JPS60259912A - Flow measurement in branch pipe - Google Patents
Flow measurement in branch pipeInfo
- Publication number
- JPS60259912A JPS60259912A JP11612284A JP11612284A JPS60259912A JP S60259912 A JPS60259912 A JP S60259912A JP 11612284 A JP11612284 A JP 11612284A JP 11612284 A JP11612284 A JP 11612284A JP S60259912 A JPS60259912 A JP S60259912A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- branch pipe
- pipe
- generating means
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、送水本管から複数に分岐し、送水本管の流量
に対して各々一定の関係をもった流量で水が流れる分流
管、例えば送水本管から分岐して河川を横断する水管橋
等の分流管の流量を測定する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a branch pipe that branches into a plurality of pipes from a main water pipe, each of which flows at a flow rate that has a fixed relationship with the flow rate of the main water pipe, such as a water pipe. This invention relates to a method for measuring the flow rate of a branch pipe such as an aqueduct bridge that branches from a main pipe and crosses a river.
従末技術
一般に送水本管から複数に分岐した分流管を用いて送水
を行う場合がある。例えば河川を横断して送水を行うに
あ友って、送水本管が大口径のものである場合には1.
第3図及び第4図に示すように送水本管1から例えば2
本に分岐し友分流管2A。BACKGROUND ART In general, water is sometimes conveyed using a plurality of branch pipes branching from a main water supply pipe. For example, when transporting water across a river, if the water main pipe has a large diameter, 1.
As shown in Figures 3 and 4, from the water main pipe 1 to 2, for example.
Branched into the main flow pipe 2A.
2Bを橋脚21 、22によって河川の間に渡すように
している。このように水管橋として分流管2人。2B is passed between the rivers by piers 21 and 22. In this way, two people serve as a water pipe bridge.
2Bを用いる理由は、大口径の送水本管1は満管状態に
おける重量が大きいため、これを2本に分岐することに
よって単位重量を軽減することにある。The reason for using 2B is that the large-diameter water main pipe 1 has a large weight when it is full, so by branching it into two pipes, the unit weight can be reduced.
ところで上述のような施設において流量測定を行う場合
従来広のような方法が用いられている。By the way, when measuring the flow rate in the above-mentioned facilities, a conventional method is used.
■ 地下にある送水本管の流量を大口径流量計で測定す
る方法。■ A method of measuring the flow rate of underground water mains with a large-diameter flow meter.
■ 橋上の分流管2A、2Bの流量を夫々2台の小口径
流量計で測定し、その出力を加算する方法。■Measure the flow rate of the branch pipes 2A and 2B on the bridge with two small-diameter flowmeters, and add the outputs.
■ 橋上の分流管2A、2Bの一方に超音波流量計の送
受信器を取り付け、2測線方式(管軸方向から見た超音
波の液中法波路を互に直交させる方式′)にて2直径の
平均流速をめ、これを2倍換算する方法。■ Attach an ultrasonic flowmeter transmitter/receiver to one of the branch pipes 2A and 2B on the bridge, and use the two-line method (a method in which the submerged ultrasonic wave paths viewed from the pipe axis direction are orthogonal to each other) to measure two diameters. A method of calculating the average flow velocity and converting it into double.
しかしながら■及び■の方法は、精度の高い測定を行う
ことができるが、■の方法では地下ビットの建設や排水
ポンプ等の設備が必要となり施工費が高く、また■の方
法では2台の流量計及び加算器を常時作動させなければ
ならないので経済的に不利である。一方■の方法は費用
が安いが、分流管の利質、厚さ、口径が互に全く同一で
あることが必要であり、しかも流量に差があるとその差
は流量の変化に対して非直線的に変わることから、互に
流量が略同じであることが必要であり、通用範囲が狭い
。そして実施工においては1分流管2A。However, methods ■ and ■ can perform highly accurate measurements, but method ■ requires the construction of underground bits and equipment such as drainage pumps, resulting in high construction costs. This is economically disadvantageous because the counter and adder must be operated all the time. On the other hand, method (2) is inexpensive, but requires that the quality, thickness, and diameter of the diverter pipes be exactly the same, and if there is a difference in flow rate, the difference will be insensitive to changes in flow rate. Since the flow rate varies linearly, it is necessary that the flow rates are approximately the same, and the applicable range is narrow. And in the actual construction, 1 branch pipe 2A.
2Bの配置が送水本管1に対して対象にならないことが
多く、この場合には両管に流量差が生じるので■の方法
では精度の高い測定を行うことができない。2B is often not symmetrical with respect to the water main pipe 1, and in this case, there will be a difference in flow rate between the two pipes, making it impossible to perform highly accurate measurements using method (2).
発明が解決しようとする問題点
本発明は、このような事情のもとになされたものであっ
て、常に精度の高い測定を行うことができ、しかも経済
的に有利であり、その上適用範囲の広い分流管の流量測
定方法を提供することを目的とするものである。Problems to be Solved by the Invention The present invention has been made under these circumstances, and is capable of consistently performing highly accurate measurements, is economically advantageous, and has a wide range of applicability. The purpose of this invention is to provide a method for measuring the flow rate of a wide branch pipe.
問題点を解決するための手段
本発明は、分流管の据付当初や点検時において、予め送
水木管の流量を変化させ、例えば超音波流量計を用いて
、各流量毎に分流管の各々の流量を測定して−の分流管
の測定流量と各分流管の測定流量の合計流量との関係を
め、例えばこの関係を関数発生手段にプログラムするこ
とによって、前記関係の入出力特性が得られるよう関数
発生手段を設定し、実使用時、即ち実際に測定を行う場
合には、前記−の分流管のみの流量を測定してこの測定
流量を前記関数発生手段に入力し、この関数発生手段の
出力信号を分流管の各々の流量の合計流量として採用す
る方法である。Means for Solving the Problems The present invention changes the flow rate of the water pipe in advance at the time of installation or inspection of the branch pipe, and uses, for example, an ultrasonic flow meter to measure the flow rate of each branch pipe for each flow rate. By measuring the relationship between the measured flow rate of the - branch pipe and the total flow rate of the measured flow rate of each branch pipe, for example, by programming this relationship into the function generating means, the input/output characteristics of the above relationship can be obtained. When the function generation means is set and used in actual use, that is, when actual measurement is performed, the flow rate of only the above-mentioned - branch pipe is measured, this measured flow rate is input to the function generation means, and the flow rate of this function generation means is This is a method in which the output signal is used as the total flow rate of each flow rate of the branch pipes.
実施例 以下図面によって本発明の詳細な説明する。Example The present invention will be explained in detail below with reference to the drawings.
第1図は本発明方法を実施するための装置の一例を示す
構成図であり、この実施例では流量測定を行うために超
音波流量計を用いている。送水本管1から2つに分岐し
た分流管2A、2Bl’i:は、夫々超音波センサーで
ある一対の送受信器31 、32及び41 、42が設
置されており、一方の送受信器31゜32の対は第1の
超音波流量計本体5に、他方の送受信器41 、42の
対は第2の超音波流量計本体6に夫々接続されている。FIG. 1 is a block diagram showing an example of an apparatus for carrying out the method of the present invention, and in this embodiment, an ultrasonic flowmeter is used to measure the flow rate. A pair of transceivers 31, 32 and 41, 42, which are ultrasonic sensors, are installed in the branch pipes 2A and 2Bl'i, which are branched into two from the main water supply pipe 1. The pair of transmitters/receivers 41 and 42 are connected to the first ultrasonic flowmeter body 5, and the other pair of transmitters/receivers 41 and 42 are connected to the second ultrasonic flowmeter body 6, respectively.
本発明の実施例に係る測定方法においては、先ず予め試
験的に送水本管1の流量を変化させ、各流量毎に、分流
管2A 、 2Bの双方の流量を測定して一方の分流管
2Aの測定流量と双方の分流管2A、2Bの測定流量の
合計流量との関係をめる。分流管2A、2Bの測定流量
は、夫々超音波流量計本体5,6の出力信号Q+ 、Q
tに相当するので上記の関係はQlとQ、+Q2との関
係になる。そしてQ、とQl”;hとの関係をめてから
、この関係の入出力特性が得られるよう関数発生手段7
を設定する。関数発生手段7の設定は、例えばQlのθ
〜100チに対して上記の関係をプログラムすることに
よって行われる。第2図は関数発生手段7における入出
力特性の一例を示すグラフであり、一点鎖線(1)はQ
I<Q2の場合の特性、実#(II));t Q、=Q
、 ノ8 合o % 性、二A 鎖線(il+1 ハC
L、>Qvの場合の特性を夫々示す。尚Q1及びQ2の
大小は、分流管2A、2Bの口径や濁質、或いは実施工
の状態で決まる。次に実測定時には、一方の分流管2A
vC係る送受信器31 、32及び第1の超音波流量計
本体5を利用して、−万の分流管2人の測定流量に対応
する測定流量信号Q、を当該超音波流量計本体5の出力
として得、この測定流量信号Q、を関数発生手段7に入
力し、関数発生手段7よりの出力信号を分流管2.A、
2Bの流量の合計流量として採用する。In the measurement method according to the embodiment of the present invention, first, the flow rate of the water main pipe 1 is changed experimentally in advance, and the flow rates of both the branch pipes 2A and 2B are measured for each flow rate, and the flow rate of one of the branch pipes 2A is measured. The relationship between the measured flow rate and the total flow rate of the measured flow rates of both branch pipes 2A and 2B is determined. The measured flow rates of the flow dividers 2A and 2B are the output signals Q+ and Q of the ultrasonic flowmeter bodies 5 and 6, respectively.
Since it corresponds to t, the above relationship becomes a relationship between Ql and Q, +Q2. After determining the relationship between Q and Ql'';h, the function generating means 7
Set. The setting of the function generating means 7 is, for example, θ of Ql.
This is done by programming the above relationship for ~100 units. FIG. 2 is a graph showing an example of the input/output characteristics of the function generating means 7, and the dashed line (1) indicates the Q
Characteristics when I<Q2, real #(II));t Q,=Q
, ノ8 Combined % sex, 2A dashed line (il+1 haC
The characteristics when L and >Qv are shown. The magnitudes of Q1 and Q2 are determined by the diameters of the branch pipes 2A and 2B, the suspended solids, or the state of the construction. Next, during actual measurement, one of the branch pipes 2A
Using the transceivers 31 and 32 and the first ultrasonic flowmeter body 5 related to vC, the measured flow rate signal Q corresponding to the measured flow rate of two -10,000 branch pipes is outputted from the ultrasonic flowmeter body 5. This measured flow rate signal Q is inputted to the function generating means 7, and the output signal from the function generating means 7 is sent to the branch pipe 2. A,
Adopted as the total flow rate of 2B flow rate.
ここで試験的に送水本管1の流量を変化させてQ、とQ
r+Qxとの関係をめる時期は、具体的には例えば分流
管2 人+ 2 Bの据付時或いは点検時であり、他方
の分流管2BK係る送受信器41 、42及び第2の超
音波流量計本体6は上記の据付時や点検時にのみ取付け
ればよい。Here, we experimentally changed the flow rate of water main pipe 1 to Q and Q.
Specifically, the time to determine the relationship between r+Qx is, for example, at the time of installation or inspection of the diverter pipe 2BK, and the transmitter/receiver 41, 42 and the second ultrasonic flowmeter related to the other diverter pipe 2BK. The main body 6 only needs to be attached during the above-mentioned installation or inspection.
また本発明では、流量の測定は超音波流量計を利用する
ことに限定されるものではない。Furthermore, in the present invention, the measurement of flow rate is not limited to using an ultrasonic flowmeter.
発明の効果
以上のように本発明によれば、予め−の分流管の測定流
量と分流管全体の測定流量との関係をめ、実測定時には
この関係と−の分流管の測定流量とに基づいて関数発生
手段より疑似的な合計流量を得るようにしているため、
実測定時には−の分流管の流量のみを測定すればよいの
で測定に係る費用が安くて経済的に有利である。しかも
分流管の実施工の状態や分流管の材質等によって上記の
関係は定まるから、この関係を予めめてこれに基づき合
計流量を得るようにすることによって、分流管の材質等
や流量の差の如何にかかわらず精度の高い測定を行うこ
とができ、従って適用範囲が広いものとなる。Effects of the Invention As described above, according to the present invention, the relationship between the measured flow rate of the branch pipe (-) and the measured flow rate of the entire branch pipe is determined in advance, and during actual measurement, the relationship is determined based on this relationship and the measured flow rate of the branch pipe (-). Since the pseudo total flow rate is obtained using the function generation means,
At the time of actual measurement, it is necessary to measure only the flow rate of the - branch pipe, so the cost of measurement is low and it is economically advantageous. Moreover, since the above relationship is determined by the state of construction of the diverter pipe, the material of the diverter pipe, etc., by calculating the total flow rate based on this relationship in advance, it is possible to Highly accurate measurements can be made regardless of the situation, and therefore the range of application is wide.
第1図は本発明方法に用いる装置の一例を示す構成図、
第2図は関数発生手段の入出力特性の一例を示すグラフ
、第3図、第4図は、夫々分流管の施工状態を示す側面
図及び平面図である。
1・・・送水本管、2A、2B・・・分流管、31 、
32 。
41 、42 ・送受信器、5.6・・超音波流量計本
体、7・・・関数発生手段。FIG. 1 is a configuration diagram showing an example of an apparatus used in the method of the present invention;
FIG. 2 is a graph showing an example of the input/output characteristics of the function generating means, and FIGS. 3 and 4 are a side view and a plan view, respectively, showing the construction state of the diverter pipe. 1... Water supply main pipe, 2A, 2B... Branch pipe, 31,
32. 41, 42 - Transmitter/receiver, 5.6... Ultrasonic flowmeter main body, 7... Function generating means.
Claims (1)
法において、予め送水木管の流量を変化させ、各流量毎
に分流管の各々の流量を測定して−の分流管の測定流量
と各分流管の測定流量の合計流量との関係をめ、この関
係に対応する入出力特性が得られるよう関数発生手段を
設定し、実測定時には、前記−の分流管のみの流量を測
定してこの測定流量を前記関数発生手段に入力し、この
関数発生手段の出力信号を分流管の各々の流量の合計流
量、とじて採用することを特徴とする分流管の流量測定
方法。In the method of measuring the flow rate of multiple branch pipes branched from the water main pipe, the flow rate of the water pipe is changed in advance, and the flow rate of each branch pipe is measured for each flow rate, and the measured flow rate of the - branch pipe and each branch pipe are calculated. The relationship between the measured flow rate of the diverter pipes and the total flow rate is determined, and the function generating means is set to obtain input/output characteristics corresponding to this relationship. During actual measurement, the flow rate of only the above-mentioned diverter pipes is measured. A method for measuring a flow rate in a diverter tube, characterized in that the measured flow rate is input to the function generating means, and the output signal of the function generating means is used as the total flow rate of each flow rate in the diverter tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11612284A JPS60259912A (en) | 1984-06-06 | 1984-06-06 | Flow measurement in branch pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11612284A JPS60259912A (en) | 1984-06-06 | 1984-06-06 | Flow measurement in branch pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60259912A true JPS60259912A (en) | 1985-12-23 |
Family
ID=14679237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11612284A Pending JPS60259912A (en) | 1984-06-06 | 1984-06-06 | Flow measurement in branch pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60259912A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100360907C (en) * | 2003-02-19 | 2008-01-09 | 东洋计器株式会社 | Method for measuring gas flux using ultrasonic air volume meter |
JP2014010031A (en) * | 2012-06-29 | 2014-01-20 | Panasonic Corp | Large flow rate measurement apparatus |
JP2014010032A (en) * | 2012-06-29 | 2014-01-20 | Panasonic Corp | Large flow rate measurement device |
JP2014010030A (en) * | 2012-06-29 | 2014-01-20 | Panasonic Corp | Large flow rate measurement apparatus |
-
1984
- 1984-06-06 JP JP11612284A patent/JPS60259912A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100360907C (en) * | 2003-02-19 | 2008-01-09 | 东洋计器株式会社 | Method for measuring gas flux using ultrasonic air volume meter |
JP2014010031A (en) * | 2012-06-29 | 2014-01-20 | Panasonic Corp | Large flow rate measurement apparatus |
JP2014010032A (en) * | 2012-06-29 | 2014-01-20 | Panasonic Corp | Large flow rate measurement device |
JP2014010030A (en) * | 2012-06-29 | 2014-01-20 | Panasonic Corp | Large flow rate measurement apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102288235B (en) | Double-track mixed type ultrasonic flowmeter and measuring method | |
US6907361B2 (en) | Ultrasonic flow-measuring method | |
US8960017B2 (en) | System and method for ultrasonic metering using an orifice meter fitting | |
US6401525B1 (en) | Leak detection in liquid carrying conduits | |
CN105308420B (en) | It determines compensating flowrate and/or compensates method, ultrasonic flow rate measuring device and the storage medium of flowing velocity | |
CA1131342A (en) | Acoustic flowmeter with reynolds number compensation | |
CN105403265A (en) | Automatic zero drift-correction ultrasound water meter and correction method | |
CN114088151B (en) | External clamping type multichannel ultrasonic flow detection device and detection method | |
NO20010138D0 (en) | Cross-measurement of signals in an acoustic flow meter | |
CN107179106A (en) | Plug-in type ultrasonic flowmeter, Flow Measuring System and method | |
US4432243A (en) | Flow calculator with velocity curve fitting circuit means | |
JPS60259912A (en) | Flow measurement in branch pipe | |
JP2002340644A (en) | Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method | |
EP0762086A3 (en) | Method for the ultrasonic measurement of flowrate of flowing fluids | |
JPS6098313A (en) | Ultrasonic flowmeter | |
CN207622811U (en) | A kind of fluid measuring sensor and system | |
JP2956805B2 (en) | Ultrasonic flow meter | |
JPS59126212A (en) | Ultrasonic type flow rate measuring apparatus | |
Simões et al. | Traceability and measurement uncertainty of non-removable field flowmeters using clamp-on ultrasonic flowmeters as reference | |
CN108775937A (en) | A kind of ultrasonic flowmeter with positioning function | |
JP2910815B2 (en) | Measuring method of flow velocity in pipe using ultrasonic current meter | |
Gerasimov et al. | Analysis of calibration and verification indirect methods of ultrasonic flowmeters | |
JPH0735589A (en) | Flowrate and flow concentration measuring device | |
RU2031U1 (en) | DEVICE FOR GRADING ULTRASONIC FLOW METERS | |
JPH07167696A (en) | Phase difference measuring method for flowing velocity in tube using ultrasonic current meter |