JP4368616B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP4368616B2
JP4368616B2 JP2003158603A JP2003158603A JP4368616B2 JP 4368616 B2 JP4368616 B2 JP 4368616B2 JP 2003158603 A JP2003158603 A JP 2003158603A JP 2003158603 A JP2003158603 A JP 2003158603A JP 4368616 B2 JP4368616 B2 JP 4368616B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
pressure loss
measurement
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003158603A
Other languages
Japanese (ja)
Other versions
JP2004361190A (en
Inventor
真二 栗田
茂行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2003158603A priority Critical patent/JP4368616B2/en
Publication of JP2004361190A publication Critical patent/JP2004361190A/en
Application granted granted Critical
Publication of JP4368616B2 publication Critical patent/JP4368616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計等の流量計に関する。
【0002】
【従来の技術】
従来、気体(例えば都市ガス、プロパンガス)、液体(例えば水)などの流体の流量を計測する流量計測装置として、例えば、超音波を利用して流速を測定する超音波流量計が知られている。その際の測定原理として、一般には「伝搬時間差法」が用いられる。これは、流路の流体流れ方向上手側及び下手側に一対の超音波送受信部を設け、超音波信号の送受信を交互に切り替えて、流れ方向上手側の超音波送信部(送信側振動子)から流れ方向下手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、順方向到達時間という)Tjと、流れ方向下手側の超音波送信部(送信側振動子)から流れ方向上手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、逆方向到達時間という)Tgとの時間差(到達時間差)ΔT=Tg−Tjから流路を流れる流体の平均流速及び流量を求める方法である。
【0003】
そして、理論上は流量Q=0(平均流速v=0)のとき到達時間差ΔT=0となるが、実際には製造誤差等によりΔTは0に一致せずにずれている(オフセットともいう;例えば特許文献1の図12参照)場合がある。このずれ量(オフセット量)は個々の超音波流量計(超音波センサ)に固有の値として工場出荷時に計測可能であり、初期値あるいは検量線の形で原点補正(ゼロ点補正)されるが、オフセット量は経時変化により変動する場合がある。しかし、ガスメータ等では一旦設置されると一定期間原則としてガスの使用を停止することができないため、オフセット量を測定し直し補正することは困難となる。そこで、特許文献1には、圧力センサを用いることにより完全な流量0の状態でなくても原点補正を可能とする技術が開示されている。
【0004】
【特許文献1】
特開2001−249038号公報
【0005】
【発明が解決しようとする課題】
ところが、特許文献1に記載の技術では、
▲1▼流体の絶対圧を検出する圧力センサを設けているため、高精度が要求される。したがって、閉塞圧に等しいか否かの確認の際、さらに分解能(感度や増幅率)を高くする必要がある。
▲2▼現在のオフセット量が不明でありこれから原点補正が必要な超音波センサを用いて流量測定し、その測定データを測定流路の流量が0とみなせるか否かの判断基準にしているので、測定データと判断結果に対する信頼性が乏しい。
【0006】
そこで本発明の課題は、入口側と出口側との流体の圧力差を検出することにより、流量有無の判別が精度よく行え、原点補正値を簡便に取得することのできる流量計を提供することにある。
【0007】
【課題を解決するための手段及び発明の効果】
上記課題を解決するために前提となる流量計として
流量計測用の流体を導入し送出するためにそれぞれ外面に開口する流入口及び流出口と、
それら流入口及び流出口の間に形成され、前記流体を通過させるための流路を含む圧力損失部と、
その圧力損失部を挟む流入口側と流出口側との前記流体の圧力差が所定値以下の場合に、前記流路を流れる前記流体の流量が無いか、又は実質的に無い状態にあることを信号出力する流量有無判別手段と、
を備えることができる
【0008】
また、上記課題を解決するために前提となる流量計として
流量計測用の流体を導入し送出するためにそれぞれ外面に開口する流入口及び流出口と、
それら流入口及び流出口の間に形成され、前記流体を通過させるための流路を含む圧力損失部と、
その圧力損失部を挟む流入口側と流出口側との前記流体の圧力差を検出する圧力センサを設けた圧力検出管と、
その圧力センサが所定値以下の圧力差を検出した場合に、前記流路を流れる前記流体の流量が無いか、又は実質的に無い状態にあることを信号出力する流量有無判別手段と、
を備えることができる
【0009】
これらの流量計によれば、流体の流れに伴って生じる圧力損失を、流入口側と流出口側との流体の圧力差(差圧)として検出し、それによって流量の有無(すなわち流路を流体が流れているか否か)を判別するので、その差圧を生じさせる圧力損失部によって差圧を拡大(増幅)検出しやすくなる。このように、差圧を検出する際の分解能を容易に高められるので、流量有無の判別精度を高レベルに保つことができ、原点補正値(オフセット量)が精度よくかつ簡便に取得できる。しかも、流入口側と流出口側との差圧の検出のみによって流量計の原点補正の可否を判別でき、補正が必要な流量計による補正の可否の判別といった複雑な判断プロセスを要しないため、得られた原点補正値に対する信頼性が高くなる。
【0010】
このような流量計において差圧検出に圧力検出管を用いる場合には、ダイアフラム、ベローズ等を検出体とする圧力センサを判別スイッチとして使用することができ、高精度を有する検出部をコンパクトに組み込むことができる。
【0011】
さらに、上記課題を解決するために本発明に係る流量計は、
流量計測用の流体を導入し送出するためにそれぞれ外面に開口する流入口及び流出口と、
それら流入口及び流出口の間に形成され、前記流体を通過させる間にその流量を計測する流量計測手段が配置された流路を含む圧力損失部と、
その圧力損失部を挟む流入口側と流出口側との前記流体の圧力差が所定値以下の場合に、前記流路を流れる前記流体の流量が無いか、又は実質的に無い状態にあることを信号出力する流量有無判別手段と、
その流量有無判別手段からの流量無しの出力信号に基づき前記流量計測手段により計測された原点補正値を記憶する原点補正値記憶手段と、
前記圧力損失部に設けられ、その圧力損失部を挟む流入口側と流出口側との前記流体の圧力差を増幅して検出するための圧力損失増幅手段と、
を備え
前記圧力損失増幅手段は、段階的又は連続的に流路断面積を変更可能な可変絞り機構として、弁座に対向配置された弁体が前記流路を閉とする方向に移動するに伴って流路断面積が段階的又は連続的に小となる遮断弁を有し、前記圧力差が所定値以下になるように前記遮断弁の弁体を流路閉方向に移動して絞り量を調節し、圧力損失をコントロールして近似的な流量無し状態を実現するとともに、
このとき前記原点補正値記憶手段は、前記流量有無判別手段からの流量無しの出力信号に基づいて前記流量計測手段により計測された計測値を原点補正値として記憶することを特徴とする。
【0012】
この流量計によれば、上記したような精度と信頼性の高い原点補正値を定期的にあるいは不定期に取得し、流量計測の際の初期値又は検量線として更新しながら使用できる。これによって、流量有無の判別及び原点補正値ひいては流量計測の精度を高レベルで維持管理することができるようになる。例えば、超音波式家庭用ガスメータにおいて、本発明に基づく原点補正を1回/年以上の頻度で実施した場合、1リットル/時未満の微小流量に対する判別精度を法定の10年間以上にわたって容易に維持管理できるようになる。
【0013】
そして、以上のような流量計において、圧力損失部に圧力損失増幅手段を設け、圧力損失部を挟む流入口側と流出口側との流体の圧力差を増幅して検出するようにすれば、流量有無の判別精度がさらに向上し、より正確な原点補正値が得られるようになる。
その際、圧力損失増幅手段として段階的又は連続的に流路断面積を変更可能な可変絞り機構を採用するときには、絞り量の調節によって圧力損失を高精度にコントロールして近似的な流量無し状態を実現することができる。したがって、通常の流量計としての機能を維持しながら、あるいは流体の使用が開始されたときには直ちに通常の流通状態への復帰を保障しながら、原点補正値を得ることができる。このような可変絞り機構として、モータコントロール式の遮断弁を例示することができる。
そして、可変絞り機構として用いる遮断弁において、弁座に対向配置された弁体が流路を閉とする方向に移動するに伴って流路断面積が段階的又は連続的に小となる構造を採用すれば、圧力損失の拡大率(増幅率)を大きくとれるので、流量有無の判別が一層高精度で行える。
【0014】
ところで、超音波流量計の場合、流量計測用の超音波センサが設置され、かつ流量計測のため他の部分とは断面積を小とした計測用流路を含むように圧力損失部を設定すると、計測用流路で流速と圧力損失を増大させることにより、通常計測時の流量計測精度及び原点補正時の流量有無の判別精度をともに高めることができる。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を図面を用いて説明する。図1(a)は、流量計の一実施例として、一般住宅用ガスメータ等に用いられる超音波流量計の正面断面図を示す。この超音波流量計100は、本体ユニット110と中間流路形成ユニット120と遮断弁130とから構成されている。
【0016】
図1(a)に示すように、本体ユニット110は全体として直方体形状を有し、その上面には、上流側のガス配管に接続される流入口112及び下流側のガス配管に接続される流出口113がそれぞれ開口している。また、その内部には、流入口112と流出口113との間にガス(流体)を通過させるための本体流路114(圧力損失部;流路)が形成されている。本体ユニット110の下部には、図1(a)の背面側から手前側に向けて本体流路切除部115が形成され、この本体流路切除部115には中間流路形成ユニット120が嵌め込まれている。
【0017】
中間流路形成ユニット120の内部には、本体ユニット110の本体流路切除部115にガスの流れ方向と直交する方向(嵌合方向)から嵌合したときに本体流路114と接続される中間流路121(圧力損失部;流路)が貫通形成されている。この中間流路121は、本体流路114と滑らかに連続する入口側連結流路121b(圧力損失部),出口側連結流路121c(圧力損失部)と、両端で両連結流路121b,121cと連なるとともに、本体流路114とほぼ直交する形態で本体ユニット110の下面に沿って配設される直線状中間流路121a(圧力損失部)とから構成されている。また、中間流路形成ユニット120には、直線状中間流路121aを通過するガスの流量を測定するために、超音波センサの一対の超音波送受信部2,3がそれぞれ着脱可能に取り付けられている。直線状中間流路121aの軸直交断面積を本体流路114の軸直交断面積よりも小とし(絞り)、この部分を流れるガスの圧力損失を大きくするとともに、直線状中間流路121aを流れるガスの流速を速くして超音波センサ(超音波送受信部2,3)による流量(流速)の測定精度が高くなるようにしている。
【0018】
このように、流入口112と流出口113との間には、ガスを通過させるための各流路114,121等で構成される圧力損失部が形成される。そして、このような圧力損失部を挟む流入口112側と流出口113側とのガスの圧力差を検出するために、中間部に圧力センサ118を備え、流入口112側及び流出口113側の本体流路114,114からそれぞれ延設した連通管116,117の先端側を圧力センサ118に連結した圧力検出管119が設けられている。
【0019】
圧力センサ118の一例として静電容量式圧力センサを用いた場合の説明図を図1(b)に示す。この圧力センサは、中央可動電極としてのダイアフラム118aの移動により固定電極118b,118bとの間の静電容量が変化し、ON−OFFするスイッチとして機能する。したがって、連通管116,117を介して導入された流入口112側と流出口113側とのガスの圧力差が所定値以下の場合にON(又はOFF)して、各流路114,121を流れるガスの流量が無いか、又は実質的に無い状態にあることを検出する。
【0020】
図1(a)に戻り、流入口112と中間流路121との間の本体流路114には、本体流路114のガスの流れを遮断する遮断弁130(圧力損失増幅手段;可変絞り機構)が設けられている。この遮断弁130は、図4に示す通り、正逆回転可能なステッピングモータ等の電動モータ131(可変絞り機構)の回転運動を弁体移動手段(図示せず)によって往復直線運動に変換し、弁体132(可変絞り機構)をコイルスプリング等の弾性部材134(可変絞り機構)に抗して弁座133(可変絞り機構)に接近・離間させて、ガスの流通を停止又は開放できる。また、遮断弁130は段階的又は連続的に流路断面積を変更可能な可変絞り機構を構成し、その絞りにより、圧力損失部を挟む流入口112側と流出口113側とのガスの圧力差を増幅する圧力損失増幅手段としても機能している。
【0021】
具体的には、図4に示すように、遮断弁130は、弁座133に対向配置された弁体132が本体流路114(流路)を閉とする方向に移動するに伴って流路断面積が段階的に小となるように構成されている。この弁体132は、弁座133への移動方向に配置された複数(例えば3枚)の平板状の弁部137,138,139を有している。弁座133から最も遠い側の弁部139を除き、各弁部137,138には、中央部に板厚方向への貫通孔137a,138aが形成され、これら貫通孔137a,138aは弁座133に近いもの(出口側;本体流路114下手側)ほど大径に形成されている。
【0022】
また、弁体132には、下記▲1▼〜▲3▼のようにして各弁部137,138,139を可逆的に移動可能とするための順次閉鎖機構140が設けられている。
▲1▼各弁部137,138,139が所定の間隔を有して並ぶ全開位置(図4(b)参照)から、
▲2▼弁座133に近い側の弁部135より順次弁座133側に移動する状態を経て、
▲3▼すべての弁部137,138,139が板厚方向(移動方向)に重なり合うとともに弁座133に接当して閉鎖する全閉位置(図4(c)参照)に至る。
【0023】
順次閉鎖機構140の詳細を図4(b)に示す。各弁部137,138,139の端面には、それぞれ1又は複数(例えば2個)の凹部137b,138b,139bが形成されている。弁座133に近い側において隣り合う弁部137,138に形成された凹部137b,138bは互いに対向するように配置され、対向配置された凹部137b,138bに跨って圧縮コイルばね141(弾発部材)が挿入・介装されている。同様に、弁座133に遠い側において隣り合う弁部138,139に形成された凹部138b,139bに跨って圧縮コイルばね142(弾発部材)が挿入・介装されている。そして、弁座133に遠い側の圧縮コイルばね142ほどばね定数を大(弾発部材の弾発力が大)としているので、弾性部材134の弾性力又は電動モータ131の駆動力によって押圧されたときに、弁座133に近い側(出口側;本体流路114下手側)の弁部から順次閉鎖移動する。
【0024】
したがって、圧縮コイルばね141,142のばね定数(弾発部材の弾発力)を設定調整しておくことにより、ステッピングモータ131(電動モータ)のステップ数に応じて弁部137,138,139を順次閉鎖し、本体流路114を流れるガスの流量が無いか、又は実質的に無い状態を実現できる。また、このようにして圧力損失の拡大率(増幅率)を大きくとれるので、圧力センサ118による流量有無の判別が高精度で行える。なお、143は、各弁部137,138,139に形成された軸孔137c,138c,139cを貫通して挿入される支持軸を示し、順次閉鎖機構140を円滑に作動させるために補助的に設けられている。
【0025】
図4の遮断弁は、図5に示す変形例のように簡略化構造とすることもできる。図5の遮断弁130’では、対向する弁体132’と弁座133’とにそれぞれ軸方向に1又は複数(例えば各々3段)の階段状の段差132a,133aが形成されている。これにより、弁座133’に対向配置された弁体132’が本体流路114(流路)を閉とする方向に移動するに伴って流路断面積が連続的に小となるように構成されている。すなわち、両者間に形成される隙間135がこれらの段差132a,133aに沿う段差形状を有することになり、隙間135への閉じ込め効果(ラビリンス効果)が増し圧力損失の拡大率(増幅率)を大きくとれるので、圧力センサ118による流量有無の判別が高精度で行える。なお、隙間135は、弁座133に近いもの(出口側;本体流路114下手側)ほど大に形成されている。
【0026】
図2に、このような超音波流量計100の計測部の基本構成を示す。
この超音波流量計100の流量計測用の直線状中間流路121aには、流量計測用のガス(流体)が流れ方向軸線Oに沿って図示の流れ方向に流通(平均流速v)している。また、流路121aの壁10には、一対の超音波送受信部2,3(流量計測手段;超音波センサ)が取り付けられている。図2では、流体の流れ方向上手側の超音波送受信部2(送受信振動子21(第一振動子))と流体の流れ方向下手側の超音波送受信部3(送受信振動子31(第二振動子))とが流路121aを挟んで対向配置された透過型Z配列に構成されている。
【0027】
計測用の流路121aは、少なくとも一対の超音波送受信部2,3間において流れ方向軸線Oが直線状であり、軸断面の形状及び断面積が流れ方向において同一に形成されている。測定対象がガスの場合、計測用の流路121aの軸断面形状は壁10により閉鎖された空間を形成するものであればよく、例えば、円形状、楕円形状、正方形状、矩形状等のいずれを採用してもよい。
【0028】
超音波送受信部2は、流路121aの壁10に固定され、圧電素子、振動板、電極板等から構成される送受信振動子21(第一振動子)を備えている。一方、超音波送受信部3は、超音波送受信部2(第一振動子21)よりも流れ方向下手側の壁10に固定され、圧電素子、振動板、電極板等から構成される送受信振動子31(第二振動子)を備えている。さらに、これら一対の超音波送受信部2,3には、第一振動子21又は第二振動子31を発振させるための駆動電圧回路等から構成される送信手段22と、第一振動子21又は第二振動子31の発生電圧を検出するための電圧検出回路等から構成される受信手段32とを備えている。これによって、第一振動子21は、流体の流れ方向下手側(超音波送受信部3側)に向けて超音波を送信するとともに、第二振動子31で送信された超音波を受信する。一方、第二振動子31は、流体の流れ方向上手側(超音波送受信部2側)に向けて超音波を送信するとともに、第一振動子21で送信された超音波を受信する。
【0029】
図2において、ガスの平均流速をv、ガス中を伝搬する音速をc、超音波の進行方向(測線M)とガスの流れ方向(流れ方向軸線O)とのなす角をθ(以下、測線角という)、超音波の伝搬距離をLとすると、順方向到達時間Tj及び逆方向到達時間Tgはそれぞれ次のように表わされる。
Tj=L/(c+v・cosθ) (1)
Tg=L/(c−v・cosθ) (2)
(1)、(2)式より次式が得られる。
v=K(L/2cosθ)(Tg−Tj)/(Tg・Tj) (3)
Q=v・A (4)
ただし、Kは補正係数、Aは流路1の断面積、Qはガスの流量である。
したがって、順方向到達時間Tjと逆方向到達時間Tg(到達時間差ΔT)の測定から、ガスの平均流速vと流量Qが求められる。このように、ガスの温度・含有成分等に依存する音速cを(3)式から消去することで、測定値(到達時間Tj,Tg;到達時間差ΔT)と一定値(伝搬距離L,測線角θ)とから流速vが得られる利点を有している。
【0030】
そこで、図2に示すように、超音波流量計100には、計測部として、上記した圧力センサ118、遮断弁130の他、計測制御部4と切換手段7とが備えられている。切換手段7は、受信手段32で処理すべき信号を切り換える受信信号切換手段71と、送信する振動子21,31を切り換える送信切換手段72とを有する。
【0031】
計測制御部4は、CPU41、RAM42、ROM43、入出力インターフェース44等を有し、これらがバス45により送受信可能に接続されたマイクロコンピュータにより構成されている。ROM43は、プログラム格納領域43aとデータ記憶領域43bとを有している。プログラム格納領域43aには後述するオフセット実行プログラム等が格納されている。データ記憶領域43bには原点補正値が記憶され、原点補正値記憶手段の機能を有している。なお、CPU41は、後述するように流量有無判別手段としての機能を有している。また、圧力センサ118で検出された圧力差及び受信手段32で受信された超音波受信信号は、入出力インターフェース44を介して計測制御部4に入力される。一方、CPU41からの指令は入出力インターフェース44を介し切換手段7に出力され、また、モータドライバ136を経て遮断弁130を駆動する電動モータ131に出力される。さらに、データ記憶領域43bは原点補正の都度原点補正値を書き込めるようにEPROMとするのが望ましい。
【0032】
次に、図3のフローチャートにより超音波流量計100の計測部の作動、具体的にはオフセット実行プログラムの内容を説明する。
まず、予め定められた補正時期(例えば1回/年)が到来しているかをチェックする(S1)。補正時期が到来していれば(S1でYES)、次に計測制御部4が既に学習した生活パターンの中で現在時がガス不使用時間帯であるかを確認する(S2)。ガス不使用時間帯であれば(S2でYES)、超音波センサ(超音波送受信部2,3)の計測する流量値が0に近いかをみる(S3)。流量値が0に近いときは(S3でYES)、ガス不使用と判断して、S4にて電動モータ131を駆動して遮断弁130を少し(例えば、モータ131の数ステップ分あるいは弁部137,138,139のうちの1段分)閉める。このとき、流入口112側と流出口113側とのガスの圧力差を圧力検出管119(圧力センサ118)で検出する(S5)。
【0033】
その圧力差が設定された閾値以下であると(S6でYES)、流路121aを流れるガスの流量が無いか、又は実質的に無い状態にあると判断して、超音波センサ(超音波送受信部2,3)を送受信させ(S7)、上記(3)式から到達時間差ΔTを検出する(S8)。さらに、得られた到達時間差ΔTを原点補正値としてデータ記憶領域43bに記憶する(S9)。その後、電動モータ131を駆動して遮断弁130を全開に戻して(S10)リターンする。S5で検出された圧力差が設定された閾値を超える場合には(S6でNO)、S4(遮断弁130閉)とS5(圧力検出管119圧力差検出)の操作を繰り返す。S1、S2及びS3でNOの場合にはリターンする。なお、遮断弁130を全閉することが許容されている場合には、S7(超音波センサ送受信)の前に遮断弁130を全閉すれば、より正確な原点補正値が取得できる(S100)。また、より信頼性の高い原点補正を可能とするために、オフセット実行プログラムを複数回実行して、各回で取得された原点補正値の平均値を求めてもよい。
【0034】
また、図3に示すオフセット実行プログラムの動作中に圧力検出管119(圧力センサ118)で圧力差が検出されたときには、ガス使用が開始されたと判断して直ちにプログラムの実行を中止し、遮断弁130を全開に戻すようにすれば、通常のガス使用に支障を与えずにすむ。さらに、補正時期が到来しているにもかかわらず(S1でYES)、ガス使用中(S3でNO)が繰り返される場合には、「補正できない」旨のアラームを出すようにしてもよい。化学工場等で24時間操業を続けているケース等に有効である。
【0035】
実施例において、超音波送受信部2,3(送受信振動子21,31)を透過型Z配列に配置する場合についてのみ説明したが、本発明は反射型V字配列等のその他の配置方式にも適用できる。また、本発明は、超音波流量計以外にフルイディック流量計等の他の流量計にも適用できる。
【図面の簡単な説明】
【図1】本発明に係る流量計の一実施例としての超音波流量計の正面断面図、及び圧力センサの説明図。
【図2】図1の超音波流量計の計測部の基本構成を示す説明図。
【図3】計測部の作動を示すフローチャート。
【図4】遮断弁の説明図。
【図5】図4の遮断弁の変形例を示す説明図。
【符号の説明】
2,3 超音波送受信部(流量計測手段;超音波センサ)
4 計測制御部
41 CPU(流量有無判別手段)
43 ROM(原点補正値記憶手段)
100 超音波流量計(流量計)
114 本体流路(圧力損失部)
121 中間流路(圧力損失部)
118 圧力センサ
119 圧力検出管
130 遮断弁(可変絞り機構;圧力損失増幅手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow meter such as an ultrasonic flow meter.
[0002]
[Prior art]
Conventionally, as a flow measurement device that measures the flow rate of a fluid such as gas (for example, city gas, propane gas) or liquid (for example, water), for example, an ultrasonic flowmeter that measures a flow velocity using ultrasonic waves is known. Yes. In general, a “propagation time difference method” is used as a measurement principle at that time. This is provided with a pair of ultrasonic transmission / reception units on the upper and lower sides of the fluid flow direction of the flow path, and alternately switching the transmission / reception of ultrasonic signals, and the ultrasonic transmission unit (transmission-side transducer) on the upper side in the flow direction From the time Tj until reaching the ultrasonic receiving unit (reception side transducer) on the lower side in the flow direction (hereinafter referred to as forward arrival time) Tj, and from the ultrasonic transmission unit (transmission side transducer) on the lower side in the flow direction From the time difference (arrival time difference) ΔT = Tg−Tj to the time (hereinafter referred to as reverse direction arrival time) Tg until reaching the ultrasonic wave receiving unit (reception side transducer) on the upper side in the flow direction This is a method for obtaining the average flow velocity and flow rate.
[0003]
Theoretically, when the flow rate Q = 0 (average flow velocity v = 0), the arrival time difference ΔT = 0, but in reality ΔT is not equal to 0 due to a manufacturing error or the like (also called an offset; For example, see FIG. This deviation amount (offset amount) can be measured at the time of shipment from the factory as a value unique to each ultrasonic flowmeter (ultrasonic sensor), and the origin is corrected (zero point correction) in the form of an initial value or a calibration curve. The offset amount may vary due to changes over time. However, once installed in a gas meter or the like, the use of gas cannot be stopped in principle for a certain period of time, so it is difficult to measure and correct the offset amount again. Therefore, Patent Document 1 discloses a technique that enables the origin correction even when the flow rate is not completely zero by using a pressure sensor.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-249038
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1,
(1) Since a pressure sensor for detecting the absolute pressure of the fluid is provided, high accuracy is required. Therefore, it is necessary to further increase the resolution (sensitivity and amplification factor) when confirming whether or not it is equal to the occlusion pressure.
(2) Since the current offset amount is unknown and the flow rate is measured using an ultrasonic sensor that needs to be corrected from now on, the measurement data is used as a criterion for determining whether or not the flow rate in the measurement channel can be regarded as zero. The reliability of measurement data and judgment results is poor.
[0006]
Accordingly, an object of the present invention is to provide a flow meter that can accurately determine the presence or absence of a flow rate and can easily obtain an origin correction value by detecting a pressure difference between fluids on the inlet side and the outlet side. It is in.
[0007]
[Means for Solving the Problems and Effects of the Invention]
As flowmeter as the prerequisite in order to solve the above problems,
An inlet and an outlet opening on the outer surface for introducing and delivering a fluid for flow measurement, respectively;
A pressure loss portion formed between the inlet and the outlet and including a flow path for allowing the fluid to pass through;
When the pressure difference of the fluid between the inlet side and the outlet side sandwiching the pressure loss portion is equal to or less than a predetermined value, there is no or substantially no flow rate of the fluid flowing through the flow path. A flow rate presence / absence judging means for outputting a signal,
Can be provided.
[0008]
In addition, as a prerequisite flow meter to solve the above problems,
An inlet and an outlet opening on the outer surface for introducing and delivering a fluid for flow measurement, respectively;
A pressure loss portion formed between the inlet and the outlet and including a flow path for allowing the fluid to pass through;
A pressure detection pipe provided with a pressure sensor for detecting the pressure difference of the fluid between the inlet side and the outlet side sandwiching the pressure loss part;
When the pressure sensor detects a pressure difference equal to or less than a predetermined value, there is no flow rate of the fluid flowing through the flow path, or a flow rate presence / absence determining means for outputting a signal indicating that there is substantially no flow rate;
Can be provided.
[0009]
According to these flow meters, the pressure loss caused by the flow of the fluid is detected as the pressure difference (differential pressure) of the fluid between the inlet side and the outlet side. It is easy to detect the expansion (amplification) of the differential pressure by the pressure loss portion that generates the differential pressure. As described above, since the resolution at the time of detecting the differential pressure can be easily increased, the determination accuracy of the flow rate can be maintained at a high level, and the origin correction value (offset amount) can be obtained accurately and easily. Moreover, since it is possible to determine whether or not the flow meter origin can be corrected only by detecting the differential pressure between the inlet side and the outlet side, a complicated determination process such as determining whether or not the flow meter needs to be corrected is not required. The reliability with respect to the obtained origin correction value becomes high.
[0010]
In such a flow meter, when a pressure detection tube is used for differential pressure detection, a pressure sensor having a detection body such as a diaphragm or bellows can be used as a discrimination switch, and a highly accurate detection unit is incorporated in a compact manner. be able to.
[0011]
Furthermore, in order to solve the above problems, the flowmeter according to the present invention is:
An inlet and an outlet opening on the outer surface for introducing and delivering a fluid for flow measurement, respectively;
A pressure loss part including a flow path formed between the inlet and the outlet and provided with a flow rate measuring means for measuring the flow rate while passing the fluid; and
When the pressure difference of the fluid between the inlet side and the outlet side sandwiching the pressure loss portion is equal to or less than a predetermined value, there is no or substantially no flow rate of the fluid flowing through the flow path. A flow rate presence / absence judging means for outputting a signal,
Origin correction value storage means for storing the origin correction value measured by the flow rate measuring means based on the output signal without flow rate from the flow rate presence / absence judging means;
A pressure loss amplifying means for amplifying and detecting the pressure difference of the fluid between the inlet side and the outlet side sandwiched between the pressure loss parts, provided in the pressure loss part;
Equipped with a,
The pressure loss amplifying means is a variable throttle mechanism capable of changing the flow passage cross-sectional area stepwise or continuously, and as the valve element disposed opposite the valve seat moves in the direction of closing the flow passage. It has a shut-off valve whose flow path cross-sectional area becomes small stepwise or continuously, and adjusts the throttle amount by moving the valve body of the shut-off valve in the flow path closing direction so that the pressure difference becomes a predetermined value or less. In addition, by controlling the pressure loss to achieve an approximate no flow state,
At this time, the origin correction value storage means stores the measurement value measured by the flow rate measurement means based on the output signal without flow rate from the flow rate presence / absence discrimination means as an origin correction value .
[0012]
According to this flow meter, the above-described highly accurate and reliable origin correction value can be acquired regularly or irregularly and used while being updated as an initial value or a calibration curve for flow rate measurement. As a result, it is possible to maintain and manage the accuracy of the determination of the presence or absence of the flow rate and the origin correction value and thus the flow rate measurement at a high level. For example, in an ultrasonic household gas meter, when the origin correction according to the present invention is performed at a frequency of once / year or more, the discrimination accuracy for a minute flow rate of less than 1 liter / hour is easily maintained for more than 10 years legally. It becomes possible to manage.
[0013]
And in the flow meter as described above, if pressure loss amplifying means is provided in the pressure loss part, and the pressure difference of the fluid between the inlet side and the outlet side sandwiching the pressure loss part is amplified and detected, The accuracy of determining the presence or absence of the flow rate is further improved, and a more accurate origin correction value can be obtained.
At that time, when adopting a variable throttle mechanism that can change the channel cross-sectional area step by step or continuously as the pressure loss amplification means, the pressure loss is controlled with high accuracy by adjusting the throttle amount, and the approximate no flow state Can be realized. Accordingly, it is possible to obtain the origin correction value while maintaining the function as a normal flow meter or ensuring the return to the normal flow state immediately when the use of the fluid is started. As such a variable throttle mechanism, a motor control type shut-off valve can be exemplified.
And in the shut-off valve used as the variable throttle mechanism, the structure in which the cross-sectional area of the flow path becomes smaller stepwise or continuously as the valve element disposed opposite the valve seat moves in the direction of closing the flow path. If it is adopted, the expansion rate (amplification factor) of the pressure loss can be increased, so that the presence or absence of the flow rate can be determined with higher accuracy.
[0014]
By the way, in the case of an ultrasonic flow meter, if an ultrasonic sensor for flow measurement is installed and the pressure loss part is set so as to include a measurement flow path having a small cross-sectional area from other parts for flow measurement By increasing the flow velocity and pressure loss in the measurement channel, it is possible to improve both the flow rate measurement accuracy during normal measurement and the flow rate presence / absence discrimination accuracy during origin correction.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. Fig.1 (a) shows front sectional drawing of the ultrasonic flowmeter used for a general residential gas meter etc. as one Example of a flowmeter. The ultrasonic flowmeter 100 includes a main body unit 110, an intermediate flow path forming unit 120, and a shutoff valve 130.
[0016]
As shown in FIG. 1A, the main body unit 110 has a rectangular parallelepiped shape as a whole, and an upper surface thereof has an inlet 112 connected to the upstream gas pipe and a flow connected to the downstream gas pipe. Each outlet 113 is open. In addition, a main body flow path 114 (pressure loss portion; flow path) for allowing a gas (fluid) to pass between the inflow port 112 and the outflow port 113 is formed therein. A main body channel cut-out portion 115 is formed in the lower part of the main unit 110 from the back side to the near side in FIG. 1A, and the intermediate channel formation unit 120 is fitted into the main body channel cut-out portion 115. ing.
[0017]
The intermediate flow path forming unit 120 has an intermediate portion connected to the main body flow path 114 when fitted to the main body flow path cutting portion 115 of the main body unit 110 from a direction (fitting direction) orthogonal to the gas flow direction. A flow path 121 (pressure loss portion; flow path) is formed through. The intermediate flow path 121 includes an inlet side connection flow path 121b (pressure loss portion) and an outlet side connection flow path 121c (pressure loss portion) that are smoothly continuous with the main body flow path 114, and both connection flow paths 121b and 121c at both ends. And a straight intermediate flow path 121a (pressure loss portion) disposed along the lower surface of the main unit 110 in a form substantially orthogonal to the main flow path 114. In addition, a pair of ultrasonic transmission / reception units 2 and 3 of an ultrasonic sensor are detachably attached to the intermediate flow path forming unit 120 in order to measure the flow rate of gas passing through the straight intermediate flow path 121a. Yes. The axial cross-sectional area of the straight intermediate flow path 121a is made smaller (throttle) than the axial cross-sectional area of the main body flow path 114, the pressure loss of the gas flowing through this portion is increased, and the linear intermediate flow path 121a flows. The flow rate of gas (flow velocity) measured by the ultrasonic sensor (ultrasonic transmission / reception units 2 and 3) is increased by increasing the gas flow velocity.
[0018]
Thus, between the inflow port 112 and the outflow port 113, the pressure loss part comprised by each flow path 114,121 etc. for allowing gas to pass through is formed. In order to detect a gas pressure difference between the inlet 112 side and the outlet 113 side sandwiching such a pressure loss part, a pressure sensor 118 is provided in the middle part, and the inlet 112 side and the outlet 113 side are provided. A pressure detection pipe 119 is provided in which the distal ends of the communication pipes 116 and 117 extending from the main body channels 114 and 114 are connected to the pressure sensor 118.
[0019]
An explanatory diagram in the case of using a capacitance type pressure sensor as an example of the pressure sensor 118 is shown in FIG. This pressure sensor functions as a switch that turns on and off because the capacitance between the fixed electrodes 118b and 118b changes due to the movement of the diaphragm 118a as the central movable electrode. Therefore, when the gas pressure difference between the inlet 112 and the outlet 113 introduced through the communication pipes 116 and 117 is equal to or smaller than a predetermined value, the gas is turned on (or turned off), and the channels 114 and 121 are turned on. It is detected that there is no or substantially no flow rate of the flowing gas.
[0020]
Returning to FIG. 1A, the main body flow path 114 between the inlet 112 and the intermediate flow path 121 has a shutoff valve 130 (pressure loss amplifying means; variable throttle mechanism for blocking the gas flow in the main body flow path 114. ) Is provided. As shown in FIG. 4, the shut-off valve 130 converts the rotational motion of an electric motor 131 (variable throttle mechanism) such as a stepping motor capable of rotating forward and reverse to a reciprocating linear motion by a valve body moving means (not shown), The valve body 132 (variable throttle mechanism) can be moved close to or separated from the valve seat 133 (variable throttle mechanism) against an elastic member 134 (variable throttle mechanism) such as a coil spring to stop or release the gas flow. Further, the shutoff valve 130 constitutes a variable throttle mechanism capable of changing the cross-sectional area of the channel stepwise or continuously, and the pressure of the gas at the inlet 112 side and the outlet 113 side sandwiching the pressure loss portion by the throttle. It also functions as pressure loss amplification means for amplifying the difference.
[0021]
Specifically, as shown in FIG. 4, the shut-off valve 130 has a flow path as the valve element 132 disposed to face the valve seat 133 moves in a direction to close the main body flow path 114 (flow path). The cross-sectional area is configured to decrease stepwise. The valve body 132 has a plurality of (for example, three) flat plate-like valve portions 137, 138, and 139 arranged in the moving direction to the valve seat 133. Except for the valve portion 139 farthest from the valve seat 133, each valve portion 137, 138 is formed with through holes 137 a, 138 a in the thickness direction in the center, and these through holes 137 a, 138 a are formed in the valve seat 133. (The outlet side; the lower side of the main body channel 114) is formed with a larger diameter.
[0022]
Further, the valve body 132 is provided with a sequential closing mechanism 140 for reversibly moving the valve portions 137, 138, 139 as in the following (1) to (3).
(1) From the fully open position (see FIG. 4 (b)) where the valve portions 137, 138, 139 are arranged at a predetermined interval,
(2) After the valve portion 135 on the side close to the valve seat 133 is sequentially moved to the valve seat 133 side,
{Circle around (3)} All valve portions 137, 138, 139 overlap in the plate thickness direction (moving direction) and reach the fully closed position where they contact and close the valve seat 133 (see FIG. 4C).
[0023]
Details of the sequential closing mechanism 140 are shown in FIG. One or a plurality of (for example, two) recesses 137b, 138b, 139b are formed on the end surfaces of the valve portions 137, 138, 139, respectively. Concave portions 137b and 138b formed in adjacent valve portions 137 and 138 on the side close to the valve seat 133 are arranged so as to face each other, and the compression coil spring 141 (elastic member) straddles the opposed concave portions 137b and 138b. ) Is inserted and inserted. Similarly, a compression coil spring 142 (a resilient member) is inserted and interposed across the recesses 138b and 139b formed in the valve portions 138 and 139 adjacent to the valve seat 133 on the far side. Since the spring constant of the compression coil spring 142 farther from the valve seat 133 is larger (the elastic force of the elastic member is large), it is pressed by the elastic force of the elastic member 134 or the driving force of the electric motor 131. Occasionally, the valve portion sequentially closes and moves from the valve portion on the side close to the valve seat 133 (exit side; lower side of the main body flow path 114).
[0024]
Therefore, by setting and adjusting the spring constants of the compression coil springs 141 and 142 (the elastic force of the elastic members), the valve portions 137, 138, and 139 are adjusted according to the number of steps of the stepping motor 131 (electric motor). It is possible to realize a state in which there is no or substantially no flow of gas flowing through the main body flow path 114 by sequentially closing. Further, since the enlargement factor (amplification factor) of the pressure loss can be increased in this way, the presence / absence of the flow rate by the pressure sensor 118 can be determined with high accuracy. Reference numeral 143 denotes a support shaft that is inserted through the shaft holes 137c, 138c, and 139c formed in the valve portions 137, 138, and 139. The support shaft 143 is supplementarily used to smoothly operate the closing mechanism 140 sequentially. Is provided.
[0025]
The shut-off valve of FIG. 4 can also have a simplified structure as in the modification shown in FIG. In the shut-off valve 130 ′ of FIG. 5, one or a plurality of stepped steps 132 a and 133 a (for example, three steps each) are formed in the valve body 132 ′ and the valve seat 133 ′ in the axial direction. As a result, the flow passage cross-sectional area is continuously reduced as the valve element 132 ′ disposed opposite to the valve seat 133 ′ moves in a direction to close the main body flow passage 114 (flow passage). Has been. That is, the gap 135 formed between them has a step shape along these steps 132a and 133a, and the confinement effect (labyrinth effect) in the gap 135 is increased, and the expansion factor (amplification factor) of the pressure loss is increased. Therefore, the presence / absence of the flow rate by the pressure sensor 118 can be determined with high accuracy. The gap 135 is formed so as to be closer to the valve seat 133 (exit side; lower side of the main body flow path 114).
[0026]
FIG. 2 shows a basic configuration of the measurement unit of such an ultrasonic flowmeter 100.
A flow rate measuring gas (fluid) flows along the flow direction axis O in the illustrated flow direction (average flow velocity v) in the linear intermediate flow path 121a for flow rate measurement of the ultrasonic flow meter 100. . A pair of ultrasonic transmission / reception units 2 and 3 (flow rate measuring means; ultrasonic sensors) are attached to the wall 10 of the flow path 121a. In FIG. 2, the ultrasonic transmission / reception unit 2 (transmission / reception transducer 21 (first transducer)) on the upper side in the fluid flow direction and the ultrasonic transmission / reception unit 3 (transmission / reception transducer 31 (second oscillation) on the lower side in the fluid flow direction are shown. )) Is configured in a transmissive Z-arrangement facing each other across the flow path 121a.
[0027]
In the measurement channel 121a, the flow direction axis O is linear between at least the pair of ultrasonic transmission / reception units 2 and 3, and the shape and cross-sectional area of the axial cross section are the same in the flow direction. When the measurement target is gas, the axial cross-sectional shape of the measurement channel 121a only needs to form a space closed by the wall 10, and may be any one of a circular shape, an elliptical shape, a square shape, a rectangular shape, and the like. May be adopted.
[0028]
The ultrasonic transmission / reception unit 2 includes a transmission / reception vibrator 21 (first vibrator) that is fixed to the wall 10 of the flow path 121a and includes a piezoelectric element, a vibration plate, an electrode plate, and the like. On the other hand, the ultrasonic transmission / reception unit 3 is fixed to the wall 10 on the lower side in the flow direction than the ultrasonic transmission / reception unit 2 (first vibrator 21), and includes a transmission / reception vibrator composed of a piezoelectric element, a diaphragm, an electrode plate, and the like. 31 (second vibrator). Further, the pair of ultrasonic transmission / reception units 2 and 3 includes a transmission unit 22 including a driving voltage circuit for oscillating the first transducer 21 or the second transducer 31, and the first transducer 21 or Receiving means 32 including a voltage detection circuit for detecting the voltage generated by the second vibrator 31 and the like. Thereby, the first vibrator 21 transmits the ultrasonic wave toward the lower side of the fluid flow direction (the ultrasonic transmission / reception unit 3 side) and receives the ultrasonic wave transmitted by the second vibrator 31. On the other hand, the second vibrator 31 transmits ultrasonic waves toward the upper side in the fluid flow direction (the ultrasonic transmission / reception unit 2 side) and receives the ultrasonic waves transmitted by the first vibrator 21.
[0029]
In FIG. 2, the average flow velocity of the gas is v, the speed of sound propagating in the gas is c, and the angle between the ultrasonic traveling direction (measurement line M) and the gas flow direction (flow direction axis O) is θ (hereinafter referred to as a measurement line). If the propagation distance of the ultrasonic wave is L, the forward arrival time Tj and the reverse arrival time Tg are respectively expressed as follows.
Tj = L / (c + v · cos θ) (1)
Tg = L / (cv · cos θ) (2)
The following expression is obtained from the expressions (1) and (2).
v = K (L / 2 cos θ) (Tg−Tj) / (Tg · Tj) (3)
Q = v · A (4)
However, K is a correction coefficient, A is a cross-sectional area of the flow path 1, and Q is a gas flow rate.
Therefore, the average gas flow velocity v and the flow rate Q are obtained from the measurement of the forward arrival time Tj and the reverse arrival time Tg (arrival time difference ΔT). In this way, by eliminating the sound velocity c depending on the gas temperature, the contained component, etc. from the equation (3), the measured value (arrival time Tj, Tg; arrival time difference ΔT) and a constant value (propagation distance L, line angle) θ) and the flow velocity v can be obtained.
[0030]
Therefore, as shown in FIG. 2, the ultrasonic flowmeter 100 includes a measurement control unit 4 and a switching unit 7 as a measurement unit in addition to the pressure sensor 118 and the shutoff valve 130 described above. The switching unit 7 includes a reception signal switching unit 71 that switches a signal to be processed by the receiving unit 32, and a transmission switching unit 72 that switches between the transducers 21 and 31 to be transmitted.
[0031]
The measurement control unit 4 includes a CPU 41, a RAM 42, a ROM 43, an input / output interface 44, and the like, and is configured by a microcomputer connected so as to be able to transmit and receive via a bus 45. The ROM 43 has a program storage area 43a and a data storage area 43b. The program storage area 43a stores an offset execution program, which will be described later. An origin correction value is stored in the data storage area 43b and has a function of an origin correction value storage means. The CPU 41 has a function as a flow rate presence / absence discriminating unit as will be described later. The pressure difference detected by the pressure sensor 118 and the ultrasonic reception signal received by the receiving unit 32 are input to the measurement control unit 4 via the input / output interface 44. On the other hand, a command from the CPU 41 is output to the switching means 7 via the input / output interface 44, and is also output to the electric motor 131 that drives the shutoff valve 130 via the motor driver 136. Furthermore, the data storage area 43b is preferably an EPROM so that an origin correction value can be written each time the origin is corrected.
[0032]
Next, the operation of the measurement unit of the ultrasonic flowmeter 100, specifically, the contents of the offset execution program will be described with reference to the flowchart of FIG.
First, it is checked whether a predetermined correction time (for example, once / year) has come (S1). If the correction time has arrived (YES in S1), the measurement control unit 4 next checks whether the current time is a gas non-use time zone among the life patterns already learned (S2). If it is a gas non-use time zone (YES in S2), it is checked whether the flow rate value measured by the ultrasonic sensor (ultrasonic transmitting / receiving units 2 and 3) is close to 0 (S3). When the flow rate value is close to 0 (YES in S3), it is determined that no gas is used, and the electric motor 131 is driven in S4 to slightly turn off the shutoff valve 130 (for example, several steps of the motor 131 or the valve portion 137). , 138, 139). At this time, the gas pressure difference between the inlet 112 side and the outlet 113 side is detected by the pressure detection pipe 119 (pressure sensor 118) (S5).
[0033]
If the pressure difference is equal to or less than the set threshold value (YES in S6), it is determined that there is no or substantially no flow rate of gas flowing through the flow path 121a, and an ultrasonic sensor (ultrasonic transmission / reception) is determined. (S2), and the arrival time difference ΔT is detected from the above equation (3) (S8). Further, the obtained arrival time difference ΔT is stored in the data storage area 43b as an origin correction value (S9). Thereafter, the electric motor 131 is driven to return the shut-off valve 130 to full open (S10), and the process returns. If the pressure difference detected in S5 exceeds the set threshold (NO in S6), the operations of S4 (shutoff valve 130 closed) and S5 (pressure detection pipe 119 pressure difference detection) are repeated. If NO in S1, S2, and S3, the process returns. If the shut-off valve 130 is allowed to be fully closed, a more accurate origin correction value can be obtained by fully closing the shut-off valve 130 before S7 (ultrasonic sensor transmission / reception) (S100). . Further, in order to enable origin correction with higher reliability, the offset execution program may be executed a plurality of times to obtain an average value of the origin correction values acquired each time.
[0034]
Further, when a pressure difference is detected by the pressure detection pipe 119 (pressure sensor 118) during the operation of the offset execution program shown in FIG. 3, it is determined that gas use has started, and the execution of the program is stopped immediately, and the shut-off valve If 130 is returned to full open, normal gas use can be prevented. Furthermore, when the correction time has arrived (YES in S1) and the gas is being used (NO in S3), an alarm indicating “cannot be corrected” may be issued. This is effective for cases where operations are continued for 24 hours in a chemical factory.
[0035]
In the embodiment, only the case where the ultrasonic transmission / reception units 2 and 3 (transmission / reception transducers 21 and 31) are arranged in the transmission type Z array has been described. Applicable. The present invention can also be applied to other flow meters such as a fluidic flow meter in addition to the ultrasonic flow meter.
[Brief description of the drawings]
FIG. 1 is a front sectional view of an ultrasonic flow meter as an embodiment of a flow meter according to the present invention, and an explanatory view of a pressure sensor.
