JP5974280B2 - Large flow rate measuring device - Google Patents

Large flow rate measuring device Download PDF

Info

Publication number
JP5974280B2
JP5974280B2 JP2012146330A JP2012146330A JP5974280B2 JP 5974280 B2 JP5974280 B2 JP 5974280B2 JP 2012146330 A JP2012146330 A JP 2012146330A JP 2012146330 A JP2012146330 A JP 2012146330A JP 5974280 B2 JP5974280 B2 JP 5974280B2
Authority
JP
Japan
Prior art keywords
flow rate
measurement
branch passage
flow
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012146330A
Other languages
Japanese (ja)
Other versions
JP2014010030A (en
Inventor
藤井 裕史
裕史 藤井
足立 明久
明久 足立
中林 裕治
裕治 中林
坂口 幸夫
幸夫 坂口
後藤 尋一
尋一 後藤
葵 渡辺
葵 渡辺
康晴 河野
康晴 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012146330A priority Critical patent/JP5974280B2/en
Publication of JP2014010030A publication Critical patent/JP2014010030A/en
Application granted granted Critical
Publication of JP5974280B2 publication Critical patent/JP5974280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガスなどの被計測流体の流量、特に大流量を測定する大流量計測装置に関するものである。   The present invention relates to a large flow rate measuring apparatus for measuring a flow rate of a fluid to be measured such as gas, particularly a large flow rate.

一般にガスなどの被計測流体の流量を測定する計測装置は、流量センサからの出力に基づき流量を測定する。この流量センサとして、超音波を送受信して計測を行う超音波方式のものがよく知られている。この超音波を用いた計測装置は瞬時計測ができる等々、種々の利点があり、ガスなどの被計測流体では従来のダイアフラム膜式計測装置に代わって普及し始めている。   In general, a measurement device that measures the flow rate of a fluid to be measured such as gas measures the flow rate based on an output from a flow sensor. As this flow sensor, an ultrasonic sensor that performs measurement by transmitting and receiving ultrasonic waves is well known. This measuring device using ultrasonic waves has various advantages, such as being able to perform instantaneous measurement, and is beginning to spread in place of conventional diaphragm membrane type measuring devices in fluids to be measured such as gas.

しかしながら、この超音波を用いた計測装置は、超音波が減衰しやすい特性をもっているため、超音波を送受信させる計測流路をあまり大きくすることはできず、大きな流路を必要とする大流量計測装置には適していなかった。つまり、プラント配管のように、超音波振動子の寸法に比べて大きな口径の配管の流路では、第1と第2の超音波振動子の設置距離を長くすると、S/N比が低下してしまい、計測精度が低下してしまうため、第一と第二の超音波振動子の設置距離には限界がある。よって、第1と第2の超音波振動子は流路の側壁に設けられるため、流路は所定の大きさ(断面)以下でなければならないことになる。   However, since the measuring device using ultrasonic waves has a characteristic that the ultrasonic waves are easily attenuated, the measurement flow path for transmitting and receiving the ultrasonic waves cannot be made very large, and a large flow rate measurement that requires a large flow path is required. It was not suitable for the device. That is, when the installation distance between the first and second ultrasonic transducers is increased in a pipe having a diameter larger than that of the ultrasonic transducer, such as plant piping, the S / N ratio decreases. As a result, the measurement accuracy is lowered, and there is a limit to the installation distance between the first and second ultrasonic transducers. Therefore, since the first and second ultrasonic transducers are provided on the side walls of the flow path, the flow path must have a predetermined size (cross section) or less.

また、流路の断面積が大きいと当該流路を流れる路壁での流体の粘性抵抗から被計測流体の流速分布は路壁付近と中心部分とで大きく異なるものとなり、超音波振動子でない流量センサを用いた場合であっても、その流量センサを設ける位置によって計測精度が悪くなり、この点からも超音波計測に限らず他の流量センサを用いても大断面積流路での大流量の直接計測には課題があった。   In addition, if the cross-sectional area of the flow path is large, the flow velocity distribution of the fluid to be measured differs greatly between the vicinity of the road wall and the central part due to the viscous resistance of the fluid on the road wall flowing through the flow path. Even in the case of using a sensor, the measurement accuracy deteriorates depending on the position where the flow sensor is provided. From this point of view, not only ultrasonic measurement but also other flow sensors can be used. There was a problem with the direct measurement.

そこでこのような課題に対応するものとして、図6(a)に示すように、流路101の流入口102と流出口103の間を複数の分岐通路104で分岐し、この各分岐通路104に一対の超音波振動子105を設けて当該分岐通路104を流れる流量を超音波の伝搬時間で計測し、これらを合計して大流量を計測可能にしたものが見られる。すなわち、同図(b)に示すように前記各分岐通路104に設けた超音波振動子105の超音波伝搬時間t11〜t13、t21〜t23を合計してこの伝搬時間の和に基づき流量を算出し、大流量を超音波で計測できるようにしてある(例えば、特許文献1参照)。   In order to deal with such a problem, as shown in FIG. 6A, a plurality of branch passages 104 divide between the inlet 102 and the outlet 103 of the flow path 101, and each of the branch passages 104 is branched. A pair of ultrasonic transducers 105 is provided, the flow rate flowing through the branch passage 104 is measured by the propagation time of the ultrasonic wave, and these are added together so that a large flow rate can be measured. That is, as shown in FIG. 5B, the ultrasonic propagation times t11 to t13 and t21 to t23 of the ultrasonic transducers 105 provided in the respective branch passages 104 are summed to calculate the flow rate based on the sum of the propagation times. However, a large flow rate can be measured with ultrasonic waves (see, for example, Patent Document 1).

また、同様のものとして、本出願人は、図7(a)に示すように、大流量が流れる流路101の流入口102と流出口103の間を複数の分岐通路104で形成し、この各分岐通路104に超音波振動子を用いた計測手段106を設置し、当該分岐通路104の流速を超音波の伝搬時間で計測して流量を算出し、この算出した各分岐通路の流量を流量計測制御装置107で和算することにより、前記流路101を流れる大流量を超音波で計測できるようにしたものを提案した(例えば、特許文献1参照)。なお、図中108は各分岐通路104に設けた開閉弁である。   In addition, as shown in FIG. 7A, the applicant forms a plurality of branch passages 104 between the inlet 102 and the outlet 103 of the flow path 101 through which a large flow rate flows, as shown in FIG. Measuring means 106 using an ultrasonic transducer is installed in each branch passage 104, the flow rate of the branch passage 104 is measured by the propagation time of the ultrasonic wave to calculate the flow rate, and the calculated flow rate of each branch passage is the flow rate. A method has been proposed in which a large flow rate flowing through the flow path 101 can be measured with ultrasonic waves by summing with the measurement control device 107 (see, for example, Patent Document 1). In the figure, reference numeral 108 denotes an open / close valve provided in each branch passage 104.

更に、この計測装置は、各分岐通路104の計測手段106がそれぞれに超音波を送受信してその伝搬時間から流量を算出する計測回路部を有しているため、構成の複雑化、電力消費量の増加をきたすというとことから、その一つの実施形態として同図(b)に示すように前記各計測手段106を切り換え手段109で切り換えて流量計測制御装置107内の主計測回路部110に切換え接続して流量計算させることにより、本来、各計測手段
106が有する個々の計測回路部を無くして一つの主計測回路部110で各分岐通路の流量計測ができるようにし、システムの簡略化を図ることも提案した。
Furthermore, since this measuring device has a measuring circuit unit in which the measuring means 106 of each branch passage 104 transmits and receives an ultrasonic wave and calculates the flow rate from the propagation time, the configuration is complicated and the power consumption is increased. As one embodiment, as shown in FIG. 2B, the measurement means 106 is switched by the switching means 109 and switched to the main measurement circuit unit 110 in the flow rate measurement control device 107. By connecting and calculating the flow rate, it is possible to eliminate the individual measurement circuit units inherent to each measurement means 106 and to measure the flow rate of each branch passage with one main measurement circuit unit 110, thereby simplifying the system. I also proposed that.

