en) * 2018-08-09 2020-02-13 パナソニックIpマネジメント株式会社 Ultrasonic flow meter
KR102246720B1 (en) * 2020-06-23 2021-04-30 (주)발맥스기술 Ultrasonic flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858762A (en) * 2010-05-19 2010-10-13 邓鲁坚 Tube wall reflection type ultrasonic flow sensor
CN101858762B (en) * 2010-05-19 2013-01-16 邓鲁坚 Tube wall reflection type ultrasonic flow sensor

Also Published As

Publication number Publication date
JPH11271117A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP2935833B2 (en) Multi-line flow measurement device
JP3616324B2 (en) Ultrasonic flow meter by propagation time difference method
CN104583731B (en) Compact ultrasonic flowmeter
JP3283519B2 (en) Flowmeter
US7503225B2 (en) Ultrasonic flow sensor having a transducer array and reflective surface
JP2793133B2 (en) Through-flow volume measuring device
JP3761399B2 (en) Ultrasonic flow meter
US6901812B2 (en) Single-body dual-chip Orthogonal sensing transit-time flow device
JP3821571B2 (en) Ultrasonic flow meter
JP4535065B2 (en) Doppler ultrasonic flow meter
JPH039405B2 (en)
KR100311855B1 (en) Fluid flow meter
JP2003014515A (en) Ultrasonic flowmeter
JP3488003B2 (en) Flow measurement device
JP3328505B2 (en) Ultrasonic flow meter
JP7151311B2 (en) ultrasonic flow meter
JP2005091332A (en) Ultrasonic flowmeter
JPH09287989A (en) Ultrasonic flowmeter
JP6149250B2 (en) Ultrasonic flow meter
JP2003177042A (en) Ultrasonic flowmeter
JP4069222B2 (en) Ultrasonic vortex flowmeter
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP4453341B2 (en) Ultrasonic flow meter
JPH0915012A (en) Ultrasonic wave flowmeter
RU2517996C1 (en) Ultrasonic flowmeter sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees