JP4942254B2 - Gas meter - Google Patents

Gas meter Download PDF

Info

Publication number
JP4942254B2
JP4942254B2 JP2001121028A JP2001121028A JP4942254B2 JP 4942254 B2 JP4942254 B2 JP 4942254B2 JP 2001121028 A JP2001121028 A JP 2001121028A JP 2001121028 A JP2001121028 A JP 2001121028A JP 4942254 B2 JP4942254 B2 JP 4942254B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
channel
flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001121028A
Other languages
Japanese (ja)
Other versions
JP2002310771A (en
Inventor
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2001121028A priority Critical patent/JP4942254B2/en
Publication of JP2002310771A publication Critical patent/JP2002310771A/en
Application granted granted Critical
Publication of JP4942254B2 publication Critical patent/JP4942254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)
  • Safety Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガスメータに関する。
【0002】
【従来の技術】
本願発明の発明者等は、小型、安価で、かつ、広いレンジャビリティに対応できる気体流量計を特願平11−183112号(特開2001−12978号公報)で提案した。この気体流量計はガス等の気体の流量を計測するもので、流路中にフラッパー弁を気体の動圧および弁差圧により開閉するように配置し、かつそのフラッパー弁は気体の設定微少流量時に閉じるようにし、更に、流路中には、前記フラッパー弁の閉じ状態時に気体を微少量流通させるバイパス流路を設け、該バイパス流路部には熱式フローセンサーを備え、更に、前記フラッパー弁が配置された流路部とバイパス流路部の気体が合流する下流側の流路またはフラッパー弁が配置された流路部とバイパス流路部へ気体を供給する上流側の流路に推測式気体流量計を配置していた。
【0003】
図12〜図14にその具体例を示す。図12に示すように、流路1に流路面積可変機構2とその下流に位置して推測式気体流量計3が設けられている。図13と図14に示すように流路面積可変機構部2を形成する流路形成体4は、流通方向に対して直交する方向の断面(図14)において、一方の側壁5と、他方の側壁6と、上壁7と、下壁8とからなり、内部に流路9を有する。前記他方の側壁6は断面コ字状に形成され、前記流路9は流通方向に対して直交する方向の断面が縦長の長方形に形成されている。更に、上流側壁10の中央部には流入口10aが形成され、該流入口10aに、後述する主流路16とバイパス流路17へ気体を供給する流路12が接続されている。下流側壁13の中央部には流出口13aが形成され、該流出口13aに、後述する主流路16とバイパス流路17の気体が合流して流出する流出路14が接続されている。
【0004】
前記流路9内は、間仕切り板15により大流量流通部と微少流量流通部とに区画され、その大流量流通部を主流路16とし微少流量流通部をバイパス流路としている。前記主流路16には板材、例えば発泡材などの軽量の薄板からなるフラッパー弁18が、流通する気体の動圧および弁差圧により開閉するように備えられている。該フラッパー弁18は、主流路16にほぼ嵌合する大きさの方形板で形成され、その上下方向の中央部から上方に偏心した位置に水平の支軸19が固着され、該支軸19の両端が前記の両側壁5,6に回転可能に嵌合されて、フラッパー弁18が支軸19を中心として回転するようになっている。
【0005】
更に、該フラッパー弁18は、その支軸19より下部が、支軸19よりも流路9の下流側へ若干位置するような傾斜状態において、そのフラッパー弁18の上端部が前記上壁7に固設したストッパー20に当接するように備えられており、気体の流量が0〜設定微少流量時においては、そのフラッパー弁18の自重とストッパー20への当接によって、図13の実線で示すように所定の傾斜角θで閉状態が保持され、設定の微少流量以上の流量時には、その気体の動圧および弁差圧によってそのフラッパー弁18が図13の鎖線で示すように押し開かれるようになっている。該フラッパー弁18の両側端と、両側壁5,6間にフラッパー弁18が開閉移動できる隙間dを形成する。
【0006】
前記バイパス流路17には熱式フローセンサー21が備えられている。図の例では下壁8側の中央部に備えられている。該熱式フローセンサー21は、例えば、シリコンチップ上の流れが当る表面に発熱部の上流側と下流側に流体温度検出部を配置したもので、流量に応じて発熱部の両側の流体温度検出部の電気抵抗が変化するため、この変化を電気信号として検出し、増幅、A/D変換してマイコンにより流量を求めるものである。推測式気体流量計3は、例えば超音波式、渦式、フルイディック式、熱線式等の流量計である。
【0007】
【発明が解決しようとする課題】
本願発明者等は、前記従来技術を発展させて、膜式ガスメータに代る推測式ガスメータを実用化すべく鋭意研究を重ねたところ、前記従来のフラッパー弁では、弁の開度が大きくなる程弁の復元力(弁荷重)が大きくなるため、弁が流体の動圧及び弁差圧で開き始めると、弁荷重が増加して閉弁しようとして弁の動作が不安定になってハンチングを発生し、流体振動を発生させる要因となったり、配管中に圧力変動の発生源があったり、配管条件によって圧力変動に同期して弁が開閉振動したりすることがあるという第1の問題点の存在に気付いた。また、フラッパー弁と弁座との当接部の寸法精度が良くないと弁部のシール性が悪くなって弁漏れが生じ、小流量時の流量計測の誤差が大きくなるとか、このような弁漏れを無くすには、極めて高精度の加工精度が要求されて、生産コストへの悪影響が出るなどの第2の問題点の存在に気付いた。
【0008】
そこで、本発明はこれらの問題点を解消できる小型でかつレンジャビリティの広い超音波方式のガスメータを提供することを目的とする。特に本発明で一番解決したい課題は、開閉弁が開き始めるときにハンチングが発生するのを防止することにある。
【0009】
【課題を解決するための手段】
前記第1の目的を達成するために、請求項1の発明は、開閉弁を配設した流路断面積が大きい主流路と、該主流路における開閉弁の上流側と下流側とにそれぞれ開口する入口ポートと出口ポートを有する流路断面積が小さいバイパス流路と、該バイパス流路に設けられて一定流量未満の小流量時の流速を計測するための超音波振動子と、前記主流路と直列に連通する主流路計測部と、該主流路計測部に設けられて一定流量以上の流量時の流速を計測するための超音波振動子とを具備したガスメータであって、
前記開閉弁を、ほぼ水平に配置した支軸の回りに揺動可能に設けられ、該支軸を含む垂直面と水平面の間の所定角度範囲で流体の動圧および弁差圧により揺動するように前記支軸の上方に配設するとともに、前記所定角度範囲の垂直面に近い方への開閉弁の限界角度を定めるストッパを設け、
前記入口ポートを、前記開閉弁が当接する弁座部における前記支軸から最も遠い部分の弁座内径側に開口し、
前記入口ポートが開口する部分の弁座内径側に、開弁時における主流路の流れ方向の下流側にいく程、前記支軸から遠く離れる傾斜面を形成したことを特徴とするガスメータである。
【0010】
この発明では、小流量時には主流路の開閉弁が閉じて、ガスがバイパス通路を流れる。バイパス通路のガスの流速はバイパス通路に設けられた超音波振動子で計測される。流量が一定以上になると、流体の動圧および弁差圧により開閉弁が押されて下流側に揺動開弁する。このとき、開閉弁は一気に開いてハンチングすることはない。そして開閉弁による圧力損失は小さくなる。主流路計測部に設けられた超音波振動子で中〜大流量時の流速を計測する。
更に、開弁後の開きが大きくなる程弁体は垂直面に近づくため、開閉弁を閉じようとする弁荷重が小さくなって、ハンチングの発生を抑える。また、弁体が垂直面まで動く(開く)と、弁体の自重による閉弁力(弁荷重)が零になり、弁が復旧しなくなる虞れがあるが、本発明では、ストッパの作用で弁体の動き(揺動)が制限されて、このような虞れは全くなくなる。従って、開閉弁が復旧不能になる虞れはない。
更に、開閉弁の開弁部を通過して流れるガスの流れが速くなる程、傾斜面の存在により、バイパス通路へガスがより入りにくくなり、その面からも開閉弁のハンチングの発生を効果的に抑制する。
【0011】
更に、開閉弁は支軸から最も遠い部分で弾性体の漏れやすいところから開き始め、その近くにバイパス通路の入口ポートを設けたので、発生するかも知れないハンチング周期が小さくなる方向で開閉弁が追従できずに安定し、ハンチングの発生を抑制する。
【0012】
請求項の発明は、請求項のガスメータにおいて、前記開閉弁の少なくとも周縁部を、弾性材料で可撓性のあるリップ状に形成したことを特徴とするものである。
この発明では、小流量時に弁体のリップ状周縁部がしなやかに曲がって弁座に密着するため、シール部の安定性が良く、弁漏れが少なくなる。
【0024】
請求項の発明は、請求項1又はのガスメータにおいて、ケースの上部に入口と出口を備え、入口のすぐ下流に前記主流路計測部を配置し、出口のすぐ上流に前記開閉弁を配置したことを特徴とするものである。
【0025】
この発明では、バイパス通路の超音波振動子で小流量時の流速を計測し、主流路計測部に設けた超音波振動子で中〜大流量時の流速を計測することで、小型でレンジャビリティの広い、かつ開閉弁のハンチングが発生しない、安定に作動する超音波方式のガスメータを実現できる。
【0026】
請求項の発明は、請求項のガスメータにおいて、主流路計測部と開閉弁との間を連通する流路部分に遮断弁を配設したことを特徴とするものである。
【0027】
この発明では、ガスの流量が所定の流量をオーバーしたときなどに、遮断弁を閉じて、いわゆる流量オーバー遮断などの機能を備えた小型の安全機能付ガスメータを実現できる。
【0028】
【発明の実施の形態】
次に本発明の好ましい実施の形態を図面の実施例に従って説明する。
【0029】
〔実施例1〕
図1に示す実施例1で、ガスメータのケース31の上部の入口32から矢印Aのように流入するガスは、入口32の直下(すぐ下流)に配設された主流路計測部33を通って遮断弁34の弁体35と弁座36との間を通過して、主流路37へ流入する。ガスの流量が設定微小流量未満のときは、フラッパー状の開閉弁38が自重で支軸39の回りに反時計方向に付勢されて、弁座40に当接して閉じている。ガスは弁座部の、支軸39から一番遠い距離の部分に開口する入口ポート41からバイパス流路42を通過し、主流路37の開閉弁38の下流に開口する出口ポート43から主流路37に戻り、ガスメータのケース31の上部に設けた出口44から流出する。バイパス流路42には図示されてない一対の超音波振動子が設けられていて、バイパス流路のガスの流れに対し、流れ方向と同じ順方向への超音波パルスの送受と、流れ方向と逆の方向への超音波パルスの送受を行って、図示されてない電子回路とによって順方向と逆方向の超音波の伝搬時間を計測して流速を演算し、バイパス流路42の流路断面積を乗じて流量を求める。
【0030】
ガスの流れが早くなって設定微小流量以上になると、ガスの動圧及び弁差圧によって開閉弁38が支軸39の回りに時計方向に揺動して開く。そして、開閉弁38の図示左寄り、即ち支軸39からの距離が大きい辺りが先ず弁座40から離れる。この辺りはちょうどバイパス流路42の入口ポート41に近いため、開閉弁38の図示左端部が弁座40から離れ、弁と弁座の間をガスが図示上方へ流れると、入口ポート41からバイパス流路42へガスが入りにくくなり、開閉弁38は益々開くようになる。そして、開く程に符号38′で示すように支軸39を含む垂直面に近づくため、自重による閉弁力が小さくなり、開度が増す方向に作用する。こうしてハンチングが抑制されて、スムースに弁開度が大きくなり、開閉弁による圧力損失の増大を防いでいる。
【0031】
こうして流れが早くなったときの中〜大流量のガスの流速は、主流路計測部33に配設された図示されてない一対の超音波振動子によって計測され、主流路計測部33の流路断面積を乗ずることで流量に換算される。なお、この主流路計測部33の図示されてない一対の超音波振動子による順方向と逆方向の超音波の伝搬時間を測定して流速を求めるための制御や演算は、図示されてない電池駆動の電子回路により行う。そして、微小流量時の前記バイパス流路42の流量と、中〜大流量時の主流路計測部33の流量を積算してガス使用量として図示されてない表示部に表示する。
【0032】
流量が大きくなって、開閉弁38が符号38′に示す角度位置よりも更に時計方向へ回動すると、開閉弁38の先端近くがケース31のストッパ部(ストッパともいう)45に当って、回動(揺動)が制限される。こうすることで、開閉弁38が支軸39を含む垂直面または垂直面を超えた角度まで開弁してしまって、復旧(閉弁)不能になってしまうことを防止する。なお、図示されてない前記電子回路は、マイコンによる流量監視機能を備えていて、異常流量時には遮断弁34を閉じて弁体35を弁座36に当接させてガスの流れを止め、ガスメータ下流へのガスの供給を遮断する。こうして安全機能付ガスメータ(いわゆるマイコンメータ)として働く。46はガスメータ外部から手動操作して、遮断弁34を開弁(復帰)させるための復帰機構である。
【0033】
上述のように、中〜大流量を計測する主流路計測部33を入口32の直下(すぐ下流)に、開閉弁38を出口44の直下(すぐ上流)に配設し、遮断弁を主流路計測部33と開閉弁38を連通する流路部分に配設したので、レンジャビリティの広い超音波方式のガスメータを小型・コンパクトに形成できた。
【0034】
〔実施例2〕
図2〜図7に示す実施例2において、前記図1の実施例1と同一の符号を付けた要素は、実施例1の場合と同じ機能を果たすものであるため、重複した説明は省略する。この実施例2では、特に図2,3及び6に示すように、開閉弁38は、支軸39に揺動可能に支承された弁フレーム38aと、NBR製の厚み0.3mmの薄板状円板からなる弁ゴム38bと、該弁ゴム38bを両面から挟む受板38c,38dと、弁ゴム38bと両受板38c,38dの中央に弁フレーム38aの可動端を連結固着するリベット38e,38eとからなり、弁座40と協働する。支軸39は開閉弁台47に取り付けられ、開閉弁台47は図2と図3に示すようにケース31内の所定の場所に収納固定され、こうすることで、開閉弁38が出口44の直下(すぐ上流)に配設されている。
【0035】
ガスメータを流れるガスの流量が設定微小流量未満のときは、開閉弁38が図2と図3に示すように傾斜していて、自重による弁荷重が閉弁力として作用し、弁ゴム38bの周縁部がしなやかに弾性変形して撓み、特に図7(b)に示すように弁座40の座面に密接してシール状態になっている。なお、図7は、弁フレーム38a、受板38c,38d及びリベット38eを図示しないで省略し、図面を簡略にしている。弁ゴム38bは受板38c,38dに挟まれた中央部は、両受け板38cと38dの形状に沿って球面の一部を形成しているが、開閉弁38を構成するために両受板などに組み付ける前の弁ゴム単体部品としての自由状態では、厚み0.3mmのNBR製の薄い円板状平板で、その周縁のリップ状部分が、組み付け後の開閉弁のシール部の動作を安定化して微小流量時の弁漏れを防止するのに効果的に作用する。
【0036】
弁座40の内径部(内径ともいう)40aの、前記支軸39から最も離れた辺りに開口するバイパス流路42の入口ポート41の部分には、開閉弁38の開弁時における主流路37の流れ方向の下流側(図2,3におけるほぼ図示斜め右方向)にいく程、前記支軸から遠く離れる傾斜面40bが形成してある。こうすることで、開閉弁38が開いて、ガスの流れが早くなる程入口ポート41からバイパス流路42へのガスが流入しにくくなって、開閉弁38のハンチングの発生を抑制する。図7(a)で、符号38b′を付した仮想線の2点鎖線からなる円は、弁座40に閉弁時の弁ゴム38bが密接したときの外周円を示す。この図7(a)で明らかなように、外周円38b′と弁座40の内径40aに挟まれる半径方向の幅がΔRの環状部分48は、開閉弁38が閉弁時における弁座40への弁ゴム38bの密接部分(シール部)を示すが、前述のように傾斜部40bを形成して弁座40の一部を切り欠いたため、弁座40に弁ゴム38bが密接する環状部分48の幅ΔRは、傾斜部(切欠部)40bに隣接する部分では小さい幅Δrとなる。こうすることで、流量が設定微小流量を超えて開閉弁38が開き始めるときに、小さい幅Δrの部分が支軸39から一番遠く離れていて最も早く弁座から離れようとし、しかもΔr<ΔRであるため、小さい力で弁ゴムが弁座から容易に離れ易くなる。こうして、微小流量を少し超えた流量ではこの部分から通気するので、開閉弁38がハンチングを生じることもない。そして、開閉弁38が開く程、弁荷重が小さくなるので、開閉弁に起因するガスメータの最大流量時の圧力損失を増大させない。
