JP2010071812A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2010071812A
JP2010071812A JP2008239944A JP2008239944A JP2010071812A JP 2010071812 A JP2010071812 A JP 2010071812A JP 2008239944 A JP2008239944 A JP 2008239944A JP 2008239944 A JP2008239944 A JP 2008239944A JP 2010071812 A JP2010071812 A JP 2010071812A
Authority
JP
Japan
Prior art keywords
flow
flow path
peripheral side
height
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008239944A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekine
良浩 関根
Seiichi Furusawa
誠一 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2008239944A priority Critical patent/JP2010071812A/en
Publication of JP2010071812A publication Critical patent/JP2010071812A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter for efficiently and accurately measuring a flow rate by suppressing a pressure loss and a power loss of an ultrasonic beam during a measurement and using a transmit-receive oscillator, reducing a running zone in front of the transmit-receive oscillator, and simply constituted. <P>SOLUTION: Two plate partition walls 40 are disposed in parallel along the flow direction within a linear intermediate flow path 21a. An aperture width W as a long side of the linear intermediate flow path 21a is equally divided into three layers of aperture widths W' of divided flow paths 21a' in the width direction. Each partition wall 40 is formed with one circular communication hole 41 in the width direction which corresponds to a traverse line of the ultrasonic beam and penetrates through the partition wall 40. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LPガス、都市ガス、空気、水などの流体の流量を計測する超音波流量計に関する。   The present invention relates to an ultrasonic flowmeter that measures the flow rate of fluid such as LP gas, city gas, air, and water.

従来、LPガス、都市ガス、空気、水などの流体の流量を計測する流量計測装置として、超音波を利用して流速を測定する超音波流量計が知られている。このような超音波流量計では、例えば、流体を通過させるための計測流路(計測用直線流路)の壁部(取付壁面)に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する一対の送受信振動子(超音波センサ)が取り付けられて、流量測定部を構成している。また、導入側流路と計測流路との間には、流れ方向上手側に位置する導入側流路を外周側及び内周側で湾曲させて流体の流れを方向転換するとともに、流れ方向下手側に向かうにつれて流路断面積を縮小し、流れ方向下手側に位置する計測流路へ連通するための方向転換部が配置されている。このような流路構成によって圧力損失を抑制し、流量測定部での測定精度の向上や測定範囲の拡大が図られている。   2. Description of the Related Art Conventionally, an ultrasonic flowmeter that measures a flow velocity using ultrasonic waves is known as a flow measurement device that measures the flow rate of a fluid such as LP gas, city gas, air, and water. In such an ultrasonic flowmeter, for example, ultrasonic waves are directed toward the upper side or lower side in the fluid flow direction on the wall portion (mounting wall surface) of the measurement flow channel (straight flow channel for measurement) for allowing fluid to pass therethrough. A pair of transmission / reception transducers (ultrasonic sensors) that receive ultrasonic waves coming from the upper side or lower side in the flow direction are attached to constitute a flow rate measuring unit. In addition, between the introduction-side channel and the measurement channel, the introduction-side channel located on the upper side in the flow direction is curved on the outer peripheral side and the inner peripheral side to change the direction of the fluid flow, and lower in the flow direction. A direction changing portion for reducing the cross-sectional area of the flow path as it goes toward the side and communicating with the measurement flow path located on the lower side in the flow direction is arranged. With such a flow path configuration, pressure loss is suppressed, and measurement accuracy in the flow rate measurement unit is improved and a measurement range is expanded.

ところが、計測流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口し、方向転換部の出口側末端部において外周側及び内周側で計測流路の長辺壁部に接続する場合、計測流路の幅方向及び高さ方向において、流路を流れる流体の流速分布は、流量に応じて不均等あるいは非対称になる。もちろん助走区間(流量測定部の前方区間)を長く取れば、計測流路における幅方向及び高さ方向の流速分布を十分に均等化及び対称化し平滑化することは可能である。   However, it opens in a rectangular shape with the width direction of the measurement flow path as the long side and the height direction as the short side, and the long side wall portion of the measurement flow path on the outer peripheral side and the inner peripheral side at the outlet side end portion of the direction changing portion In the case of connection to, in the width direction and height direction of the measurement flow path, the flow velocity distribution of the fluid flowing through the flow path becomes uneven or asymmetric depending on the flow rate. Of course, if the run-up section (the section in front of the flow rate measuring unit) is long, the flow velocity distribution in the width direction and the height direction in the measurement channel can be sufficiently equalized, symmetrized and smoothed.

具体的には、小流量時(低速時;層流域)には、計測流路の幅方向及び高さ方向において、中央位置付近に最大流速(ピーク値)が現れる扇状(又は弧状あるいは放物線状)の流速分布を呈し、大流量時(高速時;乱流域)には、計測流路の幅方向及び高さ方向において、平均流速が最大流速(ピーク値)とほぼ一致するバスタブ状(又はコの字状)の流速分布を呈する。そして、流速分布を均等化及び対称化(平滑化)するに必要な助走区間の長さは、一般には、開口幅W、開口高さHとしたとき、10×(W×H)1/2以上必要とされている。そこで、送受信振動子前方の助走区間を短縮して超音波流量計を簡素に構成することが望まれている。また、小流量時において大流量時のようなバスタブ状となるように、流速分布を平滑化することが望まれる場合もある。 Specifically, when the flow rate is small (low speed; laminar flow area), the maximum flow velocity (peak value) appears near the center position in the width direction and height direction of the measurement flow path (or arc shape or parabolic shape). In the case of a large flow rate (high speed; turbulent flow region), the average flow velocity is almost the same as the maximum flow velocity (peak value) in the width direction and height direction of the measurement channel. Presents a flow velocity distribution. The length of the run-up section necessary for equalizing and symmetrizing (smoothing) the flow velocity distribution is generally 10 × (W × H) 1/2 when the opening width W and the opening height H are set. More than needed. Therefore, it is desired to simply configure the ultrasonic flowmeter by shortening the running section in front of the transmitting / receiving transducer. In some cases, it is desirable to smooth the flow velocity distribution so that it becomes a bathtub-like shape at the time of a small flow rate as in the case of a large flow rate.

そこで、このように流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口する計測流路において、短辺壁部の取付壁面に送受信振動子を取り付けるとともに、短辺となる開口高さを高さ方向に分割して複数の層状流路(分割流路)を形成する仕切板(仕切部)を流れ方向に沿って配置することが開示されている(特許文献1参照)。また、計測流路の壁面に送受信振動子を取り付けるとともに、複数の層状流路(分割流路)を形成するビーム絞り孔付き仕切板(仕切部)を計測流路内に流れ方向に沿って配置することが開示されている(特許文献2参照)。   Thus, in the measurement flow path that opens in a rectangular shape with the width direction of the flow path as the long side and the height direction as the short side in this way, the transmission / reception vibrator is attached to the attachment wall surface of the short side wall portion, and the short side and It is disclosed that a partition plate (partition section) that forms a plurality of layered channels (divided channels) by dividing the height of the opening in the height direction is arranged along the flow direction (see Patent Document 1). ). A transmitter / receiver vibrator is attached to the wall surface of the measurement channel, and a partition plate (partition) with a beam restricting hole that forms a plurality of layered channels (divided channels) is arranged in the measurement channel along the flow direction. (See Patent Document 2).

特許第3528347号公報Japanese Patent No. 3528347 特開2004−251653号公報JP 2004-251653 A

このうち、特許文献1によれば、仕切板で分割された層状流路毎に主として高さ方向での流速分布を均等化及び対称化(平滑化)できる。しかし、仕切板が送受信振動子を横断する(遮る)形で配置されるので、超音波ビームが仕切板で分断されパワーが分散・減衰されて、超音波流量計の能率や精度が低下する。また、仕切板によって計測流路は高さ方向に狭い(薄い)層状に分割されるために、計測時の圧力損失が大きくなり、幅方向及び高さ方向での流速分布の平滑化が不十分となり、広い測定範囲での安定した流量計側が阻害されるおそれがある。特に、各層状流路の幅方向での流速分布が不均等になったり非対称になったりするおそれがある。   Among these, according to Patent Document 1, it is possible to equalize and symmetrize (smooth) the flow velocity distribution mainly in the height direction for each layered flow path divided by the partition plate. However, since the partition plate is arranged in a shape that crosses (blocks) the transmission / reception vibrator, the ultrasonic beam is divided by the partition plate, the power is dispersed and attenuated, and the efficiency and accuracy of the ultrasonic flowmeter are lowered. In addition, because the measurement channel is divided into narrow (thin) layers in the height direction by the partition plate, the pressure loss during measurement increases, and the flow velocity distribution in the width direction and height direction is not sufficiently smoothed. Therefore, there is a possibility that the stable flowmeter side in a wide measurement range is obstructed. In particular, the flow velocity distribution in the width direction of each layered flow path may become uneven or asymmetric.

一方、特許文献2によれば、仕切板のビーム絞り孔で超音波ビームを絞りつつ、分割された流路毎に、流路の幅方向と高さ方向とのうちいずれか一方向で流速分布を均等化及び対称化(平滑化)できる。しかし、特許文献2においては他方向での流速分布が不均等になったり非対称になったりするおそれがあり、超音波ビームのパワーロスを抑制するためのビーム絞り孔径の調整(設定)にも困難を伴う場合がある。   On the other hand, according to Patent Document 2, the flow velocity distribution is distributed in one of the width direction and the height direction of the flow path for each divided flow path while narrowing the ultrasonic beam with the beam restriction hole of the partition plate. Can be equalized and symmetrized (smoothed). However, in Patent Document 2, the flow velocity distribution in the other direction may become uneven or asymmetric, and it is difficult to adjust (set) the beam aperture diameter to suppress the power loss of the ultrasonic beam. It may accompany.

本発明の課題は、計測時の圧力損失や超音波ビームのパワーロスを抑制することによって、送受信振動子による高能率かつ高精度での流量計測を可能とするとともに、送受信振動子前方の助走区間を短縮して簡素に構成することのできる超音波流量計を提供することにある。具体的には、計測用直線流路の流れ方向上手側に方向転換部、調整部及び増大部を設けて流路の開口高さを変化させるとともに、計測用直線流路を仕切部により幅方向に分割して複数の分割流路を形成することによって、幅方向及び高さ方向での流速分布を均等化及び/又は対称化することができ、広い測定範囲での安定した流量計側を可能とする。   An object of the present invention is to enable high-efficiency and high-accuracy flow measurement by a transmitter / receiver transducer by suppressing pressure loss during measurement and power loss of an ultrasonic beam, An object of the present invention is to provide an ultrasonic flowmeter that can be shortened and configured simply. Specifically, a direction changing part, an adjusting part and an increasing part are provided on the upper side in the flow direction of the measurement linear flow channel to change the opening height of the flow channel, and the measurement linear flow channel is changed in the width direction by the partitioning unit. By dividing into two and forming multiple divided flow paths, the flow velocity distribution in the width direction and height direction can be equalized and / or symmetrized, enabling a stable flow meter side in a wide measurement range And

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明に係る超音波流量計は、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波ビームを発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波ビームを受信する送受信振動子が取り付けられた計測用直線流路と、を含む超音波流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央で前記取付壁面に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部と、
前記計測用直線流路内に流れ方向に沿って配置され、その計測用直線流路の長辺となる開口幅を幅方向に分割して複数の分割流路を形成するとともに、前記超音波ビームの測線に対応させて幅方向に貫通形成された連通孔を有する1又は複数の仕切部と、を備え、
それら方向転換部、調整部及び増大部を通り、前記分割流路に分かれて流れることにより、前記計測用直線流路を流れる流体は、流れ方向に直交する断面において幅方向及び高さ方向での流速分布がそれぞれ均等化及び/又は対称化されることを特徴とする。
In order to solve the above problems, an ultrasonic flowmeter according to the present invention is
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion An ultrasonic flowmeter including a measurement linear flow channel to which a transmission / reception transducer is attached that oscillates an ultrasonic beam toward the side and / or receives an ultrasonic beam arriving from the upper side or the lower side in the flow direction Because
Following the outlet-side end of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow, and parallel to the mounting wall surface at the center in the width direction. In a simple cross-section, the direction changing portion having a decreasing portion that decreases as the opening height of the flow path goes toward the lower side in the flow direction,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment part, the increasing part where the opening height of the flow path increases and changes stepwise in the height direction on the outer peripheral side and the inner peripheral side,
The ultrasonic linear beam is arranged along the flow direction in the measurement linear flow path, and a plurality of divided flow paths are formed by dividing an opening width as a long side of the measurement linear flow path in the width direction. One or a plurality of partitioning portions having communication holes formed in the width direction so as to correspond to the line of measurement,
The fluid flowing through the measurement linear flow path in the cross-section orthogonal to the flow direction in the width direction and the height direction by flowing through the direction change section, the adjustment section, and the increase section and divided into the divided flow paths. The flow velocity distribution is equalized and / or symmetrized, respectively.

このような超音波流量計においては、被測定流体(例えばLPガスや都市ガス)は計測用直線流路の流れ方向上手側に位置する方向転換部(減少部)を流れる間に、流れ方向が偏り、内周側に比して外周側で流速が相対的に速くなる傾向がある。しかし、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部を通る間に、流体の流れ方向に直交する断面において高さ方向での流速分布の偏りの影響が緩和され、均等化及び/又は対称化される。すなわち、方向転換部(減少部)で発生する偏流(最大流速の向きと位置が外周側に偏った流れ)が、調整部を経由し、増大部で開放されることによって、高さ方向の中央位置付近に流速分布のピーク(最大流速)を持つ流れに矯正される(高さ方向の流速分布が均等化及び/又は対称化される)。したがって、計測部(例えば一対の送受信振動子)の測線を高さ方向の流速分布の中間位置(例えば中央位置)に配置して、計測用直線流路(流量計測区間)を流れる被測定流体の最大流速を安定して計測することができる。   In such an ultrasonic flow meter, the flow direction of the fluid to be measured (for example, LP gas or city gas) is flowing while flowing through the direction changing portion (decreasing portion) located on the upper side in the flow direction of the measurement linear flow path. There is a tendency that the flow velocity is relatively faster on the outer peripheral side than on the inner peripheral side. However, the flow velocity in the height direction in the cross section perpendicular to the fluid flow direction is obtained while the opening height of the flow path increases and decreases in a stepwise manner in the height direction on the outer peripheral side and the inner peripheral side. The effects of distribution bias are mitigated and equalized and / or symmetrized. In other words, the drift generated in the direction changing part (decreasing part) (the flow in which the direction and the position of the maximum flow velocity are biased toward the outer periphery) is released by the increasing part via the adjusting part, and thus the center in the height direction. The flow is corrected to have a flow velocity peak (maximum flow velocity) near the position (the flow velocity distribution in the height direction is equalized and / or symmetrized). Therefore, the measurement line (for example, a pair of transmission / reception transducers) is arranged at the middle position (for example, the center position) of the flow velocity distribution in the height direction, and the fluid to be measured flowing through the measurement straight flow path (flow measurement section) The maximum flow rate can be measured stably.

つまり、減少部(方向変換部)では流れ方向下手側ほど流路の開口高さが減少し、かつ整流素子のような整流手段を調整部等の流れ方向下手側の流路中に配置する必要がないため、圧力損失が抑制され、流量測定部での測定範囲の拡大を図ることも可能になる。また、整流手段を設けないため超音波流量計のコスト低減を図ることもできる。   In other words, the opening height of the flow path is reduced toward the lower side in the flow direction at the reduction part (direction changing part), and a rectifying means such as a rectifying element needs to be arranged in the flow path on the lower side in the flow direction such as the adjustment part. Therefore, the pressure loss is suppressed, and the measurement range at the flow rate measurement unit can be expanded. Further, since no rectifying means is provided, the cost of the ultrasonic flowmeter can be reduced.

そして、上記超音波流量計では、計測用直線流路(例えば直線状中間流路)を仕切部(例えば仕切壁)により幅方向に分割して複数の分割流路を形成するとともに、仕切部に連通孔を貫通形成することによって、隣接する分割流路間での流体の流通(移動)が許容される。このように、超音波ビームが仕切部で分断されないため、パワーが分散・減衰されなくなり、送受信振動子による流量計測が高能率・高精度で行える。また、仕切部によって計測用直線流路は幅方向に分割されるために、計測時の圧力損失が抑制され、幅方向の流速分布が均等化及び/又は対称化されるので、広い測定範囲での安定した流量計側が可能となる。   In the ultrasonic flowmeter, a linear flow channel for measurement (for example, a linear intermediate flow channel) is divided in the width direction by a partition portion (for example, a partition wall) to form a plurality of divided flow channels. By forming the communication hole so as to penetrate, fluid flow (movement) between the adjacent divided flow paths is allowed. As described above, since the ultrasonic beam is not divided by the partition portion, the power is not dispersed or attenuated, and the flow rate measurement by the transmission / reception vibrator can be performed with high efficiency and high accuracy. In addition, since the measurement linear flow path is divided in the width direction by the partition, pressure loss during measurement is suppressed, and the flow velocity distribution in the width direction is equalized and / or symmetrized. The stable flowmeter side is possible.

これらによって、流体の種別や温度変化に伴って粘性が変化し、動粘性係数が変動しても、層流域(小流量)から乱流域(大流量)にわたって常に流体の対称性が確保され、広範囲に高精度で流量を計測できる。   As a result, even if the viscosity changes with the type of fluid and temperature, and the kinematic viscosity coefficient fluctuates, fluid symmetry is always secured from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate). The flow rate can be measured with high accuracy.

具体的には、このような超音波流量計において、方向転換部の外周側に沿って流体が流れる際の遠心力によって減少部の外周側と内周側とで流体の流れ方向及び最大流速が偏るのを、調整部により流れ方向が揃えられる。増大部での整流作用によって(整流素子等の整流部材を配置せずにすむので)、圧力損失の上昇が抑制され、流体の流れ方向に直交する断面において高さ方向での流速分布が均等化及び/又は対称化され、計測用直線流路へ導かれる。   Specifically, in such an ultrasonic flowmeter, the flow direction and the maximum flow velocity of the fluid are reduced between the outer peripheral side and the inner peripheral side of the reducing portion due to the centrifugal force when the fluid flows along the outer peripheral side of the direction changing portion. The flow direction is made uniform by the adjusting unit. By the rectifying action at the increasing part (no need to arrange a rectifying member such as a rectifying element), the increase in pressure loss is suppressed, and the flow velocity distribution in the height direction is equalized in the cross section perpendicular to the fluid flow direction. And / or symmetrized and led to a straight flow path for measurement.

次に計測用直線流路(流量計測区間)の始端部では、小流量時(低速時;層流域)には、各分割流路の幅方向において、中央位置付近に最大流速(ピーク値)が現れる扇状(又は弧状あるいは放物線状)の流速分布を呈する。一方、大流量時(高速時;乱流域)には、各分割流路の幅方向において、平均流速が最大流速(ピーク値)とほぼ一致するバスタブ状(又はコの字状)の流速分布を呈する。したがって、計測用直線流路を仕切部により幅方向に分割して複数の分割流路を形成し、仕切部に連通孔を貫通形成する簡素な構成によって、送受信振動子前方の助走区間の短縮を図ることができる。   Next, at the beginning of the measurement straight flow path (flow rate measurement section), when the flow rate is small (low speed; laminar flow area), the maximum flow velocity (peak value) is near the center position in the width direction of each divided flow path. Appearing fan-shaped (or arc-shaped or parabolic) flow velocity distribution. On the other hand, in the case of a large flow rate (high speed; turbulent flow region), a bathtub-shaped (or U-shaped) flow velocity distribution in which the average flow velocity substantially matches the maximum flow velocity (peak value) in the width direction of each divided channel Present. Therefore, the straight section for measurement is divided in the width direction by the partition portion to form a plurality of divided flow passages, and the running section in front of the transmission / reception vibrator is shortened by a simple configuration in which the communication hole is formed through the partition portion. Can be planned.

また、上記課題を解決するために、本発明に係る超音波流量計は、
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波ビームを発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波ビームを受信する送受信振動子が取り付けられた計測用直線流路と、を含む超音波流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央で前記取付壁面に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する第一の減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成されて流体の流れ方向を揃えるとともに、流れ方向に直交する断面において、流路の開口高さが幅方向端部側に向かうにつれて減少する第二の減少部を有する調整部と、
その調整部に続いて、少なくとも前記外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部と、
前記計測用直線流路内に流れ方向に沿って配置され、その計測用直線流路の長辺となる開口幅を幅方向に分割して複数の分割流路を形成するとともに、前記超音波ビームの測線に対応させて幅方向に貫通形成された連通孔を有する1又は複数の仕切部と、を備え、
それら方向転換部、調整部及び増大部を通り、前記分割流路に分かれて流れることにより、前記計測用直線流路を流れる流体は、流れ方向に直交する断面において幅方向及び高さ方向での流速分布がそれぞれ均等化及び/又は対称化されることを特徴とする。
In order to solve the above-mentioned problem, an ultrasonic flowmeter according to the present invention is
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion An ultrasonic flowmeter including a measurement linear flow channel to which a transmission / reception transducer is attached that oscillates an ultrasonic beam toward the side and / or receives an ultrasonic beam arriving from the upper side or the lower side in the flow direction Because
Following the outlet-side end of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow, and parallel to the mounting wall surface at the center in the width direction. In a simple cross-section, the direction changing portion having a first reduction portion that decreases as the opening height of the flow path decreases toward the lower side in the flow direction;
It is connected to the outlet side end of the direction changing portion so as to align the flow direction of the fluid, and in the cross section perpendicular to the flow direction, the opening height of the flow path decreases as it goes to the end in the width direction. An adjustment portion having a second reduction portion;
Following the adjustment portion, at least on the outer peripheral side, the opening height of the flow path increases in a stepwise manner in the height direction, and an increasing portion,
The ultrasonic linear beam is disposed along the flow direction in the measurement linear flow path, and a plurality of divided flow paths are formed by dividing an opening width, which is a long side of the measurement linear flow path, in the width direction. One or a plurality of partitioning portions having communication holes formed in the width direction so as to correspond to the line of measurement,
The fluid flowing through the measurement linear flow path in the cross-section orthogonal to the flow direction in the width direction and the height direction by flowing through the direction change part, the adjustment part, and the increase part and divided into the divided flow paths. The flow velocity distribution is equalized and / or symmetrized, respectively.

このような超音波流量計においても、被測定流体(例えばLPガスや都市ガス)は計測用直線流路の流れ方向上手側に位置する方向転換部(第一の減少部)を流れる間に、流れ方向が偏り、内周側に比して外周側で流速が相対的に速くなる傾向がある。しかし、外周側及び内周側のうち少なくとも外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部を通る間に、流体の流れ方向に直交する断面において幅方向及び高さ方向での流速分布が均等化及び/又は対称化される。すなわち、方向転換部(第一の減少部)で発生する偏流(最大流速の向きと位置が外周側に偏った流れ)が、調整部(第二の減少部)と増大部とで矯正される(幅方向及び高さ方向の流速分布が均等化及び/又は対称化される)。したがって、計測部(例えば一対の送受信振動子)の測線を高さ方向の流速分布の中間位置(例えば中央位置)に配置して、計測用直線流路(流量計測区間)を流れる被測定流体の最大流速を安定して計測することができる。   Even in such an ultrasonic flowmeter, while the fluid to be measured (for example, LP gas or city gas) flows through the direction changing portion (first decreasing portion) located on the upper side in the flow direction of the measurement linear flow path, The flow direction is biased, and the flow velocity tends to be relatively faster on the outer peripheral side than on the inner peripheral side. However, the width direction in the cross section perpendicular to the fluid flow direction while passing through the increasing portion where the opening height of the flow path increases stepwise in the height direction on at least the outer peripheral side of the outer peripheral side and the inner peripheral side. And the flow velocity distribution in the height direction is equalized and / or symmetrized. That is, the drift (the flow in which the direction and the position of the maximum flow velocity are biased toward the outer periphery) generated in the direction change section (first decrease section) is corrected by the adjustment section (second decrease section) and the increase section. (The flow velocity distribution in the width direction and the height direction is equalized and / or symmetrized). Therefore, the measurement line (for example, a pair of transmission / reception transducers) is arranged at the middle position (for example, the center position) of the flow velocity distribution in the height direction, and the fluid to be measured flowing through the measurement straight flow path (flow measurement section) The maximum flow rate can be measured stably.

そして、上記超音波流量計でも、計測用直線流路(例えば直線状中間流路)を仕切部(例えば仕切壁)により幅方向に分割して複数の分割流路を形成するとともに、仕切部に連通孔を貫通形成することによって、隣接する分割流路間での流体の流通(移動)が許容される。このように、超音波ビームが仕切部で分断されないため、パワーが分散・減衰されなくなり、送受信振動子による流量計測が高能率・高精度で行える。また、仕切部によって計測用直線流路は幅方向に分割されるために、計測時の圧力損失が抑制され、幅方向の流速分布が均等化及び/又は対称化されるので、広い測定範囲での安定した流量計側が可能となる。   In the ultrasonic flowmeter, a measurement linear flow path (for example, a linear intermediate flow path) is divided in the width direction by a partition portion (for example, a partition wall) to form a plurality of divided flow paths. By forming the communication hole so as to penetrate, fluid flow (movement) between the adjacent divided flow paths is allowed. As described above, since the ultrasonic beam is not divided by the partition portion, the power is not dispersed or attenuated, and the flow rate measurement by the transmission / reception vibrator can be performed with high efficiency and high accuracy. In addition, since the measurement linear flow path is divided in the width direction by the partition, pressure loss during measurement is suppressed, and the flow velocity distribution in the width direction is equalized and / or symmetrized. The stable flowmeter side is possible.

これらによって、流体の種別や温度変化に伴って粘性が変化し、動粘性係数が変動しても、層流域(小流量)から乱流域(大流量)にわたって常に流体の対称性が確保され、広範囲に高精度で流量を計測できる。   As a result, even if the viscosity changes with the type of fluid and temperature, and the kinematic viscosity coefficient fluctuates, fluid symmetry is always secured from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate). The flow rate can be measured with high accuracy.

具体的には、このような超音波流量計において、方向転換部の外周側に沿って流体が流れる際の遠心力によって第一の減少部の外周側と内周側とで流体の流れ方向及び最大流速が偏るのを、調整部により流れ方向が揃えられる。また、第一の減少部にて流体が幅方向端部側へ拡散移動しようとするのを、第二の減少部により阻止又は抑制される。増大部での整流作用によって(整流素子等の整流部材を配置せずにすむので)、圧力損失の上昇が抑制され、流体の流れ方向に直交する断面において高さ方向での流速分布が均等化及び/又は対称化され、計測用直線流路へ導かれる。   Specifically, in such an ultrasonic flow meter, the flow direction of the fluid on the outer peripheral side and the inner peripheral side of the first decreasing portion by the centrifugal force when the fluid flows along the outer peripheral side of the direction changing portion and The flow direction is aligned by the adjusting unit so that the maximum flow velocity is biased. Further, the second reducing portion prevents or suppresses the fluid from diffusing and moving toward the width direction end portion side at the first decreasing portion. By the rectifying action at the increasing part (no need to arrange a rectifying member such as a rectifying element), the increase in pressure loss is suppressed, and the flow velocity distribution in the height direction is equalized in the cross section perpendicular to the fluid flow direction. And / or symmetrized and led to a straight flow path for measurement.

次に計測用直線流路(流量計測区間)の始端部では、小流量時(低速時;層流域)には、各分割流路の幅方向において、中央位置付近に最大流速(ピーク値)が現れる扇状(又は弧状あるいは放物線状)の流速分布を呈する。一方、大流量時(高速時;乱流域)には、各分割流路の幅方向において、平均流速が最大流速(ピーク値)とほぼ一致するバスタブ状(又はコの字状)の流速分布を呈する。したがって、計測用直線流路を仕切部により幅方向に分割して複数の分割流路を形成し、仕切部に連通孔を貫通形成する簡素な構成によって、送受信振動子前方の助走区間の短縮を図ることができる。   Next, at the beginning of the measurement straight flow path (flow rate measurement section), when the flow rate is small (low speed; laminar flow area), the maximum flow velocity (peak value) is near the center position in the width direction of each divided flow path. Appearing fan-shaped (or arc-shaped or parabolic) flow velocity distribution. On the other hand, in the case of a large flow rate (high speed; turbulent flow region), a bathtub-shaped (or U-shaped) flow velocity distribution in which the average flow velocity substantially matches the maximum flow velocity (peak value) in the width direction of each divided channel Present. Therefore, the straight section for measurement is divided in the width direction by the partition portion to form a plurality of divided flow passages, and the running section in front of the transmission / reception vibrator is shortened by a simple configuration in which the communication hole is formed through the partition portion. Can be planned.

そして、上記超音波流量計における第二の減少部は、流路の高さ方向の中間位置(例えば中央位置)から内周側又は外周側に向かうにつれて、その流路の開口幅が連続的に減少するように形成されていてもよい。   And as for the 2nd reduction part in the said ultrasonic flowmeter, the opening width of the flow path is continuous as it goes to the inner peripheral side or outer peripheral side from the intermediate position (for example, center position) of the height direction of a flow path. You may form so that it may reduce.

第一の減少部にて流路の開口高さが減少することに応じて、方向変換部内の流体は幅方向端部側へ拡散移動しようとするが、その移動は内周側又は外周側ほど開口幅が減少する第二の減少部によって阻止又は抑制されている。このように、第二の減少部によって幅方向の流速分布を円滑に均等化(対称化)することができる。なお、第二の減少部における流路壁面を平面状又は曲面状に形成することができる。例えば、第二の減少部における流路壁面は、流れ方向に直交する断面にて、二等辺三角形状等の三角形状、台形状等の四角形状、円弧状、楕円状等に形成できる。   As the opening height of the flow path decreases in the first decreasing portion, the fluid in the direction changing portion tries to diffuse and move toward the end in the width direction. It is blocked or suppressed by the second decreasing portion in which the opening width decreases. Thus, the flow velocity distribution in the width direction can be smoothly equalized (symmetrized) by the second decreasing portion. In addition, the channel wall surface in the 2nd reduction | decrease part can be formed in planar shape or curved surface shape. For example, the channel wall surface in the second decreasing portion can be formed in a cross section orthogonal to the flow direction, such as a triangular shape such as an isosceles triangular shape, a quadrangular shape such as a trapezoidal shape, an arc shape, an elliptical shape, or the like.

その際さらに、第二の減少部において、流路の高さ方向の中間位置(例えば中央位置)から内周側に向かうにつれて、その流路の開口幅が連続的に減少するように形成することが望ましい。これによって、幅方向の流速分布の均等化(対称化)に要する第二の減少部ひいては方向転換部及び調整部の区間長(流れ方向の長さ)を短縮することができる。   At that time, in the second decreasing portion, the opening width of the flow path is continuously reduced from the intermediate position in the height direction of the flow path (for example, the center position) toward the inner peripheral side. Is desirable. As a result, it is possible to reduce the length of the second reduction portion required for equalization (symmetrization) of the flow velocity distribution in the width direction, that is, the section length (length in the flow direction) of the direction change portion and the adjustment portion.

あるいは、上記超音波流量計における第二の減少部は、流路の高さ方向の中間位置(例えば中央位置)から内周側及び外周側に向かうにつれて、その流路の開口幅がそれぞれ連続的に減少するように形成されていてもよい。   Alternatively, the second decreasing portion in the ultrasonic flowmeter has a continuous opening width of the flow path from the intermediate position (for example, the central position) in the height direction of the flow path toward the inner peripheral side and the outer peripheral side. It may be formed so as to decrease.

第一の減少部にて流路の開口高さが減少することに応じて、方向変換部内の流体は幅方向端部側へ拡散移動しようとするが、その移動は内周側でも外周側でも開口幅が減少する第二の減少部によって阻止又は抑制され(抑え込まれ)、流路の高さ方向の中間部分(中央部分)に集められている。このように、開口幅が内周側でも外周側でも減少する第二の減少部によって、幅方向の流速分布を短い区間長(流れ方向の長さ)で円滑に均等化(対称化)することができる。なお、この場合にも第二の減少部における流路壁面を平面状又は曲面状に形成することができる。例えば、第二の減少部における流路壁面は、流れ方向に直交する半断面にて、二等辺三角形状等の三角形状、台形状等の四角形状、円弧状、楕円状等に形成できる。   In response to the opening height of the flow path decreasing at the first decreasing portion, the fluid in the direction changing portion tries to diffuse and move toward the end in the width direction. It is blocked or suppressed (suppressed) by the second decreasing portion where the opening width decreases, and is collected in the middle portion (central portion) in the height direction of the flow path. As described above, the second decreasing portion in which the opening width decreases on the inner peripheral side and the outer peripheral side smoothly equalizes (symmetrizes) the flow velocity distribution in the width direction with a short section length (length in the flow direction). Can do. In this case as well, the channel wall surface in the second reduction portion can be formed in a flat shape or a curved shape. For example, the channel wall surface in the second reduction portion can be formed in a half cross section perpendicular to the flow direction, in a triangular shape such as an isosceles triangular shape, a quadrangular shape such as a trapezoidal shape, an arc shape, an elliptical shape, or the like.

その際さらに、内周側及び外周側で開口幅が減少する第二の減少部においては、流路の高さ方向の中間位置(例えば中央位置)から内周側に向かう開口幅の減少率が、外周側に向かう開口幅の減少率よりも大であることが望ましい。   At that time, in the second decreasing portion where the opening width decreases on the inner peripheral side and the outer peripheral side, the decreasing rate of the opening width from the intermediate position (for example, the central position) in the height direction of the flow path toward the inner peripheral side is It is desirable that it is larger than the decreasing rate of the opening width toward the outer peripheral side.

このように、第二の減少部における開口幅の減少率を内周側よりも外周側で小さくし、内外で非対称にすることにより、遠心力によって流体の偏りを生じやすい外周側において、流体の幅方向端部側への拡散移動容量を相対的に大きく確保することができる。これによって、方向転換部で発生する幅方向の流速分布の乱れ(不均等及び/又は非対称)を相対的に小さくすることができるので、幅方向の流速分布の均等化(対称化)に要する第二の減少部ひいては方向転換部及び調整部の区間長(流れ方向の長さ)をさらに短縮することができる。なお、流路壁面が平面状であれば開口幅の減少率の大小は勾配の逆数の大小、曲面状であれば開口幅の減少率の大小は曲率の逆数(曲率半径)の大小に相当する。   As described above, the reduction rate of the opening width in the second reduction portion is smaller on the outer circumferential side than on the inner circumferential side, and is asymmetrical on the inner and outer sides, so that the fluid on the outer circumferential side where fluid bias is likely to occur due to centrifugal force. A relatively large diffusion movement capacity toward the end in the width direction can be ensured. As a result, the disturbance (unevenness and / or asymmetry) of the flow velocity distribution in the width direction that occurs in the direction change portion can be made relatively small, and therefore the first required for equalization (symmetrization) of the flow velocity distribution in the width direction. It is possible to further shorten the section length (length in the flow direction) of the second decreasing portion and thus the direction changing portion and the adjusting portion. If the flow path wall surface is flat, the magnitude of the reduction rate of the opening width corresponds to the reciprocal of the gradient, and if it is curved, the magnitude of the reduction ratio of the opening width corresponds to the magnitude of the reciprocal of the curvature (curvature radius). .

以上で述べた流量計においては、調整部の内周側及び外周側の流路壁面を計測用直線流路(流量計測区間)の長辺壁部の壁面とそれぞれ平行状に配置するとともに、
増大部の流路の高さ方向の中央を、調整部の流路の高さ方向の中央よりも外周側又は内周側に偏って(オフセットして;齟齬して)配置することができる。
In the flow meter described above, the inner and outer flow path wall surfaces of the adjustment unit are arranged in parallel with the wall surfaces of the long side wall part of the measurement linear flow channel (flow measurement section), respectively.
The center in the height direction of the flow path of the increasing portion can be arranged (offset; lean) toward the outer peripheral side or the inner peripheral side with respect to the center in the height direction of the flow path of the adjusting portion.

増大部の高さ方向中央位置を調整部の高さ方向中央位置よりも外周側又は内周側に偏って配置することにより、増大部での高さ方向の流速分布の平滑化後に計測用直線流路(流量計測区間)にて計測すべき最大流速が、調整部の高さ方向中央位置の延長線上に出現しやすくなる。よって、高さ方向の流速分布の均等化(対称化)に要する増大部の区間長(流れ方向の長さ)を短縮することができる。なお、増大部の高さ方向中央位置を調整部の高さ方向中央位置に対して外周側又は内周側のいずれにオフセットさせるかは、調整部や増大部の形状(高さ等)に応じて定めればよい。その際、計測用直線流路(流量計測区間)における計測部(例えば一対の送受信振動子)の測線位置を調整部の高さ方向中央位置の延長線上に(一致させて)配置すれば、計測用直線流路(流量計測区間)を流れる被測定流体の最大流速を安定して計測できる。   A straight line for measurement after smoothing the flow velocity distribution in the height direction at the increase part by arranging the center part in the height direction of the increase part toward the outer peripheral side or the inner peripheral side from the center position in the height direction of the adjustment part The maximum flow velocity to be measured in the flow path (flow rate measurement section) is likely to appear on an extension line at the center position in the height direction of the adjustment unit. Therefore, the section length (length in the flow direction) of the increased portion required for equalization (symmetrization) of the flow velocity distribution in the height direction can be shortened. Note that whether the center in the height direction of the increasing portion is offset to the outer peripheral side or the inner peripheral side with respect to the center position in the height direction of the adjusting portion depends on the shape (height, etc.) of the adjusting portion and the increasing portion. Can be determined. At that time, if the measurement line position of the measurement unit (for example, a pair of transmission / reception transducers) in the measurement straight flow path (flow rate measurement section) is arranged (matched) on the extension line of the center position in the height direction of the adjustment unit, measurement It is possible to stably measure the maximum flow velocity of the fluid to be measured flowing through the straight flow path (flow measurement section).

また、増大部は、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化し、
調整部は、少なくとも流路の高さ方向の内周側の後端部が、増大部において流れ方向下手側へ延出して延出部を形成することができる。
In addition, the increase portion, the opening height of the flow path is increased and changed stepwise in the height direction on the outer peripheral side and the inner peripheral side,
In the adjusting portion, at least the rear end portion on the inner peripheral side in the height direction of the flow path can extend to the lower side in the flow direction at the increasing portion to form an extending portion.

このように、調整部の内周側の後端部が延出部を形成することによって、流体の流れ方向に直交する断面における高さ方向での流速分布の平滑化が、増大部にて短い区間長さ(流れ方向の長さ)で迅速に行われる。なお、その際同時に、増大部における流路の高さ方向の外周側の前端部が、調整部において流れ方向上手側へ突入して突入部を形成している場合には、上記した遠心力によって流体の偏りを生じやすい外周側において、調整部に形成される突入部に流体を部分的(かつ一時的)に滞留させて流速を遅らせることができ、上記した高さ方向の流速分布の平滑化を一層迅速に行うことができる。   As described above, the rear end portion on the inner peripheral side of the adjustment portion forms the extension portion, so that smoothing of the flow velocity distribution in the height direction in the cross section perpendicular to the fluid flow direction is short in the increase portion. It is performed quickly with the section length (length in the flow direction). At the same time, when the front end portion on the outer peripheral side in the height direction of the flow path in the increasing portion rushes to the upper side in the flow direction in the adjusting portion to form a rush portion, the above centrifugal force causes On the outer peripheral side where fluid bias is likely to occur, fluid can be partially (and temporarily) retained in the intrusion part formed in the adjusting part to delay the flow velocity, and smoothing the above-mentioned flow velocity distribution in the height direction Can be performed more quickly.

例えば、延出部の流路壁面を、流れ方向下手側に向かうにつれて増大部における内周側及び/又は外周側の壁面に徐々に接近した後接触する曲面状に形成することができる。   For example, the flow path wall surface of the extending portion can be formed into a curved surface shape that gradually contacts the inner peripheral side and / or the outer peripheral side wall of the increasing portion as it goes toward the lower side in the flow direction.

これにより、増大部における内周側の壁部や外周側の壁部と延出部とが滑らかに接続され、調整部から増大部への流体の流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   As a result, the wall portion on the inner peripheral side and the wall portion on the outer peripheral side and the extending portion in the increasing portion are smoothly connected and do not hinder the flow of fluid from the adjusting portion to the increasing portion. The flow velocity distribution can be smoothly smoothed.

あるいは、延出部の流路壁面を、流れ方向下手側に向かうにつれて増大部における短辺側の壁面(短辺壁部)に徐々に接近した後接触する曲面状に形成することができる。   Alternatively, the flow path wall surface of the extending portion can be formed in a curved surface shape that gradually contacts the short side wall surface (short side wall portion) of the increasing portion as it goes toward the lower side in the flow direction.

これにより、増大部における短辺側の壁部(短辺壁部)と延出部とが滑らかに接続され、調整部から増大部への流体の流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   Thereby, the short side wall portion (short side wall portion) in the increasing portion and the extending portion are smoothly connected and do not hinder the flow of fluid from the adjusting portion to the increasing portion. The flow velocity distribution can be smoothly smoothed.

さらに、方向転換部と調整部とのうち少なくとも調整部には、流路の開口高さを高さ方向に区分する1又は複数の区画部が流れ方向に沿って配置されていてもよい。   Furthermore, at least one of the direction changing portion and the adjusting portion may be arranged along the flow direction with at least one adjusting portion that divides the opening height of the flow path in the height direction.

区画部により調整部の流路の開口高さを高さ方向に区分することによって、高さ方向の流速分布の乱れ(不均等及び/又は非対称)を相対的に小さくすることができるので、層流域(小流量)から乱流域(大流量)にわたって広範囲に高精度で流量を計測できる。   By dividing the opening height of the flow path of the adjustment section in the height direction by the partition section, disturbance (unevenness and / or asymmetry) of the flow velocity distribution in the height direction can be relatively reduced. The flow rate can be measured with high accuracy over a wide range from the basin (small flow rate) to the turbulent flow range (large flow rate).

そして、その区画部は、表面が平滑な単一の板材により方向変換部と調整部とに跨って配置されるとともに、少なくとも調整部の高さ方向において外周側に偏って(オフセットして;齟齬して)位置することができる。   The partition portion is disposed across the direction changing portion and the adjustment portion by a single plate having a smooth surface, and is at least offset (offset) on the outer peripheral side in the height direction of the adjustment portion. Can be located).

区画部が調整部において外周側に偏って位置することにより、上記した遠心力によって流体の偏りを生じやすい外周側において、高さ方向の流速分布の乱れ(不均等及び/又は非対称)をさらに小さくすることができる。例えば、区画部は、方向変換部では高さ方向の中央近傍に位置する一方、調整部では外周側に偏って位置することができる。   Since the partition part is biased to the outer peripheral side in the adjustment part, the disturbance (unevenness and / or asymmetry) of the flow velocity distribution in the height direction is further reduced on the outer peripheral side where the fluid tends to be biased by the centrifugal force. can do. For example, the partition portion can be located near the center in the height direction in the direction conversion portion, and can be located biased toward the outer peripheral side in the adjustment portion.

このような超音波流量計において、仕切部は、超音波ビームの通過及び流体の流通を許容しつつ連通孔に重ね合わせてその連通孔の開孔面積を縮小するために網目状素材で構成された重合部を有することができる。   In such an ultrasonic flowmeter, the partition portion is made of a mesh-like material so as to be superposed on the communication hole while allowing the passage of the ultrasonic beam and the flow of the fluid and reducing the opening area of the communication hole. It can have a superposition part.

網目状素材で構成された重合部を連通孔に重ね合わせ、連通孔の開孔面積を相対的に縮小させることによって、互いに隣接する分割流路間での流体の流通(移動)は重合部を介して限定的な範囲に留めることができる。したがって、計測用直線流路(流量計測区間)における主として幅方向での流速分布の均等化及び対称化(平滑化)に対して、重合部が及ぼす影響は小さくなる。   By superposing the overlapping part composed of a mesh-like material on the communication hole and relatively reducing the opening area of the communication hole, the flow (movement) of fluid between the adjacent divided flow paths can To a limited range. Therefore, the influence of the overlapping portion on the equalization and symmetrization (smoothing) of the flow velocity distribution mainly in the width direction in the measurement straight flow path (flow rate measurement section) is reduced.

ところで、上記重合部を構成する「網目状素材」には、次のものを含む。
(1)ガーゼのような高分子材料(例えばポリプロピレン(PP)等の合成樹脂)製の織布;
(2)パンチングメタルのような金属(例えばステンレス)製の孔あき板;
(3)篩い布、篩い網のような高分子材料製又は金属製のメッシュ生地;
例えば、高分子材料製の織布やメッシュ生地の場合、網目状素材の骨組みをなす網部は、複数の高分子材料(例えば合成樹脂)製の単糸を束ねたりより合わせたりした糸(フィラメント又はファイバー)を横糸及び縦糸として編むことによって作られ、開孔率30〜80%程度(例えば55%)に形成される。このような柔軟性・弾力性を有する網目状素材を用いることによって、超音波ビームのうち位相の異なる成分が網目状素材で吸収され、受信側の振動子では同位相のビームのみを受信しやすくなるので、S/N比が向上する。
By the way, the “network-like material” constituting the superposition part includes the following.
(1) A woven fabric made of a polymer material such as gauze (for example, a synthetic resin such as polypropylene (PP));
(2) a perforated plate made of a metal such as punching metal (for example, stainless steel);
(3) Mesh fabric made of polymer material such as sieve cloth, sieve mesh or metal;
For example, in the case of a woven fabric or mesh fabric made of a polymer material, the mesh portion that forms the framework of the mesh material is a yarn (filament) in which a plurality of single yarns made of polymer materials (for example, synthetic resin) are bundled or joined together Or fiber) is knitted as weft yarn and warp yarn, and has a hole area ratio of about 30 to 80% (for example, 55%). By using a mesh-like material having such flexibility and elasticity, components with different phases in the ultrasonic beam are absorbed by the mesh-like material, and the receiving-side transducer can easily receive only the same-phase beam. As a result, the S / N ratio is improved.

このような超音波流量計において、連通孔の開孔面積は、その連通孔を通過する超音波ビームが連通孔に平行な平面に投影されたビーム投影断面積と同等又はそれ以下とすることができる。   In such an ultrasonic flowmeter, the opening area of the communication hole may be equal to or less than the beam projection cross-sectional area in which the ultrasonic beam passing through the communication hole is projected onto a plane parallel to the communication hole. it can.

これによって、送信側の振動子で発振後に拡径する超音波ビームの周辺部は連通孔の周縁部で排除され、受信側の振動子では位相の異なる成分が到達しにくく同位相のビームのみを受信しやすくなるので、S/N比が向上する。なお、連通孔が円形であり、超音波ビームが円形の送受信振動子から発振される場合には、連通孔の円形状開孔面積は超音波ビーム(又は送受信振動子)の楕円状投影断面積と同等又はそれ以下となる。   As a result, the peripheral portion of the ultrasonic beam that expands after oscillation by the transducer on the transmitting side is eliminated at the peripheral portion of the communication hole, and components with different phases are difficult to reach by the transducer on the receiving side. Since it becomes easy to receive, S / N ratio improves. When the communication hole is circular and the ultrasonic beam is oscillated from a circular transmission / reception transducer, the circular opening area of the communication hole is the elliptical projection cross-sectional area of the ultrasonic beam (or transmission / reception transducer). Equal to or less than

これらの超音波流量計では、仕切部は、幅方向において互いに平行状に複数配置されるとともに、分割された各分割流路の開口幅が互いに等しくなるように配置されていることが望ましい。   In these ultrasonic flowmeters, it is desirable that a plurality of partitioning portions are arranged in parallel with each other in the width direction, and that the opening widths of the divided flow paths are equal to each other.

等間隔の仕切部によって計測用直線流路が幅方向に分割されるので、各分割流路での幅方向の流速分布を迅速に均等化・対称化することができる。なお、各分割流路の開口幅が等しくない場合には、例えば、仕切部を幅方向において互いに平行状に複数配置するとともに、幅方向中央位置に近い分割流路ほど開口幅を小に形成するとよい。分割流路を流れる流体の流量は、幅方向中央寄りほど多く壁際(短辺壁部側)ほど少なくなる傾向(特に小流量時で顕著)になるので、周辺部よりも中央部で分割流路の開口幅(容量)を小さくすることにより、周辺部の流量を増加させて、計測用直線流路の幅方向の流速分布を平滑化することができる。   Since the measurement linear flow path is divided in the width direction by the equally-spaced partitions, the flow velocity distribution in the width direction in each divided flow path can be quickly equalized and symmetrized. In addition, when the opening widths of the respective divided flow paths are not equal, for example, a plurality of partition portions are arranged in parallel with each other in the width direction, and the opening width is made smaller as the divided flow path is closer to the center position in the width direction. Good. Since the flow rate of the fluid flowing through the divided flow path tends to decrease toward the center in the width direction (short side wall side) and decrease (particularly when the flow rate is small), the divided flow path in the central portion rather than the peripheral portion. By reducing the opening width (capacity), the flow rate in the peripheral part can be increased, and the flow velocity distribution in the width direction of the measurement linear flow path can be smoothed.

導入側流路と計測用直線流路(流量計測区間)とが直交状に配置され、計測用直線流路(流量計測区間)の開口高さ及び開口幅が流れ方向に対して一定に形成されていれば、超音波流量計をコンパクトな箱型形状に形成できる。また、増大部で均等化(対称化)された流速分布が計測用直線流路(流量計測区間)でも安定して維持されるので、流量測定の精度が向上する。さらに、送受信振動子前方の助走区間を短縮できる。   The introduction-side flow path and the measurement straight flow path (flow rate measurement section) are arranged orthogonally, and the opening height and the opening width of the measurement straight flow path (flow measurement section) are formed constant with respect to the flow direction. If so, the ultrasonic flowmeter can be formed in a compact box shape. Further, since the flow velocity distribution equalized (symmetrized) at the increasing portion is stably maintained even in the measurement straight flow path (flow rate measurement section), the accuracy of flow rate measurement is improved. Furthermore, the running section in front of the transmitting / receiving transducer can be shortened.

(全体構成)
次に、本発明の実施の形態を図面を用いて説明する。図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の全体斜視図を示す。この超音波流量計100は、本体ユニット10と中間流路形成ユニット20と遮断弁30とから構成され、本体ユニット10は本体部11と蓋部17とからなる。
(overall structure)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall perspective view of an embodiment of an ultrasonic flow meter used as a general residential gas meter or the like. The ultrasonic flowmeter 100 includes a main body unit 10, an intermediate flow path forming unit 20, and a shut-off valve 30, and the main body unit 10 includes a main body portion 11 and a lid portion 17.

図2は超音波流量計100の正面断面図を示し、図2のA−A断面図が図3に表わされている。図2に示すように、本体部11は全体として直方体形状を有し、その上面には、上流側のガス配管に接続される流入口12及び下流側のガス配管に接続される流出口13がそれぞれ開口している。また、その内部には、流入口12と流出口13との間にガス(流体)を通過させるための本体流路14が形成されている。本体部11の下部には、図2の背面側から手前側(嵌合方向)に向けて本体流路切除部15が形成され、この本体流路切除部15は、パッキン17a(シール材)を介し蓋部17によって外部から覆われている(図3参照)。本体部11の嵌合方向前方側(図2の手前側)の外面には、本体流路切除部15と連通する一対の窓孔16,16(図1参照)が開口している。   FIG. 2 is a front sectional view of the ultrasonic flowmeter 100, and the AA sectional view of FIG. 2 is shown in FIG. As shown in FIG. 2, the main body 11 has a rectangular parallelepiped shape as a whole, and an inlet 12 connected to the upstream gas pipe and an outlet 13 connected to the downstream gas pipe are formed on the upper surface thereof. Each is open. In addition, a main body flow path 14 for allowing a gas (fluid) to pass between the inflow port 12 and the outflow port 13 is formed therein. A main body flow path cutting portion 15 is formed in the lower part of the main body portion 11 from the back side in FIG. 2 toward the front side (fitting direction). The main body flow path cutting portion 15 is provided with a packing 17a (seal material). It is covered from the outside by the cover part 17 (refer FIG. 3). A pair of window holes 16, 16 (see FIG. 1) communicating with the main body flow path cutting portion 15 are opened on the outer surface of the main body portion 11 on the front side in the fitting direction (front side in FIG. 2).

図3に示すように、中間流路形成ユニット20の内部には、本体部11の本体流路切除部15にガスの流れ方向と直交する方向(嵌合方向)から嵌合したときに本体流路14と接続される中間流路21が貫通形成されている。この中間流路21は、本体流路14と滑らかに連続する上下方向の入口側連結流路21b(導入側流路),出口側連結流路21c(導出側流路)と、両端で両連結流路21b,21cと連なるとともに、本体流路14とほぼ直交する形態で本体部11の下面に沿って配設される水平方向の直線状中間流路21a(計測用直線流路)とから構成されている(図2参照)。また、中間流路形成ユニット20には、本体部11に開口する一対の窓孔16,16に対応して嵌合方向の前方側に一対の突出部22,22がそれぞれ一体形成されている。   As shown in FIG. 3, when the intermediate flow path forming unit 20 is fitted into the main body flow path cutting section 15 of the main body section 11 from a direction (fitting direction) perpendicular to the gas flow direction, An intermediate flow path 21 connected to the path 14 is formed through. The intermediate flow path 21 is connected to the main body flow path 14 in a vertically continuous inlet-side connection flow path 21b (introduction-side flow path) and outlet-side connection flow path 21c (outflow-side flow path). Consists of a horizontal linear intermediate flow channel 21a (measurement linear flow channel) that is continuous with the flow channels 21b and 21c and is disposed along the lower surface of the main body 11 in a form substantially orthogonal to the main body flow channel 14. (See FIG. 2). Further, the intermediate flow path forming unit 20 is integrally formed with a pair of projecting portions 22 and 22 on the front side in the fitting direction corresponding to the pair of window holes 16 and 16 opened in the main body portion 11.

さらに、中間流路形成ユニット20の一対の突出部22,22には、直線状中間流路21aにおける超音波計測区間21a1(流量計測区間)を通過するガスの流量を測定するために、超音波センサ23の一対の送受信振動子23a,23bがそれぞれ着脱可能に取り付けられている。この直線状中間流路21aにおいて、超音波計測区間21a1の上流側(流れ方向上手側)には、送受信振動子23a,23bにて流量測定するガスの流れを整えるための助走区間21a2(図2参照)が設けられている。直線状中間流路21aの軸直交断面積(流路断面積)を本体流路14や入口側連結流路21bの軸直交断面積(流路断面積)よりも小とし(絞り)、流れ方向に対して一定の大きさに形成する。これによって、直線状中間流路21aを流れるガスの流速を速くして一定に保持し、超音波センサ23による流量(流速)の測定精度が高くなるようにしている。なお、流入口12と中間流路21との間の本体流路14には、本体流路14のガスの流れを遮断する遮断弁30が設けられている(図2参照)。   Further, the pair of projecting portions 22 and 22 of the intermediate flow path forming unit 20 includes ultrasonic waves for measuring the flow rate of the gas passing through the ultrasonic measurement section 21a1 (flow measurement section) in the linear intermediate flow path 21a. A pair of transmission / reception vibrators 23a and 23b of the sensor 23 are detachably attached. In this linear intermediate flow path 21a, on the upstream side (upper side in the flow direction) of the ultrasonic measurement section 21a1, a running section 21a2 (see FIG. 2) for adjusting the flow of the gas whose flow rate is measured by the transmission / reception vibrators 23a and 23b. Reference) is provided. The axial orthogonal cross-sectional area (flow-path cross-sectional area) of the straight intermediate flow path 21a is made smaller (throttle) than the axial-perpendicular cross-sectional area (flow-path cross-sectional area) of the main body flow path 14 and the inlet-side connecting flow path 21b. Are formed in a certain size. As a result, the flow rate of the gas flowing through the linear intermediate flow path 21a is increased and kept constant, and the measurement accuracy of the flow rate (flow rate) by the ultrasonic sensor 23 is increased. The main body flow path 14 between the inlet 12 and the intermediate flow path 21 is provided with a shut-off valve 30 that blocks the gas flow in the main body flow path 14 (see FIG. 2).

したがって、図3において、中間流路21が本体流路14と連通するように中間流路形成ユニット20を本体部11の本体流路切除部15に嵌合すると、各突出部22,22が本体部11の各窓孔16,16からそれぞれ外部に突出する。そして、各突出部22,22はパッキン16a(シール材)を介し各窓孔16,16をそれぞれ密閉する。さらに、超音波センサ23の各送受信振動子23a,23bは、各突出部22,22の収容孔22a,22bにそれぞれ外部から挿入され、取付ねじ(取付部材;図示せず)や押圧板(押圧部材;図示せず)によって着脱可能に固定されている。   Therefore, in FIG. 3, when the intermediate flow path forming unit 20 is fitted to the main body flow path cutting portion 15 of the main body portion 11 so that the intermediate flow path 21 communicates with the main body flow path 14, the protrusions 22, 22 become the main body. Projecting from the window holes 16 and 16 of the portion 11 to the outside. And each protrusion part 22 and 22 seals each window hole 16 and 16 via packing 16a (sealing material), respectively. Further, the transmission / reception transducers 23a and 23b of the ultrasonic sensor 23 are inserted from the outside into the receiving holes 22a and 22b of the protrusions 22 and 22, respectively, and are attached to a mounting screw (a mounting member; not shown) or a pressing plate (pressing). It is detachably fixed by a member (not shown).

図2及び図3に示すように、直線状中間流路21a(超音波計測区間21a1及び助走区間21a2)は、流路の幅方向(本体流路切除部15への嵌合方向;奥行方向)を長辺L、流路の高さ方向(上下方向)を短辺Sとする矩形状に形成されている。そして、超音波センサ23は次のような反射型V字配列に構成されている。すなわち、超音波計測区間21a1(直線状中間流路21a)の流れ方向直交断面において、嵌合方向前方側の短辺Sを形成する短辺壁部21dの取付壁面に、送受信振動子23a,23bが流れ方向に所定距離W0を隔てて取り付けられ、嵌合方向後方側の短辺Sを形成する短辺壁部の壁面を反射面21eとする。   As shown in FIGS. 2 and 3, the straight intermediate flow path 21 a (the ultrasonic measurement section 21 a 1 and the run-up section 21 a 2) is in the width direction of the flow path (the fitting direction to the body flow path cutting section 15; the depth direction). Is formed in a rectangular shape with a long side L and a height direction (vertical direction) of the flow path as a short side S. The ultrasonic sensor 23 is configured in the following reflective V-shaped arrangement. That is, in the orthogonal cross section in the flow direction of the ultrasonic measurement section 21a1 (linear intermediate flow path 21a), the transmitting / receiving vibrators 23a and 23b are attached to the mounting wall surface of the short side wall portion 21d that forms the short side S on the front side in the fitting direction. Are attached at a predetermined distance W0 in the flow direction, and the wall surface of the short side wall part forming the short side S on the rear side in the fitting direction is defined as a reflection surface 21e.

図1に戻り、超音波センサ23の送受信振動子23a,23b(センサ素子)で得られた出力信号は、リード線25,25を介して流量演算処理回路24に送信されてガス流量が算出され、流量表示部(図示せず)等を用いて報知される。これらの送受信振動子23a,23b、流量演算処理回路24、リード線25,25、流量表示部等は流量測定部Mを構成している。リード線25,25は、窓孔16,16から外部に突出して設けられる超音波センサ23(送受信振動子23a,23b)から引き出されるので、その芯線部を通じて測定ガスが外部に漏れ出して、気密性が不十分となったり、測定精度が低下したりすることがない。このように、本体部11・蓋部17・中間流路形成ユニット20の三者の気密性が確保され、リード線25,25が流路外に位置するので、漏れ出したガスに電気部品の火花が引火して火災が発生することもない。なお、入口側連結流路21bと直線状中間流路21aとの間には、流路内での測定ガス流の乱れを抑え速度分布を均一化するための整流素子(整流部材)は設けられていない(図2,図3参照)。   Returning to FIG. 1, the output signals obtained by the transmission / reception transducers 23 a and 23 b (sensor elements) of the ultrasonic sensor 23 are transmitted to the flow rate calculation processing circuit 24 via the lead wires 25 and 25 to calculate the gas flow rate. The notification is made using a flow rate display unit (not shown) or the like. The transmission / reception vibrators 23a and 23b, the flow rate calculation processing circuit 24, the lead wires 25 and 25, the flow rate display unit, and the like constitute a flow rate measurement unit M. Since the lead wires 25 and 25 are drawn out from the ultrasonic sensor 23 (transmission / reception transducers 23a and 23b) provided to project outside from the window holes 16 and 16, the measurement gas leaks to the outside through the core wire portion and is airtight. Therefore, there is no insufficiency and measurement accuracy is not lowered. Thus, the airtightness of the three parts of the main body part 11, the lid part 17, and the intermediate flow path forming unit 20 is ensured, and the lead wires 25 and 25 are located outside the flow path. There will be no fire caused by sparks. Note that a rectifying element (rectifying member) is provided between the inlet-side connecting flow path 21b and the straight intermediate flow path 21a to suppress the disturbance of the measurement gas flow in the flow path and make the speed distribution uniform. (See FIGS. 2 and 3).

(超音波センサの配置変形例)
以上の全体構成においては、超音波センサ(送受信部)の配置と超音波ビームの通る径路(測線という)として反射型V字配列を採用した場合について説明した。反射型V字配列では、一対の送受信部を流れ方向に沿って同じ側に集中配置できるので、送受信部の着脱を同じ方向から行える利点がある。超音波流量計における超音波センサ(送受信部)の測線方式には、反射型V字配列の他にも多くの種類が知られている。他の測線方式に対する本発明の適用例について以下に説明する。
(Arrangement modification of ultrasonic sensor)
In the overall configuration described above, a case has been described in which a reflective V-shaped array is employed as an arrangement of ultrasonic sensors (transmission / reception units) and a path (referred to as a survey line) through which ultrasonic beams pass. In the reflective V-shaped arrangement, the pair of transmission / reception units can be concentrated on the same side along the flow direction, so that there is an advantage that the transmission / reception units can be attached and detached from the same direction. In addition to the reflective V-shaped array, many types are known for the line measuring method of the ultrasonic sensor (transmission / reception unit) in the ultrasonic flowmeter. Examples of application of the present invention to other line survey methods will be described below.

(1)透過型Z配列(図4(a))
一方の送受信部123aから発せられた超音波を流れ方向に沿って所定距離離間して配置された他方の送受信部123bで受信する方式である。この方式では、一方の送受信部123aと他方の送受信部123bとは流れ方向の両側に分離して配置される。
(1) Transmission type Z arrangement (FIG. 4A)
In this method, ultrasonic waves emitted from one transmission / reception unit 123a are received by the other transmission / reception unit 123b arranged at a predetermined distance in the flow direction. In this method, one transmission / reception unit 123a and the other transmission / reception unit 123b are arranged separately on both sides in the flow direction.

(2)透過型V字配列(図4(b))
1個の送信部223aから発せられた超音波を流れ方向に沿って所定距離離間して配置された一対の受信部223b,223bで受信する方式である。この方式では、送信部223aと受信部223b,223bとは流れ方向の両側に分離して配置される。
(2) Transmission type V-shaped array (FIG. 4B)
In this method, ultrasonic waves emitted from one transmitter 223a are received by a pair of receivers 223b and 223b arranged at a predetermined distance in the flow direction. In this method, the transmission unit 223a and the reception units 223b and 223b are arranged separately on both sides in the flow direction.

(3)交差型X配列(図4(c))
流れ方向に沿って所定距離離間して配置された一対の送信部323a,323aから発せられた超音波を流れ方向に沿って所定距離離間して配置された一対の受信部323b,323bで受信する方式である。この方式は上記した図4(b)の方式において、送信部を1個から一対に増設したものに相当する。
(3) Crossed X array (FIG. 4 (c))
The ultrasonic waves emitted from the pair of transmission units 323a and 323a arranged at a predetermined distance along the flow direction are received by the pair of reception units 323b and 323b arranged at a predetermined distance along the flow direction. It is a method. This method corresponds to the method of FIG. 4 (b) described above in which one transmission unit is added as a pair.

本発明の流量計では、いずれの超音波センサの配置方式(測線方式)を採用しても等価であるから、以下の実施例においては、透過型Z配列を用いて説明する。   Since the flowmeter of the present invention is equivalent to any ultrasonic sensor arrangement method (measurement line method), in the following embodiments, description will be made using a transmission Z array.

なお、以上の全体構成及び超音波センサの配置変形例においては、本体ユニット10が、本体流路14を内部に有する本体部11と、本体部11を外部から覆う蓋部17とから構成される場合についてのみ説明したが、本体ユニット10は次のような構成であってもよい。すなわち、本体ユニットは半割り状の本体流路を各々有する第一本体部と第二本体部とを合掌構成してもよい。ただし、この場合には窓孔は第一本体部と第二本体部とのうち少なくともいずれか一方に設けられ、蓋部は設けても設けなくてもよい。   In the overall configuration and the ultrasonic sensor arrangement modification described above, the main body unit 10 includes the main body portion 11 having the main body flow path 14 therein and the lid portion 17 that covers the main body portion 11 from the outside. Although only the case has been described, the main unit 10 may be configured as follows. In other words, the main body unit may be configured such that the first main body portion and the second main body portion each having a half-shaped main body flow path are combined. However, in this case, the window hole is provided in at least one of the first main body and the second main body, and the lid may or may not be provided.

(実施例1)
次に、図5は図2における中間流路の流路構成の第1実施例を示す一部破断斜視図及び正面図である。図5に示す中間流路21において、ほぼ直交状に配置される入口側連結流路21b(本体流路14)と直線状中間流路21aとの間には、方向転換部211、調整部212及び増大部213が流れ方向上手側から下手側に向ってこの順に接続形成されている。方向転換部211及び調整部212は、流路の開口高さが入口側連結流路21bよりも小さく接続形成されている。
Example 1
Next, FIG. 5 is a partially broken perspective view and a front view showing a first embodiment of the flow path configuration of the intermediate flow path in FIG. In the intermediate flow path 21 shown in FIG. 5, a direction changing section 211 and an adjustment section 212 are provided between the inlet-side connection flow path 21b (main body flow path 14) and the straight intermediate flow path 21a that are arranged substantially orthogonally. And the increasing part 213 is connected and formed in this order from the upper side to the lower side in the flow direction. The direction changing section 211 and the adjusting section 212 are connected and formed so that the opening height of the flow path is smaller than that of the inlet side connecting flow path 21b.

方向転換部211は、ほぼ下向きに配置された入口側連結流路21bの出口側末端部に続いて、ガスの流れを約90°方向転換させるように、外周側と内周側とが湾曲形態に形成されている。この方向転換部211は、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部211aを有し、流路の外周側及び内周側が直線状中間流路21a(超音波計測区間21a1)の長辺壁部21fに連なっている。また、調整部212は、方向転換部211の出口側末端部に続く形で接続形成され、ガスの流れ方向をほぼ水平方向に揃える。さらに、調整部212に続いて、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部213が接続形成され、増大部213は直線状中間流路21a(超音波計測区間21a1)に接続されている。なお、増大部213の流路の高さ方向の中央位置O1は、調整部212の流路の高さ方向の中央位置O2と一致している。また、増大部213の中央位置O1は、超音波センサ23の送受信振動子123a,123bの測線位置、及び超音波計測区間21a1(直線状中間流路21a)の高さ方向の中央位置とも一致している。さらに、調整部212の内周側及び外周側の流路壁面は、直線状中間流路21a(超音波計測区間21a1)の長辺壁部21fの壁面とそれぞれ平行状に配置されている。   The direction changing portion 211 is curved at the outer peripheral side and the inner peripheral side so as to change the direction of the gas flow by about 90 ° following the outlet side end portion of the inlet side connecting flow path 21b arranged substantially downward. Is formed. The direction changing portion 211 has a decreasing portion 211a in which the opening height of the flow path decreases toward the lower side in the flow direction, and the outer peripheral side and the inner peripheral side of the flow path are linear intermediate flow paths 21a (ultrasonic measurement section). 21a1) is connected to the long side wall portion 21f. Moreover, the adjustment part 212 is connected and formed in the form which follows the exit side terminal part of the direction change part 211, and aligns the flow direction of a gas in a substantially horizontal direction. Further, following the adjusting portion 212, an increasing portion 213 in which the opening height of the flow path increases and changes in a stepwise manner in the height direction is connected and formed on the outer peripheral side and the inner peripheral side. It is connected to the flow path 21a (ultrasonic measurement section 21a1). Note that the center position O1 in the height direction of the flow path of the increasing portion 213 coincides with the center position O2 in the height direction of the flow path of the adjusting portion 212. Further, the central position O1 of the increasing portion 213 coincides with the measurement position of the transmission / reception transducers 123a and 123b of the ultrasonic sensor 23 and the central position in the height direction of the ultrasonic measurement section 21a1 (linear intermediate flow path 21a). ing. Furthermore, the inner and outer flow path wall surfaces of the adjustment unit 212 are arranged in parallel with the wall surface of the long side wall part 21f of the linear intermediate flow path 21a (ultrasonic measurement section 21a1).

そして、方向転換部211(特に減少部211a)、調整部212及び増大部213によって、超音波計測区間21a1(直線状中間流路21a)において主として高さ方向での流速分布が均等化及び対称化(平滑化)される。   The flow rate distribution mainly in the height direction is equalized and symmetrized in the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) by the direction changing unit 211 (particularly the decreasing unit 211a), the adjusting unit 212, and the increasing unit 213. (Smoothed).

このように、方向転換部211の外周側に沿ってガスが流れる際に作用する遠心力によって減少部211aの外周側と内周側とでガスの流れ方向及び最大流速が偏るのを、調整部212により流れ方向がほぼ水平方向に揃えられる。また、増大部213での整流作用によって(整流素子等の整流部材を配置せずにすむので)、圧力損失の上昇が抑制され、高さ方向の流速分布が均等化及び対称化(平滑化)され、超音波計測区間21a1(直線状中間流路21a)へ導かれる。   As described above, the adjusting unit is configured to cause the gas flow direction and the maximum flow velocity to be biased between the outer peripheral side and the inner peripheral side of the reducing unit 211a due to the centrifugal force acting when the gas flows along the outer peripheral side of the direction changing unit 211. By 212, the flow direction is made substantially horizontal. Further, the rectifying action in the increasing portion 213 (since it is not necessary to arrange a rectifying member such as a rectifying element) suppresses an increase in pressure loss, and the flow velocity distribution in the height direction is equalized and symmetrized (smoothed). Then, it is guided to the ultrasonic measurement section 21a1 (linear intermediate flow path 21a).

図6は図5における直線状中間流路の平面断面図及び側面断面図である。図6に示すように、直線状中間流路21a内には複数(例えば2枚)の板状の仕切壁40(仕切部)が流れ方向に沿って平行状に配置され、直線状中間流路21aの長辺Lとなる開口幅Wを幅方向に分割して複数(例えば3層)の等しい開口幅W’の分割流路21a’を形成している。各仕切壁40には、超音波ビームの測線に対応させて1個の連通孔41(例えば円形状)が幅方向に貫通形成されている。   6 is a plan sectional view and a side sectional view of the straight intermediate flow path in FIG. As shown in FIG. 6, a plurality of (for example, two) plate-like partition walls 40 (partition portions) are arranged in parallel along the flow direction in the straight intermediate flow path 21 a, and the straight intermediate flow path An opening width W that becomes the long side L of 21a is divided in the width direction to form a plurality (for example, three layers) of divided flow paths 21a ′ having the same opening width W ′. In each partition wall 40, one communication hole 41 (for example, a circular shape) is formed penetrating in the width direction so as to correspond to the measurement line of the ultrasonic beam.

連通孔41の円形状の開孔面積A1は、送受信振動子123a,123bの円形状の送受信面から送信され連通孔41を通過する超音波ビームが連通孔41に平行な平面に投影された楕円状のビーム投影断面積A2(図5参照)よりもやや小に設定されている。これによって、例えば送受信振動子123aで送信された超音波ビームが発振後に拡径しても、超音波ビームの周辺部は連通孔41の周縁部で排除される。したがって、送受信振動子123bに到達する超音波ビームには位相の異なる成分が混入しにくくなり、同位相のビームのみを受信しやすくなるので、S/N比が向上する。   The circular opening area A1 of the communication hole 41 is an ellipse in which an ultrasonic beam transmitted from the circular transmission / reception surfaces of the transmission / reception transducers 123a and 123b and passing through the communication hole 41 is projected on a plane parallel to the communication hole 41. It is set to be slightly smaller than the beam projection sectional area A2 (see FIG. 5). Thereby, for example, even if the ultrasonic beam transmitted by the transmission / reception vibrator 123a expands after oscillation, the peripheral portion of the ultrasonic beam is excluded at the peripheral portion of the communication hole 41. Therefore, it is difficult for components having different phases to be mixed in the ultrasonic beam that reaches the transmitting / receiving transducer 123b, and it becomes easier to receive only the beams having the same phase, so that the S / N ratio is improved.

このように、直線状中間流路21aが2枚の仕切壁40で3層の分割流路21a’に分割形成される。これによって、各分割流路21a’における主として幅方向の流速分布(副次的に高さ方向の流速分布)が均等化及び対称化(平滑化)される。   In this way, the linear intermediate flow path 21a is divided and formed into three layers of divided flow paths 21a 'by the two partition walls 40. As a result, the flow velocity distribution in the width direction (secondarily the flow velocity distribution in the height direction) in each divided flow path 21a 'is equalized and symmetrized (smoothed).

中間流路21は以上のように流路構成されているので、この流路内のガスの流れは図7に示す高さ方向の流速分布及び図8に示す幅方向の流速分布のようになる。   Since the intermediate flow path 21 is configured as described above, the gas flow in this flow path is as shown in the flow velocity distribution in the height direction shown in FIG. 7 and the flow velocity distribution in the width direction shown in FIG. .

図7に示すように、方向転換部211へ流入したガスは、下向き(上下方向)の入口側連結流路21bから横向き(水平方向)の直線状中間流路21aへ方向転換する途上にあるため、斜め下向き(中間方向)の速度成分が大きい。このような速度成分を有するガスは、方向転換部211(減少部211a)の外周側に沿って流れ方向下流側へ移動していくため、その流れ方向は方向転換部211の末端位置に達しても依然として不揃いで不安定な状態にある。また、方向転換部211の末端位置において高さ方向の流速分布は、外周側ほど流速が大きくなり、不均等(非対称)な状態にある。このように、方向転換部211(減少部211a)では流れ方向が不安定で流速が不均等(非対称)な流れ(偏流)が発生している。   As shown in FIG. 7, the gas that has flowed into the direction changing portion 211 is in the process of changing direction from the downward (vertical direction) inlet-side connecting flow path 21 b to the horizontal (horizontal direction) linear intermediate flow path 21 a. The speed component of slanting downward (intermediate direction) is large. Since the gas having such a velocity component moves to the downstream side in the flow direction along the outer peripheral side of the direction changing portion 211 (decreasing portion 211a), the flow direction reaches the end position of the direction changing portion 211. Are still uneven and unstable. Further, the flow velocity distribution in the height direction at the end position of the direction changing portion 211 has a non-uniform (asymmetric) state in which the flow velocity increases toward the outer peripheral side. Thus, in the direction change part 211 (decrease part 211a), the flow direction is unstable and the flow rate is uneven (asymmetric) (uneven flow) is generated.

例えば、小流量時(低速時;層流域)には、方向転換部211の外周側に沿ってガスが流れる際の遠心力は比較的小さい。したがって、小流量時の流速分布は、図7(a)に示すように、調整部212においては高さ方向の中央位置O2付近で突出する擬似二等辺三角形状を呈するが、増大部213では比較的早くに高さ方向に均等化及び対称化した扇状(又は弧状あるいは放物線状)となる。一方、大流量時(高速時;乱流域)には、方向転換部211の外周側に沿ってガスが流れる際の遠心力は比較的大きい。したがって、大流量時の流速分布は、図7(b)に示すように、調整部212においては高さ方向の中央位置O2よりも下方で突出する擬似直角三角形状を呈するので、増大部213ではやや遅れて高さ方向に均等化及び対称化したバスタブ状(又はコの字状)となる。   For example, when the flow rate is small (low speed; laminar flow region), the centrifugal force when the gas flows along the outer peripheral side of the direction changing portion 211 is relatively small. Accordingly, as shown in FIG. 7A, the flow velocity distribution at the time of a small flow rate has a pseudo isosceles triangle shape that protrudes in the vicinity of the central position O2 in the height direction in the adjustment unit 212, but in the increase unit 213, the comparison is made. It becomes a fan shape (or arc shape or parabolic shape) equalized and symmetrized in the height direction quickly. On the other hand, at the time of a large flow rate (at high speed; turbulent flow region), the centrifugal force when the gas flows along the outer peripheral side of the direction changing portion 211 is relatively large. Accordingly, as shown in FIG. 7B, the flow velocity distribution at the time of a large flow rate has a pseudo right triangle shape that protrudes below the central position O2 in the height direction in the adjustment unit 212. It becomes a bathtub shape (or U-shape) that is equalized and symmetric in the height direction with a slight delay.

このように、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部213を通る間に、高さ方向での流速分布の偏りの影響が緩和され、均等化及び対称化(平滑化)される。すなわち、方向転換部211(減少部211a)で発生する偏流が、調整部212を経由し、増大部213で開放されることによって、高さ方向の中央位置O1付近に流速分布のピーク(最大流速)を持つ流れに矯正される。したがって、一対の送受信振動子123a,123bの測線を増大部213での高さ方向の流速分布の中央位置O1に配置し、超音波計測区間21a1(直線状中間流路21a)を流れるガスの最大流速を安定して計測することができる。   As described above, the flow rate distribution in the height direction has an influence while the opening height of the flow path passes through the increasing portion 213 where the opening height of the flow path increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side. Relaxed, equalized and symmetrized (smoothed). That is, the drift generated in the direction changing unit 211 (decreasing unit 211a) is released by the increasing unit 213 via the adjusting unit 212, so that the peak of the flow velocity distribution (maximum flow velocity) is near the central position O1 in the height direction. ) Is corrected to the flow with. Therefore, the measurement line of the pair of transmission / reception vibrators 123a and 123b is arranged at the center position O1 of the flow velocity distribution in the height direction at the increasing portion 213, and the maximum amount of gas flowing through the ultrasonic measurement section 21a1 (linear intermediate flow path 21a). The flow rate can be measured stably.

つまり、減少部211a(方向変換部211)では流れ方向下手側ほど流路の開口高さが減少し、かつ整流素子のような整流手段を調整部212等の流れ方向下手側の流路中に配置する必要がないため、圧力損失が抑制され、乱流域での測定範囲の一層の拡大を図ることができる。また、整流手段を設けないため超音波流量計100のコスト低減を図ることもできる。   That is, in the reduction part 211a (direction changing part 211), the opening height of the flow path decreases toward the lower side in the flow direction, and a rectifying means such as a rectifying element is placed in the flow path on the lower side in the flow direction such as the adjustment part 212. Since it is not necessary to arrange, pressure loss is suppressed and the measurement range in the turbulent region can be further expanded. Further, since no rectifying means is provided, the cost of the ultrasonic flowmeter 100 can be reduced.

図8に示すように、直線状中間流路21a(助走区間21a2)の始端部へ流入したガスは、各分割流路21a’に分かれて流れる前には幅方向での流速分布が不均等(非対称)な状態にある。例えば、図8(a)に示す小流量時(低速時;層流域)には、各分割流路21a’に分かれて流れるときに、各分割流路21a’毎に、幅方向の中央位置付近に最大流速(ピーク値)が現れる扇状(又は弧状あるいは放物線状)の流速分布を呈するようになる。このように仕切壁40で直線状中間流路21a(助走区間21a2)の流速分布が区切られることによって、幅方向の流速分布が一層均等化及び対称化(平滑化)される。   As shown in FIG. 8, the gas flowing into the starting end of the straight intermediate flow path 21a (running section 21a2) has a non-uniform flow velocity distribution in the width direction before flowing into each divided flow path 21a ′ ( Asymmetric). For example, at the time of a small flow rate (low speed; laminar flow area) shown in FIG. 8A, when the flow is divided into the respective divided flow paths 21a ′, the vicinity of the center position in the width direction for each divided flow path 21a ′. A fan-shaped (or arc-shaped or parabolic-shaped) flow velocity distribution in which the maximum flow velocity (peak value) appears is exhibited. In this way, the flow velocity distribution of the straight intermediate flow path 21a (running section 21a2) is divided by the partition wall 40, whereby the flow velocity distribution in the width direction is further equalized and symmetrized (smoothed).

一方、図8(b)に示す大流量時(高速時;乱流域)には、各分割流路21a’に分かれて流れるときに、各分割流路21a’毎に、幅方向の平均流速が最大流速(ピーク値)とほぼ一致するバスタブ状(又はコの字状)の流速分布を呈するようになる。このように仕切壁40で直線状中間流路21a(助走区間21a2)の流速分布が区切られることによって、幅方向の流速分布が一層均等化及び対称化(平滑化)される。   On the other hand, at the time of a large flow rate (high speed; turbulent flow region) shown in FIG. 8B, when the flow is divided into each divided flow channel 21a ′, the average flow velocity in the width direction is divided for each divided flow channel 21a ′. It exhibits a bathtub-shaped (or U-shaped) flow velocity distribution that substantially matches the maximum flow velocity (peak value). In this way, the flow velocity distribution of the straight intermediate flow path 21a (running section 21a2) is divided by the partition wall 40, whereby the flow velocity distribution in the width direction is further equalized and symmetrized (smoothed).

このように、超音波ビームが仕切壁40で分断されないため、パワーが分散・減衰されなくなり、送受信振動子123a,123bによる流量計測が高能率・高精度で行える。また、仕切壁40によって直線状中間流路21aは幅方向に分割されるために、計測時の圧力損失が抑制され、幅方向の流速分布が均等化及び対称化(平滑化)されるので、広い測定範囲での安定した流量計側が可能となる。なお、超音波計測区間21a1では、連通孔41を介して隣接する分割流路21a’間でのガスの流通が許容されるが、連通孔41は流れ方向に沿って設けられているため、各分割流路21a’における幅方向の流速分布は連通孔41の前後で変化しない。   As described above, since the ultrasonic beam is not divided by the partition wall 40, the power is not dispersed or attenuated, and the flow rate measurement by the transmission / reception vibrators 123a and 123b can be performed with high efficiency and high accuracy. Moreover, since the linear intermediate flow path 21a is divided in the width direction by the partition wall 40, pressure loss during measurement is suppressed, and the flow velocity distribution in the width direction is equalized and symmetrized (smoothed). A stable flow meter side in a wide measurement range is possible. Note that in the ultrasonic measurement section 21a1, the gas flow between the adjacent divided flow paths 21a ′ via the communication holes 41 is allowed, but the communication holes 41 are provided along the flow direction. The flow velocity distribution in the width direction in the divided flow path 21 a ′ does not change before and after the communication hole 41.

これらによって、ガスの種別や温度変化に伴って粘性が変化し、動粘性係数が変動しても、層流域(小流量)から乱流域(大流量)にわたって常にガスの対称性が確保され、広範囲に高精度で流量を計測できる。   As a result, even if the viscosity changes according to the type of gas and temperature change, and the kinematic viscosity coefficient fluctuates, the symmetry of the gas is always secured from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate). The flow rate can be measured with high accuracy.

(変形例1)
図9は直線状中間流路の第1変形例を示す平面断面図及び側面断面図である。図9に示すように、直線状中間流路21a(計測用直線流路)内には複数(例えば3枚)の板状の仕切壁40(仕切部)が流れ方向に沿って平行状に配置され、直線状中間流路21aの長辺Lとなる開口幅Wを幅方向に分割して複数(例えば4層)の等しい開口幅W’の分割流路21a’を形成している。各仕切壁40には、超音波ビームの測線に対応させて1個の連通孔41(例えば円形状)が幅方向に貫通形成されている。なお、仕切壁40を4枚以上設けてもよい。
(Modification 1)
FIG. 9 is a plan sectional view and a side sectional view showing a first modified example of the linear intermediate flow path. As shown in FIG. 9, a plurality of (for example, three) plate-like partition walls 40 (partition portions) are arranged in parallel along the flow direction in the linear intermediate channel 21a (measurement linear channel). The opening width W that becomes the long side L of the straight intermediate flow path 21a is divided in the width direction to form a plurality of (for example, four layers) divided flow paths 21a ′ having the same opening width W ′. In each partition wall 40, one communication hole 41 (for example, a circular shape) is formed penetrating in the width direction so as to correspond to the measurement line of the ultrasonic beam. Note that four or more partition walls 40 may be provided.

(変形例2)
図10は直線状中間流路の第2変形例を示す平面断面図及び側面断面図である。図10に示すように、直線状中間流路21a(計測用直線流路)内には複数(例えば2枚)の板状の仕切壁40(仕切部)が流れ方向に沿って平行状に配置され、直線状中間流路21aの長辺Lとなる開口幅Wを幅方向に分割して複数(例えば3層)の分割流路21a’を形成している。そのうち、幅方向中央に位置する分割流路21a’の開口幅W’は、周辺に位置する分割流路21a’の開口幅W”よりも小に形成されている。通常、分割流路21a’を流れるガスの流量は、幅方向中央寄りほど多く壁際(短辺壁部21d側)ほど少なくなる傾向(特に小流量時で顕著)になる。そこで、周辺に位置する分割流路21a’の開口幅W”よりも中央に位置する分割流路21a’の開口幅W’を小さくすることにより、周辺部の流量を増加させて、直線状中間流路21aの幅方向の流速分布を平滑化することができる。
(Modification 2)
FIG. 10 is a plan sectional view and a side sectional view showing a second modification of the straight intermediate flow path. As shown in FIG. 10, a plurality of (for example, two) plate-like partition walls 40 (partition portions) are arranged in parallel along the flow direction in the linear intermediate channel 21a (measurement linear channel). The opening width W that becomes the long side L of the linear intermediate flow path 21a is divided in the width direction to form a plurality of (for example, three layers) divided flow paths 21a ′. Among them, the opening width W ′ of the divided flow path 21a ′ located in the center in the width direction is formed to be smaller than the opening width W ″ of the divided flow path 21a ′ located in the periphery. Usually, the divided flow path 21a ′. The flow rate of the gas flowing through the wall tends to decrease toward the center of the width direction (short side wall portion 21d side) and decrease (particularly when the flow rate is small). By reducing the opening width W ′ of the divided flow path 21a ′ located in the center of the width W ″, the flow rate in the peripheral portion is increased and the flow velocity distribution in the width direction of the straight intermediate flow path 21a is smoothed. be able to.

(変形例3)
図11は直線状中間流路の第3変形例を示す平面断面図及び側面断面図である。図11に示すように、直線状中間流路21a(計測用直線流路)内には複数(例えば2枚)の板状の仕切壁40(仕切部)が流れ方向に沿って平行状に配置され、直線状中間流路21aの長辺Lとなる開口幅Wを幅方向に分割して複数(例えば3層)の等しい開口幅W’の分割流路21a’を形成している。各仕切壁40には、超音波ビームの測線に対応させて1個の連通孔41(例えば円形状)が幅方向に貫通形成され、各連通孔41には、網目状素材で構成された薄板状又はシート状の重合網42(重合部)が重ね合わせてある。
(Modification 3)
FIG. 11 is a plan sectional view and a side sectional view showing a third modification of the straight intermediate flow path. As shown in FIG. 11, a plurality of (for example, two) plate-like partition walls 40 (partition portions) are arranged in parallel along the flow direction in the straight intermediate flow path 21a (measurement straight flow path). The opening width W that becomes the long side L of the linear intermediate flow path 21a is divided in the width direction to form a plurality of (for example, three layers) divided flow paths 21a ′ having the same opening width W ′. In each partition wall 40, one communication hole 41 (for example, a circular shape) is formed penetrating in the width direction so as to correspond to the measurement line of the ultrasonic beam, and each communication hole 41 is a thin plate made of a mesh-like material. A sheet-like or sheet-like polymerization network 42 (polymerization part) is superposed.

重合網42は、超音波ビームの通過を許容し、また隣接する分割流路21a’間でのガスの流通を限定的に許容しつつ連通孔41の開孔面積を縮小するために、柔軟性・弾力性を有する高分子材料製のメッシュ生地M(網目状素材)で構成されている。   The polymerization network 42 is flexible in order to reduce the opening area of the communication hole 41 while allowing the ultrasonic beam to pass through and restricting the gas flow between the adjacent divided flow paths 21a ′. -It is comprised with the mesh fabric M (mesh-like material) made from the polymeric material which has elasticity.

具体的には、図12に示すように、細い(例えば数十μm)高分子材料(例えばポリプロピレン(PP)等の合成樹脂)製の単糸を複数本(例えば3本)束ねた長繊維糸y(フィラメント)を横糸及び縦糸として編むことによって、多数の開孔部h(空間)を含むメッシュ生地Mの網部m(骨組み)が形成される。メッシュ生地Mの全体表面積に占める開孔部hの合計表面積の割合で表わされる開孔率は、30〜80%程度(例えば55%)のものが使用される。このように、柔軟性・弾力性を有するメッシュ生地Mを重合網42に用いることによって、超音波ビームのうち位相の異なる成分がメッシュ生地Mの網部mで吸収され、受信側となる送受信振動子123a,123bでは同位相のビームのみを受信しやすくなるので、S/N比が向上する。また、メッシュ生地Mの開孔率を選択することにより、連通孔41を介して隣接する分割流路21a’間で流通(移動)するガスの量を重合網42で制限(限定的に許容)することができる。   Specifically, as shown in FIG. 12, a long fiber yarn in which a plurality of (for example, three) single yarns made of a thin (for example, several tens of μm) polymer material (for example, a synthetic resin such as polypropylene (PP)) is bundled. By knitting y (filament) as a weft and warp, a mesh part m (framework) of the mesh fabric M including a large number of apertures h (space) is formed. A hole area ratio represented by a ratio of the total surface area of the hole portions h to the entire surface area of the mesh fabric M is about 30 to 80% (for example, 55%). In this way, by using the mesh fabric M having flexibility and elasticity for the polymerization net 42, components having different phases in the ultrasonic beam are absorbed by the mesh portion m of the mesh fabric M, and transmission / reception vibration on the receiving side. Since the slaves 123a and 123b can easily receive only the beam having the same phase, the S / N ratio is improved. Further, by selecting the opening ratio of the mesh fabric M, the amount of gas flowing (moving) between the adjacent divided flow paths 21a ′ via the communication holes 41 is limited by the polymerization net 42 (limitedly allowed). can do.

このように、直線状中間流路21aが2枚の仕切壁40で3層の分割流路21a’に分割形成される。これによって、各分割流路21a’における主として幅方向の流速分布が均等化及び対称化(平滑化)される。なお、連通孔41を介して隣接する分割流路21a’間でのガスの流通が可能となるが、連通孔41に重ね合わせた重合網42(メッシュ生地M)によって、上記したガスの流通は限定的な範囲に制限され、各分割流路21a’における幅方向の流速分布は連通孔41の前後で変化しない。   In this way, the linear intermediate flow path 21a is divided and formed into three layers of divided flow paths 21a 'by the two partition walls 40. Thereby, the flow velocity distribution mainly in the width direction in each divided flow path 21a 'is equalized and symmetrized (smoothed). The gas can be circulated between the adjacent divided flow paths 21a ′ via the communication holes 41, but the above-described gas flow can be performed by the polymerization net 42 (mesh fabric M) superimposed on the communication holes 41. Limited to a limited range, the flow velocity distribution in the width direction in each divided flow path 21 a ′ does not change before and after the communication hole 41.

(実施例2)
図13は中間流路の流路構成の第2実施例を示す一部破断斜視図及び正面図である。図13に示す中間流路21において、方向転換部211は外周側が湾曲形態に形成され、流路の開口高さが流れ方向下手側に向かうにつれて減少する第一の減少部211aを有している。また、調整部212は、流路の開口高さHが幅方向端部側に向かうにつれて減少する第二の減少部212aを有している。
(Example 2)
FIG. 13 is a partially broken perspective view and a front view showing a second embodiment of the flow path configuration of the intermediate flow path. In the intermediate flow path 21 shown in FIG. 13, the direction changing portion 211 has a first decreasing portion 211 a that is formed in a curved shape on the outer peripheral side and decreases as the opening height of the flow path becomes lower in the flow direction. . Moreover, the adjustment part 212 has the 2nd reduction part 212a which decreases as the opening height H of a flow path goes to the width direction edge part side.

具体的には、第二の減少部212aは、調整部212の流路の高さ方向の中央位置O2(増大部213の流路の高さ方向の中央位置O1と一致する)から内周側に向かうにつれて、流路の開口幅Wが連続的に減少するように形成されている。そして、図13に示す第二の減少部212aでは、その流路壁面は流れ方向に直交する断面にて、調整部212の中央位置O2から内周側に向かうにつれて流路の開口幅Wが連続的に減少する台形状に形成されている。   Specifically, the second decreasing portion 212a is located on the inner circumferential side from the center position O2 in the height direction of the flow path of the adjustment section 212 (matches the center position O1 in the height direction of the flow path of the increase section 213). The opening width W of the flow path is formed so as to decrease continuously as it goes to. And in the 2nd reduction | decrease part 212a shown in FIG. 13, the opening width W of a flow path is continuous as it goes to the inner peripheral side from the center position O2 of the adjustment part 212 in the cross section orthogonal to a flow direction. The trapezoid shape is reduced.

そして、第一の減少部211aを含む方向転換部211、第二の減少部212aを含む調整部212、及び増大部213によって、超音波計測区間21a1(直線状中間流路21a)において幅方向及び高さ方向での流速分布がそれぞれ均等化及び対称化(平滑化)される。   And in the ultrasonic measurement section 21a1 (linear intermediate flow path 21a), the direction change part 211 including the first decrease part 211a, the adjustment part 212 including the second decrease part 212a, and the increase part 213 The flow velocity distribution in the height direction is equalized and symmetrized (smoothed), respectively.

具体的には、方向転換部211の外周側に沿ってガスが流れる際の遠心力によって第一の減少部211aの外周側と内周側とでガスの流れ方向及び最大流速が偏るのを、調整部212により流れ方向がほぼ水平方向に揃えられる。そして、第一の減少部211aにてガスが幅方向端部側へ拡散移動し、流れ方向に直交する断面において幅方向及び高さ方向での流速分布が中央でくびれた楕円形(例えば繭型形状)になろうとするのを、第二の減少部212aにより阻止(抑制)してくびれのない楕円形が維持される(図13(a)の拡大断面図参照)。また、増大部213により圧力損失の上昇が抑制され、高さ方向の流速分布が均等化及び対称化(平滑化)され、超音波計測区間21a1(直線状中間流路21a)へ導かれる(図7参照)。   Specifically, the gas flow direction and the maximum flow velocity are biased between the outer peripheral side and the inner peripheral side of the first reducing portion 211a due to the centrifugal force when the gas flows along the outer peripheral side of the direction changing portion 211. The flow direction is aligned in a substantially horizontal direction by the adjustment unit 212. Then, the gas is diffused and moved toward the end in the width direction at the first decreasing portion 211a, and the flow velocity distribution in the width direction and the height direction is constricted at the center in a cross section orthogonal to the flow direction (for example, a bowl shape). The second ellipse 212a is prevented (suppressed) from attempting to become a shape, and an elliptical shape without any constriction is maintained (see the enlarged sectional view of FIG. 13A). Further, the increase in pressure loss is suppressed by the increasing portion 213, the flow velocity distribution in the height direction is equalized and symmetrized (smoothed), and guided to the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) (FIG. 7).

このように、第一の減少部211aにて流路の開口高さが減少することに応じて、方向変換部211内のガスは幅方向端部側へ拡散移動しようとするが、その移動は第二の減少部212aによって阻止(抑制)されるので、幅方向の流速分布を円滑に均等化(対称化)することができる。また、外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部213を通る間に、高さ方向での流速分布の偏りの影響が緩和され、均等化及び対称化される。すなわち、方向転換部211(第一の減少部211a)で発生する偏流が、第二の減少部212aを含む調整部212を経由し、増大部213で開放されることによって、高さ方向の中央位置O1付近に流速分布のピーク(最大流速)を持つ流れに矯正される。したがって、一対の送受信振動子123a,123bの測線を増大部213での高さ方向の流速分布の中央位置O1に配置し、超音波計測区間21a1(直線状中間流路21a)を流れるガスの最大流速を安定して計測することができる。   Thus, in response to the opening height of the flow path being reduced in the first reducing portion 211a, the gas in the direction changing portion 211 tends to diffuse and move toward the end in the width direction. Since it is blocked (suppressed) by the second reduction portion 212a, the flow velocity distribution in the width direction can be equalized (symmetrized) smoothly. In addition, the influence of the deviation in the flow velocity distribution in the height direction is alleviated while the opening height of the flow path passes through the increasing portion 213 that increases and decreases stepwise in the height direction on the outer peripheral side and the inner peripheral side. , Equalized and symmetrized. That is, the drift generated in the direction changing portion 211 (first decreasing portion 211a) is released by the increasing portion 213 via the adjusting portion 212 including the second decreasing portion 212a, and thereby the center in the height direction. The flow is corrected to have a flow velocity distribution peak (maximum flow velocity) in the vicinity of the position O1. Therefore, the measurement line of the pair of transmission / reception vibrators 123a and 123b is arranged at the center position O1 of the flow velocity distribution in the height direction at the increasing portion 213, and the maximum amount of gas flowing through the ultrasonic measurement section 21a1 (linear intermediate flow path 21a). The flow rate can be measured stably.

さらに、第二の減少部212aは、調整部212の流路の高さ方向の中央位置O2から内周側に向かうにつれて、流路の開口幅Wが連続的に減少するように形成されているので、幅方向の流速分布の均等化(対称化)に要する第二の減少部212aひいては方向転換部211及び調整部212の区間長さ(流れ方向の長さ)が短縮される。   Furthermore, the second reduction portion 212a is formed such that the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the flow path of the adjustment section 212 toward the inner peripheral side. Therefore, the second reduction part 212a required for equalization (symmetrization) of the flow velocity distribution in the width direction, and thus the section length (length in the flow direction) of the direction changing part 211 and the adjustment part 212 are shortened.

(実施例3)
図14は中間流路の流路構成の第3実施例を示す一部破断斜視図及び正面図である。図14に示す第二の減少部212aでは、その流路壁面は流れ方向に直交する断面にて、調整部212の高さ方向の中央位置O2から内周側に向かうにつれて流路の開口幅W(図13参照)が連続的に減少する円弧状(又は楕円状)に形成されている。
(Example 3)
FIG. 14 is a partially broken perspective view and a front view showing a third embodiment of the flow path configuration of the intermediate flow path. In the second reduction portion 212a shown in FIG. 14, the flow path wall surface is a cross section orthogonal to the flow direction, and the flow path opening width W increases from the center position O2 in the height direction of the adjustment section 212 toward the inner peripheral side. (Refer to FIG. 13) is formed in a circular arc shape (or elliptical shape) that continuously decreases.

(実施例4)
図15は中間流路の流路構成の第4実施例を示す一部破断斜視図及び正面図である。図15に示す第二の減少部212aでは、その流路壁面は流れ方向に直交する断面にて、調整部212の高さ方向の中央位置O2から内周側に向かうにつれて流路の開口幅W(図13参照)が連続的に減少する二等辺三角形状に形成されている。
Example 4
FIG. 15 is a partially broken perspective view and a front view showing a fourth embodiment of the flow path configuration of the intermediate flow path. In the second reduction portion 212a shown in FIG. 15, the flow passage wall surface has a cross section orthogonal to the flow direction, and the opening width W of the flow passage increases from the center position O2 in the height direction of the adjustment portion 212 toward the inner peripheral side. (See FIG. 13) is formed in an isosceles triangle shape that continuously decreases.

(実施例5)
図16は中間流路の流路構成の第5実施例を示す一部破断斜視図及び要部拡大図である。図16に示す第二の減少部212aは、調整部212の高さ方向の中央位置O2(図5参照)から内周側及び外周側に向かうにつれて、流路の開口幅Wがそれぞれ連続的に減少するように形成されている。その際、第二の減少部212aは、上記中央位置O2から内周側に向かう開口幅Wの減少率が、外周側に向かう開口幅Wの減少率よりも大になるように非対称形状に形成されている。
(Example 5)
FIG. 16 is a partially broken perspective view and an enlarged view of a main part showing a fifth embodiment of the flow path configuration of the intermediate flow path. In the second reduction portion 212a shown in FIG. 16, the opening width W of the flow path is continuously increased from the central position O2 in the height direction of the adjustment portion 212 (see FIG. 5) toward the inner peripheral side and the outer peripheral side. It is formed to decrease. At that time, the second decreasing portion 212a is formed in an asymmetric shape so that the decreasing rate of the opening width W from the central position O2 toward the inner peripheral side is larger than the decreasing rate of the opening width W toward the outer peripheral side. Has been.

具体的には、第二の減少部212aの内周側には、調整部212の高さ方向の中央位置O2から内周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)の内周側減少部212a1が形成されている。一方、第二の減少部212aの外周側にも、調整部212の高さ方向の中央位置O2から外周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)の外周側減少部212a2が形成されている。そして、内周側減少部212a1の開口幅Wの減少率(曲率の逆数すなわち曲率半径)は、外周側減少部212a2の開口幅Wの減少率よりも大である。   Specifically, on the inner peripheral side of the second decreasing portion 212a, an arc shape in which the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the adjusting portion 212 toward the inner peripheral side. An (or elliptical) inner peripheral side reduction portion 212a1 is formed. On the other hand, also on the outer peripheral side of the second decreasing portion 212a, an arc shape (or an elliptical shape) in which the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the adjusting portion 212 toward the outer peripheral side. The outer peripheral side reduction part 212a2 is formed. The reduction rate (the reciprocal of the curvature, that is, the radius of curvature) of the opening width W of the inner peripheral side reduction portion 212a1 is larger than the reduction rate of the opening width W of the outer peripheral side reduction portion 212a2.

このように、内周側減少部212a1の開口幅Wの減少率よりも外周側減少部212a2の開口幅Wの減少率を小さくし、内外で非対称にすることにより、遠心力によってガスの偏りを生じやすい外周側において、ガスの幅方向端部側への拡散移動容量を相対的に大きく確保することができる。これによって、方向転換部211で発生する幅方向の流速分布の乱れ(不均等及び非対称)を相対的に小さくすることができるので、幅方向の流速分布の均等化(対称化)に要する第二の減少部212aひいては方向転換部211及び調整部212の区間長さ(流れ方向の長さ)をさらに短縮することができる。   In this way, the reduction rate of the opening width W of the outer peripheral side reduction portion 212a2 is made smaller than the reduction rate of the opening width W of the inner peripheral reduction portion 212a1, and the gas is biased by centrifugal force by making it asymmetric inside and outside. On the outer peripheral side that is likely to occur, the diffusion movement capacity of the gas toward the end in the width direction can be secured relatively large. As a result, the disturbance (unevenness and asymmetrical) of the flow velocity distribution in the width direction that occurs in the direction changing section 211 can be relatively reduced, so the second required for equalization (symmetrization) of the flow velocity distribution in the width direction. The section length (length in the flow direction) of the direction change unit 211 and the adjustment unit 212 can be further reduced.

(実施例6)
図17は中間流路の流路構成の第6実施例を示す一部破断斜視図及び要部拡大図である。図17に示す内周側減少部212a1は、調整部212の高さ方向の中央位置O2(図5参照)から内周側に向かうにつれて流路の開口幅Wが連続的に減少する台形状に形成されている。一方、外周側減少部212a2は、調整部212の高さ方向の中央位置O2から外周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)に形成されている。そして、内周側減少部212a1の開口幅Wの減少率(勾配の逆数)は、外周側減少部212a2の開口幅Wの減少率(曲率の逆数すなわち曲率半径)よりも大である。
(Example 6)
FIG. 17 is a partially broken perspective view and an enlarged view of an essential part showing a sixth embodiment of the flow path configuration of the intermediate flow path. 17 has a trapezoidal shape in which the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the adjustment unit 212 (see FIG. 5) toward the inner peripheral side. Is formed. On the other hand, the outer peripheral side decreasing portion 212a2 is formed in an arc shape (or an elliptical shape) in which the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the adjusting portion 212 toward the outer peripheral side. . The reduction rate (reciprocal of the gradient) of the opening width W of the inner peripheral side reduction portion 212a1 is larger than the reduction rate (the reciprocal of the curvature, that is, the radius of curvature) of the opening width W of the outer peripheral side reduction portion 212a2.

(実施例7)
図18は中間流路の流路構成の第7実施例を示す一部破断斜視図及び要部拡大図である。図18に示す内周側減少部212a1は、調整部212の高さ方向の中央位置O2(図5参照)から内周側に向かうにつれて流路の開口幅Wが連続的に減少する円弧状(又は楕円状)に形成されている。一方、外周側減少部212a2は、調整部212の高さ方向の中央位置O2から外周側に向かうにつれて流路の開口幅Wが連続的に減少する台形状に形成されている。そして、内周側減少部212a1の開口幅Wの減少率(曲率の逆数すなわち曲率半径)は、外周側減少部212a2の開口幅Wの減少率(勾配の逆数)よりも大である。
(Example 7)
FIG. 18 is a partially broken perspective view and an enlarged view of a main part showing a seventh embodiment of the flow path configuration of the intermediate flow path. 18 has an arc shape in which the opening width W of the flow path continuously decreases from the central position O2 in the height direction of the adjustment unit 212 (see FIG. 5) toward the inner peripheral side. (Or elliptical). On the other hand, the outer peripheral side reduction part 212a2 is formed in a trapezoidal shape in which the opening width W of the flow path continuously decreases from the center position O2 in the height direction of the adjustment part 212 toward the outer peripheral side. The reduction rate (the reciprocal of the curvature, that is, the curvature radius) of the opening width W of the inner peripheral side reduction portion 212a1 is larger than the reduction rate (the reciprocal of the gradient) of the opening width W of the outer peripheral side reduction portion 212a2.

(実施例8)
図19は中間流路の流路構成の第8実施例を示す正面断面図である。図19に示す増大部213の高さ方向の中央位置O1は、調整部212の高さ方向の中央位置O2よりも外周側に偏って(オフセットして;齟齬して)配置されている。
(Example 8)
FIG. 19 is a front sectional view showing an eighth embodiment of the flow path configuration of the intermediate flow path. A central position O1 in the height direction of the increasing portion 213 shown in FIG. 19 is arranged to be offset (offset; staggered) toward the outer peripheral side with respect to the central position O2 in the height direction of the adjusting portion 212.

このように、増大部213の高さ方向の中央位置O1を調整部212の高さ方向の中央位置O2よりも外周側に偏って配置することにより、増大部213での高さ方向の流速分布の平滑化後に直線状中間流路21aにて計測すべき最大流速が、調整部212の高さ方向の中央位置O2の延長線上に出現しやすくなる。よって、高さ方向の流速分布の均等化(対称化)に要する増大部213の区間長さ(流れ方向の長さ)を短縮することができる。しかも、超音波計測区間21a1(直線状中間流路21a)における一対の送受信振動子123a,123bの測線位置が、調整部212の高さ方向の中央位置O2の延長線上に(一致させて)配置されているので、超音波計測区間21a1を流れるガスの最大流速を安定して計測できる。   Thus, by arranging the central position O1 in the height direction of the increasing portion 213 toward the outer peripheral side with respect to the central position O2 in the height direction of the adjusting portion 212, the flow velocity distribution in the height direction at the increasing portion 213 is arranged. The maximum flow velocity to be measured in the straight intermediate flow path 21a after the smoothing is likely to appear on the extension line of the central position O2 in the height direction of the adjustment unit 212. Therefore, the section length (length in the flow direction) of the increasing portion 213 required for equalization (symmetrization) of the flow velocity distribution in the height direction can be shortened. Moreover, the measurement positions of the pair of transmission / reception transducers 123a and 123b in the ultrasonic measurement section 21a1 (linear intermediate flow path 21a) are arranged (matched) on an extension line of the center position O2 in the height direction of the adjustment unit 212. Therefore, the maximum flow velocity of the gas flowing through the ultrasonic measurement section 21a1 can be stably measured.

(実施例9)
図20は中間流路の流路構成の第9実施例を示す正面断面図である。図20に示す調整部212は、流路の高さ方向の内周側の後端部が、増大部213において流れ方向下手側へ延出して延出部212bを形成している。一方、増大部213は、流路の高さ方向の外周側の前端部が、調整部212において流れ方向上手側へ突入して突入部213aを形成している。
Example 9
FIG. 20 is a front sectional view showing a ninth embodiment of the flow path configuration of the intermediate flow path. In the adjusting unit 212 shown in FIG. 20, the rear end portion on the inner peripheral side in the height direction of the flow path extends to the lower side in the flow direction at the increasing portion 213 to form an extending portion 212 b. On the other hand, the increase portion 213 has a front end portion on the outer peripheral side in the height direction of the flow path that protrudes toward the upper side in the flow direction at the adjustment portion 212 to form a protrusion portion 213a.

このように、調整部212の内周側の後端部が延出部212bを形成することによって、高さ方向の流速分布の平滑化を、増大部213にて短い区間長さ(流れ方向の長さ)で迅速に行える。なお、その際同時に、増大部213の外周側の前端部が、調整部212において流れ方向上手側へ突入して突入部213aを形成しているので、上記した遠心力によってガスの偏りを生じやすい外周側において、調整部212に形成される突入部213aにガスを部分的(かつ一時的)に滞留させて流速を遅らせることができ、上記した高さ方向の流速分布の平滑化を一層迅速に行うことができる。   As described above, the rear end portion on the inner peripheral side of the adjustment portion 212 forms the extension portion 212b, thereby smoothing the flow velocity distribution in the height direction with a short section length (in the flow direction) in the increase portion 213. Length). At the same time, the front end portion on the outer peripheral side of the increasing portion 213 rushes toward the upper side in the flow direction in the adjusting portion 212 to form the plunging portion 213a, so that the above-described centrifugal force tends to cause a gas bias. On the outer peripheral side, gas can be partly (and temporarily) retained in the entry portion 213a formed in the adjustment portion 212 to slow the flow velocity, and the above-described smoothing of the flow velocity distribution in the height direction can be made even faster. It can be carried out.

(実施例10)
図21は中間流路の流路構成の第10実施例を示す正面断面図である。図21に示す延出部212bは、調整部212の内周側及び外周側にそれぞれ形成され、各延出部212bの流路壁面は、流れ方向下手側に向かうにつれて増大部213における内周側(又は外周側)の長辺壁部21fの壁面に徐々に接近した後接触する曲面状に形成されている。
(Example 10)
FIG. 21 is a front sectional view showing a tenth embodiment of the flow path configuration of the intermediate flow path. The extension portions 212b shown in FIG. 21 are respectively formed on the inner peripheral side and the outer peripheral side of the adjustment portion 212, and the flow path wall surface of each extension portion 212b is on the inner peripheral side in the increasing portion 213 as it goes toward the lower side in the flow direction. It is formed in a curved surface shape that comes into contact with the wall surface of the long-side wall portion 21f on the (or outer peripheral side) after gradually approaching.

延出部212bは、増大部213の長辺壁部21fと滑らかに接続され、調整部212から増大部213へのガスの流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   The extending part 212b is smoothly connected to the long side wall part 21f of the increasing part 213 and does not hinder the flow of gas from the adjusting part 212 to the increasing part 213, so that the flow velocity distribution in the height direction described above is smoothed. It can be done smoothly.

(実施例11)
図22は中間流路の流路構成の第11実施例を示す一部破断斜視図及び正面断面図である。図22に示す延出部212bは、調整部212の内周側及び外周側にそれぞれ形成され、各延出部212bの流路壁面は、流れ方向下手側に向かうにつれて増大部213における内周側(又は外周側)の短辺壁部21dの壁面に徐々に接近した後接触する曲面状に形成されている。
(Example 11)
FIG. 22 is a partially broken perspective view and a front sectional view showing an eleventh embodiment of the flow path configuration of the intermediate flow path. 22 are formed on the inner peripheral side and the outer peripheral side of the adjustment unit 212, respectively, and the flow path wall surface of each extension unit 212b is on the inner peripheral side of the increase unit 213 as it goes to the lower side in the flow direction. It is formed in a curved surface shape that comes into contact after gradually approaching the wall surface of the short-side wall portion 21d on the (or outer peripheral side) side.

延出部212bは、増大部213の短辺壁部21dと滑らかに接続され、調整部212から増大部213へのガスの流れを阻害しないので、上記した高さ方向の流速分布の平滑化を円滑に行うことができる。   The extending part 212b is smoothly connected to the short side wall part 21d of the increasing part 213 and does not hinder the flow of gas from the adjusting part 212 to the increasing part 213, so that the flow velocity distribution in the height direction described above is smoothed. It can be done smoothly.

(実施例12)
図23は中間流路の流路構成の第12実施例を示す斜視断面図及び正面断面図である。図23に示す中間流路21には、方向変換部211と調整部212とに跨って、流路の開口高さを高さ方向に2等分する区画板214(区画部)が流れ方向に沿って配置されている。
Example 12
FIG. 23 is a perspective sectional view and a front sectional view showing a twelfth embodiment of the channel configuration of the intermediate channel. In the intermediate flow path 21 shown in FIG. 23, a partition plate 214 (partition section) that divides the opening height of the flow path into two in the height direction across the direction conversion section 211 and the adjustment section 212 in the flow direction. Are arranged along.

方向変換部211及び調整部212の流路の開口高さを高さ方向に2等分することによって、高さ方向の流速分布の乱れ(不均等及び非対称)を相対的に小さくすることができるので、層流域(小流量)から乱流域(大流量)にわたって広範囲に高精度で流量を計測できる。   By dividing the opening height of the flow path of the direction changing unit 211 and the adjusting unit 212 into two in the height direction, the disturbance (unevenness and asymmetry) of the flow velocity distribution in the height direction can be relatively reduced. Therefore, the flow rate can be measured with high accuracy over a wide range from the laminar flow region (small flow rate) to the turbulent flow region (large flow rate).

(実施例13)
図24は中間流路の流路構成の第13実施例を示す斜視断面図及び正面断面図である。図24に示す区画板214(区画部)は、表面が平滑な単一の板材により方向変換部211と調整部212とに跨って、流路の開口高さを高さ方向に2区分する形態で配置されている。具体的には、方向変換部211では高さ方向の中央(2等分位置)近傍に位置する一方、調整部212では外周側に偏って(オフセットして;齟齬して)配置されている。
(Example 13)
FIG. 24 is a perspective sectional view and a front sectional view showing a thirteenth embodiment of the channel configuration of the intermediate channel. The partition plate 214 (partition portion) shown in FIG. 24 is configured to divide the opening height of the flow path into two in the height direction across the direction changing portion 211 and the adjustment portion 212 by a single plate material having a smooth surface. Is arranged in. Specifically, the direction conversion unit 211 is positioned near the center (bisected position) in the height direction, while the adjustment unit 212 is disposed (offset; staggered) toward the outer peripheral side.

区画板214が調整部212で外周側に偏って位置することにより、上記した遠心力によってガスの偏りを生じやすい外周側において、高さ方向の流速分布の乱れ(不均等及び非対称)をさらに小さくすることができる。   Since the partition plate 214 is biased toward the outer peripheral side by the adjusting portion 212, the disturbance (unevenness and asymmetrical) of the flow velocity distribution in the height direction is further reduced on the outer peripheral side where the gas is likely to be biased by the centrifugal force. can do.

実施例8(図19)〜実施例13(図24)に記載した各々の構成は、実施例2(図13)〜実施例7(図18)に記載した各々の構成とそれぞれ組み合わせて実施することができる。   Each configuration described in Example 8 (FIG. 19) to Example 13 (FIG. 24) is implemented in combination with each configuration described in Example 2 (FIG. 13) to Example 7 (FIG. 18). be able to.

なお、変形例1(図9)〜変形例3(図11,図12)及び実施例2(図13)〜実施例13(図24)において、実施例1(図5〜図8)と機能が共通する部分には同一符号を付すことによって説明を省略したものがある。また、各変形例及び各実施例に記載した各々の構成は、相互に組み合わせて実施することができる。   The functions of Example 1 (FIGS. 5 to 8) are the same as those of Example 1 (FIG. 9) to Example 3 (FIGS. 11 and 12) and Example 2 (FIG. 13) to Example 13 (FIG. 24). In some parts, the description is omitted by giving the same reference numerals to the common parts. Moreover, each structure described in each modified example and each Example can be implemented in combination with each other.

本発明に係る超音波流量計の一実施例の全体斜視図。1 is an overall perspective view of an embodiment of an ultrasonic flowmeter according to the present invention. 図1の正面断面図。FIG. 2 is a front sectional view of FIG. 1. 図2のA−A断面図。AA sectional drawing of FIG. 超音波センサの配置変形例を示す説明図。Explanatory drawing which shows the arrangement | positioning modification of an ultrasonic sensor. 図2における中間流路の流路構成の第1実施例を示す一部破断斜視図及び正面図。The partially broken perspective view and front view which show the 1st Example of the flow path structure of the intermediate flow path in FIG. 図5における直線状中間流路の平面断面図及び側面断面図。FIG. 6 is a cross-sectional plan view and a side cross-sectional view of the straight intermediate flow path in FIG. 5. 図5(b)の要部を拡大して、小流量時及び大流量時の高さ方向の流速分布を示す説明図。Explanatory drawing which expands the principal part of FIG.5 (b) and shows the flow velocity distribution of the height direction at the time of the small flow volume and the large flow volume. 図6(a)を用いて、小流量時及び大流量時の幅方向の流速分布を示す説明図。Explanatory drawing which shows the flow velocity distribution of the width direction at the time of the small flow volume and the large flow volume using Fig.6 (a). 直線状中間流路の第1変形例を示す平面断面図及び側面断面図。The plane sectional view and side surface sectional view which show the 1st modification of a linear intermediate | middle flow path. 直線状中間流路の第2変形例を示す平面断面図及び側面断面図。The plane sectional view and side sectional view showing the 2nd modification of a linear middle channel. 直線状中間流路の第3変形例を示す平面断面図及び側面断面図。The plane sectional view and side sectional view showing the 3rd modification of a straight middle channel. 重合網に用いられるメッシュ生地の説明図。Explanatory drawing of the mesh fabric used for a polymerization net. 中間流路の流路構成の第2実施例を示す一部破断斜視図及び正面図。The partially broken perspective view and front view which show 2nd Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第3実施例を示す一部破断斜視図及び正面図。The partially broken perspective view and front view which show the 3rd Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第4実施例を示す一部破断斜視図及び正面図。The partially broken perspective view and front view which show the 4th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第5実施例を示す一部破断斜視図及び要部拡大図。The partially broken perspective view and principal part enlarged view which show 5th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第6実施例を示す一部破断斜視図及び要部拡大図。The partially broken perspective view and principal part enlarged view which show the 6th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第7実施例を示す一部破断斜視図及び要部拡大図。The partially broken perspective view and principal part enlarged view which show the 7th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第8実施例を示す正面断面図。Front sectional drawing which shows the 8th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第9実施例を示す正面断面図。Front sectional drawing which shows the 9th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第10実施例を示す正面断面図。Front sectional drawing which shows the 10th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第11実施例を示す一部破断斜視図及び正面断面図。The partially broken perspective view and front sectional drawing which show the 11th Example of the flow path structure of an intermediate flow path. 中間流路の流路構成の第12実施例を示す斜視断面図及び正面断面図。The perspective sectional view and front sectional view showing the 12th example of the channel configuration of the intermediate channel. 中間流路の流路構成の第13実施例を示す斜視断面図及び正面断面図。The perspective sectional view and front sectional view showing the 13th example of the channel configuration of the intermediate channel.

符号の説明Explanation of symbols

21 中間流路
21a 直線状中間流路(計測用直線流路)
21a1 超音波計測区間(流量計測区間)
21a2 助走区間
21b 入口側連結流路(導入側流路)
21c 出口側連結流路(導出側流路)
21d 短辺壁部
21f 長辺壁部
211 方向転換部
211a 第一の減少部(減少部)
212 調整部
212a 第二の減少部
212a1 内周側減少部
212a2 外周側減少部
212b 延出部
213 増大部
213a 突入部
214 区画板(区画部)
23 超音波センサ
40 仕切壁(仕切部)
41 連通孔
42 重合網(重合部)
100 超音波流量計
123a,123b 送受信振動子(センサ素子)
M メッシュ生地(網目状素材)
m 網部
h 開孔部
y 長繊維糸(フィラメント)
L 長辺
S 短辺
H 開口高さ
W 開口幅
W’,W” 分割流路の開口幅
O1 増大部での高さ方向の中央位置
O2 調整部での高さ方向の中央位置
21 Intermediate channel 21a Linear intermediate channel (Straight channel for measurement)
21a1 Ultrasonic measurement section (flow measurement section)
21a2 Run-up section 21b Inlet side connection flow path (introduction side flow path)
21c Outlet side connecting channel (outlet side channel)
21d Short side wall part 21f Long side wall part 211 Direction change part 211a 1st reduction part (decrease part)
212 adjustment part 212a 2nd reduction part 212a1 inner circumference side reduction part 212a2 outer circumference side reduction part 212b extension part 213 increase part 213a rushing part 214 partition plate (partition part)
23 Ultrasonic sensor 40 Partition wall (partition)
41 Communication hole 42 Polymerization network (polymerization part)
100 Ultrasonic flow meter 123a, 123b Transceiver (sensor element)
M mesh fabric (network material)
m Net part h Opening part y Long fiber yarn (filament)
L Long side S Short side H Opening height W Opening width W ', W "Divided flow path opening width O1 Center position in the height direction at the increased portion O2 Center position in the height direction at the adjusting portion

Claims (15)

流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波ビームを発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波ビームを受信する送受信振動子が取り付けられた計測用直線流路と、を含む超音波流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央で前記取付壁面に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成され、流体の流れ方向を揃える調整部と、
その調整部に続いて、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化する増大部と、
前記計測用直線流路内に流れ方向に沿って配置され、その計測用直線流路の長辺となる開口幅を幅方向に分割して複数の分割流路を形成するとともに、前記超音波ビームの測線に対応させて幅方向に貫通形成された連通孔を有する1又は複数の仕切部と、を備え、
それら方向転換部、調整部及び増大部を通り、前記分割流路に分かれて流れることにより、前記計測用直線流路を流れる流体は、流れ方向に直交する断面において幅方向及び高さ方向での流速分布がそれぞれ均等化及び/又は対称化されることを特徴とする超音波流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion An ultrasonic flowmeter including a measurement linear flow channel to which a transmission / reception transducer is attached that oscillates an ultrasonic beam toward the side and / or receives an ultrasonic beam arriving from the upper side or the lower side in the flow direction Because
Following the outlet-side end of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow, and parallel to the mounting wall surface at the center in the width direction. In a simple cross-section, the direction changing portion having a decreasing portion that decreases as the opening height of the flow path goes toward the lower side in the flow direction,
An adjustment part that is connected to the outlet side end of the direction changing part and that aligns the flow direction of the fluid;
Following the adjustment part, the increasing part where the opening height of the flow path increases and changes stepwise in the height direction on the outer peripheral side and the inner peripheral side,
The ultrasonic linear beam is arranged along the flow direction in the measurement linear flow path, and a plurality of divided flow paths are formed by dividing an opening width as a long side of the measurement linear flow path in the width direction. One or a plurality of partitioning portions having communication holes formed in the width direction so as to correspond to the line of measurement,
The fluid flowing through the measurement linear flow path in the cross-section orthogonal to the flow direction in the width direction and the height direction by flowing through the direction change part, the adjustment part, and the increase part and divided into the divided flow paths. An ultrasonic flowmeter, wherein flow velocity distributions are equalized and / or symmetrized, respectively.
流体を通過させるために所定の流路断面積を有する導入側流路と、その導入側流路に交差して直線状に連通形成され、流体の流量を測定するために流路の幅方向を長辺とし高さ方向を短辺とする矩形状に開口して前記導入側流路よりも小さい流路断面積を有し、その短辺壁部の取付壁面に流体の流れ方向上手側若しくは下手側に向けて超音波ビームを発振し、及び/又は流れ方向上手側若しくは下手側から到来する超音波ビームを受信する送受信振動子が取り付けられた計測用直線流路と、を含む超音波流量計であって、
前記導入側流路の出口側末端部に続いて、外周側と内周側とのうち少なくとも外周側が湾曲形態に形成されて流体の流れを方向転換させるとともに、幅方向中央で前記取付壁面に平行な断面において、流路の開口高さが流れ方向下手側に向かうにつれて減少する第一の減少部を有する方向転換部と、
その方向転換部の出口側末端部に続く形で接続形成されて流体の流れ方向を揃えるとともに、流れ方向に直交する断面において、流路の開口高さが幅方向端部側に向かうにつれて減少する第二の減少部を有する調整部と、
その調整部に続いて、少なくとも前記外周側にて流路の開口高さが高さ方向に階段状に増大変化する増大部と、
前記計測用直線流路内に流れ方向に沿って配置され、その計測用直線流路の長辺となる開口幅を幅方向に分割して複数の分割流路を形成するとともに、前記超音波ビームの測線に対応させて幅方向に貫通形成された連通孔を有する1又は複数の仕切部と、を備え、
それら方向転換部、調整部及び増大部を通り、前記分割流路に分かれて流れることにより、前記計測用直線流路を流れる流体は、流れ方向に直交する断面において幅方向及び高さ方向での流速分布がそれぞれ均等化及び/又は対称化されることを特徴とする超音波流量計。
An introductory side channel having a predetermined channel cross-sectional area for allowing fluid to pass through, and a linear communication crossing the introductory side channel, and the width direction of the channel to measure the fluid flow rate Open in a rectangular shape having a long side and a short side in the height direction, and having a channel cross-sectional area smaller than that of the introduction-side channel, the fluid flow direction upper side or lower side on the mounting wall surface of the short side wall portion An ultrasonic flowmeter including a measurement linear flow channel to which a transmission / reception transducer is attached that oscillates an ultrasonic beam toward the side and / or receives an ultrasonic beam arriving from the upper side or the lower side in the flow direction Because
Following the outlet-side end of the introduction-side flow path, at least the outer peripheral side of the outer peripheral side and the inner peripheral side is formed in a curved shape to change the direction of fluid flow, and parallel to the mounting wall surface at the center in the width direction. In a simple cross-section, the direction changing portion having a first reduction portion that decreases as the opening height of the flow path decreases toward the lower side in the flow direction;
It is connected to the outlet side end of the direction changing portion so as to align the flow direction of the fluid, and in the cross section perpendicular to the flow direction, the opening height of the flow path decreases as it goes to the end in the width direction. An adjustment portion having a second reduction portion;
Following the adjustment portion, at least on the outer peripheral side, the opening height of the flow path increases in a stepwise manner in the height direction, and an increasing portion,
The ultrasonic linear beam is arranged along the flow direction in the measurement linear flow path, and a plurality of divided flow paths are formed by dividing an opening width as a long side of the measurement linear flow path in the width direction. One or a plurality of partitioning portions having communication holes formed in the width direction so as to correspond to the line of measurement,
The fluid flowing through the measurement linear flow path in the cross-section orthogonal to the flow direction in the width direction and the height direction by flowing through the direction change part, the adjustment part, and the increase part and divided into the divided flow paths. An ultrasonic flowmeter, wherein flow velocity distributions are equalized and / or symmetrized, respectively.
前記第二の減少部は、流路の高さ方向の中間位置から前記内周側又は外周側に向かうにつれて、その流路の開口幅が連続的に減少するように形成されている請求項2に記載の超音波流量計。   The second decreasing portion is formed such that the opening width of the flow path continuously decreases from the intermediate position in the height direction of the flow path toward the inner peripheral side or the outer peripheral side. The ultrasonic flowmeter described in 1. 前記第二の減少部は、流路の高さ方向の中間位置から前記内周側及び外周側に向かうにつれて、その流路の開口幅がそれぞれ連続的に減少するように形成されている請求項2に記載の超音波流量計。   The second decreasing portion is formed such that the opening width of the flow path continuously decreases from the intermediate position in the height direction of the flow path toward the inner peripheral side and the outer peripheral side. 2. The ultrasonic flowmeter according to 2. 前記第二の減少部において、流路の高さ方向の中間位置から前記内周側に向かう開口幅の減少率が、前記外周側に向かう開口幅の減少率よりも大である請求項4に記載の超音波流量計。   5. The reduction rate of the opening width from the intermediate position in the height direction of the flow path toward the inner peripheral side in the second reduction portion is larger than the reduction rate of the opening width toward the outer peripheral side. The described ultrasonic flowmeter. 前記調整部の内周側及び外周側の流路壁面は前記計測用直線流路の長辺壁部の壁面とそれぞれ平行状に配置されるとともに、
前記増大部の流路の高さ方向の中央は、前記調整部の流路の高さ方向の中央よりも前記外周側又は内周側に偏って配置されている請求項1ないし5のいずれか1項に記載の超音波流量計。
The flow path wall surfaces on the inner peripheral side and the outer peripheral side of the adjustment part are arranged in parallel with the wall surfaces of the long side wall part of the measurement linear flow path, respectively.
The center in the height direction of the flow path of the increasing portion is arranged so as to be biased toward the outer peripheral side or the inner peripheral side with respect to the center in the height direction of the flow path of the adjusting portion. The ultrasonic flowmeter according to item 1.
前記増大部は、前記外周側及び内周側にて流路の開口高さが各々高さ方向に階段状に増大変化し、
前記調整部は、少なくとも流路の高さ方向の前記内周側の後端部が、前記増大部において流れ方向下手側へ延出して延出部を形成している請求項1ないし6のいずれか1項に記載の超音波流量計。
In the increasing portion, the opening height of the flow path increases and changes stepwise in the height direction on the outer peripheral side and the inner peripheral side,
7. The adjustment unit according to claim 1, wherein at least a rear end portion on the inner peripheral side in the height direction of the flow path extends to a lower side in the flow direction in the increase portion to form an extension portion. The ultrasonic flowmeter according to claim 1.
前記延出部の流路壁面は、流れ方向下手側に向かうにつれて前記増大部における前記内周側及び/又は外周側の壁面に徐々に接近した後接触する曲面状に形成されている請求項7に記載の超音波流量計。   The flow path wall surface of the extension part is formed in a curved surface shape that gradually contacts the inner peripheral side and / or the outer peripheral side wall of the increasing part as it goes toward the lower side in the flow direction. The ultrasonic flowmeter described in 1. 前記延出部の流路壁面は、流れ方向下手側に向かうにつれて前記増大部における前記短辺側の壁面に徐々に接近した後接触する曲面状に形成されている請求項7又は8に記載の超音波流量計。   9. The flow path wall surface of the extension part is formed in a curved surface shape that gradually contacts the wall surface on the short side in the increase part as it goes toward the lower side in the flow direction. Ultrasonic flow meter. 前記方向転換部と調整部とのうち少なくとも調整部には、流路の開口高さを高さ方向に区分する1又は複数の区画部が流れ方向に沿って配置されている請求項1ないし9のいずれか1項に記載の超音波流量計。   The at least one of the direction changing portion and the adjusting portion is provided with one or a plurality of partition portions that divide the opening height of the flow path in the height direction along the flow direction. The ultrasonic flowmeter according to any one of the above. 前記区画部は、表面が平滑な単一の板材により前記方向変換部と調整部とに跨って配置されるとともに、少なくとも前記調整部の高さ方向において前記外周側に偏って位置している請求項10に記載の超音波流量計。   The partition portion is disposed across the direction changing portion and the adjustment portion by a single plate material having a smooth surface, and is located at least on the outer peripheral side in the height direction of the adjustment portion. Item 11. The ultrasonic flowmeter according to Item 10. 前記仕切部は、前記超音波ビームの通過及び流体の流通を許容しつつ前記連通孔に重ね合わせてその連通孔の開孔面積を縮小するために網目状素材で構成された重合部を有する請求項1ないし11のいずれか1項に記載の超音波流量計。   The partition part has a superposition part made of a mesh-like material so as to overlap the communication hole and reduce an opening area of the communication hole while allowing passage of the ultrasonic beam and fluid flow. Item 12. The ultrasonic flowmeter according to any one of Items 1 to 11. 前記連通孔の開孔面積は、その連通孔を通過する前記超音波ビームが当該連通孔に平行な平面に投影されたビーム投影断面積と同等又はそれ以下である請求項1ないし12のいずれか1項に記載の超音波流量計。   The opening area of the communication hole is equal to or less than a beam projection cross-sectional area in which the ultrasonic beam passing through the communication hole is projected onto a plane parallel to the communication hole. The ultrasonic flowmeter according to item 1. 前記仕切部は、幅方向において互いに平行状に複数配置されるとともに、分割された各分割流路の開口幅が互いに等しくなるように配置されている請求項1ないし13のいずれか1項に記載の超音波流量計。   14. The partition part according to claim 1, wherein a plurality of the partition parts are arranged in parallel to each other in the width direction, and are arranged so that the opening widths of the divided flow paths are equal to each other. Ultrasonic flow meter. 前記導入側流路と計測用直線流路とが直交状に配置され、
前記計測用直線流路の開口高さ及び開口幅が流れ方向に対して一定に形成されている請求項1ないし14のいずれか1項に記載の超音波流量計。
The introduction side channel and the measurement linear channel are arranged orthogonally,
The ultrasonic flowmeter according to any one of claims 1 to 14, wherein an opening height and an opening width of the measurement linear flow path are formed constant with respect to a flow direction.
JP2008239944A 2008-09-18 2008-09-18 Ultrasonic flowmeter Pending JP2010071812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239944A JP2010071812A (en) 2008-09-18 2008-09-18 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239944A JP2010071812A (en) 2008-09-18 2008-09-18 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2010071812A true JP2010071812A (en) 2010-04-02

Family

ID=42203741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239944A Pending JP2010071812A (en) 2008-09-18 2008-09-18 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2010071812A (en)

Similar Documents

Publication Publication Date Title
JP2010164558A (en) Device for measuring flow of fluid
US9222811B2 (en) Flowmeter
EP1816443A2 (en) Ultrasonic flow meter
JP2017015475A (en) Measuring unit and flow meter
CN101802564A (en) Bi-directional oscillating jet flowmeter
JP2014077679A (en) Flow meter
JP4936856B2 (en) Flowmeter
KR20120065945A (en) Flow lattice for using in a flow pipe of a flowing fluid medium
JP2009264906A (en) Flow meter
JP7209139B2 (en) ultrasonic flow meter
KR20140112540A (en) Ultrasonic wave fluid measurement device
JP2010071812A (en) Ultrasonic flowmeter
JP2009276132A (en) Ultrasonic flowmeter
JP6025449B2 (en) Coriolis mass flow measurement device
CN101424554B (en) Ultrasonic flow measuring instrument
JP2009276131A (en) Ultrasonic flowmeter
JP4048964B2 (en) Ultrasonic flow meter
JP3824236B2 (en) Ultrasonic flow measuring device
JP2018159627A (en) Flow measurement unit and flow meter using the same
JP2010107444A (en) Ultrasonic flowmeter
JP2003065817A (en) Ultrasonic flow-measuring instrument
JP2004251700A (en) Fluid measuring device
JP3781424B2 (en) Ultrasonic flow measuring device
JP2007147562A (en) Ultrasonic meter device
JP2003247875A (en) Ultrasonic flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130129