JP2005091332A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2005091332A
JP2005091332A JP2003329260A JP2003329260A JP2005091332A JP 2005091332 A JP2005091332 A JP 2005091332A JP 2003329260 A JP2003329260 A JP 2003329260A JP 2003329260 A JP2003329260 A JP 2003329260A JP 2005091332 A JP2005091332 A JP 2005091332A
Authority
JP
Japan
Prior art keywords
ultrasonic
tube
measurement
transmission
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329260A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ukesono
信博 請園
Satoshi Fukuhara
聡 福原
Toshio Sekiguchi
敏夫 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003329260A priority Critical patent/JP2005091332A/en
Publication of JP2005091332A publication Critical patent/JP2005091332A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an ultrasonic flowmeter capable of improving measuring accuracy. <P>SOLUTION: The ultrasonic flowmeter for measuring the flow rate of a measuring fluid carried in a measuring tube by use of ultrasonic wave comprises a tube thickness measuring ultrasonic oscillator provided in the measuring tube, which measures the thickness of the measuring tube. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、測定精度が向上出来る超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter capable of improving measurement accuracy.

超音波流量計に関連する先行技術文献としては次のようなものがある。
(有)工業技術社発行、「計装エンジニアのための流量計測AtoZ]、平成 7年11月1日初版、P126〜P127,
Prior art documents related to the ultrasonic flowmeter include the following.
Published by Kogyo Engineering Co., Ltd., “Flow measurement AtoZ for instrumentation engineers”, November 1, 1995, first edition, P126-P127,

図9はこのような従来の超音波流量計の一例を示す要部構成説明図である。
図において、測定流体FLが流れる測定管1の上流と下流に各1個の超音波送受信振動子2が設けられている。
変換器3は超音波送受信振動子2に接続されている。
FIG. 9 is an explanatory view of the main part configuration showing an example of such a conventional ultrasonic flowmeter.
In the figure, one ultrasonic transmitting / receiving transducer 2 is provided upstream and downstream of the measurement tube 1 through which the measurement fluid FL flows.
The transducer 3 is connected to the ultrasonic transmitting / receiving transducer 2.

以上の構成において、変換器3より,送信信号を上流(または下流)の超音波振動子2に送り、超音波を発信させる。
発信した超音波は,測定管1内の測定流体FLを通り、下流(または上流)の超音波振動子2に受信され,受信信号として変換器3に送られる.
In the above configuration, a transmission signal is sent from the transducer 3 to the upstream (or downstream) ultrasonic transducer 2 to emit ultrasonic waves.
The transmitted ultrasonic wave passes through the measurement fluid FL in the measurement tube 1 and is received by the ultrasonic transducer 2 downstream (or upstream) and sent to the converter 3 as a reception signal.

変換器3では,上流から下流へ,また,下流から上流へ送信した超音波信号の到達時間を測定し,測定管1内の流速を計算する。
測定した流速から,測定管1の外径と測定管1の厚さを用いて,測定管1の流路の断面積を計算し,断面積と流速から流量を求める。
なお、点線は、超音波伝播経路aを示す。
In the converter 3, the arrival time of the ultrasonic signal transmitted from the upstream to the downstream and from the downstream to the upstream is measured, and the flow velocity in the measuring tube 1 is calculated.
From the measured flow velocity, the cross-sectional area of the flow channel of the measuring tube 1 is calculated using the outer diameter of the measuring tube 1 and the thickness of the measuring tube 1, and the flow rate is obtained from the cross-sectional area and the flow velocity.
The dotted line indicates the ultrasonic propagation path a.

超音波流量計で流量を測定するためには,配管の厚さの測定が必要である。
従来は,配管厚さ測定用の検出器を用いて配管の厚さを測定している。
そのため,流量測定用の変換器と検出器とは別に配管厚さ測定用の変換器と検出器とが必要である。
また,配管の厚さを測定した値は、検出器を設置する際に測定した値であり、設置後は固定した値である。
In order to measure the flow rate with an ultrasonic flow meter, it is necessary to measure the thickness of the pipe.
Conventionally, pipe thickness is measured using a pipe thickness measurement detector.
Therefore, a converter and a detector for measuring the pipe thickness are required in addition to the converter and the detector for measuring the flow rate.
Moreover, the value which measured the thickness of piping is a value measured when installing a detector, and is a fixed value after installation.

そのため,測定管1の内部に付着物が付着した場合や測定管1が測定流体FL内部の混合物によって削られた場合など,測定管1の厚みが変化すると、流量測定に誤差が発生する。
また,上記のような測定管1内部の変化によって,管内の流速分布が変化することがあり、そのときに流量測定の誤差になる。
For this reason, if the thickness of the measuring tube 1 changes, such as when a deposit adheres to the inside of the measuring tube 1 or the measuring tube 1 is scraped by the mixture inside the measuring fluid FL, an error occurs in the flow rate measurement.
In addition, the flow velocity distribution in the pipe may change due to the change in the measurement pipe 1 as described above, which causes an error in flow rate measurement.

次に、クランプオンの超音波流量計では、配管や流体を透過して伝わる超音波の強度と質は、
1)配管に関連する超音波伝播要因:配管の材質・厚み・状態・形状,ライニングの材質・厚み・状態・形状。
2)流体に関連する超音波伝播要因:流体の種類,混入物の量、気泡の量。
3)超音波に関する要因:超音波の周波数。
によって変化する。
Next, in the clamp-on ultrasonic flowmeter, the intensity and quality of the ultrasonic wave transmitted through the pipe and fluid are:
1) Ultrasonic propagation factors related to piping: piping material, thickness, condition, shape, lining material, thickness, condition, shape.
2) Ultrasonic propagation factors related to fluid: the type of fluid, the amount of contaminants, the amount of bubbles.
3) Ultrasonic factors: frequency of ultrasonic waves.
It depends on.

しかも、その度合いは個々の設置環境でも異なるため、最適な周波数は、机上で決めることは困難である。
従来は,事前に超音波の伝播特性を実測で確認して、最適な検出器の周波数を決定し,周波数の異なる検出器を使い分けて測定する必要があった。
Moreover, since the degree varies depending on the installation environment, it is difficult to determine the optimum frequency on the desk.
Conventionally, it has been necessary to confirm the propagation characteristics of ultrasonic waves in advance, determine the optimal detector frequency, and use different detectors for different frequencies.

また、従来の超音波流量計検出器では,周波数特性があるので,超音波の送受信周波数によって利用する検出器を変更する必要がある。
即ち、ひとつの検出器について、1種類の送受信周波数しか発信できないので,適していると推定される送受信周波数の種類だけ検出器を用意する必要があった。
Further, since the conventional ultrasonic flowmeter detector has frequency characteristics, it is necessary to change the detector to be used depending on the transmission / reception frequency of the ultrasonic wave.
That is, since only one type of transmission / reception frequency can be transmitted with respect to one detector, it is necessary to prepare detectors for the types of transmission / reception frequencies estimated to be suitable.

本発明の目的は、上記の課題を解決するもので、測定精度が向上出来る超音波流量計を提供することを目的とする。   An object of the present invention is to solve the above-described problems and to provide an ultrasonic flowmeter that can improve measurement accuracy.

このような課題を達成するために、本発明では、請求項1の超音波流量計においては、
測定管内を流れる測定流体の流量を超音波を利用して計測する超音波流量計において、
前記測定管に設けられ前記測定管の管厚を測定する管厚測定超音波振動子を具備したことを特徴とする。
In order to achieve such a problem, in the ultrasonic flowmeter according to claim 1 of the present invention,
In an ultrasonic flowmeter that measures the flow rate of the measurement fluid flowing in the measurement tube using ultrasonic waves,
A tube thickness measurement ultrasonic transducer for measuring the tube thickness of the measurement tube provided in the measurement tube is provided.

本発明の請求項2においては、請求項1記載の超音波流量計において、
前記管厚測定超音波振動子は、超音波の送受信面が前記測定管の半径方向に直交して設けられたことを特徴とする。
In Claim 2 of this invention, in the ultrasonic flowmeter of Claim 1,
The tube thickness measurement ultrasonic transducer is characterized in that an ultrasonic transmission / reception surface is provided perpendicular to the radial direction of the measurement tube.

本発明の請求項3においては、請求項1乃至請求項3の何れかに記載の超音波流量計において、
前記管厚測定超音波振動子は、前記測定管の周面に沿って所定個配置されたことを特徴とする。
In Claim 3 of the present invention, in the ultrasonic flowmeter according to any one of Claims 1 to 3,
A predetermined number of the tube thickness measurement ultrasonic transducers are arranged along the peripheral surface of the measurement tube.

本発明の請求項4においては、請求項1乃至請求項3の何れかに記載の超音波流量計において、
前記管厚測定超音波振動子は、前記測定管の管軸方向に所定個配置されたことを特徴とする。
In Claim 4 of this invention, in the ultrasonic flowmeter in any one of Claim 1 thru | or 3,
A predetermined number of the tube thickness measurement ultrasonic transducers are arranged in the tube axis direction of the measurement tube.

本発明の請求項5においては、請求項1乃至請求項4の何れかに記載の超音波流量計において、
前記管厚測定超音波振動子の管厚の測定信号に基づき流量補正を行う流量補正回路を具備したことを特徴とする。
In Claim 5 of this invention, in the ultrasonic flowmeter in any one of Claim 1 thru | or 4,
It is characterized by comprising a flow rate correction circuit for performing flow rate correction based on a tube thickness measurement signal of the tube thickness measurement ultrasonic transducer.

本発明の請求項6においては、請求項1乃至請求項5の何れかに記載の超音波流量計において、
前記管厚測定超音波振動子の管厚測定信号に基づき測定管の詰まりを検知する詰まり状態検知回路を具備したことを特徴とする。
According to claim 6 of the present invention, in the ultrasonic flowmeter according to any one of claims 1 to 5,
A clogging state detection circuit for detecting clogging of a measurement tube based on a tube thickness measurement signal of the tube thickness measurement ultrasonic transducer is provided.

本発明の請求項7においては、請求項1乃至請求項6の何れかに記載の超音波流量計において、
前記管厚測定超音波振動子の管厚測定信号に基づき管厚が所定厚さに達した時に警報を発する警報発生回路を具備したことを特徴とする。
According to claim 7 of the present invention, in the ultrasonic flowmeter according to any one of claims 1 to 6,
An alarm generating circuit is provided that issues an alarm when the tube thickness reaches a predetermined thickness based on the tube thickness measurement signal of the tube thickness measurement ultrasonic transducer.

本発明の請求項8記載の超音波流量計においては、
測定管内を流れる測定流体の流量を超音波を利用して計測する超音波流量計において、
前記測定管の管軸方向に所定間隔を保って配置された複数の送受信超音波振動子対を具備したことを特徴とする。
In the ultrasonic flowmeter according to claim 8 of the present invention,
In an ultrasonic flowmeter that measures the flow rate of the measurement fluid flowing in the measurement tube using ultrasonic waves,
A plurality of transmission / reception ultrasonic transducer pairs arranged at a predetermined interval in the tube axis direction of the measurement tube is provided.

本発明の請求項9においては、請求項8に記載の超音波流量計において、
前記複数の送受信超音波振動子対は、周波数特性がそれぞれ異なることを特徴とする。
According to claim 9 of the present invention, in the ultrasonic flowmeter according to claim 8,
The plurality of transmission / reception ultrasonic transducer pairs have different frequency characteristics.

本発明の請求項10においては、請求項9記載の超音波流量計において、
前記送受信超音波振動子対は、前記測定管の管軸方向に順次ずらして配置されたことを特徴とする。
According to claim 10 of the present invention, in the ultrasonic flowmeter according to claim 9,
The transmission / reception ultrasonic transducer pairs are sequentially shifted in the tube axis direction of the measurement tube.

本発明の請求項11においては、請求項8乃至請求項10の何れかに記載の超音波流量計において、
前記送受信超音波振動子対は、前記測定管の周面に沿って所定個配置されたことを特徴とする。
According to Claim 11 of the present invention, in the ultrasonic flowmeter according to any one of Claims 8 to 10,
A predetermined number of the transmission / reception ultrasonic transducer pairs are arranged along the peripheral surface of the measurement tube.

本発明の請求項12においては、請求項8乃至請求項11の何れかに記載の超音波流量計において、
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から最適の送受信超音波振動子対を選択する振動子対切替回路を具備したことを特徴とする。
According to Claim 12 of the present invention, in the ultrasonic flowmeter according to any one of Claims 8 to 11,
It is characterized by comprising a transducer pair switching circuit for selecting an optimum transmission / reception ultrasonic transducer pair from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs.

本発明の請求項13においては、請求項8乃至請求項12の何れかに記載の超音波流量計において、
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から前記測定管の詰まり状態を検知する詰まり状態検知回路具備したことを特徴とする。
In Claim 13 of this invention, in the ultrasonic flowmeter in any one of Claims 8 thru | or 12,
A clogging state detection circuit for detecting a clogging state of the measuring tube from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs is provided.

本発明の請求項14においては、請求項8乃至請求項13の何れかに記載の超音波流量計において、
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から前記測定流体の異常状態を検知する異常状態検知回路を具備したことを特徴とする。
In the fourteenth aspect of the present invention, in the ultrasonic flowmeter according to any one of the eighth to thirteenth aspects,
An abnormal state detection circuit that detects an abnormal state of the measurement fluid from the signal intensity or signal waveform of each of the pair of transmitting and receiving ultrasonic transducers is provided.

本発明の請求項15においては、請求項8乃至請求項14の何れかに記載の超音波流量計において、
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から前記測定管あるいは前記測定流体の異常状態の警報を発する警報発生回路を具備したことを特徴とする。
According to Claim 15 of the present invention, in the ultrasonic flowmeter according to any one of Claims 8 to 14,
An alarm generation circuit for issuing an alarm of an abnormal state of the measurement tube or the measurement fluid from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs is provided.

本発明の請求項1によれば、次のような効果がある。
流量測定用の変換器のみで,厚さ測定と流量測定が可能な超音波流量計が得られる。
流量測定中に測定管の厚み測定が可能なので,変換器を設置後に厚みが変化した際に厚みの補正が可能な超音波流量計が得られる。
厚み測定の状態をモニターし,測定管の詰まり等の状態の変化の診断が可能な超音波流量計が得られる。
According to claim 1 of the present invention, there are the following effects.
An ultrasonic flowmeter capable of thickness measurement and flow measurement can be obtained using only a flow measurement transducer.
Since the thickness of the measuring tube can be measured during the flow rate measurement, an ultrasonic flowmeter capable of correcting the thickness when the thickness changes after installing the transducer is obtained.
An ultrasonic flowmeter capable of monitoring the thickness measurement state and diagnosing changes in the state such as clogging of the measurement tube can be obtained.

本発明の請求項2によれば、次のような効果がある。
超音波の送受信面が、測定管の半径方向に直交して設けられたので、超音波の送受信の効率が良い超音波流量計が得られる。
According to claim 2 of the present invention, there are the following effects.
Since the ultrasonic transmission / reception surface is provided perpendicular to the radial direction of the measurement tube, an ultrasonic flowmeter with high ultrasonic transmission / reception efficiency can be obtained.

本発明の請求項3によれば、次のような効果がある。
管厚測定超音波振動子は、測定管の周面に沿って所定個配置されたので、測定管の断面積の測定がより正確に測定出来る超音波流量計が得られる。
According to claim 3 of the present invention, there are the following effects.
Since a predetermined number of the tube thickness measurement ultrasonic transducers are arranged along the peripheral surface of the measurement tube, an ultrasonic flowmeter capable of more accurately measuring the cross-sectional area of the measurement tube is obtained.

本発明の請求項4によれば、次のような効果がある。
管厚測定超音波振動子は、測定管の管軸方向に所定個配置されたので、管軸方向の断面積の変化をより正確に測定出来る超音波流量計が得られる。
According to claim 4 of the present invention, there are the following effects.
Since a predetermined number of tube thickness measuring ultrasonic transducers are arranged in the tube axis direction of the measurement tube, an ultrasonic flowmeter capable of measuring the change in the cross-sectional area in the tube axis direction more accurately is obtained.

本発明の請求項5によれば、次のような効果がある。
管厚測定超音波振動子の管厚の測定信号に基づき流量補正を行う流量補正回路が設けられたので、流量補正が正確に出来て、精度が向上された超音波流量計が得られる。
According to claim 5 of the present invention, there are the following effects.
Since the flow rate correction circuit for correcting the flow rate based on the tube thickness measurement signal of the tube thickness measurement ultrasonic transducer is provided, the flow rate can be corrected accurately and an ultrasonic flowmeter with improved accuracy can be obtained.

本発明の請求項6によれば、次のような効果がある。
管厚測定超音波振動子の管厚測定信号に基づき、測定管の詰まり状態を検知する詰まり状態検知回路が設けられたので、測定管の詰まり状態を検知出来る超音波流量計が得られる。
According to claim 6 of the present invention, there are the following effects.
Since the clogged state detection circuit for detecting the clogged state of the measuring tube is provided based on the tube thickness measuring signal of the tube thickness measuring ultrasonic transducer, an ultrasonic flowmeter capable of detecting the clogged state of the measuring tube is obtained.

本発明の請求項7によれば、次のような効果がある。
管厚測定超音波振動子の管厚測定信号に基づき、管厚が所定厚さに達した時に警報を発する警報発生回路が設けられたので、測定誤差が大きな測定を警報により回避出来る超音波流量計が得られる。
According to claim 7 of the present invention, there are the following effects.
Based on the tube thickness measurement signal of the tube thickness measurement ultrasonic transducer, an alarm generation circuit is provided to issue an alarm when the tube thickness reaches the specified thickness. A total is obtained.

本発明の請求項8によれば、次のような効果がある。
測定管内を流れる測定流体の流量を超音波を利用して計測する超音波流量計において、
測定管の管軸方向に所定間隔を保って配置された複数の送受信超音波振動子対が設けられたので、例えば、一組の検出器で複数の周波数に対応出来るようになり,検出器を変えなくても超音波の伝播特性がよい超音波周波数での測定が出来る超音波流量計が得られる。
According to claim 8 of the present invention, there are the following effects.
In an ultrasonic flowmeter that measures the flow rate of the measurement fluid flowing in the measurement tube using ultrasonic waves,
Since a plurality of transmission / reception ultrasonic transducer pairs arranged at predetermined intervals in the tube axis direction of the measurement tube are provided, for example, a set of detectors can cope with a plurality of frequencies. Even if it does not change, the ultrasonic flowmeter which can measure at the ultrasonic frequency with the good propagation characteristic of the ultrasonic wave can be obtained.

事前の測定流体の伝播特性の確認が不要になる超音波流量計が得られる。
最適でない超音波周波数の検出器を使用しため、超音波が透過せず測定出来ない等の不具合が無くなる超音波流量計が得られる。
An ultrasonic flowmeter that eliminates the need to confirm the propagation characteristics of the measurement fluid in advance is obtained.
Since a detector having an ultrasonic frequency that is not optimal is used, an ultrasonic flowmeter that eliminates the inconvenience that ultrasonic waves cannot pass through and cannot be measured is obtained.

本発明の請求項9によれば、次のような効果がある。
複数の送受信超音波振動子対は、周波数特性がそれぞれ異なるので、一組の検出器で複数の周波数に対応出来るようになり,検出器を変えなくても超音波の伝播特性がよい超音波周波数での測定が出来る超音波流量計が得られる。
According to the ninth aspect of the present invention, the following effect can be obtained.
Multiple transmission / reception ultrasonic transducer pairs have different frequency characteristics, so a set of detectors can handle multiple frequencies, and the ultrasonic frequency has good ultrasonic propagation characteristics without changing the detector. An ultrasonic flowmeter that can be measured with is obtained.

本発明の請求項10によれば、次のような効果がある。
送受信超音波振動子対は、測定管の管軸方向に順次ずらして配置されたので、管軸方向に同一条件で測定出来る超音波流量計が得られる。
According to the tenth aspect of the present invention, the following effects can be obtained.
Since the transmission / reception ultrasonic transducer pairs are sequentially shifted in the tube axis direction of the measurement tube, an ultrasonic flowmeter capable of measuring under the same conditions in the tube axis direction is obtained.

本発明の請求項11によれば、次のような効果がある。
送受信超音波振動子対は、測定管の周面に沿って所定個配置されたので、測定管の管軸方向を短く出来、コンパクトな超音波流量計が得られる。
According to the eleventh aspect of the present invention, the following effects can be obtained.
Since a predetermined number of transmission / reception ultrasonic transducer pairs are arranged along the circumferential surface of the measurement tube, the tube axis direction of the measurement tube can be shortened, and a compact ultrasonic flowmeter can be obtained.

本発明の請求項12によれば、次のような効果がある。
それぞれの送受信超音波振動子対の信号強度あるいは信号波形から、最適の送受信超音波振動子対を選択する送受信超音波振動子対切替回路が設けられたので、測定精度が向上された超音波流量計が得られる。
According to claim 12 of the present invention, the following effects can be obtained.
Transmission / reception ultrasonic transducer pair switching circuit that selects the optimal transmission / reception ultrasonic transducer pair from the signal intensity or signal waveform of each transmission / reception ultrasonic transducer pair is provided, so the ultrasonic flow rate with improved measurement accuracy A total is obtained.

本発明の請求項13によれば、次のような効果がある。
それぞれの送受信超音波振動子対の信号強度あるいは信号波形から、測定管の詰まり状態を検知する詰まり状態検知回路が設けられたので、測定管の詰まり状態を検知出来る超音波流量計が得られる。
According to claim 13 of the present invention, there are the following effects.
Since the clogged state detection circuit for detecting the clogged state of the measurement tube is provided from the signal intensity or signal waveform of each pair of transmission / reception ultrasonic transducers, an ultrasonic flowmeter capable of detecting the clogged state of the measurement tube is obtained.

本発明の請求項14によれば、次のような効果がある。
それぞれの送受信超音波振動子対の信号強度あるいは信号波形から、測定流体の異常状態を検知する異常状態検知回路が設けられたので、測定流体の異常状態を検知出来る超音波流量計が得られる。
The fourteenth aspect of the present invention has the following effects.
Since an abnormal state detection circuit for detecting an abnormal state of the measurement fluid is provided from the signal intensity or signal waveform of each pair of transmission / reception ultrasonic transducers, an ultrasonic flowmeter capable of detecting the abnormal state of the measurement fluid can be obtained.

本発明の請求項15によれば、次のような効果がある。
それぞれの送受信超音波振動子対の信号強度あるいは信号波形から、測定管あるいは測定流体の異常状態の警報を発する警報発生回路が設けられたので、測定誤差が大きな測定を警報により回避出来る超音波流量計が得られる。
The fifteenth aspect of the present invention has the following effects.
An alarm generation circuit is provided to issue an alarm for abnormal conditions of the measurement tube or measurement fluid from the signal intensity or signal waveform of each transmitting / receiving ultrasonic transducer pair. A total is obtained.

以下本発明を図面を用いて詳細に説明する。
図1は本発明の一実施例の要部構成説明図である。
図において、図7と同一記号の構成は同一機能を表す。
以下、図7と相違部分のみ説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view of the main part configuration of an embodiment of the present invention.
In the figure, the same symbol structure as in FIG. 7 represents the same function.
Only the differences from FIG. 7 will be described below.

図において、測定流体FLが流れる測定管1の上流と下流に1対の流量測定用の超音波送受信振動子11が設けられている。
変換器3は流量測定用の超音波送受信振動子11に接続されている。
In the figure, a pair of ultrasonic transducers 11 for flow measurement are provided upstream and downstream of a measurement tube 1 through which a measurement fluid FL flows.
The converter 3 is connected to an ultrasonic transmission / reception vibrator 11 for flow rate measurement.

管厚測定超音波振動子12は、測定管1に設けられ、測定管1の管厚を測定する。
この場合は、管厚測定超音波振動子12は、超音波の送受信面が、測定管1の半径方向に直交して設けられている。
管厚測定超音波振動子12は、測定管1の管軸方向に所定個配置されている。
この場合は、2個配置されている。なお、1個でも良いことは勿論である。
The tube thickness measurement ultrasonic transducer 12 is provided in the measurement tube 1 and measures the tube thickness of the measurement tube 1.
In this case, the tube thickness measurement ultrasonic transducer 12 is provided with an ultrasonic transmission / reception surface orthogonal to the radial direction of the measurement tube 1.
A predetermined number of tube thickness measuring ultrasonic transducers 12 are arranged in the tube axis direction of the measuring tube 1.
In this case, two are arranged. Needless to say, one piece may be used.

図2は図1の電気回路の要部ブロック図である。
流量補正回路21は、管厚測定超音波振動子12の管厚の測定信号に基づき流量補正を行う。
詰まり状態検知回路22は、管厚測定超音波振動子12の管厚測定信号に基づき測定管の詰まりを検知する。
FIG. 2 is a main block diagram of the electric circuit of FIG.
The flow rate correction circuit 21 performs flow rate correction based on the tube thickness measurement signal of the tube thickness measurement ultrasonic transducer 12.
The clogging state detection circuit 22 detects clogging of the measurement tube based on the tube thickness measurement signal of the tube thickness measurement ultrasonic transducer 12.

警報発生回路23は、管厚測定超音波振動子12の管厚測定信号に基づき管厚が所定厚さに達した時に警報を発する。
なお、流量測定回路24は、流量測定用振動子11の測定信号により、流量測定を行う。
管厚測定回路25は、厚さ測定用振動子12の測定信号により、管厚測定を行う。
The alarm generation circuit 23 issues an alarm when the tube thickness reaches a predetermined thickness based on the tube thickness measurement signal of the tube thickness measurement ultrasonic transducer 12.
The flow rate measurement circuit 24 performs flow rate measurement based on the measurement signal from the flow rate measurement transducer 11.
The tube thickness measurement circuit 25 performs tube thickness measurement based on the measurement signal of the thickness measurement vibrator 12.

以上の構成において、変換器3から超音波の送信信号を厚さ測定用の超音波振動子12に送り、超音波信号を発信させる。
発信した超音波信号は,測定管1の内壁部分から反射され、超音波振動子12に再度入力し、受信信号に変換され変換器3に送られる。
変換器3では、超音波の伝播時間を演算し、その伝播時間から測定管1の厚さを計算する。
In the above configuration, an ultrasonic transmission signal is sent from the transducer 3 to the ultrasonic transducer 12 for thickness measurement, and an ultrasonic signal is transmitted.
The transmitted ultrasonic signal is reflected from the inner wall portion of the measuring tube 1, input again to the ultrasonic transducer 12, converted into a received signal, and sent to the converter 3.
The converter 3 calculates the propagation time of the ultrasonic wave, and calculates the thickness of the measurement tube 1 from the propagation time.

この結果、
流量測定用の変換器3のみで,厚さ測定と流量測定が可能な超音波流量計が得られる。
流量測定中に測定管1の厚み測定が可能なので,変換器3を設置後に厚みが変化した際に厚みの補正が可能な超音波流量計が得られる。
厚み測定の状態をモニターし,測定管1の詰まり等の状態の変化の診断が可能な超音波流量計が得られる。
As a result,
An ultrasonic flowmeter capable of measuring the thickness and measuring the flow rate can be obtained by using only the transducer 3 for measuring the flow rate.
Since the thickness of the measuring tube 1 can be measured during the flow rate measurement, an ultrasonic flowmeter capable of correcting the thickness when the thickness changes after the transducer 3 is installed can be obtained.
An ultrasonic flowmeter capable of monitoring the thickness measurement state and diagnosing a change in the state such as clogging of the measurement tube 1 can be obtained.

超音波の送受信面が、測定管1の半径方向に直交して設けられたので、超音波の送受信の効率が良い超音波流量計が得られる。
管厚測定超音波振動子12a,12b,‥‥‥は、測定管1の管軸方向に所定個配置されたので、管軸方向の断面積の変化をより正確に測定出来る超音波流量計が得られる。
Since the ultrasonic transmission / reception surface is provided orthogonal to the radial direction of the measuring tube 1, an ultrasonic flowmeter with high ultrasonic transmission / reception efficiency can be obtained.
Since the tube thickness measuring ultrasonic transducers 12a, 12b,... Are arranged in the tube axis direction of the measuring tube 1, an ultrasonic flowmeter that can measure the change in the cross-sectional area in the tube axis direction more accurately. can get.

管厚測定超音波振動子12a,12b,‥‥の管厚の測定信号に基づき、流量補正を行う流量補正回路21が設けられたので、流量補正が正確に出来て、精度が向上された超音波流量計が得られる。   Since the flow rate correction circuit 21 for correcting the flow rate is provided based on the tube thickness measurement signals of the tube thickness measurement ultrasonic transducers 12a, 12b,..., The flow rate correction can be performed accurately and the accuracy is improved. A sonic flow meter is obtained.

管厚測定超音波振動子12a,12b,‥‥の管厚測定信号に基づき、測定管1の詰まり状態を検知する詰まり状態検知回路が設けられたので、測定管1の詰まり状態を検知出来る超音波流量計が得られる。   Since a clogging state detection circuit for detecting the clogging state of the measurement tube 1 is provided based on the tube thickness measurement signals of the tube thickness measurement ultrasonic transducers 12a, 12b,... A sonic flow meter is obtained.

管厚測定超音波振動子12a,12b,‥‥の管厚測定信号に基づき、管厚が所定厚さに達した時に警報を発する警報発生回路23が設けられたので、測定誤差が大きな測定を警報により回避出来る超音波流量計が得られる。   Based on the tube thickness measurement signals of the tube thickness measurement ultrasonic transducers 12a, 12b,..., An alarm generation circuit 23 is provided to issue an alarm when the tube thickness reaches a predetermined thickness. An ultrasonic flow meter that can be avoided by an alarm is obtained.

図3は、本発明の他の実施例の要部構成説明である。
本実施例においては、管厚測定超音波振動子12a,12b,12c……は、測定管1の周面に沿って所定個配置されている。
この場合は、3個は配置されている。
FIG. 3 is a diagram illustrating the configuration of the main part of another embodiment of the present invention.
In this embodiment, a predetermined number of the tube thickness measurement ultrasonic transducers 12 a, 12 b, 12 c... Are arranged along the peripheral surface of the measurement tube 1.
In this case, three are arranged.

この結果、管厚測定超音波振動子12a,12b,‥‥‥は、測定管1の周面に沿って所定個配置されたので、測定管1の断面積の測定が、より正確に測定出来る超音波流量計が得られる。   As a result, since the pipe thickness measuring ultrasonic transducers 12a, 12b,... Are arranged along the peripheral surface of the measuring tube 1, the cross-sectional area of the measuring tube 1 can be measured more accurately. An ultrasonic flow meter is obtained.

図4は、本発明の他の実施例の要部構成説明である。
本実施例においては、複数の送受信超音波振動子対31a,31b,……が、測定管1の管軸方向に、所定間隔を保って配置されている。この場合は、2対が使用されている。
FIG. 4 is a diagram illustrating the configuration of the main part of another embodiment of the present invention.
In the present embodiment, a plurality of transmission / reception ultrasonic transducer pairs 31a, 31b,... Are arranged in the tube axis direction of the measurement tube 1 at a predetermined interval. In this case, two pairs are used.

また、この場合は、複数の送受信超音波振動子対31a,31b,……は、周波数特性がそれぞれ異なっている。
送受信超音波振動子対31a,31b,……は、測定管1の管軸方向に順次ずらして配置されている。
In this case, the plurality of transmission / reception ultrasonic transducer pairs 31a, 31b,... Have different frequency characteristics.
The transmitting / receiving ultrasonic transducer pairs 31a, 31b,... Are sequentially shifted in the tube axis direction of the measuring tube 1.

図5は図4の電気回路の要部ブロック図である。
送受信周波数切替器41は、送受信超音波振動子対31a,31b,……への送受信周波数を切替る。
送受信切り替え器42は、送受信超音波振動子対31a,31b,……の送受信方向を切り替える。
FIG. 5 is a principal block diagram of the electric circuit of FIG.
The transmission / reception frequency switch 41 switches the transmission / reception frequency to the transmission / reception ultrasonic transducer pair 31a, 31b,.
The transmission / reception switcher 42 switches the transmission / reception direction of the transmission / reception ultrasonic transducer pairs 31a, 31b,.

演算器43は、送受信超音波振動子対31a,31b,……の測定結果を演算し,測定流体FLの流量を演算する。
詰まり検知回路44は、送受信超音波振動子対31a,31b,……の信号強度あるいは信号波形から、測定管1の詰まり状態を検知する。
The computing unit 43 computes the measurement results of the transmission / reception ultrasonic transducer pairs 31a, 31b,..., And computes the flow rate of the measurement fluid FL.
The clogging detection circuit 44 detects the clogging state of the measuring tube 1 from the signal intensity or signal waveform of the transmission / reception ultrasonic transducer pairs 31a, 31b,.

異常状態検知回路45は、送受信超音波振動子対31a,31b,……の信号強度あるいは信号波形から、測定流体FLの異常状態を検知する。
警報発生回路46は、送受信超音波振動子対31a,31b,……の信号強度あるいは信号波形から、測定管1あるいは測定流体FLの異常状態の警報を発する。
The abnormal state detection circuit 45 detects the abnormal state of the measurement fluid FL from the signal intensity or signal waveform of the transmission / reception ultrasonic transducer pairs 31a, 31b,.
The alarm generation circuit 46 issues an alarm of an abnormal state of the measurement tube 1 or the measurement fluid FL from the signal intensity or signal waveform of the transmission / reception ultrasonic transducer pairs 31a, 31b,.

なお、送受信周波数f1用,f2用の2種類の超音波振動子対31a,31b,……が、測定管1に設置された場合に、超音波の伝播経路a,bの長さが等しくなるように組み込まれている。   Note that when two types of ultrasonic transducer pairs 31a, 31b,... For transmission and reception frequencies f1 and f2 are installed in the measurement tube 1, the lengths of ultrasonic propagation paths a and b are equal. Built in.

以上の構成において、演算器43からの指令を受けて,切り替え回路41によってf1用またはf2用超音波振動子対31a,31bを選択して、超音波振動子対31a,31bに送信信号を発信し,流れと同じ方向に周波数f1またはf2の超音波を送信し,もう一方の超音波振動子対31a,31bで測定管と測定流体FLの中を伝わってきた超音波信号を受信し、その伝播時間を測定する。   In the above configuration, upon receiving a command from the computing unit 43, the switching circuit 41 selects the f1 or f2 ultrasonic transducer pair 31a, 31b and transmits a transmission signal to the ultrasonic transducer pair 31a, 31b. Then, an ultrasonic wave having a frequency f1 or f2 is transmitted in the same direction as the flow, and an ultrasonic signal transmitted through the measurement tube and the measurement fluid FL is received by the other ultrasonic transducer pair 31a, 31b. Measure the propagation time.

次に、送受信切り替え器42で超音波振動子対31a,31bの送受信を切り替えて流れと逆の方向に超音波を発信し、その伝播時間を測定する(信号の処理方法については、図7従来例と同じ)。   Next, transmission / reception of the ultrasonic transducer pair 31a, 31b is switched by the transmission / reception switching unit 42 to transmit ultrasonic waves in the opposite direction to the flow, and the propagation time is measured (see FIG. Same as example).

なお、
1)起動時に送受信周波数f1とf2で測定を行い,超音波の伝播の強度の測定や超音波信号の質の判定を行って,測定対象に対して送受信周波数を決める。
In addition,
1) Measurement is performed at the transmission / reception frequencies f1 and f2 at the time of activation, and the transmission / reception frequency is determined for the measurement object by measuring the intensity of ultrasonic propagation and determining the quality of the ultrasonic signal.

2)その後は、送受信周波数f1またはf2のいずれかの超音波振動子対31a,31bで測定を行う. 2) Thereafter, measurement is performed with the ultrasonic transducer pair 31a, 31b at either the transmission / reception frequency f1 or f2.

3)信号の強度や質が劣化した場合には、再度、送受信周波数f1とf2で測定を行い、超音波の伝播の強度の測定や超音波信号の質の判定を行って、測定対象に対して、最適なほうの送受信周波数を再度決める。 3) If the signal strength or quality deteriorates, measure again at the transmission and reception frequencies f1 and f2, measure the intensity of ultrasonic propagation and determine the quality of the ultrasonic signal, Then, the optimum transmission / reception frequency is determined again.

この結果
測定管1の管軸方向に所定間隔を保って配置された複数の超音波振動子対31a,31bbが設けられたので、例えば、一組の検出器で、複数の周波数に対応出来るようになり,検出器を変えなくても超音波の伝播特性がよい超音波周波数での測定が出来る超音波流量計が得られる。
As a result, since a plurality of ultrasonic transducer pairs 31a and 31bb arranged at predetermined intervals in the tube axis direction of the measuring tube 1 are provided, for example, a set of detectors can handle a plurality of frequencies. Thus, an ultrasonic flowmeter capable of measuring at an ultrasonic frequency with good ultrasonic propagation characteristics without changing the detector can be obtained.

事前の測定流体の伝播特性の確認が不要になる超音波流量計が得られる。
最適でない超音波周波数の検出器を使用しため、超音波が透過せず測定出来ない等の不具合が無くなる超音波流量計が得られる。
An ultrasonic flowmeter that eliminates the need to confirm the propagation characteristics of the measurement fluid in advance is obtained.
Since a detector having an ultrasonic frequency that is not optimal is used, an ultrasonic flowmeter that eliminates the inconvenience that ultrasonic waves cannot pass through and cannot be measured is obtained.

複数の送受信超音波振動子対31a,31bは、周波数特性がそれぞれ異なるので、一組の検出器で複数の周波数に対応出来るようになり,検出器を変えなくても超音波の伝播特性がよい超音波周波数での測定が出来る超音波流量計が得られる。
送受信超音波振動子対31a,31bは、測定管1の管軸方向に順次ずらして配置されたので、管軸方向に同一条件で測定出来る超音波流量計が得られる。
Since the plurality of transmission / reception ultrasonic transducer pairs 31a and 31b have different frequency characteristics, one set of detectors can cope with a plurality of frequencies, and the ultrasonic propagation characteristics are good without changing the detectors. An ultrasonic flowmeter capable of measuring at an ultrasonic frequency is obtained.
Since the transmission / reception ultrasonic transducer pairs 31a and 31b are sequentially shifted in the tube axis direction of the measurement tube 1, an ultrasonic flowmeter capable of measuring under the same conditions in the tube axis direction is obtained.

それぞれの送受信超音波振動子対31a,31bの信号強度あるいは信号波形から、最適の送受信超音波振動子対31a,31bを選択する送受信超音波振動子対切替回路41が設けられたので、測定精度が向上された超音波流量計が得られる。   Since the transmission / reception ultrasonic transducer pair switching circuit 41 for selecting the optimal transmission / reception ultrasonic transducer pair 31a, 31b from the signal intensity or signal waveform of each transmission / reception ultrasonic transducer pair 31a, 31b is provided, the measurement accuracy An ultrasonic flowmeter with improved can be obtained.

それぞれの送受信超音波振動子対31a,31bの信号強度あるいは信号波形から、測定管1の詰まり状態を検知する詰まり状態検知回路44が設けられたので、測定管1の詰まり状態を検知出来る超音波流量計が得られる。   Since the clogged state detection circuit 44 for detecting the clogged state of the measuring tube 1 is provided from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs 31a and 31b, the ultrasonic wave that can detect the clogged state of the measuring tube 1 is provided. A flow meter is obtained.

それぞれの送受信超音波振動子対31a,31bの信号強度あるいは信号波形から、測定流体FLの異常状態を検知する異常状態検知回路45が設けられたので、測定流体FLの異常状態を検知出来る超音波流量計が得られる。   Since an abnormal state detection circuit 45 for detecting an abnormal state of the measurement fluid FL is provided from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs 31a and 31b, an ultrasonic wave that can detect the abnormal state of the measurement fluid FL. A flow meter is obtained.

それぞれの送受信超音波振動子対31a,31bの信号強度あるいは信号波形から、測定管1あるいは測定流体FLの異常状態の警報を発する警報発生回路46が設けられたので、測定誤差が大きな測定を警報により回避出来る超音波流量計が得られる。   Since an alarm generation circuit 46 is provided to issue an alarm of an abnormal state of the measurement tube 1 or the measurement fluid FL from the signal intensity or signal waveform of each transmission / reception ultrasonic transducer pair 31a, 31b, the measurement with a large measurement error is alarmed. An ultrasonic flow meter that can be avoided is obtained.

図6は、本発明の他の実施例の要部構成説明である。
本実施例においては、3組の受信超音波振動子対31a,31b,32cが設けられたものである。
なお、図6では,一方の受信超音波振動子対31a,31b,32cのみが示されていて、他方の受信超音波振動子対31a,31b,32cは示されていない。
FIG. 6 is a diagram illustrating the configuration of the main part of another embodiment of the present invention.
In this embodiment, three pairs of reception ultrasonic transducers 31a, 31b, and 32c are provided.
In FIG. 6, only one reception ultrasonic transducer pair 31a, 31b, 32c is shown, and the other reception ultrasonic transducer pair 31a, 31b, 32c is not shown.

この結果、測定流体FLの状態により,更に、適した超音波周波数を選択出来る超音波流量計が得られる。   As a result, an ultrasonic flowmeter capable of further selecting a suitable ultrasonic frequency depending on the state of the measurement fluid FL is obtained.

図7は、本発明の他の実施例の要部構成説明である。
本実施例においては、送受信超音波振動子対51a,51b……は、測定管1の周面に沿って所定個配置されている。この場合は、2対配置されている。
FIG. 7 is a diagram illustrating the configuration of the main part of another embodiment of the present invention.
In this embodiment, a predetermined number of transmission / reception ultrasonic transducer pairs 51 a, 51 b... Are arranged along the peripheral surface of the measurement tube 1. In this case, two pairs are arranged.

この結果、送受信超音波振動子対51a,51b……は、測定管1の周面に沿って所定個配置されたので、測定管1の管軸方向を短く出来、コンパクトな超音波流量計が得られる。   As a result, since a predetermined number of transmission / reception ultrasonic transducer pairs 51a, 51b,... Are arranged along the peripheral surface of the measurement tube 1, the tube axis direction of the measurement tube 1 can be shortened, and a compact ultrasonic flowmeter can be obtained. can get.

図8は、本発明の他の実施例の要部構成説明である。
本実施例においては、検出器の取付方式としてZ法を用いたものを示したものである。
なお、検出器の取付方式としてN法、W法を用いても良いことは勿論である。
FIG. 8 is a diagram illustrating the configuration of the main part of another embodiment of the present invention.
In the present embodiment, the detector mounting method using the Z method is shown.
Of course, the N method and the W method may be used as the detector mounting method.

本発明の一実施例の要部構成説明図である。It is principal part structure explanatory drawing of one Example of this invention. 図1の回路図である。FIG. 2 is a circuit diagram of FIG. 1. 本発明の他の実施例の要部構成である。It is a principal part structure of the other Example of this invention. 本発明の他の実施例の要部構成である。It is a principal part structure of the other Example of this invention. 図4の回路図である。FIG. 5 is a circuit diagram of FIG. 4. 本発明の他の実施例の要部構成である。It is a principal part structure of the other Example of this invention. 本発明の他の実施例の要部構成である。It is a principal part structure of the other Example of this invention. 本発明の他の実施例の要部構成である。It is a principal part structure of the other Example of this invention. 従来の超音波流量計の一例を示す要部構成説明図である。It is principal part structure explanatory drawing which shows an example of the conventional ultrasonic flowmeter.

符号の説明Explanation of symbols

1 測定管
3 保護体
11 流量測定用の超音波送受信振動子
12 管厚測定超音波振動子
21 流量補正回路
22 詰まり状態検知回路
23 警報発生回路
24 流量測定回路
25 管厚測定回路
31 送受信超音波振動子対
41 送受信周波数切替器
42 送受信切り替え器
43 演算器
44 詰まり検知回路
45 異常状態検知回路
51 送受信超音波振動子対
a 超音波の伝播経路
b 超音波の伝播経路
f1 超音波の伝播経路
f2 超音波の伝播経路
FL 測定流体

DESCRIPTION OF SYMBOLS 1 Measurement tube 3 Protective body 11 Ultrasonic transmission / reception transducer for flow measurement 12 Tube thickness measurement ultrasonic transducer 21 Flow rate correction circuit 22 Clogging state detection circuit 23 Alarm generation circuit 24 Flow measurement circuit 25 Tube thickness measurement circuit 31 Transmission / reception ultrasonic wave Transducer pair 41 Transmission / reception frequency switch 42 Transmission / reception switch 43 Operation unit 44 Clogging detection circuit 45 Abnormal state detection circuit 51 Transmission / reception ultrasonic transducer pair a Ultrasonic propagation path b Ultrasonic propagation path f1 Ultrasonic propagation path f2 Ultrasonic propagation path FL Measuring fluid

Claims (15)

測定管内を流れる測定流体の流量を超音波を利用して計測する超音波流量計において、
前記測定管に設けられ前記測定管の管厚を測定する管厚測定超音波振動子
を具備したことを特徴とする超音波流量計。
In an ultrasonic flowmeter that measures the flow rate of the measurement fluid flowing in the measurement tube using ultrasonic waves,
An ultrasonic flowmeter comprising a tube thickness measurement ultrasonic transducer provided in the measurement tube and measuring the tube thickness of the measurement tube.
前記管厚測定超音波振動子は、超音波の送受信面が前記測定管の半径方向に直交して設けられたこと
を特徴とする請求項1記載の超音波流量計。
The ultrasonic flowmeter according to claim 1, wherein the tube thickness measurement ultrasonic transducer has an ultrasonic transmission / reception surface orthogonal to a radial direction of the measurement tube.
前記管厚測定超音波振動子は、前記測定管の周面に沿って所定個配置されたこと
を特徴とする請求項1又は請求項2記載の超音波流量計。
The ultrasonic flowmeter according to claim 1, wherein a predetermined number of the tube thickness measurement ultrasonic transducers are arranged along a peripheral surface of the measurement tube.
前記管厚測定超音波振動子は、前記測定管の管軸方向に所定個配置されたこと
を特徴とする請求項1乃至請求項3の何れかに記載の超音波流量計。
The ultrasonic flowmeter according to any one of claims 1 to 3, wherein a predetermined number of the tube thickness measurement ultrasonic transducers are arranged in a tube axis direction of the measurement tube.
前記管厚測定超音波振動子の管厚の測定信号に基づき流量補正を行う流量補正回路
を具備したことを特徴とする請求項1乃至請求項4の何れかに記載の超音波流量計。
The ultrasonic flowmeter according to claim 1, further comprising a flow rate correction circuit that performs flow rate correction based on a tube thickness measurement signal of the tube thickness measurement ultrasonic transducer.
前記管厚測定超音波振動子の管厚測定信号に基づき測定管の詰まりを検知する詰まり状態検知回路
を具備したことを特徴とする請求項1乃至請求項5の何れかに記載の超音波流量計。
The ultrasonic flow rate according to any one of claims 1 to 5, further comprising a clogging state detection circuit that detects clogging of a measurement tube based on a tube thickness measurement signal of the tube thickness measurement ultrasonic transducer. Total.
前記管厚測定超音波振動子の管厚測定信号に基づき管厚が所定厚さに達した時に警報を発する警報発生回路
を具備したことを特徴とする請求項1乃至請求項6の何れかに記載の超音波流量計。
7. An alarm generation circuit that issues an alarm when the tube thickness reaches a predetermined thickness based on a tube thickness measurement signal of the tube thickness measurement ultrasonic transducer. The described ultrasonic flowmeter.
測定管内を流れる測定流体の流量を超音波を利用して計測する超音波流量計において、
前記測定管の管軸方向に所定間隔を保って配置された複数の送受信超音波振動子対
を具備したことを特徴とする超音波流量計。
In an ultrasonic flowmeter that measures the flow rate of the measurement fluid flowing in the measurement tube using ultrasonic waves,
An ultrasonic flowmeter comprising a plurality of transmission / reception ultrasonic transducer pairs arranged at predetermined intervals in the tube axis direction of the measurement tube.
前記複数の送受信超音波振動子対は、周波数特性がそれぞれ異なること
を特徴とする請求項8記載の超音波流量計。
The ultrasonic flowmeter according to claim 8, wherein the plurality of transmission / reception ultrasonic transducer pairs have different frequency characteristics.
前記送受信超音波振動子対は、前記測定管の管軸方向に順次ずらして配置されたこと
を特徴とする請求項9記載の超音波流量計。
The ultrasonic flowmeter according to claim 9, wherein the transmission / reception ultrasonic transducer pairs are sequentially shifted in a tube axis direction of the measurement tube.
前記送受信超音波振動子対は、前記測定管の周面に沿って所定個配置されたこと
を特徴とする請求項8乃至請求項10の何れかに記載の超音波流量計。
The ultrasonic flowmeter according to any one of claims 8 to 10, wherein a predetermined number of the transmission / reception ultrasonic transducer pairs are arranged along a peripheral surface of the measurement tube.
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から最適の送受信超音波振動子対を選択する振動子対切替回路
を具備したことを特徴とする請求項8乃至請求項11の何れかに記載の超音波流量計。
12. A transducer pair switching circuit for selecting an optimum transmission / reception ultrasonic transducer pair from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs. The ultrasonic flowmeter described in 1.
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から前記測定管の詰まり状態を検知する詰まり状態検知回路
を具備したことを特徴とする請求項8乃至請求項12の何れかに記載の超音波流量計。
The clogged state detection circuit for detecting a clogged state of the measuring tube from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs is provided. Ultrasonic flow meter.
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から前記測定流体の異常状態を検知する異常状態検知回路
を具備したことを特徴とする請求項8乃至請求項13の何れかに記載の超音波流量計。
The abnormal state detection circuit which detects the abnormal state of the said measurement fluid from the signal intensity | strength or signal waveform of each said transmission-and-reception ultrasonic transducer | vibrator pair was comprised, The any one of Claims 8 thru | or 13 characterized by the above-mentioned. Ultrasonic flow meter.
前記それぞれの送受信超音波振動子対の信号強度あるいは信号波形から前記測定管あるいは前記測定流体の異常状態の警報を発する警報発生回路
を具備したことを特徴とする請求項8乃至請求項14の何れかに記載の超音波流量計。

15. An alarm generation circuit that issues an alarm of an abnormal state of the measurement tube or the measurement fluid from the signal intensity or signal waveform of each of the transmission / reception ultrasonic transducer pairs. The ultrasonic flowmeter according to Crab.

JP2003329260A 2003-09-22 2003-09-22 Ultrasonic flowmeter Pending JP2005091332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329260A JP2005091332A (en) 2003-09-22 2003-09-22 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329260A JP2005091332A (en) 2003-09-22 2003-09-22 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2005091332A true JP2005091332A (en) 2005-04-07

Family

ID=34458549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329260A Pending JP2005091332A (en) 2003-09-22 2003-09-22 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2005091332A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308318A (en) * 2005-04-26 2006-11-09 Yokogawa Electric Corp Ultrasonic inspection device and method thereof
JP2006317187A (en) * 2005-05-10 2006-11-24 Tokiko Techno Kk Ultrasonic flowmeter
JP2009510437A (en) * 2005-09-29 2009-03-12 ローズマウント インコーポレイテッド Burner tip fouling / corrosion detector in combustion equipment
WO2009052169A1 (en) * 2007-10-16 2009-04-23 Daniel Measurement And Control, Inc. A method and system for detecting deposit buildup within an ultrasonic flow meter
JP2011501191A (en) * 2007-10-25 2011-01-06 ゼネラル・エレクトリック・カンパニイ System and method for measuring mounting dimensions of a flow measurement system
JP2013246065A (en) * 2012-05-28 2013-12-09 Panasonic Corp Ultrasonic flowmeter
KR101379934B1 (en) 2013-10-31 2014-04-10 한국기계연구원 Apparatus and method for measuring the thickness of the scale in a pipe

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308318A (en) * 2005-04-26 2006-11-09 Yokogawa Electric Corp Ultrasonic inspection device and method thereof
JP4666250B2 (en) * 2005-04-26 2011-04-06 横河電機株式会社 Ultrasonic inspection apparatus, ultrasonic inspection method, and program for executing ultrasonic inspection method
JP2006317187A (en) * 2005-05-10 2006-11-24 Tokiko Techno Kk Ultrasonic flowmeter
JP2009510437A (en) * 2005-09-29 2009-03-12 ローズマウント インコーポレイテッド Burner tip fouling / corrosion detector in combustion equipment
US8469700B2 (en) 2005-09-29 2013-06-25 Rosemount Inc. Fouling and corrosion detector for burner tips in fired equipment
WO2009052169A1 (en) * 2007-10-16 2009-04-23 Daniel Measurement And Control, Inc. A method and system for detecting deposit buildup within an ultrasonic flow meter
US8170812B2 (en) 2007-10-16 2012-05-01 Daniel Measurement And Control, Inc. Method and system for detecting deposit buildup within an ultrasonic flow meter
JP2011501191A (en) * 2007-10-25 2011-01-06 ゼネラル・エレクトリック・カンパニイ System and method for measuring mounting dimensions of a flow measurement system
JP2013246065A (en) * 2012-05-28 2013-12-09 Panasonic Corp Ultrasonic flowmeter
KR101379934B1 (en) 2013-10-31 2014-04-10 한국기계연구원 Apparatus and method for measuring the thickness of the scale in a pipe

Similar Documents

Publication Publication Date Title
KR0170815B1 (en) Ultrasonic multi circuit flowmeter
KR950002058B1 (en) Fluid flow measurement system
JP2008134267A (en) Ultrasonic flow measurement method
US8505391B1 (en) Flange mounted ultrasonic flowmeter
WO2008004560A1 (en) Flow velocity measurement device and ultrasonic flow rate meter
CN114088151B (en) External clamping type multichannel ultrasonic flow detection device and detection method
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2005091332A (en) Ultrasonic flowmeter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
CN210834067U (en) Fluid pipeline vibration characteristic testing device
KR100311855B1 (en) Fluid flow meter
US3204457A (en) Ultrasonic flowmeter
CN103471665A (en) Ultrasonic online detection device and method for liquid flow
JP2010223855A (en) Ultrasonic flowmeter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
WO2021234350A1 (en) Ultrasonic flow measurement
RU2422777C1 (en) Ultrasonic procedure for measurement of flow rate of liquid and/or gaseous mediums and device for its implementation
JP2008014829A (en) Ultrasonic flowmeter
JP3646875B2 (en) Ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP2009270882A (en) Ultrasonic flowmeter
JPH0915012A (en) Ultrasonic wave flowmeter
JPH09189589A (en) Flow rate measuring apparatus
JP2005180988A (en) Ultrasonic flowmeter
RU2517996C1 (en) Ultrasonic flowmeter sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090730