【0037】
図7では、弁座40の一部、特に支軸39から最も離れた部分に傾斜部40bを形成して、弁座を切欠くことで、シール部の半径方向の幅を狭い幅Δrにし、開閉弁が開き始めるときに傾斜部(切欠部)の存在によりガスが漏れ(通気し)やすくした。こうすることで、開閉弁が開き始めるときのハンチングの発生を防止している。図8(a)(b)の例では、弁ゴム38bの外周の一部、特に支軸39から最も離れた部分を切欠部38Bを形成することで、シール部としての環状部分48の半径方向の幅Δrを狭い幅Δr′とし、図7(a)(b)の場合と同じ作用効果を得ている。なお、図8の例では、図7の場合の傾斜部40bは形成してない。
【0038】
バイパス流路42には、図5で黒く塗り潰して示したように、超音波振動子49と50がバイパス流路42の長手方向に一定の距離を離して配設されている。そして、図示されない電池駆動の電子回路で駆動・制御されて、両振動子間で超音波パルスの送受を行い、流れの順方向と逆方向に対する超音波の伝搬時間を測定し、測定した両方向の伝搬時間に基づいて、バイパス流路42を流れるガスの流速を演算し、更にバイパス流路の流路断面積を乗じて流量を求める。
【0039】
開閉弁38が開弁してからの中〜大流量時の流量は、入口32と主流路37の間の主流路計測部33において超音波方式で計測される。図2において、黒く塗り潰して示したように、超音波振動子51と52が主流路計測部33において一定の距離を隔てて対向配置されている。前記バイパス流路の場合と同様に、図示されない電池駆動の電子回路で両振動子51と52を駆動制御して、両振動子間で超音波パルスの送受を行って、両振動子間における超音波の順方向と逆方向の伝搬時間を計測する。そして計測した両伝搬時間に基づいて流速を算出し、流路断面積を乗じて流量を求める。
【0040】
図5で、53は液晶表示部でプリント配線基板54に実装され、前記電子回路で時間積算した流量をガス使用量として表示する。55はガラス窓である。なお、この実施例2では、図2と図3に示すように、ケース31の側壁に傾斜したふくらみを設けてストッパ45を形成している。
【0041】
〔実施例3〕
図9と図10に示す実施例3は、開閉弁38の細部構造と、ストッパ45の形状が前記実施例2と異なる。なお、図9,10では、弁フレーム38a、弁ゴム38b及び受板38cは図面が煩雑になるのを避けるためにハッチングを入れるのを省略した。この実施例3では、前記実施例で使用した弁ゴム38bの下側の受板38dは用いていない。図10では、開閉弁が弁座40から離れた状態と、弁座40に当接した閉弁状態とを示す。閉弁状態では、弁ゴム38bの周縁部である受板38cの外周より外周方向(経大方向)へ延長した部分の一部が弁座40の弁座面に圧接されて、しなやかに撓んで変形している様子が良くわかる。こうして、安定的にシールを確保する。図11は実施例3の弁座と弁ゴムの要部を説明する図で、図10と重複しているところが多いので、詳細説明は省略する。同図(b)で、閉弁時にその周縁部が弁座40の弁座面に密着当接していた弁ゴム38bが、開閉弁が開き始めると、符号38b″を付して2点鎖線で示すように、傾斜面40bの辺りから先ず離れ始めて開弁する。なお図9で矢印BとCは、開閉弁38が閉状態と開状態のときのガスの流れを示す。
【0042】
【発明の効果】
本発明のガスメータは上述のように構成されているので、次のような効果を奏する。即ち、開閉弁はハンチングを防止し、かつ圧力損失を増大させない。また、大きく開いても復帰不能になる虞れがない。
更に、開閉弁が開く程、バイパス流路へのガスが入りにくくなるため、より一層開閉弁が安定作動し、ガスメータの計量精度が向上する。
【0045】
更に、小型で、レンジャビリティが広いガスメータが実現でき、開閉弁がハンチングする虞れもなく安定した測定流量の切り換えができる
【0046】
更に、開閉弁のハンチングの発生を更に抑制できる。
【0048】
請求項の発明では、更に、微小流量における閉弁時でも、弁ゴムがしなやかに変形して弁座に密接するので、安定したシール性が確保でき、弁漏れも少ない。
請求項の発明では、ガスメータをコンパクトにまとめることができる。
【0049】
請求項の発明では、請求項で達成したガスメータに異常流量時にガスの供給を止める遮断弁を付加し、小型・コンパクトでレンジャビリティの広い安全機能付ガスメータを実現できる。
【図面の簡単な説明】
【図1】本発明の実施例の縦断面略図。
【図2】本発明の実施例の縦断正面図。
【図3】図2の一部を拡大した図。
【図4】本発明の実施例の上面図。
【図5】本発明の実施例の縦断側面図。
【図6】本発明の実施例の要部斜視図。
【図7】本発明の実施例の開閉弁の図で、(a)は弁座の平面図、(b)は閉弁時の縦断面図。
【図8】本発明の実施例の開閉弁の図で、(a)は平面図、(b)は縦断面図。
【図9】本発明の実施例の開閉弁回りの縦断面図。
【図10】図9の開閉弁の動作を説明する縦断面図。
【図11】図9,10の開閉弁を説明する図で、(a)は弁座の平面図、(b)は閉弁時の縦断面図、(c)は弁座の一部分を示す一部破断斜視図。
【図12】従来技術の縦断面略図。
【図13】従来技術における流路面積可変機構部回りの縦断面図。
【図14】従来技術の図13におけるA−A断面図。
【符号の説明】
31 ケース
32 入口
33 主流路計測部
34 遮断弁
37 主流路
38 開閉弁
38b 弁ゴム
39 支軸
40 弁座
40a 内径部
40b 傾斜面
41 入口ポート
42 バイパス流路
43 出口ポート
44 出口
45 ストッパ
48 環状部分
49,50,51,52 超音波振動子
ΔR,Δr,Δr′ 幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to gas Sumeta.
[0002]
[Prior art]
The inventors of the present invention proposed in Japanese Patent Application No. 11-183112 (Japanese Patent Application Laid-Open No. 2001-12978) a gas flow meter that is small, inexpensive, and capable of accommodating a wide rangeability. This gas flow meter measures the flow rate of gas such as gas, and is arranged so that the flapper valve is opened and closed by the dynamic pressure of the gas and the valve differential pressure in the flow path. In addition, a bypass channel is provided in the channel to allow a small amount of gas to flow when the flapper valve is closed. The bypass channel includes a thermal flow sensor, and the flapper Estimated as a downstream flow path where the gas in the flow path section where the valve is disposed and the gas in the bypass flow path merge or an upstream flow path which supplies gas to the flow path section where the flapper valve is disposed and the bypass flow path section A gas flow meter was installed.
[0003]
Specific examples thereof are shown in FIGS. As shown in FIG. 12, a flow path area variable mechanism 2 and a speculative gas flow meter 3 are provided downstream of the flow path area. As shown in FIG. 13 and FIG. 14, the flow path forming body 4 that forms the flow path area variable mechanism portion 2 has one side wall 5 and the other side in a cross section (FIG. 14) perpendicular to the flow direction. It consists of a side wall 6, an upper wall 7, and a lower wall 8, and has a flow path 9 inside. The other side wall 6 is formed in a U-shaped cross section, and the flow path 9 is formed in a rectangular shape with a cross section in a direction orthogonal to the flow direction. Further, an inlet 10a is formed in the central portion of the upstream side wall 10, and a channel 12 for supplying gas to a main channel 16 and a bypass channel 17 described later is connected to the inlet 10a. An outlet 13a is formed at the central portion of the downstream side wall 13, and an outlet path 14 through which gas from a main channel 16 and a bypass channel 17 described later merge and flows out is connected to the outlet 13a.
[0004]
The inside of the flow path 9 is partitioned into a large flow rate circulation part and a micro flow rate circulation part by a partition plate 15, and the large flow rate circulation part is a main flow path 16 and the micro flow rate circulation part is a bypass flow path. The main flow path 16 is provided with a flapper valve 18 made of a light thin plate such as a plate material, for example, a foam material, so as to be opened and closed by the dynamic pressure of the flowing gas and the valve differential pressure. The flapper valve 18 is formed of a square plate having a size that fits substantially in the main flow path 16, and a horizontal support shaft 19 is fixed to a position that is eccentric upward from the center in the vertical direction. Both ends are fitted to the both side walls 5 and 6 so as to be rotatable, and the flapper valve 18 rotates about the support shaft 19.
[0005]
Further, the flapper valve 18 is inclined such that the lower part of the flapper valve 19 is located slightly downstream of the spindle 19 downstream of the flow path 9, and the upper end of the flapper valve 18 is located on the upper wall 7. As shown by the solid line in FIG. 13, when the gas flow rate is 0 to the set minute flow rate, the flapper valve 18 is brought into contact with the stopper 20 by its own weight and the contact with the stopper 20. The closed state is maintained at a predetermined inclination angle θ, and the flapper valve 18 is pushed open by the dynamic pressure of the gas and the valve differential pressure as shown by the chain line in FIG. It has become. A gap d in which the flapper valve 18 can be opened and closed is formed between both side ends of the flapper valve 18 and both side walls 5 and 6.
[0006]
The bypass flow path 17 is provided with a thermal flow sensor 21. In the example shown in the figure, it is provided at the center of the lower wall 8 side. The thermal type flow sensor 21 includes, for example, a fluid temperature detection unit disposed on the upstream side and the downstream side of the heat generation unit on the surface on which the flow on the silicon chip hits, and detects the fluid temperature on both sides of the heat generation unit according to the flow rate. Since the electrical resistance of the portion changes, this change is detected as an electrical signal, amplified, A / D converted, and the flow rate is obtained by a microcomputer. The speculation type gas flow meter 3 is, for example, a flow meter such as an ultrasonic type, a vortex type, a fluidic type, or a hot wire type.
[0007]
[Problems to be solved by the invention]
The inventors of the present application have developed the above-mentioned prior art and conducted intensive research to put a speculative gas meter in place of a membrane gas meter into practical use. In the above-mentioned conventional flapper valve, Since the restoring force (valve load) of the valve increases, when the valve begins to open with fluid dynamic pressure and valve differential pressure, the valve load increases and the valve operation becomes unstable and hunting occurs. The existence of the first problem that causes fluid vibrations, there is a source of pressure fluctuation in the pipe, and the valve may vibrate in synchronization with the pressure fluctuation depending on the pipe condition. I noticed. In addition, if the dimensional accuracy of the contact portion between the flapper valve and the valve seat is not good, the sealing performance of the valve portion will deteriorate and valve leakage will occur, resulting in a large flow measurement error at low flow rates. In order to eliminate the leakage, extremely high machining accuracy was required, and the existence of a second problem such as an adverse effect on the production cost was noticed.
[0008]
Accordingly, the present invention aims at providing a gas meter wide ultrasonic method of and range catcher Stability small type that can solve these problems. In particular, the problem to be solved most in the present invention is to prevent hunting from occurring when the on-off valve starts to open.
[0009]
[Means for Solving the Problems]
In order to achieve the first object, the invention of claim 1 is characterized in that a main channel having a large channel cross-sectional area in which an on-off valve is disposed, and an upstream side and a downstream side of the on-off valve in the main channel, respectively. A bypass channel having a small channel cross-sectional area having an inlet port and an outlet port, an ultrasonic transducer provided in the bypass channel for measuring a flow velocity at a small flow rate less than a constant flow rate, and the main channel A gas meter provided with a main flow channel measurement unit communicating in series with an ultrasonic transducer for measuring a flow velocity at a flow rate of a predetermined flow rate or more provided in the main flow channel measurement unit,
The on-off valve is provided so as to be able to oscillate about a support shaft arranged substantially horizontally, and oscillates by a dynamic pressure of the fluid and a valve differential pressure within a predetermined angle range between a vertical plane including the support shaft and a horizontal plane. A stopper for determining the limit angle of the on-off valve toward the side closer to the vertical surface of the predetermined angle range,
The inlet port is opened to the valve seat inner diameter side of the portion farthest from the support shaft in the valve seat portion with which the on-off valve abuts,
The gas meter is characterized in that an inclined surface farther away from the support shaft is formed on the inner diameter side of the valve seat at a portion where the inlet port is opened toward the downstream side in the flow direction of the main flow path when the valve is opened.
[0010]
In the present invention, when the flow rate is small, the on-off valve of the main flow path is closed and gas flows through the bypass passage. The gas flow velocity in the bypass passage is measured by an ultrasonic vibrator provided in the bypass passage. When the flow rate exceeds a certain level, the on-off valve is pushed by the fluid dynamic pressure and the valve differential pressure, and swings and opens downstream. At this time, the on-off valve is not opened at a stroke and hunted. And the pressure loss by an on-off valve becomes small. The flow rate at medium to large flow rates is measured with an ultrasonic vibrator provided in the main flow path measurement unit.
Further, the larger the opening after opening, the closer the valve body is to the vertical surface, so the valve load for closing the on-off valve is reduced and the occurrence of hunting is suppressed. In addition, when the valve body moves (opens) to the vertical surface, the valve closing force (valve load) due to the weight of the valve body becomes zero, and the valve may not be recovered. Since the movement (swinging) of the valve body is limited, such a fear is completely eliminated. Therefore, there is no possibility that the on-off valve cannot be restored.
Furthermore, the faster the gas flowing through the valve opening of the on / off valve, the more difficult it is for gas to enter the bypass passage due to the presence of the inclined surface. To suppress.
[0011]
Furthermore , since the on-off valve starts to open from the place where the elastic body is likely to leak at the part farthest from the support shaft, and the inlet port of the bypass passage is provided near it, the on-off valve is arranged in a direction that reduces the hunting cycle that may occur Stable without being able to follow, and suppresses the occurrence of hunting.
[0012]
According to a second aspect of the present invention, in the gas meter according to the first aspect , at least a peripheral portion of the on-off valve is formed of an elastic material into a flexible lip shape.
In this invention, since the lip-shaped peripheral edge of the valve body bends smoothly and adheres closely to the valve seat at a small flow rate, the stability of the seal portion is good and the valve leakage is reduced.
[0024]
According to a third aspect of the present invention, in the gas meter according to the first or second aspect , an inlet and an outlet are provided at an upper portion of the case, the main flow path measurement unit is disposed immediately downstream of the inlet, and the on-off valve is disposed immediately upstream of the outlet. It is characterized by that.
[0025]
In this invention, the flow rate at the small flow rate is measured by the ultrasonic vibrator in the bypass passage, and the flow velocity at the medium to large flow rate is measured by the ultrasonic vibrator provided in the main flow path measurement unit, thereby reducing the size and rangeability. It is possible to realize an ultrasonic gas meter that operates stably and does not cause hunting of the on-off valve.
[0026]
According to a fourth aspect of the present invention, in the gas meter according to the third aspect , a shut-off valve is disposed in a flow path portion that communicates between the main flow path measuring section and the on-off valve.
[0027]
In the present invention, when the gas flow rate exceeds a predetermined flow rate, the shut-off valve is closed, and a small gas meter with a safety function having a function such as a so-called flow rate over cutoff can be realized.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described with reference to examples of the drawings.
[0029]
[Example 1]
In the first embodiment shown in FIG. 1, the gas flowing in from the upper entrance 32 of the gas meter case 31 as indicated by the arrow A passes through the main flow path measurement unit 33 arranged immediately below (just downstream) of the entrance 32. It passes between the valve element 35 and the valve seat 36 of the shut-off valve 34 and flows into the main flow path 37. When the gas flow rate is less than the set minute flow rate, the flapper-like on-off valve 38 is urged counterclockwise around the support shaft 39 by its own weight, and is in contact with the valve seat 40 and closed. The gas passes through the bypass flow path 42 from the inlet port 41 that opens to the farthest distance from the support shaft 39 of the valve seat portion, and passes from the outlet port 43 that opens downstream of the on-off valve 38 of the main flow path 37 to the main flow path. It returns to 37 and flows out from the exit 44 provided in the upper part of the case 31 of a gas meter. The bypass channel 42 is provided with a pair of ultrasonic transducers (not shown). With respect to the gas flow in the bypass channel, transmission and reception of ultrasonic pulses in the same forward direction as the flow direction, The ultrasonic pulse is transmitted and received in the opposite direction, the propagation time of the ultrasonic wave in the forward direction and the reverse direction is measured by an electronic circuit (not shown), the flow velocity is calculated, and the flow path of the bypass flow path 42 is interrupted. Multiply the area to find the flow rate.
[0030]
When the gas flow becomes faster and exceeds the set minute flow rate, the on-off valve 38 swings clockwise around the support shaft 39 and opens due to the dynamic pressure of the gas and the valve differential pressure. Then, the left side of the on-off valve 38 in the drawing, that is, the area where the distance from the support shaft 39 is large, first leaves the valve seat 40. Since this area is just close to the inlet port 41 of the bypass flow path 42, the left end of the on-off valve 38 is separated from the valve seat 40, and when gas flows upward between the valve and the valve seat, the bypass from the inlet port 41 is bypassed. Gas becomes difficult to enter the flow path 42, and the on-off valve 38 opens more and more. And as it opens, it approaches the vertical plane including the support shaft 39 as indicated by reference numeral 38 ', so that the valve closing force due to its own weight is reduced and the opening degree increases. Thus, hunting is suppressed, the valve opening is smoothly increased, and an increase in pressure loss due to the on-off valve is prevented.
[0031]
Thus, the flow rate of the medium to large flow rate gas when the flow becomes faster is measured by a pair of ultrasonic transducers (not shown) arranged in the main channel measurement unit 33 and the channel of the main channel measurement unit 33 is measured. It is converted to flow rate by multiplying the cross-sectional area. The control and calculation for measuring the propagation time of the ultrasonic waves in the forward direction and the reverse direction by a pair of ultrasonic transducers (not shown) of the main channel measurement unit 33 to obtain the flow velocity are not shown. This is done by a driving electronic circuit. Then, the flow rate of the bypass channel 42 at the minute flow rate and the flow rate of the main channel measurement unit 33 at the middle to large flow rate are integrated and displayed as a gas usage amount on a display unit not shown.
[0032]
When the flow rate increases and the on-off valve 38 rotates further clockwise than the angular position indicated by reference numeral 38 ′, the vicinity of the tip of the on-off valve 38 hits a stopper portion (also referred to as a stopper) 45 of the case 31 and rotates. Movement (oscillation) is limited. By doing so, it is possible to prevent the on-off valve 38 from being opened to a vertical plane including the support shaft 39 or an angle beyond the vertical plane and becoming unable to be restored (closed). The electronic circuit (not shown) has a flow rate monitoring function by a microcomputer. When an abnormal flow rate is detected, the shutoff valve 34 is closed and the valve body 35 is brought into contact with the valve seat 36 to stop the gas flow. Shut off the gas supply to Thus, it works as a gas meter with a safety function (so-called microcomputer meter). A return mechanism 46 is manually operated from the outside of the gas meter to open (return) the shut-off valve 34.
[0033]
As described above, the main flow path measuring unit 33 for measuring a medium to large flow rate is disposed immediately below (immediately downstream) the inlet 32, the on-off valve 38 is disposed directly below (immediately upstream) the outlet 44, and the shutoff valve is the main flow path. Since the measuring unit 33 and the on-off valve 38 are disposed in the flow path portion, an ultrasonic type gas meter having a wide rangeability can be formed in a small size and a compact size.
[0034]
[Example 2]
In FIG. 2 to FIG. 7, elements having the same reference numerals as those of the first embodiment of FIG. 1 perform the same functions as those of the first embodiment, and thus redundant description is omitted. . In this second embodiment, as shown in FIGS. 2, 3 and 6 in particular, the on-off valve 38 includes a valve frame 38a that is swingably supported on a support shaft 39, and a thin plate-like circle made of NBR having a thickness of 0.3 mm. A valve rubber 38b made of a plate, receiving plates 38c, 38d sandwiching the valve rubber 38b from both sides, and rivets 38e, 38e for connecting and fixing the movable end of the valve frame 38a to the center of the valve rubber 38b and the two receiving plates 38c, 38d. It cooperates with the valve seat 40. The support shaft 39 is attached to the on-off valve base 47, and the on-off valve base 47 is housed and fixed at a predetermined location in the case 31 as shown in FIGS. It is arranged directly below (immediately upstream).
[0035]
When the flow rate of the gas flowing through the gas meter is less than the set minute flow rate, the on-off valve 38 is inclined as shown in FIGS. 2 and 3, the valve load due to its own weight acts as the valve closing force, and the peripheral edge of the valve rubber 38b The portion is flexibly elastically deformed and bent, and is in close contact with the seat surface of the valve seat 40 as shown in FIG. In FIG. 7, the valve frame 38a, the receiving plates 38c and 38d, and the rivet 38e are omitted without being shown, and the drawing is simplified. The central portion of the valve rubber 38b sandwiched between the receiving plates 38c and 38d forms a part of a spherical surface along the shape of the receiving plates 38c and 38d. In the free state as a single piece of valve rubber before assembling, etc., it is a thin disc-shaped flat plate made of NBR with a thickness of 0.3 mm, and the lip-shaped part on the periphery stabilizes the operation of the seal part of the on-off valve after assembly It works effectively to prevent valve leakage at minute flow rates.
[0036]
A main flow path 37 when the on-off valve 38 is opened is formed in an inlet port 41 portion of the bypass flow path 42 that opens most far from the support shaft 39 in an inner diameter portion (also referred to as an inner diameter) 40 a of the valve seat 40. An inclined surface 40b that is farther away from the support shaft is formed toward the downstream side in the flow direction (substantially shown in the right direction in FIGS. 2 and 3). As a result, the opening / closing valve 38 opens, and the faster the gas flows, the more difficult it is for gas to flow from the inlet port 41 to the bypass flow path 42, thereby suppressing the occurrence of hunting of the opening / closing valve 38. In FIG. 7A, a circle formed by a two-dot chain line of an imaginary line denoted by reference numeral 38b ′ indicates an outer circumferential circle when the valve rubber 38b closes to the valve seat 40. As apparent from FIG. 7A, the annular portion 48 having a radial width ΔR sandwiched between the outer circumferential circle 38b ′ and the inner diameter 40a of the valve seat 40 is directed to the valve seat 40 when the on-off valve 38 is closed. A close contact portion (seal portion) of the valve rubber 38b is shown. Since the inclined portion 40b is formed and a part of the valve seat 40 is notched as described above, the annular portion 48 where the valve rubber 38b is in close contact with the valve seat 40 is shown. The width ΔR is a small width Δr in a portion adjacent to the inclined portion (notch portion) 40b. In this way, when the flow rate exceeds the set minute flow rate and the on-off valve 38 starts to open, the portion with the small width Δr is farthest from the support shaft 39 and tries to leave the valve seat first, and Δr < Since it is ΔR, the valve rubber is easily separated from the valve seat with a small force. Thus, since the air is vented from this portion at a flow rate slightly exceeding the minute flow rate, the on-off valve 38 does not cause hunting. Since the valve load decreases as the on-off valve 38 opens, the pressure loss at the maximum flow rate of the gas meter due to the on-off valve is not increased.
[0037]
In FIG. 7, the inclined portion 40 b is formed in a part of the valve seat 40, particularly the portion farthest from the support shaft 39, and the valve seat is notched, thereby reducing the radial width of the seal portion to a narrow width Δr, When the on-off valve starts to open, gas is easily leaked (vented) due to the presence of the inclined portion (notch). This prevents hunting when the on-off valve starts to open. In the example of FIGS. 8A and 8B, a part of the outer periphery of the valve rubber 38b, in particular, the part farthest from the support shaft 39 is formed with the cutout part 38B, so that the annular part 48 as the seal part in the radial direction. The width [Delta] r is set to a narrow width [Delta] r ', and the same effects as in the case of FIGS. 7 (a) and 7 (b) are obtained. In the example of FIG. 8, the inclined portion 40b in the case of FIG. 7 is not formed.
[0038]
As shown in black in FIG. 5, the ultrasonic vibrators 49 and 50 are disposed in the bypass channel 42 at a certain distance in the longitudinal direction of the bypass channel 42. And it is driven and controlled by a battery-driven electronic circuit (not shown) to transmit and receive ultrasonic pulses between both transducers, measure the propagation time of ultrasonic waves in the forward and reverse directions of the flow, Based on the propagation time, the flow rate of the gas flowing through the bypass channel 42 is calculated, and the flow rate is obtained by multiplying the channel cross-sectional area of the bypass channel.
[0039]
The flow rate from the middle to the large flow rate after the opening / closing valve 38 is opened is measured by an ultrasonic method in the main flow channel measurement unit 33 between the inlet 32 and the main flow channel 37. In FIG. 2, the ultrasonic transducers 51 and 52 are arranged to face each other with a certain distance in the main channel measurement unit 33 as shown in black. As in the case of the bypass flow path, the two vibrators 51 and 52 are driven and controlled by a battery-driven electronic circuit (not shown), and ultrasonic pulses are transmitted and received between the two vibrators. The propagation time of sound waves in the forward and reverse directions is measured. Then, the flow velocity is calculated based on the measured both propagation times, and the flow rate is obtained by multiplying the flow path cross-sectional area.
[0040]
In FIG. 5, 53 is a liquid crystal display unit mounted on the printed wiring board 54, and displays the flow rate integrated with time by the electronic circuit as the amount of gas used. Reference numeral 55 denotes a glass window. In the second embodiment, as shown in FIGS. 2 and 3, the stopper 45 is formed by providing an inclined bulge on the side wall of the case 31.
[0041]
Example 3
The third embodiment shown in FIGS. 9 and 10 is different from the second embodiment in the detailed structure of the on-off valve 38 and the shape of the stopper 45. In FIGS. 9 and 10, the valve frame 38a, the valve rubber 38b, and the receiving plate 38c are not hatched in order to avoid complicated drawings. In the third embodiment, the lower receiving plate 38d used in the previous embodiment is not used. FIG. 10 shows a state in which the on-off valve is separated from the valve seat 40 and a closed state in which the on-off valve is in contact with the valve seat 40. In the valve-closed state, a part of the portion extending from the outer periphery of the receiving plate 38c, which is the peripheral portion of the valve rubber 38b, in the outer peripheral direction (longitudinal direction) is pressed against the valve seat surface of the valve seat 40 and flexed flexibly. You can see how it is deforming. Thus, a stable seal is ensured. FIG. 11 is a diagram for explaining the main parts of the valve seat and the valve rubber of the third embodiment, and since there are many portions overlapping with FIG. In FIG. 5B, when the valve rubber 38b, whose peripheral portion is in close contact with the valve seat surface of the valve seat 40 when the valve is closed, starts to open, the reference numeral 38b ″ is attached and indicated by a two-dot chain line. As shown, the valve first begins to open from the vicinity of the inclined surface 40b, and arrows B and C in Fig. 9 indicate the gas flow when the on-off valve 38 is in the closed state and the open state.
[0042]
【Effect of the invention】
Since gas Sumeta of the present invention is constructed as described above, the following effects can be obtained. That is, the open valve is closed to prevent hunting, and does not increase the pressure loss. Moreover, there is no possibility that it cannot be restored even if it is opened wide.
Furthermore, as the on-off valve is opened, gas is less likely to enter the bypass flow path, so that the on-off valve operates more stably and the metering accuracy of the gas meter is improved.
[0045]
Further, a gas meter that is small and has a wide range can be realized, and the switching of the measurement flow rate can be performed stably without the risk of hunting of the on-off valve .
[0046]
Furthermore , the occurrence of hunting of the on-off valve can be further suppressed.
[0048]
In the invention of claim 2 , further, even when the valve is closed at a minute flow rate, the valve rubber is deformed flexibly and comes into close contact with the valve seat, so that a stable sealing property can be secured and the valve leakage is small.
In invention of Claim 3 , a gas meter can be put together compactly.
[0049]
In the invention of claim 4 , the gas meter achieved in claim 3 is added with a shut-off valve for stopping the supply of gas at an abnormal flow rate, and a gas meter with a safety function having a small size and a wide range can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic vertical sectional view of an embodiment of the present invention.
FIG. 2 is a longitudinal front view of an embodiment of the present invention.
FIG. 3 is an enlarged view of a part of FIG.
FIG. 4 is a top view of an embodiment of the present invention.
FIG. 5 is a longitudinal side view of an embodiment of the present invention.
FIG. 6 is a perspective view of a main part of an embodiment of the present invention.
7A and 7B are diagrams of an on-off valve according to an embodiment of the present invention, in which FIG. 7A is a plan view of a valve seat, and FIG. 7B is a longitudinal sectional view when the valve is closed.
8A and 8B are diagrams of an on-off valve according to an embodiment of the present invention, in which FIG. 8A is a plan view and FIG. 8B is a longitudinal sectional view.
FIG. 9 is a longitudinal sectional view around an on-off valve according to an embodiment of the present invention.
10 is a longitudinal sectional view for explaining the operation of the on-off valve in FIG. 9;
FIGS. 11A and 11B are diagrams illustrating the on-off valve of FIGS. 9 and 10, wherein FIG. 11A is a plan view of the valve seat, FIG. 11B is a longitudinal sectional view when the valve is closed, and FIG. FIG.
FIG. 12 is a schematic vertical sectional view of the prior art.
FIG. 13 is a longitudinal sectional view around a flow path area variable mechanism portion in the prior art.
14 is a cross-sectional view taken along line AA in FIG. 13 of the prior art.
[Explanation of symbols]
31 Case 32 Inlet 33 Main flow path measurement part 34 Shut-off valve 37 Main flow path 38 On-off valve 38b Valve rubber 39 Support shaft 40 Valve seat 40a Inner diameter part 40b Inclined surface 41 Inlet port 42 Bypass flow path 43 Outlet port 44 Outlet 45 Stopper 48 Annular part 49, 50, 51, 52 Ultrasonic transducers ΔR, Δr, Δr ′ width

Claims (4)

開閉弁を配設した流路断面積が大きい主流路と、該主流路における開閉弁の上流側と下流側とにそれぞれ開口する入口ポートと出口ポートを有する流路断面積が小さいバイパス流路と、該バイパス流路に設けられて一定流量未満の小流量時の流速を計測するための超音波振動子と、前記主流路と直列に連通する主流路計測部と、該主流路計測部に設けられて一定流量以上の流量時の流速を計測するための超音波振動子とを具備したガスメータであって、
前記開閉弁を、ほぼ水平に配置した支軸の回りに揺動可能に設けられ、該支軸を含む垂直面と水平面の間の所定角度範囲で流体の動圧および弁差圧により揺動するように前記支軸の上方に配設するとともに、前記所定角度範囲の垂直面に近い方への開閉弁の限界角度を定めるストッパを設け、
前記入口ポートを、前記開閉弁が当接する弁座部における前記支軸から最も遠い部分の弁座内径側に開口し、
前記入口ポートが開口する部分の弁座内径側に、開弁時における主流路の流れ方向の下流側にいく程、前記支軸から遠く離れる傾斜面を形成したことを特徴とするガスメータ。
A main channel having a large channel cross-sectional area in which the on-off valve is disposed, and a bypass channel having a small channel cross-sectional area having an inlet port and an outlet port respectively opened on the upstream side and the downstream side of the on-off valve in the main channel An ultrasonic transducer for measuring a flow velocity at a small flow rate less than a fixed flow rate provided in the bypass flow channel, a main flow channel measurement unit communicating in series with the main flow channel, and a main flow channel measurement unit. A gas meter comprising an ultrasonic transducer for measuring a flow velocity at a flow rate above a certain flow rate,
The on-off valve is provided so as to be able to oscillate about a support shaft arranged substantially horizontally, and oscillates by a dynamic pressure of the fluid and a valve differential pressure within a predetermined angle range between a vertical plane including the support shaft and a horizontal plane. A stopper for determining the limit angle of the on-off valve toward the side closer to the vertical surface of the predetermined angle range,
The inlet port is opened to the valve seat inner diameter side of the portion farthest from the support shaft in the valve seat portion with which the on-off valve abuts,
A gas meter, wherein an inclined surface farther away from the support shaft is formed on a valve seat inner diameter side of a portion where the inlet port is opened toward a downstream side in the flow direction of the main flow path when the valve is opened.
前記開閉弁の少なくも周縁部を、弾性材料で可撓性のあるリップ状に形成したことを特徴とする請求項記載のガスメータ。Gas meter according to claim 1, characterized in that the at least peripheral portions of the on-off valve, is formed in a lip shape having flexibility in an elastic material. ケースの上部に入口と出口を備え、入口のすぐ下流に前記主流路計測部を配置し、出口のすぐ上流に前記開閉弁を配置したことを特徴とする請求項1又は記載のガスメータ。The gas meter according to claim 1 or 2 , wherein an inlet and an outlet are provided in an upper part of the case, the main flow channel measuring unit is arranged immediately downstream of the inlet, and the on-off valve is arranged immediately upstream of the outlet. 前記主流路計測部と開閉弁との間を連通する流路部分に遮断弁を配設したことを特徴とする請求項記載のガスメータ。The gas meter according to claim 3 , wherein a shutoff valve is disposed in a flow path portion that communicates between the main flow path measurement unit and the on-off valve.
JP2001121028A 2001-04-19 2001-04-19 Gas meter Expired - Fee Related JP4942254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121028A JP4942254B2 (en) 2001-04-19 2001-04-19 Gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121028A JP4942254B2 (en) 2001-04-19 2001-04-19 Gas meter

Publications (2)

Publication Number Publication Date
JP2002310771A JP2002310771A (en) 2002-10-23
JP4942254B2 true JP4942254B2 (en) 2012-05-30

Family

ID=18970976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121028A Expired - Fee Related JP4942254B2 (en) 2001-04-19 2001-04-19 Gas meter

Country Status (1)

Country Link
JP (1) JP4942254B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027653B2 (en) * 2001-12-03 2007-12-26 愛知時計電機株式会社 On-off valve for gas meter
JP2007322221A (en) * 2006-05-31 2007-12-13 Aichi Tokei Denki Co Ltd Ultrasound flowmeter
JP5091446B2 (en) * 2006-09-19 2012-12-05 矢崎総業株式会社 Gas meter
JP5316236B2 (en) * 2009-06-08 2013-10-16 パナソニック株式会社 Shut-off valve flow path unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792483A (en) * 1971-12-10 1973-06-08 Bayer Ag OPTICAL BRIGHTENER
JPS60130896A (en) * 1983-12-19 1985-07-12 株式会社山本製作所 Multilayer printed circuit board
JP3017567B2 (en) * 1991-08-19 2000-03-13 大阪瓦斯株式会社 Fluidic flow meter
JP3804331B2 (en) * 1999-03-10 2006-08-02 大阪瓦斯株式会社 Gas meter
JP2001012978A (en) * 1999-06-29 2001-01-19 Aichi Tokei Denki Co Ltd Gas flowmeter

Also Published As

Publication number Publication date
JP2002310771A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4700242B2 (en) A device for measuring the amount of flowing medium
MY127673A (en) Ultrasonic flow meter
WO2011040038A1 (en) Ultrasonic flowmeter
CN108463693B (en) Gas meter
JP4942254B2 (en) Gas meter
JP2012177572A (en) Ultrasonic fluid measuring instrument
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP6134899B2 (en) Flow measurement unit
JP3601123B2 (en) Ultrasonic flow meter
JP2014077750A (en) Ultrasonic meter
JP2000028404A (en) Fluid control device and flow-rate measuring device provided with the same
JP2009186429A (en) Gas meter
JP7203302B2 (en) ultrasonic flow meter
JP2001324368A (en) Gas meter
JP2006118864A (en) Gas meter
JP2017090269A (en) Ultrasonic flowmeter
JP2002131098A (en) Fluid supply device
JPH109916A (en) Ultrasonic flowmeter
JP4045974B2 (en) Flow measuring device
JPH07209038A (en) Fluid flowmeter
JP2004361190A (en) Flowmeter
JP6087695B2 (en) Ultrasonic gas meter
CN108700447B (en) Gas meter
JPH1123340A (en) Coriolis mass flowmeter
JP2002357362A (en) Hot-water supplier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4942254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees