JPS6098313A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPS6098313A
JPS6098313A JP58204886A JP20488683A JPS6098313A JP S6098313 A JPS6098313 A JP S6098313A JP 58204886 A JP58204886 A JP 58204886A JP 20488683 A JP20488683 A JP 20488683A JP S6098313 A JPS6098313 A JP S6098313A
Authority
JP
Japan
Prior art keywords
fluid
velocity
time
sound
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58204886A
Other languages
Japanese (ja)
Other versions
JPH0447770B2 (en
Inventor
Yasuo Matsuda
松田 保雄
Yukio Nakagawa
中川 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58204886A priority Critical patent/JPS6098313A/en
Priority to DE19843438976 priority patent/DE3438976A1/en
Publication of JPS6098313A publication Critical patent/JPS6098313A/en
Publication of JPH0447770B2 publication Critical patent/JPH0447770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable measurement of the exact velocity and eventually the rate of flow of a fluid by providing a correction circuit which uses the change in the average time of propagation because said time changes when the velocity of sound in the fluid changes as a result of a change in the temp. and pressure of the fluid. CONSTITUTION:A circuit 12 which calculates the average propagation time T0 of propagation time T1, T2 and an arithmetic part 13 which corrects and calculates the velocity of sound according to said time T0 are provided to a general ultrasonic flowmeter consisting of an ultrasonic oscillator 1 and a time measuring circuit 7. If the propagation time at a wedge member or pipe wall except the fluid is designated as tau and the incident angle of an ultrasonic wave as theta, the velocity V of flow is V=D/sin2thetaXDELTAT/(T0-tau)<2>. If the velocity of the sound on the outside part is determined here, T0, tau, 1/sin2theta can be respectively calculated and the measurement of the velocity of flow is made possible.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、超音波流量計に関するものであり、更に詳し
くは、流体の流れを横切ってその流れに順方向および逆
方向にそれぞれ超音波を送受波してその間の伝播時間T
l v T2および両者の平均伝播時間Toをめ、該T
oから音速変化に起因した流量測定誤差の除去を行なう
ようにした超音波流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an ultrasonic flowmeter. The propagation time T between sending and receiving waves
l v T2 and the average propagation time To of both, the T
The present invention relates to an ultrasonic flowmeter that removes flow rate measurement errors caused by changes in sound speed from .

〔従来技術とその問題点〕[Prior art and its problems]

第1図は従来の超音波流量計を示すブロック図である。 FIG. 1 is a block diagram showing a conventional ultrasonic flowmeter.

同図において、超音波振動子1及び1′は、クサビ部材
2及び2にそれぞれ図示の如く取付けられ、クサビ部材
2及び2は、流体3の流れる管4を前記振動子の一つか
ら発生され否超音波が斜めに横切って他方の振動子に受
信されるよう相対して管の外側に取付けられる。
In the figure, ultrasonic transducers 1 and 1' are attached to wedge members 2 and 2, respectively, as shown, and the wedge members 2 and 2 connect a tube 4 through which a fluid 3 flows, which is generated from one of the transducers. They are mounted on the outside of the tube opposite each other so that the ultrasonic waves are received diagonally across the other transducer.

しかも、超音波振動子1、クサビ部材2、管4の壁部、
流体3、g4の壁部、クサビ部材2、及び超音波振動子
1は相互に音響的に結合される。
Moreover, the ultrasonic transducer 1, the wedge member 2, the wall of the tube 4,
The fluid 3, the wall of g4, the wedge member 2, and the ultrasonic transducer 1 are acoustically coupled to each other.

超音波振動子1は、発信部5から実線位置にある切替ス
イッチ6aを介して入力される電気信号を超音波に変換
し、相対している他方の超音波振動子1に向けて発信す
る。超音波振動子1では、受信した超音波を電気信号に
変換して出力する。
The ultrasonic transducer 1 converts an electric signal inputted from the transmitter 5 via the changeover switch 6a located at the solid line position into an ultrasonic wave, and transmits it to the other opposing ultrasonic transducer 1. The ultrasonic transducer 1 converts the received ultrasonic waves into electrical signals and outputs them.

時間計測回路7では、発信部5からの発信信号と実線位
置にある切替スイッチ6bを介して振動子1から受信し
た信号により、超音波の発信から受信までの時間T1を
計測する0記憶回路8では、実線位置にある切替スイッ
チ6Cを介して計測された時間TIを受け、これを記憶
する0次にスイッチ6a、6b、6cを破線位置へ切換
え、振動子lを発信側、1を受信側とすることにより、
前記と逆の方向に超音波の発信及び受信を行ない、この
ときの発信から受信までの時間T2を測定して今度はこ
れを記憶回路9に記憶する。
In the time measurement circuit 7, a memory circuit 8 measures the time T1 from the transmission to the reception of the ultrasonic wave using the transmission signal from the transmission unit 5 and the signal received from the transducer 1 via the changeover switch 6b located at the solid line position. Now, the measured time TI is received via the changeover switch 6C located at the solid line position, and the switches 6a, 6b, and 6c are switched to the dashed line position to store this time, and the transducer 1 is placed on the transmitting side and the transducer 1 is placed on the receiving side. By doing so,
Ultrasonic waves are transmitted and received in the opposite direction to the above, and the time T2 from transmission to reception is measured and stored in the memory circuit 9.

記憶回路8に記憶された時間T1と記憶回路9に記憶さ
れた時間T2との時間差ΔTを演算部lOで計算し、ス
ケール7アクタ演算部11で時間差ΔTに所定のスケー
ルファクタを乗じることにより流量信号を得て出力する
The time difference ΔT between the time T1 stored in the memory circuit 8 and the time T2 stored in the memory circuit 9 is calculated by the calculation unit 10, and the time difference ΔT is multiplied by a predetermined scale factor in the scale 7 actor calculation unit 11 to determine the flow rate. Obtain and output a signal.

所で、流れに対して順方向の振動子1から1′までの超
音波伝播時間TI及び逆方向の振動子1′から1までの
超音波伝播時間T2は、流体中の伝播時間をそれぞれt
l 、 t2とし、流体以外のクサビ部材や管壁におけ
る伝播時間をτとすると次式で表わすことができる。
By the way, the ultrasonic propagation time TI from the transducers 1 to 1' in the forward direction with respect to the flow and the ultrasonic propagation time T2 from the transducers 1' to 1 in the opposite direction are respectively the propagation time t in the fluid.
Letting l and t2 be the propagation time in the wedge member and the pipe wall other than the fluid, it can be expressed by the following equation.

Tl == tl +r ・・・・・・(1〕T2=t
2+τ ・・・・・・(2) ここで伝播時間差ΔTは次式の如くめることができる。
Tl == tl +r (1) T2=t
2+τ (2) Here, the propagation time difference ΔT can be calculated as follows.

ΔT=T2−Ti=(t2+τ)−(tz+τ)= t
2− tl ・・・・・・ (3)僧;4の内径をD1
流体中の音速(超音波の伝播速度)をCw、超音波の入
射角度をθ、管内の流速をVとすると、一般に前記伝播
時間’i p ’2は次式で示されることが知られてい
る。
ΔT=T2-Ti=(t2+τ)-(tz+τ)=t
2- tl ・・・・・・ (3) monk; the inner diameter of 4 is D1
It is known that the propagation time 'i p '2 is generally expressed by the following equation, where Cw is the sound velocity in the fluid (ultrasonic propagation velocity), θ is the incident angle of the ultrasonic wave, and V is the flow velocity in the pipe. There is.

従ってΔTは次の如くなる。Therefore, ΔT becomes as follows.

Cw″−Vsi。θ′ ここで流体中の音速Cwと管内の流速Vとを比較すると
流体が水の場合、Cwは一般に1,000〜1、600
 m/ sの範囲にあるのに対しVはl Q m/ s
以下である。故にCv? )) V”sinθ2となり
ΔTは次の近似式で表わすことができる0 流体中の音速Cwが一定であれば(sinθ/Cw’c
osθ)は一定となり、ΔTは流速Vに比例する。つま
りΔTを計測することにより流iVが得られ流量を計測
することができる。
Cw''-Vsi.θ' Here, comparing the sound velocity Cw in the fluid and the flow velocity V in the pipe, when the fluid is water, Cw is generally 1,000 to 1,600.
m/s, while V is l Q m/s
It is as follows. Therefore Cv? )) V"sinθ2, and ΔT can be expressed by the following approximate formula. 0 If the sound speed Cw in the fluid is constant, (sinθ/Cw'c
osθ) is constant, and ΔT is proportional to the flow velocity V. That is, by measuring ΔT, the flow iV can be obtained and the flow rate can be measured.

なお第2図に、前述の諸量を分り易いように図示した。Incidentally, in FIG. 2, the above-mentioned quantities are illustrated for easy understanding.

所でここに一つの問題点がある。前記(7)式で流体の
音速Cwが変化しないときはΔTOcVの関係が成り立
つが、流体中の音速Cwは流体の温度又は圧力が変わる
ことにより変化する。
However, there is one problem here. In equation (7) above, when the sound velocity Cw of the fluid does not change, the relationship ΔTOcV holds true, but the sound velocity Cw in the fluid changes as the temperature or pressure of the fluid changes.

また音速Cwが変化することに、より、反射・屈折に関
するスネルの法則に従って角度0も変化する。従って音
速Cwが変化すると流速■の計測値に誤差を生じる。特
に流体が常温から高温(300℃位:まで変化する場合
とか管の〃みが厚い場合には、音速Cwの変化による影
響が大きく出て計測誤差は大きくなる傾向にあり、この
ことは従来の超音波流量計における大きな欠点と云える
Further, as the sound speed Cw changes, the angle 0 also changes according to Snell's law regarding reflection and refraction. Therefore, when the sound velocity Cw changes, an error occurs in the measured value of the flow velocity (■). In particular, when the fluid temperature changes from room temperature to high temperature (approximately 300°C) or when the pipe is thick, the influence of changes in the sound velocity Cw tends to be large and measurement errors tend to increase. This can be said to be a major drawback in ultrasonic flowmeters.

〔発明の目的〕[Purpose of the invention]

本発明は、超音波流量計において、流体の温度や圧力が
変化することにより流体中の音速Cwが変化しても、そ
れを補正し正確な流速Vひいては流量を計測することの
できる超音波流量計を提供することを目的とする。
The present invention provides an ultrasonic flow meter that is capable of correcting the change in the sound velocity Cw in the fluid due to changes in the temperature and pressure of the fluid and measuring the accurate flow velocity V and thus the flow rate. The purpose is to provide a

〔発明の要点〕[Key points of the invention]

流体の温度及び圧力が変化することにより流体中の音速
Cwが変化すると、前記伝播時間T1とT2の平均伝播
時間Toも変化するので、これを用いた補正回路を設け
ることにより、流体の温度、圧力を直接計測することを
要せずして流体の正確な流31vひいては流量を計測で
きるようにした点が本発明の要点である。
When the sound velocity Cw in the fluid changes due to a change in the temperature and pressure of the fluid, the average propagation time To of the propagation times T1 and T2 also changes, so by providing a correction circuit using this, the temperature of the fluid, The key point of the present invention is that the accurate flow 31v of fluid, and thus the flow rate, can be measured without the need to directly measure pressure.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例を示すブロック図である@同
図において第1図におけるのと共通の部分には同一番号
を付しである。
FIG. 3 is a block diagram showing one embodiment of the present invention. In the same figure, parts common to those in FIG. 1 are given the same numbers.

第1図に示した借成と異なる点は、前記伝播時間TI、
T2の平均伝播時間Toを演算する回路12とそのTo
を基にして音速補正演算を行なう演算部13とを設けた
点にある。
The difference from the borrowing shown in FIG. 1 is that the propagation time TI,
Circuit 12 that calculates the average propagation time To of T2 and its To
The present invention is also provided with a calculation section 13 that performs a sound velocity correction calculation based on the speed of sound.

ここで流体が静止しているとき、すなわち■=Oのとき
前記(4ン式及び(5)式よりとなりtl : t2と
なる0そこでT1=T2=T。
Here, when the fluid is stationary, that is, when ■ = O, then from the above equation (4) and equation (5), tl : t2 0 Therefore, T1 = T2 = T.

と置くと、前記(1)または(2)式より上記(10式
より 前記(7)式にα0式を代入すると Tl十T2 ここで流体が流れているときにはTo=−で近似的にT
oをめることができ、上記0階式はV〜0のときも成立
する。つまり上記眞式においてΔT以外に角度θ、To
及びτを計測できれば電子用算機などで流速■を計算す
ることができる。
Then, from the above equation (1) or (2), if we substitute the α0 equation into the above equation (7) from the above equation (from equation 10), we get Tl + T2 Here, when the fluid is flowing, To=- and approximately T
o can be set, and the above zero-order formula also holds true when V~0. In other words, in the above equation, in addition to ΔT, angles θ and To
If τ and τ can be measured, the flow velocity ■ can be calculated using an electronic calculator.

しかし角度θ、if;体以外の部分における伝播時間τ
を計測することは、まず困難である。仮にgtffIr
Jできてもこれらを用いての工業計器レベルでの演算は
実際問題として難しい面がある。
However, angle θ, if; propagation time τ in parts other than the body
First of all, it is difficult to measure. If gtffIr
Even if J is possible, calculations using these at the level of industrial instruments are difficult as a practical matter.

ところでクサビ部材の寸法、クサビ部材の取付位置、管
の内径、管の肉厚は、測定もしくはあらかじめ製作時に
寸法を定めることによりまる。
Incidentally, the dimensions of the wedge member, the mounting position of the wedge member, the inner diameter of the pipe, and the wall thickness of the pipe are determined by measuring or determining the dimensions in advance during manufacturing.

また温度、圧力が分かれば、流体、クサビ部材、及び管
部における音速は定まり、知ることができる。従って、
このようにして各部の音速が決まれことは可能である。
Furthermore, if the temperature and pressure are known, the speed of sound in the fluid, wedge member, and pipe can be determined and known. Therefore,
In this way, it is possible to determine the speed of sound at each part.

そこで各部の音速が変化しうる範囲にわたって整理する
と、Toとτとの間には、温度、圧力がどのように変化
しようと第4図に示すような、はぼりニヤな一定した関
係のあることが判った。
Therefore, if we summarize the range in which the speed of sound in each part can change, we can see that there is a fairly constant relationship between To and τ, as shown in Figure 4, no matter how the temperature and pressure change. It turns out.

ようなほぼ一定した関係のあることが判った。こコテ0
点は0℃、0点g−111370’C、6点は約300
℃のときの関係を示している。この関係は、管内径、厚
さ、温度、圧力の諸条件が変わっても成り立つ。
It was found that there is an almost constant relationship. Kokote 0
Point is 0℃, 0 point g-111370'C, 6 points is about 300
It shows the relationship at °C. This relationship holds true even if conditions such as pipe inner diameter, thickness, temperature, and pressure change.

これはToのみを測定すれば上記α四式の一一一〕(T
o−τ) なお第4図、第5図において、わずかな幅でズレを生ず
るが超音波流量計の補正演算としては問題にならない。
If only To is measured, the above α4 equation 111] (T
o-τ) In FIGS. 4 and 5, a slight deviation occurs, but this does not pose a problem in the correction calculation of the ultrasonic flowmeter.

つまりToを大刀信号とし、その発生器を第3図のit
速補正演算部に用いることにより三角関数の演算などを
行わず、しかも比較的正確に音速変化を補正することが
できる。
In other words, let To be the long sword signal, and its generator is the it in Figure 3.
By using it in the speed correction calculation section, changes in sound speed can be corrected relatively accurately without performing trigonometric function calculations.

なお、実際の補正に際しては第4図と第5図の各特性を
掛は合せて得られる第6図の特性をもった一つの関数発
生器を用いることにより、補正するようにしてもよい。
Incidentally, in the actual correction, the correction may be performed by using one function generator having the characteristics shown in FIG. 6 obtained by multiplying the respective characteristics shown in FIGS. 4 and 5.

ここに関数発生器としては、Toの各部に対すをアドレ
スとしてこれら計算値を記憶するROMを用い得ること
は勿論である。
As a function generator here, it is of course possible to use a ROM that stores these calculated values by using addresses for each part of To.

〔発明の効果〕〔Effect of the invention〕

測定流体及び該流体を通す管の温度や圧力が変化すると
、流体及び管を伝播する音速が変化する。
When the temperature and pressure of the fluid to be measured and the tube through which the fluid passes change, the speed of sound propagating through the fluid and the tube changes.

本発明によれば、これらの温度、圧力を直接計測するこ
となく、それらの変化に起因した音速変化の補正が行え
る。流体及び管の温度、圧力を他のセンサで計測しそれ
によって音速を補正する方法もあるが、この場合、計測
(検出)時と音速補正時との間の時間のズレによる誤差
が生じる。特に急激な温度変化が起きているときは、誤
差が大きくなる。
According to the present invention, changes in the speed of sound caused by changes in temperature and pressure can be corrected without directly measuring these temperatures and pressures. There is also a method of measuring the temperature and pressure of the fluid and pipes using other sensors and correcting the speed of sound, but in this case, errors occur due to the time difference between the time of measurement (detection) and the time of correcting the speed of sound. Particularly when rapid temperature changes occur, the error becomes large.

この点、本発明によれば、流量の基本となる伝播時間差
信号と、補正の基本となる平均伝播−間とは常に同時に
計測されるため検出時間のズレによる誤差は生じない。
In this regard, according to the present invention, the propagation time difference signal, which is the basis of the flow rate, and the average propagation time, which is the basis of the correction, are always measured simultaneously, so that no error occurs due to a difference in detection time.

本発明は、使用する関数発生器の関数を変えることによ
り、あらゆる流体を計測の対象とする超音波流量計に適
用することができる。
The present invention can be applied to ultrasonic flowmeters that measure any fluid by changing the function of the function generator used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超音波流量計を示すブロック図、第2図
は流量計測に必要な諸量の関係説明図、第3図は本発明
の一実施例を示すブロック図、第4図は平均伝播時間(
To )と流体中の伝播時間(To−τ)の関係を示す
グラフ、第5図は平均伝播時間平均伝播時間(To)と
補正係数との関係を示すグラフ、である。 符号説明 1.1・・・・・・超音波振動子、2,2・・・・・・
クサビ部材、3・・・・・・流体、4・・・・・・管、
5・・・・・・発信部、6a。 6b、 6c・・・・・・切替スイッチ部、7・・・・
・・受信及び時間計測回路、8・・・・・・記憶回路(
T1)、9・・・・・・記憶回路(T2)、10・・・
・・・時間差(ΔT)演算部、11・・・・・・スケー
ル7アクタ演算部、工2・・・・・・平均伝播時間(T
o )演算部、13・・・・・・音速補正演算部代理人
 弁理士 並 木 昭 夫 代理人 弁理士 松 崎 清 杭1図 第 2 図 溝4 図 J’r、、−
Fig. 1 is a block diagram showing a conventional ultrasonic flowmeter, Fig. 2 is an explanatory diagram of the relationship between various quantities necessary for flow measurement, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a block diagram showing a conventional ultrasonic flowmeter. Average propagation time (
Fig. 5 is a graph showing the relationship between the average propagation time (To) and the propagation time in the fluid (To - τ), and Fig. 5 is a graph showing the relationship between the average propagation time (To) and the correction coefficient. Code explanation 1.1... Ultrasonic transducer, 2, 2...
wedge member, 3... fluid, 4... pipe,
5... Transmission section, 6a. 6b, 6c... Changeover switch section, 7...
...Reception and time measurement circuit, 8...Memory circuit (
T1), 9... Memory circuit (T2), 10...
... Time difference (ΔT) calculation section, 11 ... Scale 7 actor calculation section, Engineering 2 ... Average propagation time (T
o) Calculation unit, 13...Sound velocity correction calculation unit Representative Patent attorney Akio Namiki Patent attorney Kiyohui Matsuzaki Figure 1 Figure 2 Groove 4 Figure J'r, -

Claims (1)

【特許請求の範囲】[Claims] 1)流体の流れを横切ってその流れに順方向および逆方
向にそれぞれ超音波を送受波してその間の伝播時間Tl
# ’r2および両者の平均伝播時間TOをめ、該To
を含む所定の演算式を演算することにより前記〆C体の
流量を測定する超音波流量計であって、前記演算式にお
ける超音波伝播時の音速に依存する補正量を前記TOの
関数として記憶し田方することのできる関数発生器を具
備し、流量測定値から音速変化による影響を除去するよ
うにしたことを特徴とする超音波流量計。
1) Transmitting and receiving ultrasonic waves in the forward and reverse directions across the fluid flow, and measuring the propagation time Tl between them.
# 'r2 and the average propagation time TO of both, the To
An ultrasonic flowmeter that measures the flow rate of the C body by calculating a predetermined calculation formula including: A correction amount depending on the sound speed during ultrasonic propagation in the calculation formula is stored as a function of the TO. An ultrasonic flowmeter characterized in that it is equipped with a function generator that can be used to generate data, and is designed to remove the effects of changes in sound speed from flow rate measurements.
JP58204886A 1983-11-02 1983-11-02 Ultrasonic flowmeter Granted JPS6098313A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58204886A JPS6098313A (en) 1983-11-02 1983-11-02 Ultrasonic flowmeter
DE19843438976 DE3438976A1 (en) 1983-11-02 1984-10-24 Method for ultrasonic flow-rate metering and arrangement for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204886A JPS6098313A (en) 1983-11-02 1983-11-02 Ultrasonic flowmeter

Publications (2)

Publication Number Publication Date
JPS6098313A true JPS6098313A (en) 1985-06-01
JPH0447770B2 JPH0447770B2 (en) 1992-08-04

Family

ID=16498021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204886A Granted JPS6098313A (en) 1983-11-02 1983-11-02 Ultrasonic flowmeter

Country Status (2)

Country Link
JP (1) JPS6098313A (en)
DE (1) DE3438976A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020569A (en) * 2002-06-13 2004-01-22 Krohne Ag Ultrasonic flow measurement method
JP2011127948A (en) * 2009-12-16 2011-06-30 Toyota Central R&D Labs Inc Flow velocity measuring device
CN110383014A (en) * 2017-03-07 2019-10-25 Abb瑞士股份有限公司 For measuring the device and method of the flow velocity of fluid in pipeline

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749976B2 (en) * 1986-02-26 1995-05-31 富士電機株式会社 Ultrasonic measuring device
DE3923409A1 (en) * 1989-07-14 1991-01-24 Danfoss As MASS FLOW MEASURING DEVICE WORKING ACCORDING TO THE CORIOLIS PRINCIPLE
DE4241226A1 (en) * 1992-12-08 1994-06-09 Abb Patent Gmbh Flow measuring device
DE4302368C1 (en) * 1993-01-28 1994-07-21 Spanner Pollux Gmbh Ultrasonic measuring method for fluid flow velocity
DE10026568C2 (en) * 2000-05-30 2002-11-21 Siemens Ag Connector for an ultrasonic transducer housing
DE10138323C1 (en) * 2001-08-10 2003-04-17 Danfoss As Mass flow meter and method for measuring a mass flow
DE10232101C1 (en) * 2002-06-13 2003-09-25 Krohne Ag Basel Ultrasound measuring method for flow velocity uses measured ultrasound pulse propagation times between 2 spaced ultrasound transducers
DE102021104576A1 (en) 2021-02-25 2022-08-25 Ifm Electronic Gmbh Method, sensor unit and ultrasonic flow measuring device for determining the flow of a fluid medium through a pipeline using ultrasonic waves

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020569A (en) * 2002-06-13 2004-01-22 Krohne Ag Ultrasonic flow measurement method
JP2011127948A (en) * 2009-12-16 2011-06-30 Toyota Central R&D Labs Inc Flow velocity measuring device
CN110383014A (en) * 2017-03-07 2019-10-25 Abb瑞士股份有限公司 For measuring the device and method of the flow velocity of fluid in pipeline
US11215489B2 (en) 2017-03-07 2022-01-04 Abb Schweiz Ag Apparatus and method for measuring the flow velocity of a fluid in a pipe

Also Published As

Publication number Publication date
DE3438976A1 (en) 1985-05-09
JPH0447770B2 (en) 1992-08-04
DE3438976C2 (en) 1988-06-09

Similar Documents

Publication Publication Date Title
JP3216769B2 (en) Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter
WO1988008516A1 (en) Ultrasonic fluid flowmeter
US20080216555A1 (en) Method For Calibrating Ultrasound Clamp-On Flowmeters
JPS6098313A (en) Ultrasonic flowmeter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP3469405B2 (en) Temperature measurement device
JP3136002B2 (en) Ultrasonic flow meter
JP3103264B2 (en) Ultrasonic flow meter
JPH063384B2 (en) Ultrasonic flow meter
JPH0791996A (en) Ultrasonic flowmeter
JPH11351928A (en) Flowmetr and flow rate measuring method
JPS61120015A (en) Ultrasonic flow meter
JPH0561571B2 (en)
JP2001183200A (en) Flowmeter and flow-rate measuring method
JPH0554609B2 (en)
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JPS6254112A (en) Thickness measuring method for scale in pipe
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JPH0324607B2 (en)
JPH07139982A (en) Ultrasonic flowmeter
JPS5897633A (en) Temperature measurement system
JPS58184525A (en) Device for measuring temperature in water
JPS62197715A (en) Ultrasonic type measuring apparatus