特開平11−287686号公報JP-A-11-287686 特許第4688253号公報Japanese Patent No. 4688253

上記いずれの計測装置も超音波計測の弱点やその他の流量センサを用いたとしても生じる流速分布による課題を克服して大流量を計測することができるが、上記従来の流量計測装置は、いずれも各分岐通路104に流れる流量を単純に合計して大流量を計測する構成となっているため、何らかの原因でいずれかの分岐通路に計測誤差等が生じると、その計測誤差の影響が流路101を流れる総流量の計測流量値に直接現れ、計測精度の低下をきたすという課題があった。   Any of the above measurement devices can measure the large flow rate by overcoming the problem of the flow velocity distribution that occurs even if the weakness of ultrasonic measurement and other flow rate sensors are used. Since the flow rate flowing through each branch passage 104 is simply summed to measure a large flow rate, if a measurement error or the like occurs in any one of the branch passages for some reason, the influence of the measurement error is affected by the flow path 101. There was a problem that it appeared directly in the measured flow value of the total flow that flows through the, and lowered the measurement accuracy.

また、後者の計測装置は各計測手段106を切り換え手段109によって流量計測制御装置107内の一つの主計測回路部110に切換え接続して各分岐通路の流量を算出するようにしているから、確かに構成の簡素化が図れるが、具体的な構成の記載はなく、単に各計測手段106に設ける計測回路部を廃止できるというにとどまるものであった。   In the latter measuring device, each measuring unit 106 is switched and connected to one main measuring circuit unit 110 in the flow rate measuring control unit 107 by the switching unit 109 so as to calculate the flow rate of each branch passage. Although the configuration can be simplified, there is no description of the specific configuration, and the measurement circuit unit provided in each measurement means 106 can be simply abolished.

加えて前記両計測装置は、すでに述べたとおりいずれも各分岐通路104に流れる流量を合計して大流量を計測する構成となっているため、いずれかひとつの分岐通路104の計測手段に故障等が生じると、流量計測ができなくなる、という課題もあった。   In addition, since both the measuring devices are configured to measure a large flow rate by summing the flow rates flowing through the respective branch passages 104 as described above, a failure or the like occurs in the measurement means of any one of the branch passages 104. When this occurs, there is also a problem that the flow rate cannot be measured.

本発明はこのような点に鑑みてなしたもので、構成の簡素化と省電力化を図りつつ精度の高い計測が可能な大流量計測装置を提供することを第1の目的とし、分岐通路のいずれかの超音波振動子に故障等の異常が発生した場合であっても精度の良い流量計測が継続できるようにすることを第2の目的としたものである。   The present invention has been made in view of the above points, and a first object of the present invention is to provide a large flow rate measuring device capable of measuring with high accuracy while simplifying the configuration and saving power. A second object is to enable accurate flow rate measurement to be continued even when an abnormality such as a failure occurs in any of the ultrasonic transducers.

本発明は上記第1の目的を達成するため、被計測流体が流れる流路と、前記流路の流入口と流出口の間に設けた複数の分岐通路と、前記複数の分岐通路のそれぞれに配置した計測ユニットと、前記計測ユニットを制御して当該分岐通路の流量を計測する流量計測回路部を有する制御手段と、を備えた大流量計測装置であって、更に、前記各分岐通路の計測ユニットを前記流量計測回路部に任意に切換え接続する切り換え手段を備え、かつ、前記流量計測回路部は、前記切り換え手段を介して接続される各分岐通路の個別流量を算出し、当該個別流量を基に前記流路に流れる個別総流量を各分岐通路ごとに算出し平均することで前記流路を流れる総流量を算出する構成としてある。   In order to achieve the first object, the present invention provides a flow path through which a fluid to be measured flows, a plurality of branch passages provided between an inlet and an outlet of the flow path, and each of the plurality of branch paths. A large flow rate measurement apparatus comprising: a measurement unit arranged; and a control unit having a flow rate measurement circuit unit that controls the measurement unit to measure a flow rate of the branch passage. A switching unit for arbitrarily switching and connecting the unit to the flow rate measurement circuit unit; and the flow rate measurement circuit unit calculates an individual flow rate of each branch passage connected via the switching unit, and the individual flow rate is calculated. The total flow rate that flows through the flow path is calculated by calculating and averaging the individual total flow rates that flow through the flow path for each branch passage.

これにより、流量計測のために用いる例えば超音波の減衰や流速分布のばらつき等の諸要因に左右されることなく大流量の計測が正確にできるのはもちろん、個々の分岐通路で計測・算出した個別総流量Qmに誤差があってばらついていても、その誤差分は個別総流量Qmを平均化することによって少なくなり、精度の高い計測が可能となる。   This makes it possible to accurately measure a large flow rate regardless of factors such as attenuation of ultrasonic waves and variations in flow velocity distribution used for flow rate measurement, as well as measurement and calculation in individual branch passages. Even if there is an error in the individual total flow rate Qm, the error is reduced by averaging the individual total flow rate Qm, and highly accurate measurement is possible.

加えて、各分岐通路の個別流量の計測・算出は制御手段に設けた一つの流量計測回路部で行うので、個々の分岐通路に演算手段等からなる計測回路を有している場合のような各計測回路固有の性能ばらつきによる計測誤差も解消することができ、更に精度の高い計測が可能となる。   In addition, since the individual flow rate of each branch passage is measured and calculated by a single flow rate measurement circuit provided in the control means, as in the case where each branch passage has a measurement circuit made up of arithmetic means, etc. Measurement errors due to performance variations unique to each measurement circuit can also be eliminated, and measurement with higher accuracy becomes possible.

しかも、流量計測回路部は一つで済むから構成の簡素化と省電力化が測れるとともに、この大流量計測装置は家庭用等に用いられる小流量計測装置のユニット部品(超音波振動子等の流量センサをセットした各分岐通路ユニット部品)を用いて構成することができ、どのような大きさの流量の計測装置も簡単かつ容易に対応できる。   In addition, since only one flow measurement circuit unit is required, it is possible to measure the simplification of the configuration and power saving, and this large flow measurement device is a unit component (such as an ultrasonic transducer) of a small flow measurement device used for home use. Each branch passage unit component in which a flow sensor is set can be used, and any flow rate measuring device can be easily and easily handled.

本発明の大流量計測装置は、構成の簡素化と省電力化を図りつつ精度の高い計測が可能であって、かつ、どのような大きさの計測装置にも簡単かつ容易に対応することができる大流量計測装置を提供できる。   The large flow rate measuring device of the present invention can measure with high accuracy while simplifying the configuration and saving power, and can easily and easily correspond to any size measuring device. A large flow rate measuring device capable of being provided can be provided.

本発明の実施の形態1における大流量計測装置のブロック図Block diagram of a large flow rate measuring apparatus according to Embodiment 1 of the present invention 同実施の形態1における大流量計測装置の制御手段と計測ユニットとの関係を示すブロック図The block diagram which shows the relationship between the control means and measurement unit of the large flow volume measuring device in Embodiment 1 同実施の形態1における大流量計測装置の計測動作を示すフローチャートThe flowchart which shows measurement operation | movement of the large flow volume measuring apparatus in the same Embodiment 1. 本発明の実施の形態2における大流量計測装置の制御手段と計測ユニットとの関係を示すブロック図The block diagram which shows the relationship between the control means and measurement unit of the large flow volume measuring apparatus in Embodiment 2 of this invention. 同実施の形態2における大流量計測装置の計測動作を示すフローチャートThe flowchart which shows the measurement operation | movement of the large flow volume measuring apparatus in Embodiment 2 (a)従来の大流量計測装置を示すブロック図、(b)同計測手法を示す説明図(A) Block diagram showing a conventional large flow rate measuring device, (b) Explanatory drawing showing the same measurement technique (a)従来の他の大流量計測装置を示すブロック図、(b)同計測の一例を示すブロック図(A) Block diagram showing another conventional large flow rate measuring device, (b) Block diagram showing an example of the same measurement

第1の発明は被計測流体が流れる流路と、前記流路の流入口と流出口の間に設けた複数の分岐通路と、前記複数の分岐通路のそれぞれに配置した計測ユニットと、前記計測ユニットを制御して当該分岐通路の流量を計測する流量計測回路部を有する制御手段と、を備えた大流量計測装置であって、更に、前記各分岐通路の計測ユニットを前記流量計測回路部に任意に切換え接続する切り換え手段を備え、かつ、前記流量計測回路部は、前記切り換え手段を介して接続される各分岐通路の個別流量を算出し、当該個別流量を基に前記流路に流れる個別総流量を各分岐通路ごとに算出し平均することで前記流路を流れる総流量を算出する構成としてある。   A first invention is a flow path through which a fluid to be measured flows, a plurality of branch passages provided between an inlet and an outlet of the flow path, a measurement unit disposed in each of the plurality of branch paths, and the measurement And a control means having a flow rate measurement circuit unit for controlling the unit to measure the flow rate of the branch passage, and further comprising a measurement unit for each branch passage in the flow rate measurement circuit unit. Switching means for arbitrarily switching connection is provided, and the flow rate measurement circuit unit calculates an individual flow rate of each branch passage connected via the switching means, and individually flows into the flow path based on the individual flow rate The total flow rate is calculated for each branch passage and averaged to calculate the total flow rate flowing through the flow path.

これにより、流量計測のために用いる例えば超音波の減衰や流速分布のばらつき等の諸要因に左右されることなく大流量の計測が正確にできるのはもちろん、個々の分岐通路で計測・算出した個別総流量Qmに誤差があってばらついていても、その誤差分は個別総流量Qmを平均化することによって少なくなり、精度の高い計測が可能となる。   This makes it possible to accurately measure a large flow rate regardless of factors such as attenuation of ultrasonic waves and variations in flow velocity distribution used for flow rate measurement, as well as measurement and calculation in individual branch passages. Even if there is an error in the individual total flow rate Qm, the error is reduced by averaging the individual total flow rate Qm, and highly accurate measurement is possible.

加えて、各分岐通路の個別流量の計測・算出は制御手段に設けた一つの流量計測回路部で行うので、個々の分岐通路に演算手段等からなる計測回路を有している場合のような各計測回路固有の性能ばらつきによる計測誤差も解消することができ、更に精度の高い計測が可能となる。   In addition, since the individual flow rate of each branch passage is measured and calculated by a single flow rate measurement circuit provided in the control means, as in the case where each branch passage has a measurement circuit made up of arithmetic means, etc. Measurement errors due to performance variations unique to each measurement circuit can also be eliminated, and measurement with higher accuracy becomes possible.

しかも、流量計測回路部は一つで済むから構成の簡素化と省電力化が測れるとともに、この大流量計測装置は家庭用等に用いられる小流量計測装置のユニット部品(超音波振動子等の流量センサをセットした各分岐通路ユニット部品)を用いて構成することができ、どのような大きさの流量の計測装置も簡単かつ容易に対応できる。   In addition, since only one flow measurement circuit unit is required, it is possible to measure the simplification of the configuration and power saving, and this large flow measurement device is a unit component (such as an ultrasonic transducer) of a small flow measurement device used for home use. Each branch passage unit component in which a flow sensor is set can be used, and any flow rate measuring device can be easily and easily handled.

第2の発明は、第1の発明において、前記計測ユニットは、前記各分岐通路に配置され
た超音波振動子を用いた伝搬時間差で流量を検出する構成を有し、
前記流量計測回路部は、前記超音波振動子による流量計測特有の補正定数を各分岐通路毎に備えていて、前記切り換え手段による切換えに伴い前記補正定数を使い分けて前記個別流量を算出する構成としてある。
According to a second invention, in the first invention, the measurement unit has a configuration for detecting a flow rate based on a propagation time difference using an ultrasonic transducer disposed in each branch passage,
The flow rate measuring circuit section, the flow rate measuring characteristic of the correction constant by ultrasonic transducers comprise in each branch passage, calculates the individual flow by selectively using the correction constant with the switching by the switching Rikae means As a configuration.

これにより、各分岐通路の流量は当該分岐通路に合った補正定数を用いて計測するので、補正定数を記憶する記憶手段をも含めた形で構成の簡素化と省電力化を図りつつ、流路全体の総流量計測も一段と精度の高いものとすることができる。   As a result, since the flow rate of each branch passage is measured using a correction constant suitable for the branch passage, the flow can be reduced while simplifying the configuration and reducing the power consumption including the storage means for storing the correction constant. The total flow rate measurement of the entire road can be made more accurate.

第3の発明は、第1、第2の発明において、制御手段は、前記制御手段は、前記流量計測回路部を複数備えるとともに、前記切換え手段は前記各分岐通路の計測ユニットを前記複数の流量計測回路部のいずれかとも切換え接続可能な構成としてある。   According to a third invention, in the first and second inventions, the control means includes a plurality of the flow rate measurement circuit units, and the switching means includes the plurality of flow rate measurement units in the branch passages. It is configured to be switchable and connectable to any of the measurement circuit units.

これにより、複数の流量計測回路部のうち計測に利用していない方の流量計測回路部のメンテナンスを、他方の流量計測回路部を用いて流量計測を継続しながら行うことができ、メンテナンス性が向上する。   As a result, maintenance of the flow measurement circuit unit that is not used for measurement among the plurality of flow measurement circuit units can be performed while continuing the flow measurement using the other flow measurement circuit unit. improves.

第4の発明は、第3の発明において、前記流量計測回路部の異常を検出する異常検出手段を更に備え、前記流量計測回路部の異常を検出すると、前記切り換え手段は当該異常を検出した流量計測回路部以外の流量計測回路部に各分岐通路の計測ユニットを切換え接続する構成としてある。   According to a fourth aspect, in the third aspect, the apparatus further comprises abnormality detection means for detecting an abnormality of the flow rate measurement circuit unit, and when the abnormality of the flow rate measurement circuit part is detected, the switching means detects the flow rate at which the abnormality is detected. The measurement unit of each branch passage is switched and connected to the flow rate measurement circuit unit other than the measurement circuit unit.

これにより、流量計測回路部の一つに故障や異常等が生じても他の流量計測回路部に接続して計測を継続することができるので、フェールセーフ性が確保でき、計測装置に対する信頼性が向上する。   As a result, even if a fault or abnormality occurs in one of the flow measurement circuit units, it can be connected to another flow measurement circuit unit and measurement can be continued. Will improve.

第5の発明は、第2の目的を達成すべく第4の発明において、前記異常検出手段は前記各分岐通路の計測ユニットによる計測異常をも検出する構成とし、前記異常検出手段が前記各分岐通路のいずれかの計測ユニットによる計測が異常であると検出した際、前記制御手段は、当該分岐通路の計測をリセットすると共に、前記流量計測回路部は、当該分岐通路以外の分岐通路で計測された個別流量で算出された個別総流量に基づいて、前記流路に流れる総流量を算出する構成としたものである。   According to a fifth aspect of the present invention, in order to achieve the second object, in the fourth aspect of the invention, the abnormality detection means detects a measurement abnormality by the measurement unit of each branch passage, and the abnormality detection means When it is detected that the measurement by any one of the measurement units in the passage is abnormal, the control means resets the measurement of the branch passage, and the flow measurement circuit unit is measured in a branch passage other than the branch passage. The total flow rate flowing in the flow path is calculated based on the individual total flow rate calculated with the individual flow rate.

これにより、故障や異常を起こした分岐通路の計測流量の影響を受けることなく精度の高い計測ができるとともに、各分岐通路の計測に故障や異常等が生じても流路全体の流量計測を継続することができ、計測装置に対する信頼性を大幅に向上させることができる。   This enables high-precision measurement without being affected by the measured flow rate of the branch passage where a failure or abnormality has occurred, and continues to measure the flow rate of the entire flow path even if a failure or abnormality occurs in the measurement of each branch passage. This can greatly improve the reliability of the measuring device.

第6の発明は、第4又は第5の発明において、前記制御手段は更に通信手段を備え、流量計測回路部の故障を外部に通信する構成としてある。
According to a sixth invention, in the fourth or fifth invention, the control means further includes a communication means, and communicates a failure of the flow measurement circuit unit to the outside.

これにより、流量計測回路部の一つに故障や異常等が生じればこれを通信手段によって外部の管理業者に通信することができ、故障や異常以外の流量計測回路部を用いて計測を継続しながら故障や異常を起こした流量回路部の交換・修理ができるから、早期にフェールセーフ性を回復でき、計測装置に対する信頼性を維持することができる。   As a result, if a failure or abnormality occurs in one of the flow measurement circuit units, it can be communicated to an external management company by means of communication, and measurement is continued using a flow measurement circuit unit other than the failure or abnormality. In addition, since the flow circuit unit that has failed or malfunctioned can be replaced or repaired, the fail-safe property can be recovered at an early stage, and the reliability of the measuring device can be maintained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態では流量センサとして超音波振動子を用いたものを例にして説明するが、これによって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, the flow rate sensor using an ultrasonic transducer is described as an example. However, the present invention is not limited to this.

(実施の形態1)
図1は大流量計測装置のブロック図、図2は同制御手段と各分岐通路に設けた計測ユニットとの関係を示すブロック図、図3は計測動作を示すフローチャートである。
(Embodiment 1)
FIG. 1 is a block diagram of a large flow rate measuring device, FIG. 2 is a block diagram showing the relationship between the control means and a measuring unit provided in each branch passage, and FIG. 3 is a flowchart showing a measuring operation.

図1において、1は大流量が流れる流路で、流入口2と流出口3との間は複数に分岐した分岐通路4としてある。上記分岐通路4にはそれぞれに後述する計測ユニット5が設けてある。6は前記流路1の流入口2に設けた開閉手段、7は前記各分岐通路4を流れる流量及びこの個別流量から流路1全体を流れる総流量を算出する制御手段、8は前記各分岐通路4の後述する計測ユニット5の超音波振動子と前記制御手段7とを任意に切換え接続する切り換え手段、9は外部の管理業者とインターネット網等を介して通信する通信手段である。   In FIG. 1, reference numeral 1 denotes a flow path through which a large flow rate flows, and a branch passage 4 that is branched into a plurality of portions is provided between the inlet 2 and the outlet 3. Each of the branch passages 4 is provided with a measuring unit 5 described later. 6 is an opening / closing means provided at the inlet 2 of the flow path 1, 7 is a control means for calculating the flow rate flowing through each branch passage 4 and the total flow rate flowing through the entire flow path 1 from this individual flow rate, and 8 is each branch. Switching means 9 for arbitrarily switching and connecting an ultrasonic transducer of the measuring unit 5 to be described later in the passage 4 and the control means 7, 9 is a communication means for communicating with an external management company via the Internet network or the like.

図2は前記制御手段7と各分岐通路4に設けた計測ユニット5との関係を示し、各分岐通路4中の計測ユニット5には流量センサとしての超音波を発信する第1振動子10と受信する第2振動子11が流れ方向に配置してある。また、前記制御手段7は各分岐通路4を流れる個別流量及びこの個別流量から流路1全体を流れる個別総流量を算出する流量計測回路部12を有している。そして、この個別総流量を平均することで、流路1を流れる総流量を算出するように構成している。   FIG. 2 shows the relationship between the control means 7 and the measurement unit 5 provided in each branch passage 4, and the first vibrator 10 that transmits ultrasonic waves as a flow sensor to the measurement unit 5 in each branch passage 4. The second vibrator 11 for receiving is arranged in the flow direction. Further, the control means 7 has a flow rate measuring circuit section 12 for calculating an individual flow rate flowing through each branch passage 4 and an individual total flow rate flowing through the entire flow path 1 from the individual flow rate. The total flow rate flowing through the flow path 1 is calculated by averaging the individual total flow rates.

13は第1振動子10への送信手段、14は第2振動子11で受信した信号の受信手段、15は受信手段14の信号を増幅する増幅手段で、この増幅された信号は基準信号と比較回路で比較され、基準信号以上の信号が検出されたとき設定された回数だけ繰り返し手段と遅延手段によって信号を遅延させた後超音波信号を繰り返し送信する。超音波の送信が設定された回数繰り返されて終了したときの伝搬時間をタイマカウンタのような計時手段16で求める。   Reference numeral 13 denotes transmission means for the first vibrator 10, reference numeral 14 denotes reception means for the signal received by the second vibrator 11, and reference numeral 15 denotes amplification means for amplifying the signal from the reception means 14. The amplified signal is a reference signal. When the comparison circuit compares and detects a signal equal to or higher than the reference signal, the ultrasonic signal is repeatedly transmitted after the signal is delayed by the repeating means and the delay means for the set number of times. The propagation time when the transmission of ultrasonic waves is repeated for the set number of times and is completed is obtained by the time measuring means 16 such as a timer counter.

次に、切り換え手段8で第1振動子10と第2振動子11の発信受信を切り換えて、第2振動子11から第1振動子10すなわち下流から上流に向かって超音波を送信し、この送信を前述のように繰り返しその伝搬時間を計時する。そしてその時間差から流路の大きさや流れの状態等当該分岐通路特有の補正を考慮して流量演算手段18で流量値を求める。   Next, the transmission / reception of the first vibrator 10 and the second vibrator 11 is switched by the switching means 8, and ultrasonic waves are transmitted from the second vibrator 11 to the first vibrator 10, that is, from downstream to upstream. The transmission is repeated as described above and the propagation time is measured. From the time difference, the flow rate calculation means 18 obtains the flow rate value in consideration of correction specific to the branch passage such as the size of the flow path and the flow state.

すなわち、この流量演算手段18はあらかじめ実験によって求めた各分岐通路4の計測ユニット5での計測特有の補正定数を各計測ユニット5ごとに使い分けて個別流量を求めるようにしてある。   In other words, the flow rate calculation means 18 determines the individual flow rate by using the correction constant specific to the measurement in the measurement unit 5 of each branch passage 4 obtained in advance by experiment for each measurement unit 5.

ここで、この実施の形態においては、上記制御手段7に上記流量計測回路部12と同じ構成の流量計測回路部12が複数、例えばこの実施の形態ではもう一つ設けてあり、前記切り換え手段8は各計測ユニット5の切換え接続先をもう一つの流量計測回路部12に切り換えることができるように構成してある。   Here, in this embodiment, the control means 7 is provided with a plurality of flow rate measurement circuit sections 12 having the same configuration as the flow rate measurement circuit section 12, for example, another one in this embodiment, and the switching means 8 Is configured so that the switching connection destination of each measurement unit 5 can be switched to another flow measurement circuit unit 12.

また、前記制御手段7には異常検出手段19が設けてあり、この異常検出手段19は前記各流量計測回路部12の故障や異常等を検出する。そしてこの異常検出手段19が各計測ユニット5の接続切換え対象としている流量計測回路部12の異常を検出すると、前記切り換え手段8が各計測ユニット5の切換え接続対象となっている流量計測回路部12からもう一つの正常な流量計測回路部12に切り換えるようにしてある。   Further, the control means 7 is provided with an abnormality detection means 19, and this abnormality detection means 19 detects a failure or abnormality of each flow rate measurement circuit section 12. When the abnormality detecting means 19 detects an abnormality in the flow measurement circuit section 12 that is the connection switching target of each measurement unit 5, the switching means 8 is the flow measurement circuit section 12 that is the switching connection target of each measurement unit 5. Is switched to another normal flow rate measurement circuit unit 12.

次に動作、作用について図3を参照しながら説明する。   Next, the operation and action will be described with reference to FIG.

なお、以下の説明では、計測ユニット5の数をnとし、各分岐通路4を流れる個別流量をqm(m=1〜n)、個別流量qmから算出される個別総流量をQm(m=1〜n)と
している。
In the following description, the number of measurement units 5 is n, the individual flow rate flowing through each branch passage 4 is qm (m = 1 to n), and the individual total flow rate calculated from the individual flow rate qm is Qm (m = 1). To n).

まず、制御手段7が開閉手段6を開くと、ガスなどの被計測流体は流入口2から流路1に流入して各分岐通路4を経由し流出口3から流出し、その流量が計測される。   First, when the control means 7 opens the opening / closing means 6, a fluid to be measured such as gas flows into the flow path 1 from the inlet 2, flows out of the outlet 3 through each branch passage 4, and the flow rate is measured. The

すなわち、まず切り換え手段8が各分岐通路4に設けた計測ユニット5のうちの一つの第1、第2振動子10、11を制御手段7に接続(ステップ31)し、当該分岐通路4の個別流量qmを算出(ステップ32)して、当該個別流量qmから流路1を流れる個別総流量Qmを算出する(ステップ33)。この計測が終了すると切り換え手段8は次の分岐通路4に設けた計測ユニット5の第1、第2振動子10、11を制御手段7に切り換え接続し、当該分岐通路4の個別流量qmを計測して、上記と同様に個別総流量Qmを算出していく。これを分岐通路4の数だけ順次繰り返し(ステップ34)、流路1全体の総流量Qを計測する(ステップ35)。   That is, first, the switching means 8 connects one of the first and second vibrators 10 and 11 of the measuring units 5 provided in each branch passage 4 to the control means 7 (step 31). The flow rate qm is calculated (step 32), and the individual total flow rate Qm flowing through the flow path 1 is calculated from the individual flow rate qm (step 33). When this measurement is completed, the switching means 8 switches and connects the first and second vibrators 10 and 11 of the measurement unit 5 provided in the next branch passage 4 to the control means 7 and measures the individual flow rate qm of the branch passage 4. Then, the individual total flow rate Qm is calculated in the same manner as described above. This is repeated sequentially for the number of branch passages 4 (step 34), and the total flow rate Q of the entire flow path 1 is measured (step 35).

上記流量計測は、まず送信手段13からの信号に基づき第1振動子10から超音波が発信され、この超音波信号が被計測流体の流れの中を伝搬し、第2振動子11を介して受信手段14で受信されて増幅手段15で信号処理され、発信から受信までの伝搬時間が計時手段16で測定される。   In the flow rate measurement, first, an ultrasonic wave is transmitted from the first vibrator 10 based on a signal from the transmission means 13, and this ultrasonic signal propagates through the flow of the fluid to be measured and passes through the second vibrator 11. Received by the receiving means 14 and signal processed by the amplifying means 15, the propagation time from transmission to reception is measured by the time measuring means 16.

静止流体中の音をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝搬速度は(c+v)となる。第1振動子10と第2振動子11の間の距離をL、超音波伝搬軸と管路の中心軸とがなす角度をφとすると、超音波が到達する時間tは、
t=L/(c+vCOSφ) ・・・(1)
となる。
If the sound in the stationary fluid is c and the flow velocity of the fluid is v, the propagation speed of the ultrasonic wave in the forward direction of the flow is (c + v). When the distance between the first transducer 10 and the second transducer 11 is L, and the angle between the ultrasonic propagation axis and the central axis of the pipe is φ, the time t when the ultrasonic wave reaches is
t = L / (c + vCOSφ) (1)
It becomes.

流量演算手段18は計時手段16が計測した時間に基づき、(1)式より流速を求め、各分岐通路4を流れる個別の流量qを算出する(ステップ32)。   The flow rate calculation means 18 calculates the flow rate from the equation (1) based on the time measured by the time measuring means 16 and calculates the individual flow rate q flowing through each branch passage 4 (step 32).

すなわち、(1)式より流速vは、
v=(L/t−c)/COSφ ・・・(2)
となり、Lとφが既知ならtを測定すれば流速vが求められる。この流速vより各分岐通路4を流れる個別流量qmは、各分岐通路における流速をvm、通過面積をSm、分岐通路計測特有の補正定数をKmとすれば、
qm=Km・Sm・vm ・・・(3)
となる。
That is, from equation (1), the flow velocity v is
v = (L / tc) / COSφ (2)
If L and φ are known, the flow velocity v can be obtained by measuring t. The individual flow rate qm flowing through each branch passage 4 from this flow velocity v is defined as vm as the flow velocity in each branch passage, Sm as the passage area, and Km as a correction constant specific to the branch passage measurement.
qm = Km · Sm · vm (3)
It becomes.

ここで、この流量計測回路部12は上記個別流量qmを演算した後、更に各分岐通路4ごとに個別に流路1全体を流れる個別総流量Qmをまず算出する(ステップ33)。   Here, after calculating the individual flow rate qm, the flow rate measurement circuit unit 12 first calculates the individual total flow rate Qm flowing through the entire flow path 1 individually for each branch passage 4 (step 33).

すなわち、各分岐通路4ごとに流路1の流出口3を通過する総流量と分岐通路4で計測した個別流量の比(総流量/個別流量)を予め求めておき、この各個別流路毎の比(Cm(m=1〜n)とする)を用い(3)式より各分岐通路ごとに個別総流量Qmを求める。   That is, a ratio (total flow rate / individual flow rate) between the total flow rate passing through the outlet 3 of the flow path 1 and the individual flow rate measured in the branch path 4 is obtained in advance for each branch passage 4. The individual total flow rate Qm is obtained for each branch passage from the equation (3) using the ratio (Cm (m = 1 to n)).

すなわち、(3)式より個別総流量Qmは、
Qm=Km・Sm・vm・Cm ・・・(4)
となる。
That is, the individual total flow rate Qm is calculated from the equation (3).
Qm = Km / Sm / vm / Cm (4)
It becomes.

上記各個別総流量Qmの算出がすべての分岐通路4で行われたかを確認(ステップ34)し、すべての分岐通路4の個別総流量Qmの算出を終える。   It is checked whether the calculation of each individual total flow rate Qm has been performed in all the branch passages 4 (step 34), and the calculation of the individual total flow rate Qm in all the branch passages 4 is finished.

次に制御手段7の流量演算手段18はこれら各分岐通路4ごとに算出した各個別総流量Q1‥Qnのすべてを和算し、その和算結果を分岐通路数nで除して総流量Qを算出する(ステップ35)。
Q=(Q1+Q2+‥Qn)/n……(5)
その際、異常検出手段19が各分岐通路4の計測ユニット5を切り換え接続する流量計測回路部12の異常判定(ステップ36)を行い、異常があれば各分岐通路4の計測ユニット5の接続先をもう一つの流量計測回路部12に切り換え(ステップ37)、当該流量計測回路部12を用いて上記した計測を行う。
Next, the flow rate calculation means 18 of the control means 7 adds up all the individual total flow rates Q1... Qn calculated for each of the branch passages 4, and divides the sum by the number of branch passages n to give a total flow rate Q. Is calculated (step 35).
Q = (Q1 + Q2 + ... Qn) / n (5)
At that time, the abnormality detection means 19 performs abnormality determination (step 36) of the flow rate measurement circuit unit 12 for switching and connecting the measurement units 5 of each branch passage 4, and if there is an abnormality, the connection destination of the measurement unit 5 of each branch passage 4 Is switched to another flow rate measurement circuit unit 12 (step 37), and the flow rate measurement circuit unit 12 is used to perform the above-described measurement.

以上のように、この大流量計測装置では、まず各分岐通路4ごとに個別流量qmを計測してそれぞれ個別に個別総流量Qmを算出し、更にこの個別総流量Qmを和算して分岐通路数nで除して平均化することにより、流路1を流れる最終の総流量Qを算出しているから、個々の分岐通路4で計測・算出した個別総流量Qmにばらつきがあっても、そのばらつきが分岐通路数nで除して平均化した分だけ少なくなり、個々の分岐通路4で計測した個別流量qmを直接和算したり、個々の分岐通路4の超音波伝搬時間を和算して流量を算出する場合のように、各分岐通路4での計測誤差値がそのまま和算されてしまうことがなく、その計測精度は高いものとなる。   As described above, in this large flow rate measuring device, first, the individual flow rate qm is measured for each branch passage 4, the individual total flow rate Qm is calculated individually, and further, this individual total flow rate Qm is summed. By dividing by the number n and averaging, the final total flow rate Q flowing through the flow path 1 is calculated, so even if the individual total flow rate Qm measured and calculated in each branch passage 4 varies, The variation is reduced by dividing by the number of branch passages n and is averaged. The individual flow qm measured in each branch passage 4 is directly added, or the ultrasonic propagation time of each branch passage 4 is added. Thus, unlike the case of calculating the flow rate, the measurement error values in the respective branch passages 4 are not added as they are, and the measurement accuracy is high.

また、上記計測は、切り換え手段8が各分岐通路4を制御手段7の流量計測回路部12に切換え接続していき、この流量計測回路部12一つで各分岐通路4ごとに個別流量qm、個別総流量Qmそして総流量Qを算出して行うので、個々の分岐通路4に演算手段等からなる計測回路を有している場合のような各計測回路固有の性能ばらつきによる計測誤差も解消することができ、更に精度の高い計測が可能となる。   In the above measurement, the switching unit 8 switches and connects each branch passage 4 to the flow rate measurement circuit unit 12 of the control unit 7, and the individual flow rate qm, Since the individual total flow rate Qm and the total flow rate Q are calculated, measurement errors due to performance variations unique to each measurement circuit as in the case where each branch passage 4 has a measurement circuit made up of arithmetic means and the like are also eliminated. And more accurate measurement is possible.

加えて、上記個別流量qm算出時、流量計測回路部12は切り換え手段8による切換えに伴い各分岐通路特有の補正定数を使い分けて前記個別流量qmを算出するので、精度良く計測でき、流路全体の総流量計測も一段と精度の高いものとすることができる。   In addition, when the individual flow rate qm is calculated, the flow rate measurement circuit unit 12 calculates the individual flow rate qm by properly using the correction constant specific to each branch passage in accordance with the switching by the switching means 8, so that the individual flow rate qm can be measured with high accuracy. The total flow rate can be measured with higher accuracy.

その上、上記構成の説明から明らかなように各分岐通路4の計測ユニット5に計測回路を設ける必要がなく、しかも各分岐通路特有の補正定数を記憶させる記憶部を設ける必要も無く、構成の簡素化が図れるとともに、各分岐通路に設けた計測回路で電力を使用することが無いので省電力化も図ることができる。   In addition, as apparent from the description of the above configuration, it is not necessary to provide a measurement circuit in the measurement unit 5 of each branch passage 4, and it is not necessary to provide a storage unit for storing a correction constant unique to each branch passage. In addition to simplification, it is possible to save power because no power is used in the measurement circuit provided in each branch passage.

また、この大流量計測装置では、各計測ユニット5が切換え接続されて流量計測を行っている流量計測回路部12自体に故障や異常等が生じると、切り換え手段8が他方の流量計測回路部12に各計測ユニット5を切換え接続するように切り替わって流量計測を継続することができる。すなわち、流量計測のフェールセーフ性が確保でき、計測装置に対する大きく信頼性が向上する。   Further, in this large flow rate measuring device, when a failure or abnormality occurs in the flow rate measurement circuit unit 12 that is connected to each measurement unit 5 and performs flow rate measurement, the switching means 8 causes the other flow rate measurement circuit unit 12 to switch. It is possible to continue to measure the flow rate by switching the measurement units 5 to connect to each other. That is, the fail-safe property of the flow rate measurement can be ensured, and the reliability of the measuring device is greatly improved.

また、異常が無くても切り換え手段8によって任意に流量計測に使用する流量計測回路部12を切り換えられるようにしておけば、当該流量計測回路部12に異常が無くてもユーザの意志によって流量計測回路部12を切り換えて流量計測に使用していない方の流量計測回路部12のメンテナンス、例えば、補正定数等のチェックや修正を行うことができ、メンテナンス性も向上する。   Further, even if there is no abnormality, the switching means 8 can arbitrarily switch the flow measurement circuit unit 12 used for flow measurement, and even if there is no abnormality in the flow measurement circuit unit 12, the flow measurement can be performed by the user's will. Maintenance of the flow rate measurement circuit unit 12 that is not used for flow rate measurement by switching the circuit unit 12 can be performed, for example, check and correction of correction constants can be performed, and maintainability is also improved.

更に、上記制御手段7には通信手段9を設けてあるから、流量計測回路部12に故障が生じて切り換え手段8が正常な流量計測回路部12に切り換え接続した場合には、これを外部の管理業者に知らせることができ、例えば、大流量計測装置を使用しない日曜日等の休日に、故障や異常を起こした流量計測回路部12を交換する等の修理を行うことができ、メンテナンス性が更に向上する。   Further, since the communication means 9 is provided in the control means 7, when a failure occurs in the flow measurement circuit section 12 and the switching means 8 is switched and connected to the normal flow measurement circuit section 12, this is connected to the outside. For example, on a holiday such as Sunday when a large flow rate measuring device is not used, repairs such as replacement of the flow rate measuring circuit unit 12 that has caused a failure or abnormality can be performed. improves.

また、上記第1、第2振動子10、11を有する各分岐通路4の計測ユニット5は家庭用等に用いられる小流量計測装置のユニット部品を用いて構成することができ、どのような大きさの流量の計測装置も簡単かつ容易に対応することができる利点もある。   In addition, the measurement unit 5 of each branch passage 4 having the first and second vibrators 10 and 11 can be configured using unit parts of a small flow rate measuring device used for home use, and any size. There is also an advantage that the flow rate measuring device can be easily and easily handled.

(実施の形態2)
図4は実施の形態2における大流量計測装置を示し、この実施の形態は各分岐通路4の流量を計測する計測ユニット5に異常があった場合、この異常な計測ユニット5を除いた他の計測ユニット5が計測した個別流量qmに基づいて総流量Qを計測するようにしたものである。
(Embodiment 2)
FIG. 4 shows a large flow rate measuring device according to the second embodiment. In this embodiment, when there is an abnormality in the measurement unit 5 that measures the flow rate of each branch passage 4, the other measurement units 5 except for the abnormal measurement unit 5 are excluded. The total flow rate Q is measured based on the individual flow rate qm measured by the measurement unit 5.

すなわち、図4おいて図2と同じ要素には同一番号を付記して説明を省略し、異なる部分のみ説明すると、異常検出手段59は各分岐通路4の計測ユニット5の第1、第2振動子10、11の表面にごみ付着等で起こる異常や結線上の故障等が生じるとこれも検出できるように構成してある。   That is, in FIG. 4, the same elements as those in FIG. 2 are denoted by the same reference numerals and description thereof is omitted, and only different parts will be described. It is configured so that it can be detected when an abnormality occurs due to dust adhering to the surface of the child 10, 11 or a fault on the connection occurs.

図5は上記実施の形態2における第流量計測装置の動作を示すフローチャートで、各分岐通路4の個別流量計測中に異常検出手段59が計測ユニット5に異常が無いか判定する(ステップ38)。   FIG. 5 is a flowchart showing the operation of the first flow rate measuring device according to the second embodiment, and the abnormality detection means 59 determines whether or not there is an abnormality in the measurement unit 5 during the individual flow rate measurement of each branch passage 4 (step 38).

このとき計測ユニット5の第1、第2振動子10、11に異常を検出すると、当該異常検出手段59の出力に基づき流量演算手段18は当該異常が生じている分岐通路4を除きそれ以外の正常な各分岐通路4の個別流量qmを算出し、当該異常が検出された分岐通路4を除く個別流量qmから個別総流量Qmを算出(ステップ39)する。その後、上記異常が生じた分岐通路4を除く分岐通路4の個別流量qmから算出した個別総流量Qmを和算し、異常が生じた分岐通路4を除いた分岐通路数nで除して流路1に流れる総流量Qを平均算出(ステップ35)するとともに、制御手段7は当該分岐通路4の第1、第2振動子10、11出力をリセット(ステップ40)する。   If an abnormality is detected in the first and second vibrators 10 and 11 of the measurement unit 5 at this time, the flow rate calculation means 18 based on the output of the abnormality detection means 59, except for the branch passage 4 where the abnormality occurs, The individual flow rate qm of each normal branch passage 4 is calculated, and the individual total flow rate Qm is calculated from the individual flow rate qm excluding the branch passage 4 in which the abnormality is detected (step 39). Thereafter, the individual total flow rate Qm calculated from the individual flow rates qm of the branch passages 4 excluding the branch passage 4 in which the abnormality has occurred is summed, and divided by the number of branch passages n excluding the branch passage 4 in which the abnormality has occurred. The average of the total flow rate Q flowing in the path 1 is calculated (step 35), and the control means 7 resets the outputs of the first and second vibrators 10 and 11 in the branch path 4 (step 40).

そして、次の計測時、例えば2秒後には再度上記動作を繰り返して流路1の総流量Qを計測するが、その際、前記故障若しくは異常になっていた分岐通路4の計測ユニット5はリセットされて、再度、総流量Qの算出に使用されるので、総流量Q算出の母数が元の数nに復帰して初期と同様の高い計測精度が確保できる。もし、リセット後でも前記分岐通路4の計測ユニット5に故障若しくは異常が残っていたら、異常検出手段59がこれを検知し、前記と同様に当該分岐通路4の計測結果を除いて最終的に総流量Qの算出を行う。
Then, at the next measurement, for example, after 2 seconds, the above operation is repeated again to measure the total flow rate Q of the flow path 1, but at that time, the measurement unit 5 of the branch passage 4 that has failed or is abnormal is reset. Then, since it is used again for the calculation of the total flow rate Q, the parameter of the total flow rate Q calculation is restored to the original number n, and the same high measurement accuracy as in the initial stage can be secured. If a failure or abnormality remains in the measurement unit 5 of the branch passage 4 even after resetting, the abnormality detection means 59 detects this, and finally the total result except for the measurement result of the branch passage 4 is the same as described above. The flow rate Q is calculated.

以上のように、この大流量計測装置では、各分岐通路4の計測ユニット5の第1、第2振動子10、11に何らかの原因で故障あるいは異常が生じた場合、異常検出手段59がこれを検知し、それに基づき流量演算手段18は当該分岐通路4での計測結果を除いて和算し、当該分岐通路4を除いた分岐通路数nで除して流路1の総流量Qを算出するので、分岐通路4の計測ユニット5に故障や異常が生じても従来例で説明したように流量計測できなくなるというようなことなく計測を継続することができるとともに、当該異常等が生じた分岐通路4での計測結果の影響を受けることなく精度の高い計測を続けることができる。   As described above, in this large flow rate measuring device, when a failure or abnormality occurs for some reason in the first and second vibrators 10 and 11 of the measurement unit 5 of each branch passage 4, the abnormality detection means 59 detects this. Based on this detection, the flow rate calculation means 18 calculates the total flow rate Q of the flow path 1 by adding up the measurement results in the branch passage 4 and dividing the sum by the number n of the branch passages excluding the branch passage 4. Therefore, even if a failure or an abnormality occurs in the measurement unit 5 of the branch passage 4, the measurement can be continued without being unable to measure the flow rate as described in the conventional example, and the branch passage in which the abnormality or the like has occurred. High-precision measurement can be continued without being affected by the measurement result at 4.

また、この場合、上記故障や異常が起きたことを先の流量計測回路部12の故障検出時と同様、通信手段9によってインターネット網を介し管理業者等に知らせるように設定しておけば、前期と同様に当該大流量計測装置を使用しない日曜日等の休日に、故障や異常を起こした分岐通路4の計測ユニット5を交換する等の修理を行うことができ、故障、異常を起こした分岐通路4の計測ユニット5を除いた分だけ低下した計測精度での計測継続
の期間を短くすることができ、ユーザの計測精度に対する信頼性を更に向上させることができる。
Further, in this case, if it is set to notify the management company or the like via the Internet network by means of the communication means 9 in the same manner as when the failure of the flow rate measurement circuit unit 12 is detected, the previous period. In the same manner as in the above, on a holiday such as Sunday when the large flow rate measuring device is not used, repair such as replacement of the measuring unit 5 of the branch passage 4 that has caused a failure or abnormality can be performed. The measurement continuation period with the measurement accuracy reduced by the amount excluding the four measurement units 5 can be shortened, and the reliability of the user with respect to the measurement accuracy can be further improved.

以上説明したように本発明は、構成の簡素化と省電力化を図りつつ精度の高い大流量計測が可能な大流量計測装置を提供するものであるが、上記各実施の形態は本発明を実施するうえでの一例として示したものであり、本発明の目的を達成する範囲内であれば種々変更可能であることは言うまでもない。   As described above, the present invention provides a large flow rate measuring device capable of measuring a large flow rate with high accuracy while simplifying the configuration and reducing power consumption. It is shown as an example in implementation, and it goes without saying that various modifications can be made within the scope of achieving the object of the present invention.

例えば、上記各実施の形態では流量を計測するための流量センサとして超音波振動子である第1、第2振動子10、11を用いたものを例示したが、これは超音波振動子のように超音波が減衰しやすいセンサの場合に特に好適なものであって、例えば、熱式フローセンサーのように計測信号が減衰しないものであっても流量分布のばらつきの影響を受けるもの等であってもよいものである。   For example, in each of the above-described embodiments, the flow rate sensor for measuring the flow rate is exemplified by using the first and second transducers 10 and 11 that are ultrasonic transducers. In particular, the sensor is particularly suitable for a sensor that easily attenuates ultrasonic waves.For example, a sensor that does not attenuate a measurement signal, such as a thermal flow sensor, is affected by variations in flow rate distribution. It may be.

また、分岐通路4の個別総流量Qmから流路1全体の総流量Qを算出するに際し、この各実施の形態では各分岐通路4の個別総流量Qmの合計値を分岐通路数nで除して平均するものを例にして説明したが、これは例えば、計測時毎にk個(k<n)の分岐通路4の個別総流量Qmの合計値をkで除するなどして平均値を出すようにしてもよいものである。また、計測する分岐通路4の数を計測時ごとに変化させて、最終的に総流量Qを求める方法もある。   Further, when calculating the total flow rate Q of the entire flow path 1 from the individual total flow rate Qm of the branch passage 4, in each embodiment, the total value of the individual total flow rates Qm of each branch passage 4 is divided by the number of branch passages n. The average value is calculated by dividing the total value of the individual total flow rates Qm of the k branch passages 4 (k <n) at each measurement time by k, for example. It may be made to come out. There is also a method in which the total flow rate Q is finally obtained by changing the number of branch passages 4 to be measured at each measurement time.

また、流路1の各分岐通路4は同一断面積のものが好ましいが、それぞれが異なっていても何ら問題ないものである。   The branch passages 4 of the flow channel 1 preferably have the same cross-sectional area, but there is no problem even if they are different from each other.

以上のように本発明は、構成の簡素化と省電力化を図りつつ精度の高い計測が可能であって、かつ、どのような大きさの計測装置にも簡単かつ容易に対応することができる大流量計測装置を提供でき、ガスのような気体はもちろん水道水や油等の液体に至るまで幅広く適用できる。   As described above, the present invention enables highly accurate measurement while simplifying the configuration and saving power, and can easily and easily correspond to any size measuring apparatus. A large flow rate measuring device can be provided, and can be widely applied to gases such as gas as well as liquids such as tap water and oil.

1 流路
2 流入口
3 流出口
4 分岐通路
5 計測ユニット
6 開閉手段
7 制御手段
8 切り換え手段
9 通信手段
10 第1振動子(超音波振動子)
11 第2振動子(超音波振動子)
12 流量計測回路部
13 送信手段
14 受信手段
15 増幅手段
16 計時手段
18 流量演算手段
19 異常検出手段
59 異常検出手段
DESCRIPTION OF SYMBOLS 1 Flow path 2 Inlet 3 Outlet 4 Branch passage 5 Measuring unit 6 Opening / closing means 7 Control means 8 Switching means 9 Communication means 10 1st vibrator | oscillator (ultrasonic vibrator)
11 Second transducer (ultrasonic transducer)
DESCRIPTION OF SYMBOLS 12 Flow measurement circuit part 13 Transmitting means 14 Receiving means 15 Amplifying means 16 Time measuring means 18 Flow rate calculating means 19 Abnormality detecting means 59 Abnormality detecting means

Claims (6)

被計測流体が流れる流路と、
前記流路の流入口と流出口の間に設けた複数の分岐通路と、
前記複数の分岐通路のそれぞれに配置した計測ユニットと、
前記計測ユニットを制御して当該分岐通路の流量を計測する流量計測回路部を有する制御手段と、を備えた大流量計測装置であって、
更に、前記各分岐通路の計測ユニットを前記流量計測回路部に任意に切換え接続する切り換え手段を備え、
かつ、前記流量計測回路部は、
前記切り換え手段を介して接続される各分岐通路の個別流量を算出し、当該個別流量を基に前記流路に流れる個別総流量を各分岐通路ごとに算出し平均することで前記流路を流れる総流量を算出する構成とした大流量計測装置。
A flow path through which the fluid to be measured flows;
A plurality of branch passages provided between an inlet and an outlet of the flow path;
A measuring unit disposed in each of the plurality of branch passages;
A control unit having a flow rate measurement circuit unit for controlling the measurement unit to measure the flow rate of the branch passage, and a large flow rate measurement device comprising:
Furthermore, it comprises switching means for arbitrarily switching and connecting the measurement unit of each branch passage to the flow rate measurement circuit unit,
And the flow measurement circuit part is
The individual flow rate of each branch passage connected via the switching unit is calculated, and the individual total flow rate flowing through the flow channel is calculated for each branch passage based on the individual flow rate and averaged to flow through the flow channel. Large flow rate measuring device configured to calculate the total flow rate.
前記計測ユニットは、前記各分岐通路に配置された超音波振動子を用いた伝搬時間差で流量を検出する構成を有し、
前記流量計測回路部は、前記超音波振動子による流量計測特有の補正定数を各分岐通路毎に備えていて、前記切り換え手段による切換えに伴い前記補正定数を使い分けて前記個別流量を算出する構成とした請求項1記載の大流量計測装置。
The measurement unit has a configuration for detecting a flow rate based on a propagation time difference using an ultrasonic transducer disposed in each branch passage,
The flow rate measuring circuit section, the flow rate measuring characteristic of the correction constant by ultrasonic transducers comprise in each branch passage, calculates the individual flow by selectively using the correction constant with the switching by the switching Rikae means The large flow rate measuring device according to claim 1, which is configured.
前記制御手段は、前記流量計測回路部を複数備えるとともに、前記切換え手段は前記各分岐通路の計測ユニットを前記複数の流量計測回路部のいずれかとも切換え接続可能な構成とした請求項1又は2記載の大流量計測装置。 The control means, the flow rate with a plurality includes a measurement circuit section, the Switching Operation recombinant means the claim 1, the measuring unit of the branch passages to either a switching can be connected configuration of said plurality of flow measurement circuit section Or the large flow volume measuring apparatus of 2 description. 前記流量計測回路部の異常を検出する異常検出手段を更に備え、
前記流量計測回路部の異常を検出すると、前記切り換え手段は当該異常を検出した流量計測回路部以外の流量計測回路部に各分岐通路の計測ユニットを切換え接続する構成とした請求項3記載の大流量計測装置。
Further comprising an abnormality detection means for detecting an abnormality of the flow rate measurement circuit unit;
4. The apparatus according to claim 3, wherein upon detecting an abnormality in the flow rate measurement circuit unit, the switching means switches and connects the measurement unit of each branch passage to a flow rate measurement circuit unit other than the flow rate measurement circuit unit that detected the abnormality. Flow measurement device.
前記異常検出手段は前記各分岐通路の計測ユニットによる計測異常をも検出する構成とし、
前記異常検出手段が前記各分岐通路のいずれかの計測ユニットによる計測が異常であると検出した際、
前記制御手段は、当該分岐通路の計測をリセットすると共に、
前記流量計測回路部は、当該分岐通路以外の分岐通路で計測された個別流量で算出された個別総流量に基づいて、前記流路に流れる総流量を算出する構成とした請求項4記載の大流量計測装置。
The abnormality detection means is configured to detect a measurement abnormality by the measurement unit of each branch passage,
When the abnormality detection means detects that the measurement by any of the measurement units of each branch passage is abnormal,
The control means resets the measurement of the branch passage,
The large flow rate measurement circuit unit according to claim 4, wherein the flow rate measurement circuit unit is configured to calculate a total flow rate flowing in the flow path based on an individual total flow rate calculated with an individual flow rate measured in a branch passage other than the branch passage. Flow measurement device.
前記制御手段は、更に通信手段を備え、流量計測回路部の異常を外部に通信する請求項4又は記載の大流量計測装置。
It said control means further comprises a communication means, a large flow rate measuring device according to claim 4 or 5 for communicating the abnormality of the flow rate measuring circuit unit to the outside.
JP2012146330A 2012-06-29 2012-06-29 Large flow rate measuring device Active JP5974280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146330A JP5974280B2 (en) 2012-06-29 2012-06-29 Large flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146330A JP5974280B2 (en) 2012-06-29 2012-06-29 Large flow rate measuring device

Publications (2)

Publication Number Publication Date
JP2014010030A JP2014010030A (en) 2014-01-20
JP5974280B2 true JP5974280B2 (en) 2016-08-23

Family

ID=50106862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146330A Active JP5974280B2 (en) 2012-06-29 2012-06-29 Large flow rate measuring device

Country Status (1)

Country Link
JP (1) JP5974280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206593A (en) * 2014-04-17 2015-11-19 株式会社ディスコ Ultrasonic flow meter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259912A (en) * 1984-06-06 1985-12-23 Meidensha Electric Mfg Co Ltd Flow measurement in branch pipe
JP3144986B2 (en) * 1994-06-03 2001-03-12 東京瓦斯株式会社 Flowmeter
JPH11287688A (en) * 1998-04-01 1999-10-19 Matsushita Electric Ind Co Ltd Flow measuring device
JP4174878B2 (en) * 1998-11-11 2008-11-05 松下電器産業株式会社 Flow measuring device
JP2001133308A (en) * 1999-11-01 2001-05-18 Osaka Gas Co Ltd Flowmeter
JP4688253B2 (en) * 2000-01-24 2011-05-25 愛知時計電機株式会社 Ultrasonic flow meter
JP2004020395A (en) * 2002-06-17 2004-01-22 Osaka Gas Co Ltd Flowmeter

Also Published As

Publication number Publication date
JP2014010030A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
JP5982640B2 (en) Large flow rate measuring device
JP5758066B2 (en) Ultrasonic gas meter
JP5974280B2 (en) Large flow rate measuring device
KR102162046B1 (en) Flow measurement method and flow measurement device
JP3637628B2 (en) Flow measuring device
JP5141613B2 (en) Ultrasonic flow meter
JP5965292B2 (en) Ultrasonic flow meter
KR20220158135A (en) Flow rate correction method according to the water level of the conduit flow metering system
JP6111420B2 (en) Flow measuring device
JP5974281B2 (en) Large flow rate measuring device
JP5946673B2 (en) Gas shut-off device
JP5195553B2 (en) Flow measuring device
US20150323365A1 (en) Flow meter device
JP5990770B2 (en) Ultrasonic measuring device
JP3473402B2 (en) Flow measurement device
JP6250316B2 (en) Ultrasonic gas meter
JP6634536B1 (en) Meter device
JP6634535B1 (en) Meter device
JP2005098865A (en) Meter apparatus
JP2013064643A (en) Method and apparatus for correcting zero point of ultrasonic flowmeter
JP7203355B2 (en) gas meter
JP6087695B2 (en) Ultrasonic gas meter
JP2010217072A (en) Flow measuring device
JP2012251880A (en) Gas shut-off device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5974280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151