JP6087695B2 - Ultrasonic gas meter - Google Patents

Ultrasonic gas meter Download PDF

Info

Publication number
JP6087695B2
JP6087695B2 JP2013069398A JP2013069398A JP6087695B2 JP 6087695 B2 JP6087695 B2 JP 6087695B2 JP 2013069398 A JP2013069398 A JP 2013069398A JP 2013069398 A JP2013069398 A JP 2013069398A JP 6087695 B2 JP6087695 B2 JP 6087695B2
Authority
JP
Japan
Prior art keywords
flow rate
measurement
flow path
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013069398A
Other languages
Japanese (ja)
Other versions
JP2014190957A (en
Inventor
浅田 昭治
昭治 浅田
繁憲 岡村
繁憲 岡村
藤井 泰宏
泰宏 藤井
雄大 増田
雄大 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013069398A priority Critical patent/JP6087695B2/en
Publication of JP2014190957A publication Critical patent/JP2014190957A/en
Application granted granted Critical
Publication of JP6087695B2 publication Critical patent/JP6087695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流量計測対象のガスが通流する内部流路と、当該内部流路の上流側と下流側とに所定の間隔を開けて配設されて交互に超音波を送信する一対の超音波送受信手段を備え、当該一対の超音波送受信手段夫々の受信信号を増幅して当該増幅した受信信号に基づいてガス流量を演算することによりガス流量を計測する超音波式の流量計測手段と、前記内部流路に設けられて、開弁状態から閉弁状態に電気的に切り換え可能な遮断弁と、前記遮断弁の前記閉弁状態から前記開弁状態への開弁復帰を検知する遮断弁復帰検知手段と、前記流量計測手段の計測情報に基づいて異常を検知し、当該異常を検知したときに、前記遮断弁を前記閉弁状態に切り換える異常時遮断処理を実行し、並びに、前記遮断弁復帰検知手段により前記遮断弁の開弁復帰が検知されたときに、前記遮断弁よりも下流側でガス漏洩が発生しているか否かを判定する復帰時漏洩判定処理を実行するように構成された制御手段とを備えた超音波式ガスメータに関する。   The present invention provides a pair of ultrasonic waves that are arranged at predetermined intervals between an internal flow path through which a gas to be flow-measured flows and an upstream side and a downstream side of the internal flow path and alternately transmit ultrasonic waves. An ultrasonic flow rate measurement unit that includes a sound wave transmission / reception unit, amplifies a reception signal of each of the pair of ultrasonic transmission / reception units, and calculates a gas flow rate based on the amplified reception signal; A shut-off valve provided in the internal flow path and electrically switchable from a valve-opened state to a valve-closed state, and a shut-off valve for detecting the valve-opening return from the valve-closed state to the valve-opened state of the shut-off valve An abnormality is detected on the basis of the measurement information of the return detection means and the flow rate measurement means, and when the abnormality is detected, a shut-off process at the time of switching the shut-off valve to the closed state is executed, and the shut-off The shut-off valve is opened by valve return detection means. An ultrasonic type comprising control means configured to execute a return-time leakage determination process for determining whether or not gas leakage has occurred downstream from the shut-off valve when a return is detected; It relates to a gas meter.

かかる超音波式ガスメータは、住宅等のガス需要先に供給されるガスの流量を計測して、ガス需要先でのガス消費量を計測するものであり、ガス流量の計測情報に基づいて異常(例えば、ガス需要先でのガス消費の異常)を検知して、当該異常を検知したときには、遮断弁を閉弁状態に切り換える異常時遮断処理を実行して、ガス需要先へのガス供給を自動的に遮断するセキュリティ機能を備えている。
そして、異常時遮断処理が実行されてガス供給が遮断されると、異常の解消等が行われた後、遮断弁を開弁状態に復帰させるための操作が人為的に行われて、遮断弁が開弁状態に復帰されることになるが、その遮断弁の開弁復帰が遮断弁復帰検知手段により検知されるのに伴って、遮断弁よりも下流側でのガス漏洩の有無を判定する復帰時漏洩判定処理を実行するセキュリティ機能も備えている。
Such an ultrasonic gas meter measures the flow rate of gas supplied to a gas demand destination such as a house, and measures the gas consumption at the gas demand destination. For example, when an abnormality in gas consumption at a gas demand destination is detected and the abnormality is detected, a shut-off process at the time of switching the shut-off valve to a closed state is executed to automatically supply the gas to the gas demand destination. It has a security function that blocks it automatically.
Then, when the abnormal shut-off process is performed and the gas supply is shut off, after the abnormality is resolved, an operation for returning the shut-off valve to the open state is performed artificially. Will be returned to the open state, but as the return of the shut-off valve is detected by the shut-off valve return detecting means, the presence or absence of gas leakage downstream from the shut-off valve is determined. It also has a security function that executes leak detection processing at return.

ところで、ガス流量を計測する流量計測手段として、膜式及び超音波式等がある。膜式の流量計測手段は、ダイヤフラムにより区画された一対の計量室に交互にガスを給排して、それに伴う往復運動をリンク機構により変換して回転体を回転運動させ、その回転体の回転を検出することに基づいて、ガス流量を計測するものである。一方、超音波式の流量計測手段は、内部流路の上流側と下流側とに所定の間隔を開けて配設された一対の超音波送受信手段を交互に超音波を送信すると共に、一方の超音波送受信手段から送信された超音波を他方の超音波送受信手段にて受信するように駆動して、上流側から下流側への超音波の伝播時間と下流側から上流側への超音波の伝播時間を計測し、その計測情報に基づいてガス流量を計測するものである。   By the way, as a flow rate measuring means for measuring a gas flow rate, there are a membrane type and an ultrasonic type. The membrane-type flow rate measuring means alternately feeds and discharges gas to and from a pair of measuring chambers partitioned by a diaphragm, converts the reciprocating motion associated therewith to rotate the rotating body, and rotates the rotating body. The gas flow rate is measured based on the detection of. On the other hand, the ultrasonic flow rate measurement means alternately transmits ultrasonic waves through a pair of ultrasonic transmission / reception means arranged at predetermined intervals on the upstream side and the downstream side of the internal flow path, The ultrasonic wave transmitted from the ultrasonic transmission / reception unit is driven so as to be received by the other ultrasonic transmission / reception unit, the propagation time of the ultrasonic wave from the upstream side to the downstream side and the ultrasonic wave from the downstream side to the upstream side. The propagation time is measured, and the gas flow rate is measured based on the measurement information.

復帰時漏洩判定処理の従来技術として、膜式の流量計測手段を備えた膜式ガスメータでは、以下の技術が開示されている。
即ち、遮断弁復帰検知手段により遮断弁の開弁復帰が検知された後、所定の設定時間の間に、流量計測手段にて計測されるガス流量が所定の設定流量よりも多くなると、ガス漏洩が発生していると判定する復帰時漏洩判定処理が開示されている(例えば、特許文献1参照。)。
As a conventional technique for the leakage determination process at the time of return, the following technique is disclosed in a film type gas meter provided with a film type flow rate measuring means.
That is, if the gas flow rate measured by the flow rate measuring unit exceeds the predetermined set flow rate for a predetermined set time after the shut-off valve return detection unit detects the open valve return, the gas leakage occurs. A leakage judgment process at the time of return for determining that occurrence has occurred is disclosed (see, for example, Patent Document 1).

特開昭59−122819号公報JP 59-122819 A

ところで、近年は、ガスメータの小型軽量化並びに高精度化等を図るため、超音波式の流量計測手段を備えた超音波式ガスメータが普及してきている。
しかしながら、このような超音波式ガスメータにおいて、復帰時漏洩判定処理として、上述の特許文献1に開示されている復帰時漏洩判定処理を採用しようとしても、以下に説明するようにガス漏洩を適切に判定できない場合が起こり得る虞があり、特許文献1に開示されている復帰時漏洩判定処理を超音波式ガスメータに採用することができなかった。
By the way, in recent years, in order to reduce the size, weight, and accuracy of gas meters, ultrasonic gas meters equipped with ultrasonic flow rate measuring means have become widespread.
However, in such an ultrasonic gas meter, even if the return leakage determination process disclosed in Patent Document 1 described above is adopted as the return leakage determination process, gas leakage is appropriately prevented as described below. There is a possibility that a case where the determination cannot be made may occur, and the return leakage determination process disclosed in Patent Document 1 cannot be applied to the ultrasonic gas meter.

即ち、復帰時漏洩判定処理は、既に超音波式ガスメータが設置されてガスが消費されているガス需要先において、異常が発生したときに実行されるが、それ以外に、超音波式ガスメータの交換時や新規の設置時等、ガスをガス需要先に供給するガス供給管に超音波式ガスメータを設置した設置時にも実行される。つまり、超音波式ガスメータの設置は、遮断弁を閉じた状態で行われるので、その設置後、遮断弁を開弁復帰させると復帰時漏洩判定処理が実行される。そして、超音波式ガスメータの設置時は、超音波式ガスメータの内部流路に空気が満たされている状態となっており、このような状態で遮断弁が開かれると、内部流路に上流側からガスが流れて来て内部流路内の空気が下流側に押し流されるので、内部流路内に、ガスと空気とが十分に混合されることなく、ガスの領域と空気の領域とが併存する状態(以下、ガス空気相併存状態と記載する場合がある)が現出し得る。   That is, the leakage judgment process at the time of return is executed when an abnormality occurs at a gas customer where an ultrasonic gas meter is already installed and gas is consumed. It is also executed when an ultrasonic gas meter is installed in a gas supply pipe that supplies gas to a gas demanding party, such as at the time of installation or new installation. That is, since the installation of the ultrasonic gas meter is performed with the shut-off valve closed, the return leakage determination process is executed when the shut-off valve is opened and returned after the installation. When the ultrasonic gas meter is installed, the internal flow path of the ultrasonic gas meter is filled with air. When the shut-off valve is opened in such a state, the internal flow path is upstream. Since the gas flows from the air and the air in the internal flow channel is pushed downstream, the gas region and the air region coexist in the internal flow channel without sufficiently mixing the gas and air. (Hereinafter sometimes referred to as a gas / air phase coexistence state) can appear.

ガスの領域と空気の領域とでは音響インピーダンスが異なるので、内部流路内にガス空気相併存状態が現出すると、内部流路内に音響インピーダンスが異なる断層が現出することになる。そして、各超音波送受信手段から送信された超音波は、音響インピーダンスが異なる断層で反射し易いため、内部流路内にガス空気相併存状態が現出すると、各超音波送受信手段の受信信号が小さくなるので、内部流路内にガス単独や空気単独、あるいは、それらが十分に混合された流体等(以下、「均質な流体」と総称する場合がある)が存在する場合に比べて、各超音波送受信手段の受信信号を所定の範囲に増幅する際の増幅度が大きくなる。
従って、各超音波送受信手段の受信信号を増幅して流体流量を演算するにしても、受信信号が小さ過ぎると、流体流量の演算誤差が大きくなるので、内部流路を通流する流体の流量を適切に計測できなくなる虞があり、そのような流体流量の計測情報に基づく復帰時漏洩判定処理では、ガス漏洩が発生しているか否かを適切に判定できなくなる虞がある。
Since the acoustic impedance is different between the gas region and the air region, when a gas / air phase coexistence state appears in the internal flow path, a fault having different acoustic impedance appears in the internal flow path. And since the ultrasonic wave transmitted from each ultrasonic transmission / reception means is easily reflected by a tomography having different acoustic impedance, when a gas-air phase coexistence state appears in the internal flow path, the reception signal of each ultrasonic transmission / reception means is Compared to the case where gas alone, air alone, or a fluid in which they are sufficiently mixed (hereinafter, may be collectively referred to as “homogeneous fluid”) exist in the internal flow path. The amplification degree when the received signal of the ultrasonic transmission / reception means is amplified to a predetermined range is increased.
Accordingly, even if the received signal of each ultrasonic transmission / reception means is amplified to calculate the fluid flow rate, if the received signal is too small, the calculation error of the fluid flow rate increases, so the flow rate of the fluid flowing through the internal flow path Cannot be properly measured, and in such a return leakage determination process based on the fluid flow rate measurement information, it may not be possible to appropriately determine whether or not gas leakage has occurred.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、遮断弁の開弁復帰時のガス漏洩有無の判定を適切に行い得る超音波式ガスメータを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultrasonic gas meter that can appropriately determine the presence or absence of gas leakage when the shut-off valve is opened again.

本発明に係る超音波式ガスメータの特徴構成は、流量計測対象のガスが通流する内部流路と、
当該内部流路の上流側と下流側とに所定の間隔を開けて配設されて交互に超音波を送信する一対の超音波送受信手段を備え、当該一対の超音波送受信手段夫々の受信信号を増幅して当該増幅した受信信号に基づいてガス流量を演算することによりガス流量を計測する超音波式の流量計測手段と、
前記内部流路に設けられて、開弁状態から閉弁状態に電気的に切り換え可能な遮断弁と、
前記遮断弁の前記閉弁状態から前記開弁状態への開弁復帰を検知する遮断弁復帰検知手段と、
前記流量計測手段の計測情報に基づいて異常を検知し、当該異常を検知したときに、前記遮断弁を前記閉弁状態に切り換える異常時遮断処理を実行し、並びに、前記遮断弁復帰検知手段により前記遮断弁の開弁復帰が検知されたときに、前記遮断弁よりも下流側でガス漏洩が発生しているか否かを判定する復帰時漏洩判定処理を実行するように構成された制御手段とを備えたものであって、
その特徴構成は、前記内部流路の一部が、並列状の複数の計測用流路にて構成され、
前記複数の計測用流路の夫々に対応して、前記流量計測手段が設けられ、 前記制御手段が、前記複数の計測用流路夫々に夫々設けられた複数の流量計測手段にて計測される流体流量に基づいて、前記異常を検知するように構成され、且つ、前記復帰時漏洩判定処理において、前記受信信号の増幅度が設定増幅度以下である流量計測手段にて計測される流体流量に基づいて、前記内部流路の流体流量を求め、当該求めた内部流路の流体流量に基づいて前記ガス漏洩が発生しているか否かを判定し、
前記制御手段が、前記復帰時漏洩判定処理において、前記複数の流量計測手段全ての前記受信信号の増幅度が前記設定増幅度よりも大きいときは、前記内部流路の流体流量がゼロであるとみなして、前記ガス漏洩が発生しているか否かを判定する点にある。
The characteristic configuration of the ultrasonic gas meter according to the present invention includes an internal flow path through which a gas to be flow-measured flows,
Provided with a pair of ultrasonic transmission / reception means that are arranged at predetermined intervals on the upstream side and the downstream side of the internal flow path and alternately transmit ultrasonic waves, and receive signals of the pair of ultrasonic transmission / reception means respectively An ultrasonic flow rate measuring means for measuring the gas flow rate by amplifying and calculating the gas flow rate based on the amplified received signal;
A shut-off valve provided in the internal flow path and electrically switchable from a valve-open state to a valve-closed state;
A shut-off valve return detecting means for detecting a return of the shut-off valve from the closed state to the open state;
An abnormality is detected based on the measurement information of the flow rate measuring means, and when the abnormality is detected, a shut-off process at the time of switching the shut-off valve to the closed state is executed, and the shut-off valve return detecting means A control means configured to execute a return-time leakage determination process for determining whether or not a gas leak has occurred downstream of the cutoff valve when a valve opening return of the cutoff valve is detected; With
The characteristic configuration is that a part of the internal flow path is configured by a plurality of parallel measurement flow paths,
Corresponding to each of the plurality of measurement flow paths, the flow rate measuring means is provided, and the control means is measured by a plurality of flow rate measurement means respectively provided in the plurality of measurement flow paths. Based on the fluid flow rate, the fluid flow rate is configured to detect the abnormality, and in the return leakage determination process, the fluid flow rate measured by the flow rate measurement unit whose amplification level of the received signal is equal to or less than a set amplification level. On the basis of the fluid flow rate of the internal flow path, to determine whether the gas leakage has occurred based on the determined fluid flow rate of the internal flow path ,
In the leakage judgment process at the time of return, when the amplification degree of the reception signals of all the plurality of flow rate measurement means is larger than the set amplification degree, the fluid flow rate of the internal flow path is zero. In view of this, it is determined whether or not the gas leakage has occurred .

上記特徴構成によれば、流量計測対象のガスは並列状の複数の計測用流路を通って通流し、複数の計測用流路夫々に夫々設けられた複数の流量計測手段により複数の計測用流路夫々の流体流量が計測され、それら複数の流量計測手段の流体流量の計測情報に基づいて、制御手段により異常が検知される。例えば、複数の流量計測手段夫々にて計測された流体流量の合計を内部流路のガス流量として、その内部流路のガス流量に基づいて異常の有無が判定される。
又、復帰時漏洩判定処理においては、制御手段により、受信信号の増幅度が設定増幅度以下である流量計測手段にて計測される流体流量に基づいて、内部流路の流体流量が求められ、そのように求められた内部流路の流体流量に基づいて、ガス漏洩が発生しているか否かが判定される。例えば、複数の計測用流路が互いに流体流量が同一になるように設計されていて、各計測用流路の流体流量が同一であるとすると、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量の合計を、受信信号の増幅度が設定増幅度以下の流量計測手段の数と全流量計測手段の数との比により補正することにより、内部流路の流体流量が求められる。ちなみに、設定増幅度は、例えば、一対の超音波送受信手段の間に均質な流体が存在する状態のときに、流量計測手段により超音波送受信手段の受信信号が増幅される増幅度よりも大きい条件で、適宜、所定の値に設定される。
According to the above characteristic configuration, the gas for flow rate measurement flows through a plurality of parallel measurement channels, and a plurality of measurement flows are provided by a plurality of flow rate measuring means provided in each of the plurality of measurement channels. The fluid flow rate of each flow path is measured, and an abnormality is detected by the control means based on the fluid flow rate measurement information of the plurality of flow rate measurement means. For example, the sum of the fluid flow rates measured by each of the plurality of flow rate measurement means is used as the gas flow rate of the internal flow path, and the presence / absence of an abnormality is determined based on the gas flow rate of the internal flow path.
Further, in the return leakage determination process, the control means obtains the fluid flow rate of the internal flow path based on the fluid flow rate measured by the flow rate measurement means whose received signal amplification is equal to or less than the set amplification degree, Based on the fluid flow rate of the internal flow path thus determined, it is determined whether or not gas leakage has occurred. For example, if a plurality of measurement channels are designed to have the same fluid flow rate, and the fluid flow rates of the measurement channels are the same, the flow rate of the received signal is equal to or less than the set amplification rate By correcting the sum of the fluid flow rates measured by the measuring means by the ratio of the number of flow rate measuring means whose received signal amplification is less than or equal to the set amplification level and the total number of flow rate measuring means, the fluid in the internal flow path A flow rate is required. Incidentally, the set amplification degree is a condition that is larger than the amplification degree at which the reception signal of the ultrasonic transmission / reception means is amplified by the flow rate measurement means when, for example, a homogeneous fluid exists between the pair of ultrasonic transmission / reception means. Thus, the value is appropriately set to a predetermined value.

つまり、内部流路の一部を並列状の複数の計測用流路にて構成することにより、超音波式ガスメータの設置時等、内部流路に空気が満たされている状態で、遮断弁が開かれたときに、内部流路に上流側からガスが流れてきても、全ての計測用流路について、一対の超音波送受信手段の間がガス空気相併存状態になるのではなく、一対の超音波送受信手段の間が空気相併存状態にならずに均質な流体が存在する計測用流路が存在するようにすることができる。
この状況では、一対の超音波送受信手段の間がガス空気相併存状態ではない計測用流路については、各超音波送受信手段の受信信号は通常の大きさであり、その受信信号を増幅する増幅度は設定増幅度以下となり、そのように増幅された受信信号に基づいて、計測用流路の流体流量が精度良く演算される。
そして、受信信号の増幅度が設定増幅度以下である流量計測手段にて精度良く計測される計測用流路の流体流量に基づいて、内部流路の流体流量が精度良く求められ、そのように精度良く求められた内部流路の流体流量に基づいて、ガス漏洩が発生しているか否かを判定するので、その判定を適切に行うことができるのである。
また、復帰時漏洩判定処理においては、複数の流量計測手段全ての受信信号の増幅度が設定増幅度よりも大きいときは、内部流路の流体流量がゼロであるとみなして、遮断弁よりも下流側でガス漏洩が発生しているか否かが判定される。
つまり、遮断弁よりも下流側でガス漏洩が発生していない場合、遮断弁が開かれて内部流路に上流側からガスが流入して来て、内部流路にガスや空気等の流体が満たされた後は、複数の計測用流路の内部のガスや空気は全く又は殆ど下流側に流動することがない。そこで、複数の流量計測手段全ての受信信号の増幅度が設定増幅度よりも大きい場合は、複数の計測用流路の内部のガスや空気は全く又は殆ど下流側に流動していないために、複数の計測用流路全てがガス空気相併存状態になっているためであるとみなすことができるので、内部流路の流体流量がゼロであるとみなすことができるのである。
従って、複数の計測用流路の一部がガス空気相併存状態になっているか、全てがガス空気相併存状態になっているか、全てがガス空気相併存状態ではなく均質な流体が存在している状態かに拘わらず、遮断弁の開弁復帰時のガス漏洩有無の判定を適切に行うことができる。
従って、遮断弁の開弁復帰時のガス漏洩有無の判定を適切に行い得る超音波式ガスメータを提供することができるようになった。
In other words, by configuring a part of the internal flow path with a plurality of parallel measurement flow paths, the shut-off valve can be used when the internal flow path is filled with air, such as when an ultrasonic gas meter is installed. Even when gas flows from the upstream side into the internal flow path when opened, the gas / air phase coexistence between the pair of ultrasonic transmission / reception means is not established for all measurement flow paths. It is possible to have a measurement flow path in which a homogeneous fluid exists without the presence of an air phase between the ultrasonic transmission / reception means.
In this situation, for the measurement flow channel where the gas / air phase is not coexisting between the pair of ultrasonic transmission / reception means, the reception signal of each ultrasonic transmission / reception means has a normal size, and amplification for amplifying the reception signal The degree is equal to or less than the set amplification degree, and the fluid flow rate in the measurement channel is accurately calculated based on the reception signal thus amplified.
Then, based on the fluid flow rate of the measurement flow path that is accurately measured by the flow rate measuring means whose received signal amplification level is equal to or less than the set amplification level, the fluid flow rate of the internal flow path is obtained with high accuracy. Since it is determined whether or not gas leakage has occurred based on the fluid flow rate of the internal flow path determined with high accuracy, this determination can be made appropriately.
Further, in the leakage judgment process at the time of return, when the amplification level of the reception signals of all the plurality of flow rate measuring means is larger than the set amplification level, it is considered that the fluid flow rate of the internal flow path is zero, and the It is determined whether or not gas leakage has occurred on the downstream side.
In other words, if no gas leakage occurs downstream from the shutoff valve, the shutoff valve is opened and gas flows into the internal flow path from the upstream side, and fluid such as gas or air enters the internal flow path. After filling, the gas and air inside the plurality of measurement flow paths do not flow at all or almost downstream. Therefore, when the amplification level of the reception signals of all the plurality of flow rate measurement means is larger than the set amplification level, the gas and air inside the plurality of measurement flow paths are not flowing at all or almost downstream, Since it can be considered that all of the plurality of measurement flow paths are in the gas / air phase coexistence state, the fluid flow rate of the internal flow path can be regarded as zero.
Therefore, some of the measurement flow paths are in a gas / air phase coexistence state, all are in a gas / air phase coexistence state, or all are not in a gas / air phase coexistence state. Regardless of the state of being present, it is possible to appropriately determine the presence or absence of gas leakage when the shut-off valve is opened again.
Therefore, it is possible to provide an ultrasonic gas meter that can appropriately determine the presence or absence of gas leakage when the shut-off valve is opened again.

本発明に係る超音波式ガスメータの更なる特徴構成は、Further features of the ultrasonic gas meter according to the present invention are as follows:
前記制御手段が、前記復帰時漏洩判定処理において、前記複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が前記設定増幅度以下の場合は、当該受信信号の増幅度が前記設定増幅度以下の流量計測手段にて計測される流体流量を、前記複数の流量計測手段全ての受信信号の増幅度が前記設定増幅度以下のときの前記複数の流量計測手段夫々にて計測される流体流量の比に基づいて補正することにより、前記内部流路の流体流量を求めるように構成されている点にある。In the leakage judgment process at the time of return, when the amplification degree of the reception signal of a part of the plurality of flow measurement means is equal to or less than the set amplification degree, the amplification degree of the reception signal Is a flow rate of fluid measured by the flow rate measuring means below the set amplification level, and each of the plurality of flow rate measurement means when the amplification levels of the received signals of all the plurality of flow rate measurement means are below the set amplification level. The correction is based on the ratio of the measured fluid flow rate, so that the fluid flow rate of the internal flow path is obtained.

上記特徴構成によれば、複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が設定増幅度以下の場合は、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量を、複数の流量計測手段全ての受信信号の増幅度が設定増幅度以下のときの複数の流量計測手段夫々にて計測される流体流量の比に基づいて補正することにより、内部流路の流体流量を求めるので、複数の計測用流路における流体流量の比が変動しても、内部流路の流体流量を精度良く求めることができる。According to the above characteristic configuration, when the amplification degree of the reception signal of a part of the plurality of flow rate measurement means is equal to or less than the set amplification level, the flow rate measurement means whose amplification level of the reception signal is equal to or less than the set amplification level To correct the fluid flow rate measured by the ratio of the fluid flow rate measured by each of the plurality of flow rate measurement means when the amplification of the received signals of all of the plurality of flow rate measurement means is less than or equal to the set amplification degree Thus, since the fluid flow rate of the internal flow path is obtained, the fluid flow rate of the internal flow path can be obtained accurately even if the ratio of the fluid flow rates in the plurality of measurement flow paths varies.
ところで、複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が設定増幅度以下の場合に、内部流路の流体流量を求めるに当たって、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量を、予め定めた複数の計測用流路における流体流量の比で補正することにより求めることが想定される。By the way, when the amplification degree of the reception signal of a part of the plurality of flow measurement means is equal to or less than the set amplification degree, the amplification degree of the reception signal is set to the set amplification degree when the fluid flow rate in the internal flow path is obtained. It is assumed that the fluid flow rate measured by the following flow rate measuring means is obtained by correcting the fluid flow rate in a plurality of predetermined measurement flow paths.
しかしながら、この場合、複数の計測用流路における流体流量の比が時間経過に伴って変動すると、求めた内部流路の流体流量の精度が低下する虞がある。However, in this case, if the ratio of the fluid flow rates in the plurality of measurement channels varies with time, the accuracy of the obtained fluid flow rate in the internal channels may be reduced.
要するに、本特徴構成によれば、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量を補正して内部流路の流体流量を求めるに当たって、複数の流量計測手段により実際に計測された複数の計測用流路における流体流量の比に基づいて補正するので、複数の計測用流路における流体流量の比が時間経過に伴って変動しても、内部流路の流体流量を精度良く求めることができて、遮断弁の開弁復帰時におけるガス漏洩有無の判定を適切に行うことができる。In short, according to this characteristic configuration, when the fluid flow rate measured by the flow rate measurement unit whose received signal amplification is equal to or less than the set amplification rate is corrected to obtain the fluid flow rate of the internal flow path, a plurality of flow rate measurement units are used. Since the correction is made based on the ratio of the fluid flow rates in the plurality of measurement channels actually measured, even if the ratio of the fluid flow rates in the plurality of measurement channels fluctuates over time, the fluid in the internal channel The flow rate can be obtained with high accuracy, and the presence or absence of gas leakage can be appropriately determined when the shut-off valve is opened again.

本発明に係る超音波式ガスメータの特徴構成は、流量計測対象のガスが通流する内部流路と、
当該内部流路の上流側と下流側とに所定の間隔を開けて配設されて交互に超音波を送信する一対の超音波送受信手段を備え、当該一対の超音波送受信手段夫々の受信信号を増幅して当該増幅した受信信号に基づいてガス流量を演算することによりガス流量を計測する超音波式の流量計測手段と、
前記内部流路に設けられて、開弁状態から閉弁状態に電気的に切り換え可能な遮断弁と、
前記遮断弁の前記閉弁状態から前記開弁状態への開弁復帰を検知する遮断弁復帰検知手段と、
前記流量計測手段の計測情報に基づいて異常を検知し、当該異常を検知したときに、前記遮断弁を前記閉弁状態に切り換える異常時遮断処理を実行し、並びに、前記遮断弁復帰検知手段により前記遮断弁の開弁復帰が検知されたときに、前記遮断弁よりも下流側でガス漏洩が発生しているか否かを判定する復帰時漏洩判定処理を実行するように構成された制御手段とを備えたものであって、
その特徴構成は、前記内部流路の一部が、並列状の複数の計測用流路にて構成され、
前記複数の計測用流路の夫々に対応して、前記流量計測手段が設けられ、
前記制御手段が、前記複数の計測用流路夫々に夫々設けられた複数の流量計測手段にて計測される流体流量に基づいて、前記異常を検知するように構成され、且つ、前記復帰時漏洩判定処理において、前記受信信号の増幅度が設定増幅度以下である流量計測手段にて計測される流体流量に基づいて、前記内部流路の流体流量を求め、当該求めた内部流路の流体流量に基づいて前記ガス漏洩が発生しているか否かを判定し、
前記制御手段が、前記復帰時漏洩判定処理において、前記複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が前記設定増幅度以下の場合は、当該受信信号の増幅度が前記設定増幅度以下の流量計測手段にて計測される流体流量を、前記複数の流量計測手段全ての受信信号の増幅度が前記設定増幅度以下のときの前記複数の流量計測手段夫々にて計測される流体流量の比に基づいて補正することにより、前記内部流路の流体流量を求めるように構成されている点にある。
The characteristic configuration of the ultrasonic gas meter according to the present invention includes an internal flow path through which a gas to be flow-measured flows,
Provided with a pair of ultrasonic transmission / reception means that are arranged at predetermined intervals on the upstream side and the downstream side of the internal flow path and alternately transmit ultrasonic waves, and receive signals of the pair of ultrasonic transmission / reception means respectively An ultrasonic flow rate measuring means for measuring the gas flow rate by amplifying and calculating the gas flow rate based on the amplified received signal;
A shut-off valve provided in the internal flow path and electrically switchable from a valve-open state to a valve-closed state;
A shut-off valve return detecting means for detecting a return of the shut-off valve from the closed state to the open state;
An abnormality is detected based on the measurement information of the flow rate measuring means, and when the abnormality is detected, a shut-off process at the time of switching the shut-off valve to the closed state is executed, and the shut-off valve return detecting means A control means configured to execute a return-time leakage determination process for determining whether or not a gas leak has occurred downstream of the cutoff valve when a valve opening return of the cutoff valve is detected; With
The characteristic configuration is that a part of the internal flow path is configured by a plurality of parallel measurement flow paths,
Corresponding to each of the plurality of measurement channels, the flow rate measuring means is provided,
The control means is configured to detect the abnormality based on a fluid flow rate measured by a plurality of flow rate measurement means provided in each of the plurality of measurement flow paths, and the return leakage In the determination process, the fluid flow rate of the internal flow path is obtained based on the fluid flow rate measured by the flow rate measuring means whose amplification level of the received signal is equal to or less than the set amplification level, and the fluid flow rate of the internal flow path thus obtained is determined. To determine whether or not the gas leakage has occurred,
In the leakage judgment process at the time of return, when the amplification degree of the reception signal of a part of the plurality of flow measurement means is equal to or less than the set amplification degree, the amplification degree of the reception signal Is a flow rate of fluid measured by the flow rate measuring means below the set amplification level, and each of the plurality of flow rate measurement means when the amplification levels of the received signals of all the plurality of flow rate measurement means are below the set amplification level. The correction is based on the ratio of the measured fluid flow rate, so that the fluid flow rate of the internal flow path is obtained.

上記特徴構成によれば、流量計測対象のガスは並列状の複数の計測用流路を通って通流し、複数の計測用流路夫々に夫々設けられた複数の流量計測手段により複数の計測用流路夫々の流体流量が計測され、それら複数の流量計測手段の流体流量の計測情報に基づいて、制御手段により異常が検知される。例えば、複数の流量計測手段夫々にて計測された流体流量の合計を内部流路のガス流量として、その内部流路のガス流量に基づいて異常の有無が判定される。
又、復帰時漏洩判定処理においては、制御手段により、受信信号の増幅度が設定増幅度以下である流量計測手段にて計測される流体流量に基づいて、内部流路の流体流量が求められ、そのように求められた内部流路の流体流量に基づいて、ガス漏洩が発生しているか否かが判定される。例えば、複数の計測用流路が互いに流体流量が同一になるように設計されていて、各計測用流路の流体流量が同一であるとすると、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量の合計を、受信信号の増幅度が設定増幅度以下の流量計測手段の数と全流量計測手段の数との比により補正することにより、内部流路の流体流量が求められる。ちなみに、設定増幅度は、例えば、一対の超音波送受信手段の間に均質な流体が存在する状態のときに、流量計測手段により超音波送受信手段の受信信号が増幅される増幅度よりも大きい条件で、適宜、所定の値に設定される。
つまり、内部流路の一部を並列状の複数の計測用流路にて構成することにより、超音波式ガスメータの設置時等、内部流路に空気が満たされている状態で、遮断弁が開かれたときに、内部流路に上流側からガスが流れてきても、全ての計測用流路について、一対の超音波送受信手段の間がガス空気相併存状態になるのではなく、一対の超音波送受信手段の間が空気相併存状態にならずに均質な流体が存在する計測用流路が存在するようにすることができる。
この状況では、一対の超音波送受信手段の間がガス空気相併存状態ではない計測用流路については、各超音波送受信手段の受信信号は通常の大きさであり、その受信信号を増幅する増幅度は設定増幅度以下となり、そのように増幅された受信信号に基づいて、計測用流路の流体流量が精度良く演算される。
そして、受信信号の増幅度が設定増幅度以下である流量計測手段にて精度良く計測される計測用流路の流体流量に基づいて、内部流路の流体流量が精度良く求められ、そのように精度良く求められた内部流路の流体流量に基づいて、ガス漏洩が発生しているか否かを判定するので、その判定を適切に行うことができるのである。
また、複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が設定増幅度以下の場合は、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量を、複数の流量計測手段全ての受信信号の増幅度が設定増幅度以下のときの複数の流量計測手段夫々にて計測される流体流量の比に基づいて補正することにより、内部流路の流体流量を求めるので、複数の計測用流路における流体流量の比が変動しても、内部流路の流体流量を精度良く求めることができる。
従って、遮断弁の開弁復帰時のガス漏洩有無の判定を適切に行い得る超音波式ガスメータを提供することができるようになった。
According to the above characteristic configuration, the gas for flow rate measurement flows through a plurality of parallel measurement channels, and a plurality of measurement flows are provided by a plurality of flow rate measuring means provided in each of the plurality of measurement channels. The fluid flow rate of each flow path is measured, and an abnormality is detected by the control means based on the fluid flow rate measurement information of the plurality of flow rate measurement means. For example, the sum of the fluid flow rates measured by each of the plurality of flow rate measurement means is used as the gas flow rate of the internal flow path, and the presence / absence of an abnormality is determined based on the gas flow rate of the internal flow path.
Further, in the return leakage determination process, the control means obtains the fluid flow rate of the internal flow path based on the fluid flow rate measured by the flow rate measurement means whose received signal amplification is equal to or less than the set amplification degree, Based on the fluid flow rate of the internal flow path thus determined, it is determined whether or not gas leakage has occurred. For example, if a plurality of measurement channels are designed to have the same fluid flow rate, and the fluid flow rates of the measurement channels are the same, the flow rate of the received signal is equal to or less than the set amplification rate By correcting the sum of the fluid flow rates measured by the measuring means by the ratio of the number of flow rate measuring means whose received signal amplification is less than or equal to the set amplification level and the total number of flow rate measuring means, the fluid in the internal flow path A flow rate is required. Incidentally, the set amplification degree is a condition that is larger than the amplification degree at which the reception signal of the ultrasonic transmission / reception means is amplified by the flow rate measurement means when, for example, a homogeneous fluid exists between the pair of ultrasonic transmission / reception means. Thus, the value is appropriately set to a predetermined value.
In other words, by configuring a part of the internal flow path with a plurality of parallel measurement flow paths, the shut-off valve can be used when the internal flow path is filled with air, such as when an ultrasonic gas meter is installed. Even when gas flows from the upstream side into the internal flow path when opened, the gas / air phase coexistence between the pair of ultrasonic transmission / reception means is not established for all measurement flow paths. It is possible to have a measurement flow path in which a homogeneous fluid exists without the presence of an air phase between the ultrasonic transmission / reception means.
In this situation, for the measurement flow channel where the gas / air phase is not coexisting between the pair of ultrasonic transmission / reception means, the reception signal of each ultrasonic transmission / reception means has a normal size, and amplification for amplifying the reception signal The degree is equal to or less than the set amplification degree, and the fluid flow rate in the measurement channel is accurately calculated based on the reception signal thus amplified.
Then, based on the fluid flow rate of the measurement flow path that is accurately measured by the flow rate measuring means whose received signal amplification level is equal to or less than the set amplification level, the fluid flow rate of the internal flow path is obtained with high accuracy. Since it is determined whether or not gas leakage has occurred based on the fluid flow rate of the internal flow path determined with high accuracy, this determination can be made appropriately.
Further, when the amplification degree of the reception signal of a part of the plurality of flow rate measurement means is equal to or less than the set amplification degree, the amplification factor of the reception signal is measured by the flow rate measurement means that is equal to or less than the set amplification degree. By correcting the fluid flow rate based on the ratio of the fluid flow rate measured by each of the plurality of flow rate measurement units when the amplification level of the reception signals of all the multiple flow rate measurement units is equal to or less than the set amplification level, Therefore, even if the ratio of the fluid flow rates in the plurality of measurement flow paths fluctuates, the fluid flow rate in the internal flow path can be obtained with high accuracy.
Therefore, it is possible to provide an ultrasonic gas meter that can appropriately determine the presence or absence of gas leakage when the shut-off valve is opened again.

ところで、複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が設定増幅度以下の場合に、内部流路の流体流量を求めるに当たって、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量を、予め定めた複数の計測用流路における流体流量の比で補正することにより求めることが想定される。
しかしながら、この場合、複数の計測用流路における流体流量の比が時間経過に伴って変動すると、求めた内部流路の流体流量の精度が低下する虞がある。
要するに、本特徴構成によれば、受信信号の増幅度が設定増幅度以下の流量計測手段にて計測される流体流量を補正して内部流路の流体流量を求めるに当たって、複数の流量計測手段により実際に計測された複数の計測用流路における流体流量の比に基づいて補正するので、複数の計測用流路における流体流量の比が時間経過に伴って変動しても、内部流路の流体流量を精度良く求めることができて、遮断弁の開弁復帰時におけるガス漏洩有無の判定を適切に行うことができる。
By the way, when the amplification degree of the reception signal of a part of the plurality of flow measurement means is equal to or less than the set amplification degree, the amplification degree of the reception signal is set to the set amplification degree when the fluid flow rate in the internal flow path is obtained. It is assumed that the fluid flow rate measured by the following flow rate measuring means is obtained by correcting the fluid flow rate in a plurality of predetermined measurement flow paths.
However, in this case, if the ratio of the fluid flow rates in the plurality of measurement channels varies with time, the accuracy of the obtained fluid flow rate in the internal channels may be reduced.
In short, according to this characteristic configuration, when the fluid flow rate measured by the flow rate measurement unit whose received signal amplification is equal to or less than the set amplification rate is corrected to obtain the fluid flow rate of the internal flow path, a plurality of flow rate measurement units are used. Since the correction is made based on the ratio of the fluid flow rates in the plurality of measurement channels actually measured, even if the ratio of the fluid flow rates in the plurality of measurement channels fluctuates over time, the fluid in the internal channel The flow rate can be obtained with high accuracy, and the presence or absence of gas leakage can be appropriately determined when the shut-off valve is opened again.

本発明に係る超音波式ガスメータの更なる特徴構成は、
前記複数の計測用流路の夫々が、仕切り板にて、流路内で並列状の複数の分割流路に分割され、
前記一対の超音波送受信手段夫々が、前記複数の分割流路に超音波を送信可能で且つ前記複数の分割流路からの超音波を受信可能に設けられている点にある。
Further features of the ultrasonic gas meter according to the present invention are as follows:
Each of the plurality of measurement flow paths is divided into a plurality of parallel divided flow paths in the flow path by the partition plate,
Each of the pair of ultrasonic transmission / reception means is provided so as to be able to transmit ultrasonic waves to the plurality of divided flow paths and receive ultrasonic waves from the plurality of divided flow paths.

上記特徴構成によれば、複数の計測用流路の夫々が、仕切り板にて流路内で並列状の複数の分割流路に分割されているので、複数の計測用流路夫々を、アスペクト比(流路の幅と高さの比)が夫々大きい複数の分割流路が層状に並ぶ多層状流路にすることができる。
そして、一対の超音波送受信手段から交互に複数の分割流路に超音波が送信されると共に、一対の超音波送受信手段により交互に複数の分割流路を通った超音波が受信され、その受信信号に基づいて、計測用流路を通流する流体の流量が計測される。
つまり、流量計測対象の流体をアスペクト比が夫々大きい複数の分割流路を通流させることにより、各分割流路を通流する流体の流動状態を層流化することができるので、流体流量の計測精度を向上することができる。
従って、遮断弁の開弁復帰時のガス漏洩有無の判定を更に適切に行うことができる。
According to the above characteristic configuration, each of the plurality of measurement flow paths is divided into a plurality of parallel divided flow paths in the flow path by the partition plate. A plurality of divided flow paths each having a large ratio (ratio of flow path width to height) can be formed into a multilayer flow path.
Then, the ultrasonic waves are alternately transmitted from the pair of ultrasonic transmission / reception means to the plurality of divided flow paths, and the ultrasonic waves alternately received by the pair of ultrasonic transmission / reception means are received by the pair of ultrasonic transmission / reception means. Based on the signal, the flow rate of the fluid flowing through the measurement channel is measured.
In other words, the flow state of the fluid flowing through each divided flow path can be made laminar by flowing the flow measurement target fluid through a plurality of divided flow paths each having a large aspect ratio. Measurement accuracy can be improved.
Accordingly, it is possible to more appropriately determine the presence or absence of gas leakage when the shut-off valve is opened again.

本発明に係る超音波式ガスメータの更なる特徴構成は、
前記計測用流路を形成する計測用流路形成体と前記一対の超音波送受信手段とを備えて、流量計測ユニットが構成され、
前記計測用流路形成体の上流側端部を前記内部流路における前記計測用流路よりも上流側の部分を形成する上流側流路形成体に連通接続可能な上流側接続部を所定の数備えた上流側ヘッダ、及び、前記計測用流路形成体の下流側端部を前記内部流路における前記計測用流路よりも下流側の部分を形成する下流側流路形成体に連通接続可能な下流側接続部を所定の数備えた下流側ヘッダが設けられている点にある。
Further features of the ultrasonic gas meter according to the present invention are as follows:
A flow rate measurement unit is configured comprising a measurement flow channel forming body that forms the measurement flow channel and the pair of ultrasonic transmission / reception means,
An upstream connecting portion that can be connected in communication with an upstream flow path forming body that forms an upstream end portion of the internal flow path with respect to the measurement flow path in the internal flow path. A plurality of upstream headers and a downstream end of the measurement flow path forming body are connected to a downstream flow path forming body that forms a portion of the internal flow path downstream from the measurement flow path. A downstream header having a predetermined number of possible downstream connections is provided.

上記特徴構成によれば、各流量計測ユニットの計測用流路形成体の上流側端部を上流側ヘッダの上流側接続部に、下流側端部を下流側ヘッダの下流側接続部に夫々連通接続する形態で、複数の所定の数の流量計測ユニットを超音波式ガスメータに組み付けることができる。
つまり、このような超音波式ガスメータでは、計測可能な流体流量の上限値が異なる、即ち、流量計測能力が異なるものを各種揃えておく必要がある。
本特徴構成によれば、目標とする流量計測能力に応じて、流量計測ユニットの数を定め、その流量計測ユニットの数に対応して、上流側ヘッダにおける上流側接続部及び下流側ヘッダにおける下流側接続部夫々の数を設定することにより、流量計測能力が異なる各種超音波式ガスメータを揃えることができる。
そして、同一仕様の流量計測ユニットを用いて、流量計測能力の増減に対応することができるので、低廉化を図りながら、流量計測能力が異なる各種超音波式ガスメータを揃えることができる。又、同一仕様の流量計測ユニットを用いるので、流量計測精度を低下させること無く、流量計測能力の増減に対応することができる。
要するに、低廉化を図りながら、遮断弁の開弁復帰時のガス漏洩有無の判定を適切に行い得る超音波式ガスメータを流量計測能力が異ならせて各種を揃えることができる。
According to the above characteristic configuration, the upstream end of the measurement flow path forming body of each flow rate measurement unit communicates with the upstream connection of the upstream header, and the downstream end communicates with the downstream connection of the downstream header. In a connected form, a plurality of predetermined number of flow rate measurement units can be assembled to the ultrasonic gas meter.
That is, in such an ultrasonic gas meter, it is necessary to prepare various types of fluid flow rates having different upper limit values, that is, different flow rate measuring capabilities.
According to this characteristic configuration, the number of flow measurement units is determined according to the target flow measurement capability, and the upstream connection portion in the upstream header and the downstream in the downstream header corresponding to the number of flow measurement units By setting the number of the side connection portions, various ultrasonic gas meters having different flow rate measurement capabilities can be prepared.
And since it can respond to increase / decrease in flow measurement capability using the flow measurement unit of the same specification, various ultrasonic type gas meters in which flow measurement capability differs can be prepared, achieving cost reduction. In addition, since the flow rate measurement unit having the same specification is used, it is possible to cope with an increase or decrease in the flow rate measurement capability without reducing the flow rate measurement accuracy.
In short, it is possible to make various types of ultrasonic gas meters capable of appropriately determining whether or not there is a gas leak when the shut-off valve is opened again with different flow rate measuring capabilities while reducing the cost.

超音波式ガスメータの全体概略構成を示す縦断正面図Longitudinal front view showing the overall schematic configuration of an ultrasonic gas meter 超音波式ガスメータの全体概略構成を示す縦断左側面図Longitudinal left side view showing the overall schematic configuration of an ultrasonic gas meter 超音波式ガスメータにおける流量計測ユニット及びその周辺の斜視図Perspective view of the flow rate measurement unit and its surroundings in an ultrasonic gas meter 超音波式ガスメータにおける流量計測ユニット及びその周辺の縦断正面図Longitudinal front view of the flow rate measurement unit and its surroundings in an ultrasonic gas meter 流量計測ユニットの横断平面図Cross-sectional plan view of flow measurement unit 超音波式ガスメータの制御構成を示すブロック図Block diagram showing control configuration of ultrasonic gas meter 超音波式ガスメータ制御動作のフローチャートを示す図The figure which shows the flowchart of ultrasonic type gas meter control operation

以下、図面に基づいて、本発明の実施形態を説明する。
図1に示すように、超音波式ガスメータは、ガス流入口2及びガス流出口3を備えたケーシング1を用いて組み付けて構成され、ガス流入口2及びガス流出口3により、住宅等のガス需要先にガスGを供給するガス供給管4の途中に接続される。そして、ガス供給管4を流れるガスGの流量を計測すると共にその計測値を積算して、ガス流量の計測値の積算値をケーシング1の外部に設けた表示部5に表示するように構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the ultrasonic gas meter is assembled by using a casing 1 having a gas inlet 2 and a gas outlet 3. It is connected in the middle of the gas supply pipe 4 that supplies the gas G to the customer. The flow rate of the gas G flowing through the gas supply pipe 4 is measured and the measured values are integrated, and the integrated value of the measured gas flow rate is displayed on the display unit 5 provided outside the casing 1. ing.

ケーシング1内には、一端がガス流入口2に接続され且つ他端がガス流出口3に接続されて、流量計測対象のガスGが通流する内部流路20、その内部流路20を通流するガスGの流量を計測する超音波式の流量計測手段M(以下、単に流量計測手段Mと記載する場合がある)、感震センサ6及び電装ボックス7等が設けられている。
図6にも示すように、電装ボックス7内には、超音波式ガスメータの作動を制御する制御部8(制御手段の一例)、及び、超音波式ガスメータの電源用の電池9等が設けられている。
図1、図2及び図6に示すように、内部流路20には、開弁状態から閉弁状態に電気的に切り換え可能な遮断弁11が設けられ、その内部流路20における遮断弁11よりも下流側に、ガスGの圧力を検出する圧力センサ12が設けられている。
更に、図2及び図6に示すように、ケーシング1内には、遮断弁11の閉弁状態から開弁状態への開弁復帰を検知する遮断弁復帰検知手段13が設けられている。
In the casing 1, one end is connected to the gas inlet 2 and the other end is connected to the gas outlet 3, and the internal flow path 20 through which the gas G to be flow-measured flows passes through the internal flow path 20. An ultrasonic flow rate measuring means M (hereinafter sometimes simply referred to as a flow rate measuring means M) for measuring the flow rate of the flowing gas G, a seismic sensor 6 and an electrical box 7 are provided.
As shown in FIG. 6, the electrical box 7 is provided with a control unit 8 (an example of a control unit) that controls the operation of the ultrasonic gas meter, a battery 9 for powering the ultrasonic gas meter, and the like. ing.
As shown in FIGS. 1, 2, and 6, the internal flow path 20 is provided with a shut-off valve 11 that can be electrically switched from an open state to a closed state, and the shut-off valve 11 in the internal flow path 20 is provided. Further, a pressure sensor 12 for detecting the pressure of the gas G is provided on the downstream side.
Further, as shown in FIGS. 2 and 6, the casing 1 is provided with a shutoff valve return detection means 13 for detecting the return of the shutoff valve 11 from the closed state to the open state.

遮断弁11は、閉弁状態から開弁状態への開弁復帰が操作可能な単方向型である。この単方向型の遮断弁11は、公知であるので、詳細な説明及び図示を省略して、簡単に説明する。
即ち、遮断弁11は、流路を開く開き位置に弁体を吸引保持する永久磁石、流路を閉じる閉じ位置に弁体を復帰付勢するスプリング、閉じ位置に位置する弁体をスプリングの付勢力に抗して開き位置側に押し戻すことが可能な弁操作軸11a(図2参照)、及び、永久磁石の磁力を打ち消す磁界を発生可能なコイル等を備えて構成されている。
つまり、この遮断弁11は、所謂自己保持型ソレノイドであり、無通電状態で、永久磁石の吸着保持力により弁体を開き位置に保持して、開弁状態に保持することが可能であり、又、コイルに通電して永久磁石の吸引保持力を弱めることにより、スプリングの付勢力で弁体を開き位置から引き離して閉じ位置に保持して、閉弁状態に保持することが可能である。
The shut-off valve 11 is a unidirectional type that can be operated to return from the closed state to the open state. Since this unidirectional shut-off valve 11 is publicly known, detailed description and illustration thereof will be omitted and will be briefly described.
That is, the shut-off valve 11 is provided with a permanent magnet that attracts and holds the valve element at an open position that opens the flow path, a spring that returns the valve element to a closed position that closes the flow path, and a valve element that is positioned at the closed position. It comprises a valve operating shaft 11a (see FIG. 2) that can be pushed back to the open position against the force, and a coil that can generate a magnetic field that cancels the magnetic force of the permanent magnet.
That is, the shut-off valve 11 is a so-called self-holding solenoid, and can hold the valve body in the open position by the holding force of the permanent magnet in a non-energized state, and can be held in the open state. Further, by energizing the coil to weaken the attracting and holding force of the permanent magnet, the valve body can be pulled away from the open position by the urging force of the spring and held in the closed position, thereby holding the valve closed.

図2に示すように、この遮断弁11が、その弁操作軸11aをケーシング1の前面に向けて設けられ、ケーシング1の前壁部には、人為操作により、ケーシング1の外部から遮断弁11の弁操作軸11aを押すことが可能なように、開弁復帰ボタン10が設けられている。
そして、開弁復帰ボタン10を押すことにより、弁操作軸11aを押して、閉じ位置に位置する弁体を開き位置側に押し戻して、遮断弁11を開弁復帰させることができる。
遮断弁復帰検知手段13は、遮断弁11の弁体の閉じ位置から開き位置への移動を検知することにより、開弁復帰を検知するように構成されている。
As shown in FIG. 2, this shut-off valve 11 is provided with its valve operating shaft 11a facing the front surface of the casing 1, and the shut-off valve 11 is formed on the front wall portion of the casing 1 from the outside of the casing 1 by an artificial operation. A valve opening return button 10 is provided so that the valve operating shaft 11a can be pushed.
Then, by pushing the valve opening return button 10, the valve operating shaft 11a is pushed, the valve body located at the closed position is pushed back to the open position side, and the shutoff valve 11 can be returned to the open state.
The shut-off valve return detection means 13 is configured to detect the return of the valve opening by detecting the movement of the shut-off valve 11 from the closed position to the open position.

図1、及び、図3〜図6に示すように、流量計測手段Mは、内部流路20の上流側と下流側とに所定の間隔を開けて配設されて交互に超音波を送信する一対の超音波送受信手段14、及び、各超音波送受信手段14を駆動すると共に、各超音波送受信手段14の受信信号を増幅して当該増幅した受信信号に基づいてガス流量を演算する流量演算手段15を備えて構成されている。一対の超音波送受信手段14は、一方の超音波送受信手段14から送信した超音波を他方の超音波送受信手段14により受信可能に対向して配設されている。ここで、一対の超音波送受信手段14のうち、内部流路20の上流側に設けたものについては、超音波送受信手段を示す符号「14」に上流側を示す符号「u」を付して、上流側の超音波送受信手段14uと称し、内部流路20の下流側に設けたものについては、超音波送受信手段を示す符号「14」に下流側を示す符号「d」を付して、下流側の超音波送受信手段14dと称する。   As shown in FIG. 1 and FIGS. 3 to 6, the flow rate measuring means M is disposed at a predetermined interval on the upstream side and the downstream side of the internal flow path 20 and alternately transmits ultrasonic waves. A pair of ultrasonic transmission / reception means 14 and a flow rate calculation means for driving each ultrasonic transmission / reception means 14 and amplifying a reception signal of each ultrasonic transmission / reception means 14 and calculating a gas flow rate based on the amplified reception signal 15. The pair of ultrasonic transmission / reception means 14 are disposed so as to face each other so that the ultrasonic waves transmitted from one ultrasonic transmission / reception means 14 can be received by the other ultrasonic transmission / reception means 14. Here, of the pair of ultrasonic transmission / reception means 14 provided on the upstream side of the internal flow path 20, the reference sign “u” indicating the upstream side is attached to the reference sign “14” indicating the ultrasonic transmission / reception means. The ultrasonic transmission / reception means 14u on the upstream side is provided on the downstream side of the internal flow path 20, and the reference numeral “d” indicating the downstream side is attached to the reference numeral “14” indicating the ultrasonic transmission / reception means, This is referred to as downstream ultrasonic wave transmitting / receiving means 14d.

図1、図3〜図5に示すように、本発明では、内部流路20の一部が、並列状の複数の計測用流路21にて構成され、複数の計測用流路21の夫々に対応して、流量計測手段Mが設けられている。
この実施形態では、計測用流路21を形成する計測用流路形成体30と一対の超音波送受信手段14と流量演算手段15とを備えて、流量計測ユニットUが構成されている。
又、計測用流路形成体30の上流側端部30uを内部流路20における計測用流路21よりも上流側の部分である上流側流路部分22を形成する上流側流路形成体40に連通接続可能な上流側接続部41を所定の数備えた上流側ヘッダ42、及び、計測用流路形成体30の下流側端部30dを内部流路20における計測用流路21よりも下流側の部分である下流側流路部分23を形成する下流側流路形成体50に連通接続可能な下流側接続部51を所定の数備えた下流側ヘッダ52が設けられている。
As shown in FIGS. 1 and 3 to 5, in the present invention, a part of the internal flow path 20 is constituted by a plurality of parallel measurement flow paths 21, and each of the plurality of measurement flow paths 21. Corresponding to the above, a flow rate measuring means M is provided.
In this embodiment, the flow rate measurement unit U is configured to include a measurement flow channel forming body 30 that forms the measurement flow channel 21, a pair of ultrasonic transmission / reception means 14, and a flow rate calculation means 15.
Further, the upstream-side channel forming body 40 that forms the upstream-side channel portion 22, which is the upstream-side end portion 30 u of the measuring channel-forming body 30 in the internal channel 20 with respect to the measuring channel 21. The upstream header 42 provided with a predetermined number of upstream connection parts 41 that can be connected to each other, and the downstream end 30d of the measurement flow path forming body 30 downstream of the measurement flow path 21 in the internal flow path 20 A downstream header 52 having a predetermined number of downstream connection portions 51 that can be connected to a downstream flow path forming body 50 that forms a downstream flow path portion 23 that is a side portion is provided.

内部流路20及び流路計測ユニットUについて、詳細に説明する。
図3〜図5に示すように、流路計測ユニットUの計測用流路形成体30は、長手方向(ガスの通流方向)に直交する横断面形状が長方形状で且つ長手方向に一定となる内周面を有する概略四角筒状の計測用流路部30c、その計測用流路部30cの上流側に連通する概略円筒状の前述の上流側端部30u、及び、その計測用流路部30cの下流側に連通する概略円筒状の前述の下流側端部30dを備えて構成されている。
The internal flow path 20 and the flow path measurement unit U will be described in detail.
As shown in FIGS. 3 to 5, the measurement flow path forming body 30 of the flow path measurement unit U has a rectangular cross section perpendicular to the longitudinal direction (gas flow direction) and is constant in the longitudinal direction. A substantially square cylindrical measurement channel portion 30c having an inner peripheral surface, a substantially cylindrical upstream end portion 30u communicating with the upstream side of the measurement channel portion 30c, and the measurement channel The above-described downstream end portion 30d having a substantially cylindrical shape communicating with the downstream side of the portion 30c is provided.

図4及び図5に示すように、計測用流路形成体30の計測用流路部30c内には、幅方向の両端が計測用流路部30cの内周面における幅方向両側部分に気密状に当接する複数枚(この実施形態では5枚)の仕切り板31が高さ方向に等間隔で設けられて、計測用流路部20c内が、幅及び高さが夫々同一の並列状の複数(この実施形態では6個)の分割流路21sに分割されている。各分割流路21sのアスペクト比(流路の幅と高さの比)は、通流する流体の流動状態を層流化することができるように、大きく設定されている。   As shown in FIGS. 4 and 5, both ends in the width direction are airtight in the width direction both sides of the inner peripheral surface of the measurement flow path portion 30 c in the measurement flow path portion 30 c of the measurement flow path forming body 30. A plurality of (five in this embodiment) partition plates 31 that are in contact with each other are provided at equal intervals in the height direction, and the inside of the measurement flow channel portion 20c has the same width and height. It is divided into a plurality (six in this embodiment) of divided flow paths 21s. The aspect ratio (the ratio between the width and the height of the flow path) of each divided flow path 21s is set large so that the flow state of the flowing fluid can be laminarized.

図1、図3及び図5に示すように、上流側の超音波送受信手段14uは、計測用流路形成体30の計測用流路部30cにおける複数の分割流路21s夫々の幅方向の一方の端部が位置する側部に、超音波を斜め下流側に向けて複数の分割流路21sに対して略均等に送信可能で、且つ、後述する下流側の超音波送受信手段14dから送信されて複数の分割流路21s夫々を通った超音波を略均等に受信可能に設けられている。
又、下流側の超音波送受信手段14dは、計測用流路形成体30の計測用流路部30cにおける複数の分割流路21s夫々の幅方向の他方の端部が位置する側部に、超音波を斜め上流側に向けて複数の分割流路24に対して略均等に送信可能で、且つ、上流側の超音波送受信手段14uから送信されて複数の分割流路21s夫々を通った超音波を略均等に受信可能に設けられている。
つまり、複数の計測用流路21の夫々が、仕切り板31にて、流路内で並列状の複数の分割流路21sに分割され、一対の超音波送受信手段14夫々が、複数の分割流路21sに超音波を送信可能で且つ複数の分割流路21sからの超音波を受信可能に設けられていることになる。
流量演算手段15は、計測用流路形成体30における計測用流路部30cの外周部に設けられている。
As shown in FIGS. 1, 3, and 5, the upstream ultrasonic transmission / reception means 14 u has one of the plurality of divided flow paths 21 s in the width direction in the measurement flow path portion 30 c of the measurement flow path forming body 30. The ultrasonic waves can be transmitted substantially uniformly to the plurality of divided flow paths 21s toward the downstream side, and transmitted from the downstream ultrasonic transmission / reception means 14d described later. The ultrasonic waves that have passed through each of the plurality of divided flow paths 21s are provided so as to be received substantially evenly.
Further, the ultrasonic transmission / reception means 14d on the downstream side is placed on the side where the other end in the width direction of each of the plurality of divided flow paths 21s in the measurement flow path section 30c of the measurement flow path forming body 30 is positioned. The ultrasonic waves can be transmitted substantially uniformly to the plurality of divided flow paths 24 toward the upstream side, and the ultrasonic waves transmitted from the ultrasonic transmission / reception means 14u on the upstream side and passed through the plurality of divided flow paths 21s. Can be received substantially evenly.
That is, each of the plurality of measurement flow channels 21 is divided into a plurality of parallel divided flow channels 21 s in the flow channel by the partition plate 31, and each of the pair of ultrasonic transmission / reception means 14 is divided into the plurality of divided flow flows. The ultrasonic waves can be transmitted to the path 21s and the ultrasonic waves from the plurality of divided flow paths 21s can be received.
The flow rate calculation means 15 is provided on the outer peripheral portion of the measurement flow path portion 30 c in the measurement flow path forming body 30.

1個の流路計測ユニットUにて計測可能な最大流量は、予め設定され、この実施形態では、例えば10m3/h(1時間)に設定されている。
そして、所定の目標とする最大ガス流量を計測可能なように、目標とする計測可能最大ガス流量に応じて、設ける流路計測ユニットUの個数が設定される。この実施形態では、計測可能最大ガス流量が60m3/hに設定されて、図2及び図3に示すように、流路計測ユニットUが6個設けられている。
The maximum flow rate that can be measured by one flow path measurement unit U is set in advance, and in this embodiment, for example, is set to 10 m 3 / h (1 hour).
Then, the number of flow channel measurement units U to be provided is set according to the target maximum measurable gas flow rate so that the predetermined maximum gas flow rate can be measured. In this embodiment, the maximum measurable gas flow rate is set to 60 m 3 / h, and six flow path measurement units U are provided as shown in FIGS.

図1に示すように、内部流路20の上流側流路部分22を形成する上流側流路形成体40は、内部が連通する状態に接続された流入部43及び上流側バッファ部44を備えて構成され、内部流路20の下流側流路部分23を形成する下流側流路形成体50は、内部が連通する状態に接続された下流側バッファ部54及び流出部53を備えて構成され、上流側バッファ部44と下流側バッファ部54との間に、上流側ヘッダ42と下流側ヘッダ52とを介して複数の流路計測ユニットUを並列状に接続して構成されている。そして、流入部43、上流側バッファ部44、複数の計測用流路形成体30、下流側バッファ部54、流出部53により、上流側から下流側に向けて、上流側流路部分22、並列状の複数の計測用流路21、下流側流路部分23が一連に連なって、内部流路20が形成される。   As shown in FIG. 1, the upstream flow path forming body 40 that forms the upstream flow path portion 22 of the internal flow path 20 includes an inflow portion 43 and an upstream buffer portion 44 that are connected to communicate with each other. The downstream-side channel forming body 50 that forms the downstream-side channel portion 23 of the internal channel 20 includes a downstream-side buffer unit 54 and an outflow unit 53 that are connected to communicate with each other. A plurality of flow path measurement units U are connected in parallel between the upstream buffer unit 44 and the downstream buffer unit 54 via the upstream header 42 and the downstream header 52. And, by the inflow part 43, the upstream buffer part 44, the plurality of measurement flow path forming bodies 30, the downstream buffer part 54, and the outflow part 53, the upstream flow path part 22 is arranged in parallel from the upstream side to the downstream side. A plurality of measurement flow channels 21 and a downstream flow channel portion 23 are connected in series to form an internal flow channel 20.

図1に示すように、ガス流入口2及びガス流出口3は、ケーシングの上面部に所定の間隔を開けて設けられ、概略四角筒状の流入部43がガス流入口2に連通接続され、概略円筒状の流出部53がガス流出口3に連通接続されている。
上流側バッファ部44及び下流側バッファ部54共に、概略直方体形状の箱状であり、上流側バッファ部44及び下流側バッファ部54夫々の一側面同士が横方向で対向する姿勢で、上流側バッファ部44がその上面部を介して流入部43に連通接続され、下流側バッファ部54がその上面部を介して流出部53に連通接続されている。
As shown in FIG. 1, the gas inlet 2 and the gas outlet 3 are provided at predetermined intervals on the upper surface portion of the casing, and an approximately square cylindrical inflow portion 43 is connected to the gas inlet 2. A substantially cylindrical outlet 53 is connected to the gas outlet 3.
The upstream buffer unit 44 and the downstream buffer unit 54 are both substantially rectangular parallelepiped boxes, and the upstream buffer unit 44 and the downstream buffer unit 54 are arranged in such a manner that one side faces each other in the lateral direction. The portion 44 is connected in communication with the inflow portion 43 via its upper surface portion, and the downstream buffer portion 54 is connected in communication with the outflow portion 53 via its upper surface portion.

上流側ヘッダ42は、上流側バッファ部44における下流側バッファ部54に対向する側面に設けられ、下流側ヘッダ52は、下流側バッファ部54における上流側バッファ部44に対向する側面に設けられている。
上流側接続部41及び下流側接続部51は、夫々、流路計測ユニットUの個数と同数(この実施形態では、6個)設けられる。
図4及び図5に示すように、各上流側接続部41は、計測用流路形成体30の円筒状の上流側端部30uを挿通可能に、上流側バッファ部44の側面に形成された円状の上流側接続孔45、及び、その上流側接続孔45に挿通された計測用流路形成体30の上流側端部30uの外周部と上流側バッファ部44との間を気密状に封止する上流側封止部材46等を備えて構成されている。
又、各下流側接続部51は、計測用流路形成体30の円筒状の下流側端部30dを挿通可能に、下流側バッファ部54の側面に形成された円状の下流側接続孔55、及び、その下流側接続孔55に挿通された計測用流路形成体30の下流側端部30dの外周部と下流側バッファ部54との間を気密状に封止する下流側封止部材56等を備えて構成されている。
The upstream header 42 is provided on the side facing the downstream buffer 54 in the upstream buffer 44, and the downstream header 52 is provided on the side facing the upstream buffer 44 in the downstream buffer 54. Yes.
The upstream connection part 41 and the downstream connection part 51 are provided in the same number (six in this embodiment) as the number of the flow path measurement units U, respectively.
As shown in FIGS. 4 and 5, each upstream connection portion 41 is formed on the side surface of the upstream buffer portion 44 so as to be able to be inserted through the cylindrical upstream end portion 30 u of the measurement flow path forming body 30. A circular upstream connection hole 45 and a space between the outer peripheral portion of the upstream end 30u of the measurement flow path forming body 30 inserted through the upstream connection hole 45 and the upstream buffer section 44 are airtight. An upstream side sealing member 46 to be sealed is provided.
In addition, each downstream connection portion 51 has a circular downstream connection hole 55 formed on the side surface of the downstream buffer portion 54 so that the cylindrical downstream end portion 30d of the measurement flow path forming body 30 can be inserted. And the downstream side sealing member which seals between the outer peripheral part of the downstream edge part 30d of the flow-path formation body 30 for measurement inserted in the downstream connection hole 55, and the downstream buffer part 54 airtightly 56 etc. are comprised.

そして、図1、図3及び図4に示すように、各流路計測ユニットUの計測用流路形成体30の下流側端部30dを下流側バッファ部54の下流側接続孔55に、上流側端部30uを上流側バッファ部44の上流側接続孔45に夫々挿通した状態で、計測用流路形成体30の上流側端部30uにおける上流側接続孔45から突出した部分の外周部に、ナット部材47を締め付ける。すると、各流量計測ユニットUが、その計測用流路形成体30の上流端が上流側バッファ部44に、下流端が下流側バッファ部54に夫々気密状に連通する状態で、計測用流路21の長手方向を横向きにした姿勢で、上流側バッファ部44と下流側バッファ部54との間に設けられる。   1, 3, and 4, the downstream end 30 d of the measurement flow path forming body 30 of each flow path measurement unit U is connected to the downstream connection hole 55 of the downstream buffer section 54 upstream. In the state where the side end 30u is inserted into the upstream connection hole 45 of the upstream buffer section 44, the outer peripheral portion of the portion protruding from the upstream connection hole 45 in the upstream end 30u of the measurement flow path forming body 30 is provided. Then, the nut member 47 is tightened. Then, each flow rate measurement unit U is in a state where the upstream end of the measurement flow path forming body 30 communicates with the upstream buffer section 44 and the downstream end communicates with the downstream buffer section 54 in an airtight manner. 21 is provided between the upstream buffer unit 44 and the downstream buffer unit 54 in a posture in which the longitudinal direction of 21 is in a horizontal direction.

次に、上述のように構成された内部流路20を通流する流体の流動形態について説明する。
ガス流入口2から内部流路22に流入した流体は、上流側流路部分22を通流し、並列状の複数の計測用流路22を通流した後、下流側流路部分23を通流してガス流出口3から流出する。
各計測用流路22は、アスペクト比が大きい複数の分割流路22sが層状に並ぶ多層状流路になっており、各分割流路22sを通流する流体の流動状態が層流化する。
そして、流量計測対象の流体が層流状態で通流する複数の分割流路22sに対して、一対の超音波送受信手段14から交互に超音波が送信されると共に、一対の超音波送受信手段14により複数の分割流路22sを通った超音波が交互に受信されて、その受信信号に基づいて流体流量が計測されるので、流量計測の精度を向上することができる。
Next, the flow form of the fluid flowing through the internal flow path 20 configured as described above will be described.
The fluid flowing into the internal flow path 22 from the gas inlet 2 flows through the upstream flow path portion 22, flows through the plurality of parallel measurement flow paths 22, and then flows through the downstream flow path portion 23. And flows out from the gas outlet 3.
Each measurement flow path 22 is a multilayer flow path in which a plurality of divided flow paths 22s having a large aspect ratio are arranged in layers, and the fluid state of the fluid flowing through each divided flow path 22s is laminarized.
Then, ultrasonic waves are alternately transmitted from the pair of ultrasonic transmission / reception means 14 to the plurality of divided flow paths 22 s through which the fluid whose flow rate is to be measured flows in a laminar flow state, and the pair of ultrasonic transmission / reception means 14. Accordingly, the ultrasonic waves passing through the plurality of divided flow paths 22s are alternately received, and the fluid flow rate is measured based on the received signal, so that the accuracy of flow rate measurement can be improved.

流量計測手段Mは公知であるので、以下、この流量計測手段Mがガス流量を計測する手法を簡単に説明する。
流量演算手段15は、上流側の超音波送受信手段14u及び下流側の超音波送受信手段14dを交互に超音波を送信するように駆動し、上流側の超音波送受信手段14u及び下流側の超音波送受信手段14d夫々の超音波の受信信号に基づいて、上流側の超音波送受信手段14uから下流側の超音波送受信手段14dへの超音波の順方向伝播時間、及び、下流側の超音波送受信手段14dから上流側の超音波送受信手段14uへの超音波の逆方向伝播時間を演算する。
更に、流量演算手段15は、順方向伝播時間と逆方向伝播時間とに基づいて、計測用流路21を通流する流体(ガスG等)の流速を演算すると共に、演算した流体の流速に計測用流路21の断面積を乗じることにより、流体の瞬時流量を演算する。
Since the flow rate measuring means M is publicly known, a method in which the flow rate measuring means M measures the gas flow rate will be briefly described below.
The flow rate calculation means 15 drives the upstream ultrasonic transmission / reception means 14u and the downstream ultrasonic transmission / reception means 14d so as to alternately transmit ultrasonic waves, and the upstream ultrasonic transmission / reception means 14u and downstream ultrasonic waves. Based on the ultrasonic reception signal of each transmission / reception means 14d, the forward propagation time of the ultrasonic waves from the upstream ultrasonic transmission / reception means 14u to the downstream ultrasonic transmission / reception means 14d, and the downstream ultrasonic transmission / reception means The backward propagation time of the ultrasonic wave from 14d to the upstream ultrasonic wave transmitting / receiving means 14u is calculated.
Further, the flow rate calculation means 15 calculates the flow velocity of the fluid (gas G or the like) flowing through the measurement flow channel 21 based on the forward propagation time and the reverse propagation time, and the calculated flow velocity of the fluid. The fluid instantaneous flow rate is calculated by multiplying the cross-sectional area of the measurement channel 21.

流量演算手段15は、上述のように流体の瞬時流量を演算するに当たっては、各超音波送受信手段14u、14dの受信信号を所定の範囲内の大きさになるように自動的に増幅して、当該増幅した受信信号に基づいて流体の瞬時流量を演算するように構成されている。
ちなみに、計測用流路21にガスG(例えば、都市ガスの13A)が満たされていて、流量計測対象の流体がガスGである場合、超音波送受信手段14の受信信号の増幅度(ゲイン)は、例えば42〜46程度である。又、超音波式ガスメータの取付時や交換時等、計測用流路21に空気が満たされていて、流量計測対象の流体が空気である場合、超音波送受信手段14の受信信号の増幅度は、例えば32〜36程度である。
When calculating the instantaneous flow rate of the fluid as described above, the flow rate calculation means 15 automatically amplifies the reception signals of the ultrasonic transmission / reception means 14u and 14d so as to have a magnitude within a predetermined range, An instantaneous flow rate of the fluid is calculated based on the amplified received signal.
Incidentally, when the measurement channel 21 is filled with the gas G (for example, 13A of city gas) and the fluid whose flow rate is to be measured is the gas G, the amplification degree (gain) of the reception signal of the ultrasonic transmission / reception means 14 Is about 42 to 46, for example. Also, when the measurement flow channel 21 is filled with air, such as when an ultrasonic gas meter is attached or replaced, and the fluid whose flow rate is to be measured is air, the amplification level of the received signal of the ultrasonic transmission / reception means 14 is For example, it is about 32-36.

複数の流量演算手段15夫々は、このような流体(例えばガスG)の瞬時流量の計測を所定の計測周期(例えば、2秒間)で実行して、計測した瞬時流量を制御部8に送信するように構成されている。
そして、制御部8は、複数の流量演算手段15夫々から送信される瞬時流量を合計することにより内部流路20の瞬時流量を求め、その内部流路20の瞬時流量に計測周期時間を乗じることにより内部流路20の周期流量を求め、求めた内部流路20の周期流量を積算して、その積算流量を表示部5に表示するように構成されている。
Each of the plurality of flow rate calculation means 15 performs measurement of the instantaneous flow rate of such a fluid (for example, gas G) at a predetermined measurement cycle (for example, 2 seconds), and transmits the measured instantaneous flow rate to the control unit 8. It is configured as follows.
And the control part 8 calculates | requires the instantaneous flow volume of the internal flow path 20 by totaling the instantaneous flow volume transmitted from each of the several flow volume calculating means 15, and multiplies the measurement flow time to the instantaneous flow volume of the internal flow path 20. Thus, the periodic flow rate of the internal flow path 20 is obtained, the obtained periodic flow rates of the internal flow path 20 are integrated, and the integrated flow rate is displayed on the display unit 5.

ところで、超音波式ガスメータの取付時や交換時等、内部流路20に空気が満たされている状態で、遮断弁11が開弁復帰された場合は、内部流路20の上流側からガスGが流れてきて、内部流路20内の空気が下流側に押し流されることになるので、計測用流路21における上流側の超音波送受信手段14uと下流側の超音波送受信手段14dとの間に、ガスGと空気とが十分に混合されることなく、ガスGの領域と空気の領域とが併存するガス空気相併存状態が現出する場合がある。
このように計測用流路21における上流側の超音波送受信手段14uと下流側の超音波送受信手段14dとの間に、ガス空気相併存状態が現出すると、ガスGの領域と空気の領域とでは音響インピーダンスが異なるので、計測用流路21内に音響インピーダンスが異なる断層が現出することになる。そして、各超音波送受信手段14u、14dから送信された超音波は、音響インピーダンスが異なる断層で反射し易いので、各超音波送受信手段14u、14dの受信信号が小さくなり、結果として、受信信号の増幅度が通常よりも大きくなる。
そこで、各超音波送受信手段14u、14dの受信信号の増幅度に基づいて、ガス空気相併存状態を検知することができる。例えば、増幅度が42〜46よりも大きい場合に、ガス空気相併存状態が現出していると検知することができる。
By the way, when the shutoff valve 11 is opened and returned in a state where the internal flow path 20 is filled with air, such as when an ultrasonic gas meter is attached or replaced, the gas G is introduced from the upstream side of the internal flow path 20. Flows, and the air in the internal flow path 20 is forced to flow downstream. Therefore, between the upstream ultrasonic transmission / reception means 14u and the downstream ultrasonic transmission / reception means 14d in the measurement flow path 21. The gas-air phase coexistence state in which the gas G region and the air region coexist may appear without the gas G and air being sufficiently mixed.
As described above, when the gas / air phase coexistence state appears between the upstream ultrasonic transmission / reception means 14u and the downstream ultrasonic transmission / reception means 14d in the measurement channel 21, the gas G region and the air region Then, since the acoustic impedances are different, faults with different acoustic impedances appear in the measurement channel 21. Then, since the ultrasonic waves transmitted from the ultrasonic transmission / reception means 14u and 14d are easily reflected by the tomography having different acoustic impedances, the reception signals of the ultrasonic transmission / reception means 14u and 14d become small, and as a result, Amplification becomes larger than usual.
Therefore, the gas / air phase coexistence state can be detected based on the amplification degree of the reception signals of the ultrasonic transmission / reception means 14u and 14d. For example, when the degree of amplification is greater than 42 to 46, it can be detected that a gas-air phase coexistence state appears.

次に、制御部8の制御動作について説明する。
制御部8は、流量計測手段Mの計測情報に基づいて異常を検知し、当該異常を検知したときに、遮断弁11を閉弁状態に切り換える異常時遮断処理を実行し、並びに、遮断弁復帰検知手段13により遮断弁の開弁復帰が検知されたときに、遮断弁11よりも下流側でガス漏洩が発生しているか否かを判定する復帰時漏洩判定処理を実行するように構成されている。
又、制御部8は、感震センサ6により異常な震動が検出されたときにも、異常時遮断処理を実行するように構成されている。
Next, the control operation of the control unit 8 will be described.
The control unit 8 detects an abnormality on the basis of the measurement information of the flow rate measuring means M, executes an abnormal-time cutoff process for switching the cutoff valve 11 to a closed state when the abnormality is detected, and returns the cutoff valve. When the detection means 13 detects that the shut-off valve is opened again, it is configured to execute a return-time leak determination process for determining whether or not a gas leak has occurred downstream from the shut-off valve 11. Yes.
Further, the control unit 8 is configured to execute the abnormal interruption process even when an abnormal vibration is detected by the seismic sensor 6.

本発明では、制御部8は、複数の計測用流路21夫々に夫々設けられた複数の流量計測手段Mにて計測される流体流量に基づいて、異常を検知するように構成され、且つ、復帰時漏洩判定処理において、受信信号の増幅度が設定増幅度以下である流量計測手段Mにて計測される流体流量に基づいて、内部流路20の流体流量を求め、当該求めた内部流路20の流体流量に基づいてガス漏洩が発生しているか否かを判定するように構成されている。
又、制御部8は、復帰時漏洩判定処理において、複数の流量計測手段M全ての受信信号の増幅度が設定増幅度よりも大きいときは、内部流路20の流体流量がゼロであるとみなして、ガス漏洩が発生しているか否かを判定するように構成されている。
ここで、設定増幅度Zsは、流量計測対象の流体がガスGや空気の場合の増幅度よりも大きくて、計測用流路21内にガス空気相併存状態が現出している状態に対応する増幅度に設定され、この実施形態では、例えば、50に設定されている。
In the present invention, the control unit 8 is configured to detect an abnormality based on the fluid flow rate measured by the plurality of flow rate measuring means M provided in each of the plurality of measurement flow paths 21, and In the return leakage determination process, the fluid flow rate of the internal flow path 20 is determined based on the fluid flow rate measured by the flow rate measurement means M whose received signal amplification is equal to or less than the set amplification level. It is configured to determine whether or not gas leakage has occurred based on the fluid flow rate of 20.
In addition, in the return leakage determination process, the control unit 8 regards that the fluid flow rate in the internal flow path 20 is zero when the amplification levels of the reception signals of all the plurality of flow rate measurement means M are larger than the set amplification level. Thus, it is configured to determine whether or not gas leakage has occurred.
Here, the set amplification degree Zs is larger than the amplification degree when the fluid whose flow rate is to be measured is gas G or air, and corresponds to a state where a gas-air phase coexistence state appears in the measurement channel 21. The amplification degree is set, and in this embodiment, for example, 50 is set.

制御部8の制御動作について説明を加えると、制御部8は、複数の流量演算手段15夫々から送信される瞬時流量に基づいて上述のように内部流路20の瞬時流量を求め、その内部流路20の瞬時流量に基づいて、異常を検知するように構成されている。例えば、内部流路20の瞬時流量が過大になったり、内部流路20の瞬時流量がゼロよりも大きい状態が継続する時間、即ち、ガスGが継続して通流する時間が異常に長くなるのを検知することに基づいて、異常を検知するように構成されている。   When the control operation of the control unit 8 is described, the control unit 8 obtains the instantaneous flow rate of the internal flow path 20 as described above based on the instantaneous flow rate transmitted from each of the plurality of flow rate calculation means 15, and the internal flow rate is determined. An abnormality is detected based on the instantaneous flow rate of the path 20. For example, the time during which the instantaneous flow rate in the internal flow path 20 becomes excessive or the state where the instantaneous flow rate in the internal flow path 20 is greater than zero, that is, the time during which the gas G continues to flow is abnormally long. It is configured to detect an abnormality based on detecting this.

制御部8は、復帰時漏洩判定処理では、複数の流量演算手段15のうち、少なくとも1つの流量演算手段15における受信信号の増幅度が設定増幅度以下である場合は、当該受信信号の増幅度が設定増幅度以下である流量演算手段15から送信される瞬時流量に基づいて、内部流路20の瞬時流量を求め、その求めた内部流路20の瞬時流量に基づいて、ガス漏洩が発生しているか否かを判定するように構成されている。   In the return leakage determination process, the control unit 8 determines the amplification level of the received signal when the amplification level of the reception signal in at least one of the flow rate calculation means 15 is equal to or less than the set amplification level. Is calculated based on the instantaneous flow rate transmitted from the flow rate calculation means 15 that is less than or equal to the set amplification degree, and the instantaneous flow rate of the internal flow path 20 is obtained, and gas leakage occurs based on the obtained instantaneous flow rate of the internal flow path 20. It is configured to determine whether or not.

具体的には、制御部8は、複数の流量演算手段15全ての受信信号の増幅度が設定増幅度以下である場合は、複数の流量演算手段15全てから送信される瞬時流量を合計して、内部流路20の瞬時流量を求めるように構成されている。
又、制御部8は、複数の流量演算手段15のうちの一部の流量演算手段15の受信信号の増幅度が前記設定増幅度以下の場合は、当該受信信号の増幅度が設定増幅度以下の流量演算手段15から送信される瞬時流量の合計を、復帰時漏洩判定処理を実行する原因となった異常判定時における複数の流量演算手段15全ての受信信号の増幅度が設定増幅度以下のときの複数の流量演算手段15夫々から送信される瞬時流量の比に基づいて補正することにより、内部流路20の瞬時流量を求めるように構成されている。
Specifically, the control unit 8 sums up the instantaneous flow rates transmitted from all of the plurality of flow rate calculation units 15 when the amplification levels of the reception signals of all of the plurality of flow rate calculation units 15 are equal to or less than the set amplification level. The instantaneous flow rate of the internal flow path 20 is determined.
Further, when the amplification degree of the reception signal of some of the flow rate calculation means 15 among the plurality of flow rate calculation means 15 is equal to or less than the set amplification level, the control unit 8 determines that the amplification level of the reception signal is equal to or less than the set amplification level. The total of the instantaneous flow rates transmitted from the flow rate calculation means 15 is equal to or less than the set amplification level when the received signals of all the flow rate calculation means 15 at the time of abnormality determination causing the leakage determination process at the time of return are set. The instantaneous flow rate of the internal flow path 20 is obtained by performing correction based on the ratio of instantaneous flow rates transmitted from each of the plurality of flow rate calculation means 15.

つまり、制御部8が、復帰時漏洩判定処理において、複数の流量計測手段Mのうちの一部の流量計測手段Mの受信信号の増幅度が設定増幅度以下の場合は、当該受信信号の増幅度が設定増幅度以下の流量計測手段Mにて計測される流体流量を、複数の流量計測手段M全ての受信信号の増幅度が設定増幅度以下のときの複数の流量計測手段M夫々にて計測される流体流量の比に基づいて補正することにより、内部流路20の流体流量を求めるように構成されていることになる。   In other words, when the control unit 8 determines that the received signal amplification degree of a part of the flow rate measuring means M among the plurality of flow rate measuring means M is less than or equal to the set amplification degree in the return leakage determination process, the amplification of the received signal is performed. The fluid flow rate measured by the flow rate measuring means M whose degree is less than or equal to the set amplification degree is measured by each of the plurality of flow rate measurement means M when the amplification levels of the received signals of all the plurality of flow rate measurement means M are less than or equal to the set amplification degree. By correcting based on the ratio of the measured fluid flow rate, the fluid flow rate of the internal flow path 20 is obtained.

復帰時漏洩判定処理について更に説明を加える。
制御部8は、計測周期毎に求めた内部流路20の瞬時流量を換算して、1時間当たり流量Qを導出すると共に、下記の式1により、1時間当たり流量Qの平均値(以下、流量平均値と記載する場合がある)Qaveを導出する。ここで、1回目からi回目までの1時間当たり流量Qを、Q(1)、Q(2)、…、Q(i)とする。
Further description will be given of the leakage determination process at the time of return.
The control unit 8 converts the instantaneous flow rate of the internal flow path 20 obtained for each measurement cycle and derives the flow rate Q per hour, and the average value of the flow rate Q per hour (hereinafter, Qave) is derived. Here, the flow rate Q per hour from the first time to the i-th time is defined as Q (1), Q (2), ..., Q (i).

Qave=[Q(1)+Q(2)+,…,+Q(i)]÷(i)……………(式1)   Qave = [Q (1) + Q (2) +,..., + Q (i)] / (i) (Equation 1)

そして、制御部8は、流量判定用設定時間T1の間に、流量平均値Qaveが漏洩判定用流量Kよりも大きくなると、ガス漏洩が発生していると判定し、流量判定用設定時間T1の間、流量平均値Qaveが漏洩判定用流量K以下の状態が継続すると、ガス漏洩が発生していないと判定するように構成されている。ここで、流量判定設定時間T1は、例えば、2分間に設定され、漏洩判定用流量Kは、1時間当たりの流量値で設定され、例えば、50リットル/hに設定される。   Then, when the flow rate average value Qave becomes larger than the leakage determination flow rate K during the flow rate determination setting time T1, the control unit 8 determines that gas leakage has occurred, and the flow rate determination setting time T1 In the meantime, if the state where the flow rate average value Qave is equal to or less than the leakage determination flow rate K continues, it is determined that no gas leakage has occurred. Here, the flow rate determination setting time T1 is set to, for example, 2 minutes, and the leakage determination flow rate K is set to a flow rate value per hour, for example, 50 liters / h.

次に、図7に示すフローチャートに基づいて、制御部8の復帰時漏洩判定処理における制御動作を説明する。
既に超音波式ガスメータが設置されてガスGが消費されているガス需要先において、ガス消費に異常が発生したりする等により、制御部8により流量計測手段Mの計測情報に基づいて異常が検知されると、異常時遮断処理が実行されて、遮断弁11が閉じられると共に、ガス漏洩の可能性がある異常が発生した旨を示す情報が表示部5に表示される。ガス需要先の住人等は、ガス器具等を点検して不具合を解消した後、開弁復帰ボタン10を押して、遮断弁11を開弁復帰させる。
又、ガス会社の作業者が超音波式ガスメータを新規に設置したり、交換したりした場合は、超音波式ガスメータを設置した後、開弁復帰ボタン10を押して、遮断弁11を開弁復帰させる。
Next, based on the flowchart shown in FIG. 7, the control operation in the return leakage determination process of the control unit 8 will be described.
An abnormality is detected based on the measurement information of the flow rate measuring means M by the control unit 8 when an abnormality occurs in the gas consumption at a gas demand destination where the gas meter G has already been installed and the gas G is consumed. If it does, the cutoff process at the time of abnormality will be performed, the cutoff valve 11 will be closed, and the information which shows that abnormality which may have gas leakage has occurred will be displayed on the display part 5. FIG. The resident of the gas demand destination checks the gas appliance and solves the problem, and then presses the valve opening return button 10 to return the shutoff valve 11 to open.
Also, when an operator of a gas company newly installs or replaces an ultrasonic gas meter, after installing the ultrasonic gas meter, press the valve opening return button 10 to return the shutoff valve 11 to open. Let

図7に示すように、制御部8は、遮断弁復帰検知手段13により遮断弁11の開弁復帰が検知されると、設定待機時間が経過するのを待った後、タイマーをスタートさせて、計測周期毎に圧力センサ12の計測圧力Piを読み込んで、計測圧力Piと予め設定された標準圧力Pnとを比較する(ステップ#1〜5)。
そして、圧力判定用設定時間T2が経過するまでに、計測圧力Piが標準圧力Pn以上になると(ステップ#4でYesの場合)、ガス需要先においてガス供給管4に接続されたガス器具のガス栓が閉じられていると考えられるので、復帰時漏洩判定処理を継続し、一方、圧力判定用設定時間T2が経過しても計測圧力Piが標準圧力Pn以上にならない場合は(ステップ#5でYesの場合)、ガス需要先のガス栓が開かれている虞があるので、ステップ#14に進んで、遮断弁11を閉弁状態に切り換え、更に、表示部5に異常が発生した旨を示す情報(以下、異常発生情報と記載する場合がある)を表示する(ステップ#15)。
尚、設定待機時間は、遮断弁11が開かれた後、供給されるガスGにより、遮断弁11よりも下流側に、標準圧力Pnが張られるのに要すると想定される時間よりも多少長い時間、例えば、2秒間に設定される。又、標準圧力Pnは、遮断弁11よりも下流側でガス漏洩が無い場合に、供給されるガスGにより張られる標準的な圧力よりも多少低い圧力、例えば、1kPaに設定され、圧力判定用設定時間T2は、例えば90秒間に設定される。
As shown in FIG. 7, when the shut-off valve return detecting means 13 detects that the shut-off valve 11 has returned to the open state, the control unit 8 waits for the set standby time to elapse and then starts a timer to measure. The measured pressure Pi of the pressure sensor 12 is read every cycle, and the measured pressure Pi is compared with a preset standard pressure Pn (steps # 1 to # 5).
When the measured pressure Pi becomes equal to or higher than the standard pressure Pn before the pressure determination set time T2 elapses (in the case of Yes in step # 4), the gas of the gas appliance connected to the gas supply pipe 4 at the gas demand destination Since it is considered that the stopper is closed, the return leakage determination process is continued. On the other hand, if the measured pressure Pi does not exceed the standard pressure Pn even after the set time T2 for pressure determination elapses (in step # 5). In the case of Yes), since there is a possibility that the gas plug of the gas demand destination is opened, the process proceeds to Step # 14, the shut-off valve 11 is switched to the closed state, and further, the display unit 5 indicates that an abnormality has occurred. Information to be displayed (hereinafter may be described as abnormality occurrence information) is displayed (step # 15).
Note that the set standby time is slightly longer than the time required for the standard pressure Pn to be applied downstream from the shutoff valve 11 by the gas G supplied after the shutoff valve 11 is opened. The time is set to 2 seconds, for example. The standard pressure Pn is set to a pressure slightly lower than the standard pressure applied by the supplied gas G, for example, 1 kPa, when there is no gas leakage downstream from the shut-off valve 11, and is used for pressure determination. The set time T2 is set to 90 seconds, for example.

制御部8は、ステップ#4で計測圧力Piが標準圧力Pn以上であると判定した場合は、タイマーをスタートさせた後、設定周期毎に、流量平均値Qaveを導出すると共に導出した流量平均値Qaveと漏洩判定用流量Kとを比較する処理を、繰り返す(ステップ#6〜11)。具体的には、複数の流量演算手段15全ての受信信号の増幅度Zが設定増幅度Zsよりも大きいときは、内部流路20の瞬時流量がゼロであるとみなして、1時間当たり流量Qiをゼロとして、流量平均値Qaveを導出し、一方、複数の流量演算手段15のうち少なくとも1つの流量演算手段15の受信信号の増幅度Zが設定増幅度Zs以下の場合は、上述のようにして、内部流路20の瞬時流量を求めると共に1時間当たり流量Qiを導出して、流量平均値Qaveを導出する。   When it is determined in step # 4 that the measured pressure Pi is equal to or higher than the standard pressure Pn, the control unit 8 starts the timer and then derives the flow average value Qave and the derived flow average value for each set period. The process of comparing Qave with the leakage determination flow rate K is repeated (steps # 6 to # 11). Specifically, when the amplification factor Z of all the received signals of the plurality of flow rate calculation means 15 is larger than the set amplification factor Zs, the instantaneous flow rate of the internal flow path 20 is regarded as zero, and the flow rate Qi per hour. Is set to zero, and the flow rate average value Qave is derived. On the other hand, when the amplification degree Z of the reception signal of at least one flow rate calculation means 15 among the plurality of flow rate calculation means 15 is equal to or less than the set amplification degree Zs, the above is performed. Thus, the instantaneous flow rate of the internal flow path 20 is obtained and the flow rate Qi per hour is derived to derive the flow rate average value Qave.

そして、流量判定用設定時間T1が経過する間、流量平均値Qaveが漏洩判定用流量K以下である状態が維持されて、ガス漏洩が発生していないと判定すると(ステップ#12でYesの場合)、遮断弁11の開弁復帰が正常に行われた旨を示す情報を表示部5に表示して(ステップ#13)、リターンし、一方、流量判定用設定時間T1が経過するまでに、流量平均値Qaveが漏洩判定用流量Kよりも大きくなって、ガス漏洩であると判定すると(ステップ#11でNoの場合)、ステップ#14に進んで、遮断弁11を閉弁状態に切り換え、更に、表示部5に異常発生情報を表示する(ステップ#15)。   When the flow rate determination set time T1 elapses and the flow rate average value Qave is maintained to be equal to or less than the leakage determination flow rate K, it is determined that no gas leakage has occurred (Yes in step # 12). ), Information indicating that the shut-off valve 11 has been normally opened is displayed on the display unit 5 (step # 13), the process returns, and on the other hand, until the set time T1 for determining the flow rate elapses, When the flow rate average value Qave is larger than the leakage determination flow rate K and it is determined that the gas is leaking (in the case of No in step # 11), the process proceeds to step # 14, and the shutoff valve 11 is switched to the closed state. Further, the abnormality occurrence information is displayed on the display unit 5 (step # 15).

上述のように構成した本発明による超音波式ガスメータでは、内部流路20の一部が並列状の複数の計測用流路21にて構成されているので、超音波式ガスメータの設置時等、内部流路20に空気が満たされている状態で、遮断弁11が開かれたときに、内部流路20に上流側からガスGが流れてきても、全ての計測用流路21について、一対の超音波送受信手段14の間がガス空気相併存状態になるのではなく、一対の超音波送受信手段14の間が空気相併存状態にならずに均質な流体が存在する計測用流路21が存在するようにすることができる。
そして、復帰時漏洩判定処理では、受信信号の増幅度Zが設定増幅度Zs以下である流量計測手段Mにて精度良く計測される計測用流路21の流体流量に基づいて、内部流路20の流体流量が精度良く求められる。
しかも、複数の各計測用流路21夫々は、アスペクト比が大きい複数の分割流路22sが層状に並ぶ多層状流路になっていて、各分割流路22sを通流する流体の流動状態が層流化するので、このことによっても、内部流路20の流体流量の計測精度を向上することができる。
従って、精度良く求められた内部流路20の流体流量に基づいて、ガス漏洩が発生しているか否かが判定されるので、その判定を適切に行うことができる。
In the ultrasonic gas meter according to the present invention configured as described above, a part of the internal flow path 20 is configured by a plurality of parallel measurement flow paths 21, so that when the ultrasonic gas meter is installed, etc. Even when the gas G flows from the upstream side into the internal flow path 20 when the shutoff valve 11 is opened in a state where the internal flow path 20 is filled with air, a pair of the measurement flow paths 21 are paired. The measurement flow channel 21 in which a homogeneous fluid exists without the air phase coexisting state between the pair of ultrasonic transmission / reception units 14 is not formed between the ultrasonic transmission / reception units 14. Can exist.
In the return leakage determination process, the internal flow path 20 is based on the fluid flow rate of the measurement flow path 21 that is accurately measured by the flow rate measurement means M whose received signal amplification degree Z is equal to or less than the set amplification degree Zs. Is required with high accuracy.
Moreover, each of the plurality of measurement channels 21 is a multi-layered channel in which a plurality of divided channels 22s having a large aspect ratio are arranged in layers, and the flow state of the fluid flowing through each divided channel 22s is Since it is laminarized, the measurement accuracy of the fluid flow rate of the internal flow path 20 can be improved also by this.
Therefore, since it is determined whether or not gas leakage has occurred based on the fluid flow rate of the internal flow path 20 determined with high accuracy, the determination can be made appropriately.

又、複数の流量計測手段M全ての受信信号の増幅度Zが設定増幅度Zsよりも大きい場合は、複数の計測用流路21の内部のガスや空気が全く又は殆ど下流側に流動していないために、複数の計測用流路21全てがガス空気相併存状態になっているためであるとみなすことができる。
そして、複数の流量計測手段M全ての受信信号の増幅度Zが設定増幅度Zsよりも大きい場合は、内部流路20の流体流量がゼロであるとみなして、ガス漏洩が発生しているか否かが判定されるので、複数の計測用流路21の一部がガス空気相併存状態になっているか、全てがガス空気相併存状態になっているか、全てがガス空気相併存状態ではなく均質な流体が存在している状態かに拘わらず、ガス漏洩が発生しているか否かの判定を適切に行うことができる。
Further, when the amplification factor Z of the received signals of all the plurality of flow rate measuring means M is larger than the set amplification factor Zs, the gas and air inside the plurality of measurement flow paths 21 flow completely or almost downstream. Therefore, it can be considered that all of the plurality of measurement flow paths 21 are in the gas / air phase coexistence state.
When the amplification factor Z of all the received signals of the plurality of flow rate measuring means M is larger than the set amplification factor Zs, it is considered that the fluid flow rate in the internal flow path 20 is zero, and whether or not gas leakage has occurred. Therefore, a part of the plurality of measurement flow paths 21 is in a gas / air phase coexistence state, all are in a gas / air phase coexistence state, or all are not in a gas / air phase coexistence state. It is possible to appropriately determine whether or not a gas leak has occurred regardless of whether or not a fluid is present.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 複数の流量計測手段Mのうちの一部の流量計測手段Mの受信信号の増幅度が設定増幅度以下の場合に、内部流路20の流体流量を求めるに当たって、受信信号の増幅度が設定増幅度以下の流量計測手段Mにて計測される流体流量を、予め定めた複数の計測用流路21における流体流量の比に基づいて補正することにより求めても良い。
例えば、複数の計測用流路21全ての流体流量が同一になるように構成されている場合、受信信号の増幅度が設定増幅度以下の流量計測手段Mの数と全流量計測手段Mの数との比率により補正することにより、内部流路20の流体流量を求める。
[Another embodiment]
Next, another embodiment will be described.
(A) When the amplification level of the reception signal of a part of the flow rate measurement means M among the plurality of flow rate measurement means M is equal to or less than the set amplification level, the amplification level of the reception signal is obtained when obtaining the fluid flow rate in the internal flow path 20. May be obtained by correcting the fluid flow rate measured by the flow rate measuring means M having a predetermined amplification degree or less based on the ratio of the fluid flow rates in the plurality of predetermined measurement channels 21.
For example, when the fluid flow rates of all of the plurality of measurement flow channels 21 are configured to be the same, the number of flow rate measurement means M and the number of total flow rate measurement means M whose received signal amplification level is equal to or less than the set amplification level. The fluid flow rate of the internal flow path 20 is obtained by correcting with the ratio.

(ロ) 内部流路20の一部を並列状の複数の計測用流路21にて構成するに、上記の実施形態では、上流側流路形成体40及び下流側流路形成体50とは別体の計測用流路形成体30を備えた複数の流量計測ユニットUを組み付ける構成としたが、複数の計測用流路形成体30を上流側流路形成体40と下流側流路形成体50とに並列状に一体的に接続した構成としても良い。 (B) In order to configure a part of the internal flow path 20 with the plurality of parallel measurement flow paths 21, in the above embodiment, the upstream flow path forming body 40 and the downstream flow path forming body 50 Although a plurality of flow rate measurement units U including separate measurement flow path forming bodies 30 are assembled, the plurality of measurement flow path forming bodies 30 are connected to the upstream flow path forming body 40 and the downstream flow path forming body. It is good also as a structure integrally connected to 50 in parallel.

(ハ) 上記の実施形態では、複数の計測用流路21夫々を仕切り板31にて流路内で並列状の複数の分割流路21sに分割したが、複数の計測用流路21夫々を複数の分割流路21sに分割しない構成としても良い。 (C) In the above embodiment, each of the plurality of measurement flow paths 21 is divided into the plurality of parallel divided flow paths 21 s in the flow path by the partition plate 31, but each of the plurality of measurement flow paths 21 is divided. It is good also as a structure which is not divided | segmented into several division | segmentation flow paths 21s.

(ニ) 計測用流路21の設置数(上記の実施形態では、流路計測ユニットUの設置数)は、上記の実施形態において例示した6個に限定されるものではなく、目標とする流量計測能力に応じて適宜設定することができる。 (D) The number of installed flow channels 21 for measurement (in the above embodiment, the number of installed flow channel measurement units U) is not limited to the six illustrated in the above embodiment, but the target flow rate It can set suitably according to measurement capability.

(ホ) 本発明は、上記の実施形態において例示した13A等の都市ガスを流量計測対象とする超音波式ガスメータ以外に、種々の超音波式ガスメータに適用可能であり、例えば、LPGを流量計測対象とする超音波式ガスメータに適用可能である。 (E) The present invention can be applied to various ultrasonic gas meters other than the ultrasonic gas meter whose flow measurement target is city gas such as 13A exemplified in the above embodiment. The present invention can be applied to a target ultrasonic gas meter.

以上説明したように、遮断弁の開弁復帰時のガス漏洩有無の判定を適切に行い得る超音波式ガスメータを提供することができる。   As described above, it is possible to provide an ultrasonic gas meter that can appropriately determine the presence or absence of gas leakage when the shutoff valve is opened again.

8 制御部(制御手段)
11 遮断弁
13 遮断弁復帰検知手段
14 超音波送受信手段
20 内部流路
21 計測用流路
21s 分割流路
30 計測用流路形成体
30d 下流側端部
30u 上流側端部
31 仕切り板
40 上流側流路形成体
41 上流側接続部
42 上流側ヘッダ
50 下流側流路形成体
51 下流側接続部
52 下流側ヘッダ
G ガス
M 超音波式の流量計測手段
U 流量計測ユニット
8 Control unit (control means)
11 shutoff valve 13 shutoff valve return detection means 14 ultrasonic transmission / reception means 20 internal flow path 21 measurement flow path 21s split flow path 30 measurement flow path forming body 30d downstream end 30u upstream end 31 partition plate 40 upstream Channel formation body 41 Upstream side connection part 42 Upstream header 50 Downstream side channel formation body 51 Downstream side connection part 52 Downstream header G Gas M Ultrasonic flow measurement means U Flow measurement unit

Claims (5)

流量計測対象のガスが通流する内部流路と、
当該内部流路の上流側と下流側とに所定の間隔を開けて配設されて交互に超音波を送信する一対の超音波送受信手段を備え、当該一対の超音波送受信手段夫々の受信信号を増幅して当該増幅した受信信号に基づいてガス流量を演算することによりガス流量を計測する超音波式の流量計測手段と、
前記内部流路に設けられて、開弁状態から閉弁状態に電気的に切り換え可能な遮断弁と、
前記遮断弁の前記閉弁状態から前記開弁状態への開弁復帰を検知する遮断弁復帰検知手段と、
前記流量計測手段の計測情報に基づいて異常を検知し、当該異常を検知したときに、前記遮断弁を前記閉弁状態に切り換える異常時遮断処理を実行し、並びに、前記遮断弁復帰検知手段により前記遮断弁の開弁復帰が検知されたときに、前記遮断弁よりも下流側でガス漏洩が発生しているか否かを判定する復帰時漏洩判定処理を実行するように構成された制御手段とを備えた超音波式ガスメータであって、
前記内部流路の一部が、並列状の複数の計測用流路にて構成され、
前記複数の計測用流路の夫々に対応して、前記流量計測手段が設けられ、
前記制御手段が、前記複数の計測用流路夫々に夫々設けられた複数の流量計測手段にて計測される流体流量に基づいて、前記異常を検知するように構成され、且つ、前記復帰時漏洩判定処理において、前記受信信号の増幅度が設定増幅度以下である流量計測手段にて計測される流体流量に基づいて、前記内部流路の流体流量を求め、当該求めた内部流路の流体流量に基づいて前記ガス漏洩が発生しているか否かを判定し、
前記制御手段が、前記復帰時漏洩判定処理において、前記複数の流量計測手段全ての前記受信信号の増幅度が前記設定増幅度よりも大きいときは、前記内部流路の流体流量がゼロであるとみなして、前記ガス漏洩が発生しているか否かを判定する超音波式ガスメータ。
An internal flow path through which gas for flow rate measurement flows,
Provided with a pair of ultrasonic transmission / reception means that are arranged at predetermined intervals on the upstream side and the downstream side of the internal flow path and alternately transmit ultrasonic waves, and receive signals of the pair of ultrasonic transmission / reception means respectively An ultrasonic flow rate measuring means for measuring the gas flow rate by amplifying and calculating the gas flow rate based on the amplified received signal;
A shut-off valve provided in the internal flow path and electrically switchable from a valve-open state to a valve-closed state;
A shut-off valve return detecting means for detecting a return of the shut-off valve from the closed state to the open state;
An abnormality is detected based on the measurement information of the flow rate measuring means, and when the abnormality is detected, a shut-off process at the time of switching the shut-off valve to the closed state is executed, and the shut-off valve return detecting means A control means configured to execute a return-time leakage determination process for determining whether or not a gas leak has occurred downstream of the cutoff valve when a valve opening return of the cutoff valve is detected; An ultrasonic gas meter comprising:
A part of the internal flow path is constituted by a plurality of parallel measurement flow paths,
Corresponding to each of the plurality of measurement channels, the flow rate measuring means is provided,
The control means is configured to detect the abnormality based on a fluid flow rate measured by a plurality of flow rate measurement means provided in each of the plurality of measurement flow paths, and the return leakage In the determination process, the fluid flow rate of the internal flow path is obtained based on the fluid flow rate measured by the flow rate measuring means whose amplification level of the received signal is equal to or less than the set amplification level, and the fluid flow rate of the internal flow path thus obtained is determined. To determine whether or not the gas leakage has occurred ,
In the leakage judgment process at the time of return, when the amplification degree of the reception signals of all the plurality of flow rate measurement means is larger than the set amplification degree, the fluid flow rate of the internal flow path is zero. regarded, the ultrasonic gas meter to determine whether the gas leakage has occurred.
前記制御手段が、前記復帰時漏洩判定処理において、前記複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が前記設定増幅度以下の場合は、当該受信信号の増幅度が前記設定増幅度以下の流量計測手段にて計測される流体流量を、前記複数の流量計測手段全ての受信信号の増幅度が前記設定増幅度以下のときの前記複数の流量計測手段夫々にて計測される流体流量の比に基づいて補正することにより、前記内部流路の流体流量を求めるように構成されている請求項1に記載の超音波式ガスメータ。In the leakage judgment process at the time of return, when the amplification degree of the reception signal of a part of the plurality of flow measurement means is equal to or less than the set amplification degree, the amplification degree of the reception signal Is a flow rate of fluid measured by the flow rate measuring means below the set amplification level, and each of the plurality of flow rate measurement means when the amplification levels of the received signals of all the plurality of flow rate measurement means are below the set amplification level. The ultrasonic gas meter according to claim 1, wherein the ultrasonic gas meter is configured to obtain a fluid flow rate of the internal flow path by performing correction based on a ratio of measured fluid flow rates. 流量計測対象のガスが通流する内部流路と、
当該内部流路の上流側と下流側とに所定の間隔を開けて配設されて交互に超音波を送信する一対の超音波送受信手段を備え、当該一対の超音波送受信手段夫々の受信信号を増幅して当該増幅した受信信号に基づいてガス流量を演算することによりガス流量を計測する超音波式の流量計測手段と、
前記内部流路に設けられて、開弁状態から閉弁状態に電気的に切り換え可能な遮断弁と、
前記遮断弁の前記閉弁状態から前記開弁状態への開弁復帰を検知する遮断弁復帰検知手段と、
前記流量計測手段の計測情報に基づいて異常を検知し、当該異常を検知したときに、前記遮断弁を前記閉弁状態に切り換える異常時遮断処理を実行し、並びに、前記遮断弁復帰検知手段により前記遮断弁の開弁復帰が検知されたときに、前記遮断弁よりも下流側でガス漏洩が発生しているか否かを判定する復帰時漏洩判定処理を実行するように構成された制御手段とを備えた超音波式ガスメータであって、
前記内部流路の一部が、並列状の複数の計測用流路にて構成され、
前記複数の計測用流路の夫々に対応して、前記流量計測手段が設けられ、
前記制御手段が、前記複数の計測用流路夫々に夫々設けられた複数の流量計測手段にて計測される流体流量に基づいて、前記異常を検知するように構成され、且つ、前記復帰時漏洩判定処理において、前記受信信号の増幅度が設定増幅度以下である流量計測手段にて計測される流体流量に基づいて、前記内部流路の流体流量を求め、当該求めた内部流路の流体流量に基づいて前記ガス漏洩が発生しているか否かを判定し、
前記制御手段が、前記復帰時漏洩判定処理において、前記複数の流量計測手段のうちの一部の流量計測手段の受信信号の増幅度が前記設定増幅度以下の場合は、当該受信信号の増幅度が前記設定増幅度以下の流量計測手段にて計測される流体流量を、前記複数の流量計測手段全ての受信信号の増幅度が前記設定増幅度以下のときの前記複数の流量計測手段夫々にて計測される流体流量の比に基づいて補正することにより、前記内部流路の流体流量を求めるように構成されている超音波式ガスメータ。
An internal flow path through which gas for flow rate measurement flows,
Provided with a pair of ultrasonic transmission / reception means that are arranged at predetermined intervals on the upstream side and the downstream side of the internal flow path and alternately transmit ultrasonic waves, and receive signals of the pair of ultrasonic transmission / reception means respectively An ultrasonic flow rate measuring means for measuring the gas flow rate by amplifying and calculating the gas flow rate based on the amplified received signal;
A shut-off valve provided in the internal flow path and electrically switchable from a valve-open state to a valve-closed state;
A shut-off valve return detecting means for detecting a return of the shut-off valve from the closed state to the open state;
An abnormality is detected based on the measurement information of the flow rate measuring means, and when the abnormality is detected, a shut-off process at the time of switching the shut-off valve to the closed state is executed, and the shut-off valve return detecting means A control means configured to execute a return-time leakage determination process for determining whether or not a gas leak has occurred downstream of the cutoff valve when a valve opening return of the cutoff valve is detected; An ultrasonic gas meter comprising:
A part of the internal flow path is constituted by a plurality of parallel measurement flow paths,
Corresponding to each of the plurality of measurement channels, the flow rate measuring means is provided,
The control means is configured to detect the abnormality based on a fluid flow rate measured by a plurality of flow rate measurement means provided in each of the plurality of measurement flow paths, and the return leakage In the determination process, the fluid flow rate of the internal flow path is obtained based on the fluid flow rate measured by the flow rate measuring means whose amplification level of the received signal is equal to or less than the set amplification level, and the fluid flow rate of the internal flow path thus obtained is determined. To determine whether or not the gas leakage has occurred,
In the leakage judgment process at the time of return, when the amplification degree of the reception signal of a part of the plurality of flow measurement means is equal to or less than the set amplification degree, the amplification degree of the reception signal Is a flow rate of fluid measured by the flow rate measuring means below the set amplification level, and each of the plurality of flow rate measurement means when the amplification levels of the received signals of all the plurality of flow rate measurement means are below the set amplification level. by correcting on the basis of the ratio of the fluid flow rate measured, the ultrasonic gas meter that is configured to determine the fluid flow rate of the internal passage.
前記複数の計測用流路の夫々が、仕切り板にて、流路内で並列状の複数の分割流路に分割され、
前記一対の超音波送受信手段夫々が、前記複数の分割流路に超音波を送信可能で且つ前記複数の分割流路からの超音波を受信可能に設けられている請求項1〜3のいずれか1項に記載の超音波式ガスメータ。
Each of the plurality of measurement flow paths is divided into a plurality of parallel divided flow paths in the flow path by the partition plate,
Each of the pair of ultrasonic transmission / reception means is provided so as to be able to transmit ultrasonic waves to the plurality of divided flow paths and receive ultrasonic waves from the plurality of divided flow paths. The ultrasonic gas meter according to Item 1.
前記計測用流路を形成する計測用流路形成体と前記一対の超音波送受信手段とを備えて、流量計測ユニットが構成され、
前記計測用流路形成体の上流側端部を前記内部流路における前記計測用流路よりも上流側の部分を形成する上流側流路形成体に連通接続可能な上流側接続部を所定の数備えた上流側ヘッダ、及び、前記計測用流路形成体の下流側端部を前記内部流路における前記計測用流路よりも下流側の部分を形成する下流側流路形成体に連通接続可能な下流側接続部を所定の数備えた下流側ヘッダが設けられている請求項1〜4のいずれか1項に記載の超音波式ガスメータ。
A flow rate measurement unit is configured comprising a measurement flow channel forming body that forms the measurement flow channel and the pair of ultrasonic transmission / reception means,
An upstream connecting portion that can be connected in communication with an upstream flow path forming body that forms an upstream end portion of the internal flow path with respect to the measurement flow path in the internal flow path. A plurality of upstream headers and a downstream end of the measurement flow path forming body are connected to a downstream flow path forming body that forms a portion of the internal flow path downstream from the measurement flow path. The ultrasonic gas meter according to any one of claims 1 to 4, wherein a downstream header having a predetermined number of possible downstream connections is provided.
JP2013069398A 2013-03-28 2013-03-28 Ultrasonic gas meter Active JP6087695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069398A JP6087695B2 (en) 2013-03-28 2013-03-28 Ultrasonic gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069398A JP6087695B2 (en) 2013-03-28 2013-03-28 Ultrasonic gas meter

Publications (2)

Publication Number Publication Date
JP2014190957A JP2014190957A (en) 2014-10-06
JP6087695B2 true JP6087695B2 (en) 2017-03-01

Family

ID=51837319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069398A Active JP6087695B2 (en) 2013-03-28 2013-03-28 Ultrasonic gas meter

Country Status (1)

Country Link
JP (1) JP6087695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333540B2 (en) * 2019-12-23 2022-05-17 Itron Global Sarl Sensor bypass for gas meters

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383577B2 (en) * 1998-03-30 2003-03-04 矢崎総業株式会社 Ultrasonic flow meter and ultrasonic flow measurement method
JPH11287688A (en) * 1998-04-01 1999-10-19 Matsushita Electric Ind Co Ltd Flow measuring device
JPH11287676A (en) * 1998-04-01 1999-10-19 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP3857959B2 (en) * 2002-06-17 2006-12-13 大阪瓦斯株式会社 Flowmeter
JP4199106B2 (en) * 2003-12-26 2008-12-17 矢崎総業株式会社 Flow rate measuring device and abnormality judgment method
JP4765806B2 (en) * 2006-07-18 2011-09-07 パナソニック株式会社 Gas shut-off device
JP5297864B2 (en) * 2009-04-09 2013-09-25 矢崎エナジーシステム株式会社 Ultrasonic gas meter
JP4612104B2 (en) * 2009-10-29 2011-01-12 矢崎総業株式会社 Return safety confirmation method and electronic gas meter
JP5433047B2 (en) * 2012-04-27 2014-03-05 矢崎エナジーシステム株式会社 Electronic gas meter

Also Published As

Publication number Publication date
JP2014190957A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
US9664549B2 (en) Fluid meter device
JP5094374B2 (en) Flow measurement device and gas supply system
JP7012218B2 (en) Gas security device
US9500508B2 (en) Fluid meter device
JP6087695B2 (en) Ultrasonic gas meter
JP2014089123A (en) Ultrasonic gas meter
JP6087694B2 (en) Ultrasonic gas meter
JP5982640B2 (en) Large flow rate measuring device
JPH11287688A (en) Flow measuring device
JP5194684B2 (en) Flow rate measuring device and gas supply system using this device
JP4592268B2 (en) Meter device
JP4083367B2 (en) Gas security device
JP2008180741A (en) Flow measuring instrument
JP2020051935A (en) Gas meter and control method thereof
JP6309864B2 (en) Gas shut-off device
WO2020235423A1 (en) Gas safety device and gas safety system
JP5974280B2 (en) Large flow rate measuring device
JP7466390B2 (en) Gas supply abnormality detection system
JP6634536B1 (en) Meter device
JP3888946B2 (en) Ultrasonic meter device
JP2006133238A (en) Flow rate measuring means
JP5974281B2 (en) Large flow rate measuring device
JP6325884B2 (en) Gas shut-off device
JP5691014B2 (en) Gas shut-off device
JP2013064643A (en) Method and apparatus for correcting zero point of ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6087695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150