FIG. 2 is an explanatory diagram showing a basic configuration of a measurement unit of the ultrasonic flowmeter of FIG.
FIG. 3 is a flowchart showing the operation of a measurement unit.
FIG. 4 is an explanatory diagram of a shutoff valve.
FIG. 5 is an explanatory view showing a modified example of the shut-off valve of FIG. 4;
[Explanation of symbols]
2,3 Ultrasonic transmitter / receiver (flow rate measuring means; ultrasonic sensor)
4 Measurement control unit 41 CPU (flow rate presence / absence determining means)
43 ROM (origin correction value storage means)
100 Ultrasonic flow meter (flow meter)
114 Body flow path (pressure loss part)
121 Intermediate channel (pressure loss part)
118 Pressure sensor 119 Pressure detection pipe 130 Shut-off valve (variable throttle mechanism; pressure loss amplification means)

Claims (2)

流量計測用の流体を導入し送出するためにそれぞれ外面に開口する流入口及び流出口と、
それら流入口及び流出口の間に形成され、前記流体を通過させる間にその流量を計測する流量計測手段が配置された流路を含む圧力損失部と、
その圧力損失部を挟む流入口側と流出口側との前記流体の圧力差が所定値以下の場合に、前記流路を流れる前記流体の流量が無いか、又は実質的に無い状態にあることを信号出力する流量有無判別手段と、
その流量有無判別手段からの流量無しの出力信号に基づき前記流量計測手段により計測された原点補正値を記憶する原点補正値記憶手段と、
前記圧力損失部に設けられ、その圧力損失部を挟む流入口側と流出口側との前記流体の圧力差を増幅して検出するための圧力損失増幅手段と、
を備え
前記圧力損失増幅手段は、段階的又は連続的に流路断面積を変更可能な可変絞り機構として、弁座に対向配置された弁体が前記流路を閉とする方向に移動するに伴って流路断面積が段階的又は連続的に小となる遮断弁を有し、前記圧力差が所定値以下になるように前記遮断弁の弁体を流路閉方向に移動して絞り量を調節し、圧力損失をコントロールして近似的な流量無し状態を実現するとともに、
このとき前記原点補正値記憶手段は、前記流量有無判別手段からの流量無しの出力信号に基づいて前記流量計測手段により計測された計測値を原点補正値として記憶することを特徴とする流量計。
An inlet and an outlet opening on the outer surface for introducing and delivering a fluid for flow measurement, respectively;
A pressure loss part including a flow path formed between the inlet and the outlet and provided with a flow rate measuring means for measuring the flow rate while passing the fluid; and
When the pressure difference of the fluid between the inlet side and the outlet side sandwiching the pressure loss portion is equal to or less than a predetermined value, there is no or substantially no flow rate of the fluid flowing through the flow path. A flow rate presence / absence judging means for outputting a signal,
Origin correction value storage means for storing the origin correction value measured by the flow rate measuring means based on the output signal without flow rate from the flow rate presence / absence judging means;
A pressure loss amplifying means for amplifying and detecting the pressure difference of the fluid between the inlet side and the outlet side sandwiched between the pressure loss parts, provided in the pressure loss part;
Equipped with a,
The pressure loss amplifying means is a variable throttle mechanism capable of changing the flow passage cross-sectional area stepwise or continuously, and as the valve element disposed opposite the valve seat moves in the direction of closing the flow passage. It has a shut-off valve whose flow path cross-sectional area becomes small stepwise or continuously, and adjusts the throttle amount by moving the valve body of the shut-off valve in the flow path closing direction so that the pressure difference becomes a predetermined value or less. In addition, by controlling the pressure loss to achieve an approximate no flow state,
At this time, the origin correction value storage means stores the measurement value measured by the flow rate measurement means based on the output signal without the flow rate from the flow rate presence / absence discrimination means as an origin correction value .
前記圧力損失部は、流量計測用の超音波センサが設置され、かつ流量計測のため他の部分とは断面積を小とした計測用流路を含む請求項1に記載の流量計。2. The flow meter according to claim 1, wherein the pressure loss unit includes a measurement flow path in which an ultrasonic sensor for flow rate measurement is installed and a cross-sectional area is made smaller than other portions for flow rate measurement.
JP2003158603A 2003-06-03 2003-06-03 Flowmeter Expired - Fee Related JP4368616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158603A JP4368616B2 (en) 2003-06-03 2003-06-03 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158603A JP4368616B2 (en) 2003-06-03 2003-06-03 Flowmeter

Publications (2)

Publication Number Publication Date
JP2004361190A JP2004361190A (en) 2004-12-24
JP4368616B2 true JP4368616B2 (en) 2009-11-18

Family

ID=34051950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158603A Expired - Fee Related JP4368616B2 (en) 2003-06-03 2003-06-03 Flowmeter

Country Status (1)

Country Link
JP (1) JP4368616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515489A (en) * 2011-05-23 2014-06-30 マイクロ モーション インコーポレイテッド System and method for preventing erroneous flow measurements in a vibrating meter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936856B2 (en) * 2006-10-30 2012-05-23 リコーエレメックス株式会社 Flowmeter
JP2014092467A (en) * 2012-11-05 2014-05-19 Panasonic Corp Flow rate measurement device
JP7085766B2 (en) * 2020-07-14 2022-06-17 株式会社磯村 Galvanometer and fluid injection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515489A (en) * 2011-05-23 2014-06-30 マイクロ モーション インコーポレイテッド System and method for preventing erroneous flow measurements in a vibrating meter

Also Published As

Publication number Publication date
JP2004361190A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4662996B2 (en) Ultrasonic flow meter with pressure sensor
CN106931221B (en) Fluid control valve and control method thereof
US7044000B2 (en) Ultrasonic flow sensor using quasi-helical beam
US20120055263A1 (en) Flowmeter for detecting a property of a fluid medium
US10634531B2 (en) Ultrasonic, flow measuring device
US20130104657A1 (en) Ultrasonic Particle Measuring System
US6895813B2 (en) Low-flow extension for flow measurement device
US20130263677A1 (en) Ultrasonic flowmeter
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
RU2007126674A (en) DEVICE FOR DETERMINING AND / OR CONTROL OF VOLUME AND / OR MASS CONSUMPTION OF THE MEASURED MEDIA
CN100414261C (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium
JP4368616B2 (en) Flowmeter
JP3637628B2 (en) Flow measuring device
CN116973595A (en) Ultrasonic fluid meter comprising two pressure sensors
JP2000146662A (en) Device for measuring quantity of flow
US11885654B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
CN114878018A (en) Method for calibrating an apparatus for ultrasonic measurement, method and apparatus for measuring the temperature of a medium
JP2001324368A (en) Gas meter
JPH0519085B2 (en)
JP4031130B2 (en) Flow measuring device
JP4942254B2 (en) Gas meter
JP2002372445A (en) Ultrasonic flowmeter
US20240210966A1 (en) Pressure-sensitive flow-control valve
JP4783989B2 (en) Flowmeter
JP4561071B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees